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We derive a Hamiltonian for an extended spinning test-body in a curved background spacetime,
to quadratic order in the spin, in terms of three-dimensional position, momentum, and spin vari-
ables having canonical Poisson brackets. This requires a careful analysis of how changes of the spin
supplementary condition are related to shifts of the body’s representative worldline and transfor-
mations of the body’s multipole moments, and we employ bitensor calculus for a precise framing
of this analysis. We apply the result to the case of the Kerr spacetime and thereby compute an
explicit canonical Hamiltonian for the test-body limit of the spinning two-body problem in general
relativity, valid for generic orbits and spin orientations, to quadratic order in the test spin. This
fully relativistic Hamiltonian is then expanded in post-Newtonian orders and in powers of the Kerr
spin parameter, allowing comparisons with the test-mass limits of available post-Newtonian results.
Both the fully relativistic Hamiltonian and the results of its expansion can inform the construction
of waveform models, especially effective-one-body models, for the analysis of gravitational waves

from compact binaries.

I. INTRODUCTION

The advent of gravitational wave astronomy promises
to shed light on many profound questions in astrophysics
and gravitational physics. For both the advanced gener-
ation of ground-based gravitational wave detectors [1-3],
now in operation, and future space-based detectors [4],
the first detected signals are likely to come from inspi-
raling and coalescing binary systems of compact objects
such as black holes and neutron stars. Understanding
in great detail the dynamics of such two-body systems,
expected to be governed by general relativity, is thus a
cornerstone objective of gravitational wave physics.

A sufficiently accurate and general solution to the rel-
ativistic two-body problem will require a synergy of re-
sults from both numerical and analytic computations.
On the analytic side, two complementary approximation
schemes are available: the post-Newtonian (PN) approx-
imation expands about the Newtonian limit but is valid
for arbitrary mass ratios [5, 6], while the extreme-mass-
ratio (EMR) approximation expands about the test-mass
limit but is valid in the strong-field, relativistic regime.
A synergistic approach is the effective-one-body (EOB)
formalism [7, 8], which incorporates information from the
PN limit, the EMR limit, and numerical relativity in an
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attempt to provide an accurate effective description of
two-body systems throughout the parameter space.

In the EMR approximation, the zeroth-order solution
is given by a (point) test mass moving along a geodesic
of a background black hole spacetime—the Schwarzschild
spacetime of a non-spinning black hole or the Kerr space-
time of a spinning black hole. Corrections to this solution
can proceed in two (intermingled) directions: Firstly, one
can compute the perturbation to the gravitational field
produced by the small body, its self-field, and the re-
sultant influence on its motion. This is the goal of the
“self-force” paradigm, as reviewed e.g. by Refs. [9, 10].
Secondly, one can compute “finite-size effects” on the
small body’s motion, due to its spin and to intrinsic and
tidally induced deformations. Such finite-size effects in
the EMR limit (neglecting the self-field) are the focus of
this paper.

The equations of motion of a spinning (pole-dipole)
test body in curved spacetime were first derived by
Mathisson [11, 12] and Papapetrou [13] and were later
extended to include the effects of higher multipoles by
Dixon [14]; see [15] for a review. The resultant dynamics
of a spinning test body (to pole-dipole order) serves as
the basis of the spinning EOB models of Refs. [16-20],
which employ the canonical Hamiltonian for a pole-dipole
particle derived in Ref. [21]. The conservative dynamics
of these EOB models is defined by the Hamiltonian of
an effective spinning test particle in an effective space-
time which is a deformation of the Kerr spacetime, in
the same way that the original EOB model [7, 8] was
based on a nonspinning test particle in a deformation of
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the Schwarzschild spacetime. In both cases, the defor-
mations encode finite-mass-ratio effects determined from
PN calculations and vanish as the mass ratio goes to
zero, so that exact (strong-field) results are recovered in
the test-particle limit. Alternative spinning EOB models
which do not incorporate the spinning test-particle limit
have also been constructed, as in Refs. [22, 23].

This paper extends the work of Ref. [21], which was
valid to linear order in the spin, or to dipolar order in
the body’s multipole expansion, to derive a canonical
Hamiltonian for an extended test body in a curved back-
ground which is valid to quadrupolar order. We treat
explicitly here spin-induced quadrupoles and all other
spin-squared effects. Our methods also provide signif-
icant simplifications of some of the dipole-order calcu-
lations of Ref. [21], as we employ crucial insights from
Ref. [24] on the handling of generic spin supplementary
conditions (SSCs) [conditions which fix a representative
center-of-mass worldline for the test body| at the level
of the action. We highlight how a change of the SSC,
corresponding to a shift of the center-of-mass worldline,
entails transformations of the body’s multipole moments
and corresponding modifications of the action and Hamil-
tonian. We use bitensor calculus [9, 25, 26] to provide a
precise and manifestly covariant treatment of the world-
line shift. We finally show, extending the linear-in-spin
result in Ref. [21], how use of the Newton-Wigner SSC
[27-29] allows one to construct a Hamiltonian in terms
of three-dimensional position, momentum, and spin vari-
ables with a canonical Poisson bracket structure.

The result for the canonical Hamiltonian can be sum-
marized as follows. In a spacetime with coordinates
(t,2') and an orthonormal frame (or tetrad)
ea" = (eot,e;#), the (reduced) phase space for a spin-
ning test body consists of the spatial coordinates 2z of
its representative worldline z#, their canonically conju-
gate momenta P;, and the frame spatial components
S; = %eijksjk = %eijkej“ek”SW of the spin tensor S,.,
given as functions of the time coordinate ¢ and obeying
the canonical Poisson brackets (4.17). The Hamiltonian
H(z, P,S) is defined by

H = —P, = N/u2 +~iP;P;j— N'P;,

where P, = (P, P;) is the 4D canonical momentum
whose time component is the minus the Hamiltonian,
where N, N', and 49 are the lapse, shift, and inverse
spatial metric as in (4.18), and where the (canonical)
effective dynamical mass u(z, P, S) is given by (5.17),

ot =

(1.1)

p? = —p,P" (1.2)
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Here, wepe = €a”(Vyep”)eq, are the Ricci rotation coef-

ficients, C' is a constant measuring the test body’s spin-
induced quadrupolar deformation with C = 1 for test
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black holes, E((lf) is the electric part of the Weyl/vacuum-
Riemann tensor (5.7), s® is the Pauli-Lubanski spin vec-
tor (5.14), and the frame components Sp; are determined
by the solution (4.9) of the Newton-Wigner SSC. The
constant mass m(S) is a function of the likewise con-
stant spin length S = /s%s, and encodes the moment of
inertia [30].

Our derivation of the Hamiltonian (and the covari-
ant action principle which yields it) resolves some pre-
vious ambiguities concerning the adjustability of the co-
efficients of the curvature coupling terms in the last line
of (1.2), as we discuss in particular below (2.22) and be-
low (5.16).

By specializing to the case where the background
spacetime is Kerr, we arrive at a canonical Hamilto-
nian for the test-body limit of the relativistic spinning
two-body problem, valid to quadrupolar order in the
test body’s multipole expansion. Our results comple-
ment those of Refs. [31-34], which have also considered
spin-squared effects for test bodies in Kerr, with one no-
table new feature of our results being that they allow
for generic orbits and spin orientations. Of particular
interest in this respect are compact (covariant) expres-
sions for the Riemann tensor and its couplings to the
spin which are valid for generic orbits, obtained by ex-
ploiting the algebraic specialness of Riemann tensor in
Kerr. Other treatments of spinning test-particle motion
in algebraically special spacetimes can be found e.g. in
Refs. [35, 36].

While much of our analysis and many of our inter-
mediate results are fully covariant, our final result for
the canonical Hamiltonian in Kerr depends on a choice
of coordinates and a choice of tetrad. We find that a
comparison with PN results can be relatively easily ac-
complished by using Boyer-Lindquist coordinates and the
“quasi-isotropic” tetrad of [21], though we also trace the
relationship between this tetrad to the one used by Carter
[37, 38] which diagonalizes the electric and magnetic com-
ponents of the Riemann tensor. Other choices of coordi-
nates and tetrads are likely to yield other useful forms of
the Hamiltonian, as in [39], which showed that numeri-
cal evolution of the (linear-in-spin) Hamiltonian system
is improved by using Kerr-Schild coordinates and an as-
sociated tetrad. We provide here all results, including the
Ricci rotation coefficients and the Riemann tensor com-
ponents, to explicitly compute the Hamiltonian (1.1) in
Kerr for the two tetrads of [21] and [37, 38]. [We should
note that explicitly expressing H requires algebraically
solving Egs. (1.1) and (1.2), since p depends on P;, but
this is easily done working perturbatively in the test spin;
see (7.31).]

While our Hamiltonian is valid only to zeroth order in
the mass ratio and to spin-squared/quadrupolar order in
the test body’s multipole expansion, it is valid to all PN
orders and to all orders in the spin parameter of the Kerr
black hole. Expanding the Hamiltonian in powers of the
Kerr spin and in PN orders allows us to make compar-
isons with the test-mass limits of the results of high-order



PN calculations, notably those of Ref. [24, 40-42] for
next-to-leading-order spin-squared couplings, Ref. [43—
46] for next-to-next-to-leading-order spin-orbit interac-
tions, and Refs. [47-51] for leading-order couplings at
third- and fourth-orders in the spins. We find complete
agreement with the test-mass limits of all available PN
results. We remark that the complete finite-mass-ratio
PN results for the leading-PN-order spin couplings for
binary black holes, through fourth order in the spins,
can all be “deduced” from the results in the test-mass
limit.

While our final spinning test-body Hamiltonian is ex-
pressed in terms of canonical variables defined by the
Newton-Wigner SSC, we provide the explicit translation
into variables defined by other SSCs, and in particular
by the more physically motivated “covariant” or Tulczy-
jew SSC [14, 52, 53]. Future work in developing effective
Hamiltonians for the spinning two-body problem is likely
to benefit from a detailed analysis of how to expound
upon this translation—relating different definitions of po-
sition, momentum, spin, and quadrupole variables—with
explicit connections to the definitions used in other ap-
proaches to the spinning two-body problem, including (i)
the effective action approaches to spin effects in PN the-
ory (see e.g. [24, 48]), (ii) self-force calculations and their
uses in determining EOB potentials (see e.g. [54-56]),
and (iii) extracting appropriate measures of the mass,
spin, and other multipole moments of black holes and
fluid bodies in numerical relativity simulations (see e.g.
[57]).

We begin in Sec. II by discussing constrained action
principles for a spinning test body, summarizing how a
formulation in terms of generic-SSC variables is related
to one in terms of covariant-SSC variables. Section ITI
applies results from bitensor calculus to derive the trans-
formation properties summarized in Sec. II. We use the
Newton-Wigner SSC to achieve canonical variables in
Sec. IV. We specialize to a spin-induced quadrupole and
decompose the couplings to the Riemann tensor in terms
of its electric and magnetic parts in Sec. V. We special-
ize to the Kerr spacetime and its algebraically special
Riemann tensor in Sec. VI, and we collect the necessary
results and perform the PN expansion in Sec. VII. We
conclude in Sec. VIIL.

II. EQUATIONS OF MOTION AND ACTION
PRINCIPLES

The motion of an extended test body in curved
spacetime is described, in a multipolar approximation,
by the Mathisson-Papapetrou-Dixon (MPD) equations
[11, 13, 14], which are given to quadrupolar order by

Dpt 1 1
di = =53 Rap S = SV Rypas ], (2)
DSH

4
= QP[NZV] + gR[Mpa,BJV]paﬁy (22)

ds

where p# is the linear momentum vector, S*" is the an-
tisymmetric angular momentum (or spin) tensor, and
JHeB i the quadrupole tensor, all of which are tensors
defined along a representative worldline z#(s) with tan-
gent Z# = dz"/ds, where s is an arbitrary parameter.
Our convention for the Riemann tensor is

Rﬂya,@ = F”,,Bﬂ—F“,ja,/g—l—l“pl,ﬂf‘“pa—Ff’yaF”plg. (23)

where I'*, 5 is the Christoffel symbol. The signature of
spacetime is taken to be +2. The quadrupole J#®8
may depend on certain internal degrees of freedom of the
body, or (as in the case of a spin-induced quadrupole, or
an adiabatic tidally induced quadrupole) it may be deter-
mined by only p*, S*”, and the local geometry along z*.
In the latter case, Egs. (2.1) and (2.2) completely deter-
mine the evolution of p* and S* along a given worldline
z#: however, they do not single out a choice of worldline.

A fully determined system for evolving p*, S#¥, and z*
can be obtained by enforcing a spin supplementary con-
dition (SSC), of the form S, f* = 0. This corresponds to
demanding that the body have a vanishing mass dipole
about z* in the local Lorentz frame defined by a time-
like vector field f#. The worldline z* follows the body’s
center of mass as measured in the frame of f*.

The most common and physically sensible choice for
the SSC is to use the body’s rest frame, i.e. f#* = p*,
yielding the “covariant” (or Tulezyjew [14, 52, 53]) SSC:

S#Vﬁy = 07 (24)

where we denote quantities defined by the covariant SSC
with a tilde. We also later insert tildes on indices for the
tangent space space at the point z, as in S,;,;ﬁﬂ =0, to
distinguish them from unadorned indices for the tangent
space at the point z, but we avoid the clutter of tilded
indices unless it is necessary. Another useful choice, due
to its utility in achieving 3D canonical variables, is the
class of Newton-Wigner SSCs [27-29], defined in terms
of an arbitrary unit timelike vector field eg” by

pI/
S | —— +e0” | =0.

We discuss first in Sec. IT A an explicit action principle
for the quadrupolar MPD equations which enforces the
covariant SSC. In Sec. II B, we discuss how to generalize
to an action which enforces a generic SSC, and we follow
the change of variables that relates quantities defined by
the covariant SSC to those defined by a generic SSC.
In Secs. II-11I, we use unadorned symbols for quantities
defined by a generic SSC, and these become those defined
by a Newton-Wigner SSC in Sec. IV, with tildes denoting
covariant-SSC quantities throughout.

(2.5)

A. Action for the covariant SSC

An explicit action functional which yields the
quadrupolar MPD equations (2.1, 2.2) while enforcing



the covariant SSC is given by [30, 58]
(2.6)

The independent degrees of freedom to be varied here
are the momentum p*, the spin S*¥, the worldline z#,
and a “body-fixed” orthonormal tetrad As* along the
worldline, satisfying n4BA*Ap¥ = g"”, from which the
(antisymmetric) angular velocity tensor Q" is defined as

DAAV

O = A
A s

(2.7)
The “Dirac Hamiltonian” Hp consists only of constraints
(not involving derivatives) with Lagrange multipliers,
and the action (2.6) is thus reparametrization-invariant:
"V
o =208~ + 5 [1? + 45,5,
—-Pp
The Lagrange multiplier x* enforces the covariant SSC,
Suwp” = 0, while the Lagrange multiplier A enforces the
“mass-shell constraint”, P2 = —M?2. The “dynamical
mass” function M(p, S, Z) includes, in addition to rest-
mass or other internal energy contributions, couplings
between the body’s multipoles and the background space-
time curvature. Taking M to depend on z only through
the metric and the Riemann tensor evaluated at z leads
to the quadrupolar MPD equations (2.1, 2.2), with the
quadrupole given by

Juvas  g/—52_0M

ORvap’

(2.8)

(2.9)

We will return in Sec. V to discuss the specific form of
M which corresponds to a spin-induced quadrupole, but
for now we leave it as a general function of p, S, and the
metric and the Riemann tensor at Z.

That the variation of the action (2.6) yields the MPD
equations (2.1, 2.2) with (2.9) is shown in Appendix A.
The MPD equations and the covariant SSC can then be
used to solve for the relationship between the tangent
z#* and the momentum p*, thus yielding complete evolu-
tion equations for p*, S* and z* [31, 59]. One finds,
however, that the Lagrange multiplier X* cannot be elim-
inated from the equation of motion for A 4#*. This corre-
sponds to a residual freedom to choose the timelike com-
ponent Ag* of the tetrad [60]. A consistent and physically

sensible choice is Ag* = pH//—p?; see also [61].

B. Action for a general SSC

Having in hand the action (2.6) which yields the MPD
equations while enforcing the covariant SSC, we now turn
to generalizing this action to accommodate an arbitrary
SSC. We will find, following Refs. [24], that this can be
accomplished by a judicious change of variables in the

action (2.6). We arrive at a new action which yields
the same form (2.1, 2.2) of the MPD equations for mo-
ments p and S along the worldline z defined by a generic
SSC, but which entails additional curvature couplings not
present/relevant for the case of the covariant SSC, which
modify the relationship between the quadrupole J (or the
effective dynamical mass M) and p, S and z.

For the first step of the change of variables, follow-
ing [24], we transform the covariant-SSC tetrad A 4* into
a new (intermediate) tetrad A by applying a local
Lorentz transformation L*, which boosts the direction
of the momentum p* into an arbitrary unit timelike vec-
tor v#:

20D,

_ - 14
Al =LP,ApY, L, =o0— B o S B
/_p2 —ppwp
(2.10)

where w* = p*/\/—p? + v*. As shown in [24], if this is
accompanied by the following transformation of the spin
tensor,

S, 5,

52

SHY — QHV 2]3[#51/]’ gﬂ — — =
—PpWw -p

(2.11)

then the rotational kinematic term in the action trans-
forms according to

Dp,

- (2.12)

=S = %SWQW — g
DAAI/

~ S —

from S,,,p” = 0, the new spin tensor S satisfies the new

SSC S'Ww” = 0. If the original tetrad satisfied AoH =

p*/+/—p?, then the new tetrad will have Ag# = v*, and

the new SSC will read

where QMY = A4#

. From its definition (2.11), and

S | L= + 8" | =€, =0. (2.13)
V7

This is the “spin gauge constraint” discussed by [60],
in which the timelike component Ag# of the body-fixed
tetrad plays the role of a gauge field parametrizing a
generic choice of SSC defined by C,, = 0. We obtain the
“spin gauge invariant” action functional presented in [60]
by using (2.11) and (2.12) in (2.6) and modifying the x
constraint to match (2.13):

S[ﬁ) 7251_\] =
~ ls 5 v S ﬁl’ Dp I
/ds {puz‘ + 55,“,9‘ - dsu — Hp|,
_ A ~
HD = X”Cu + 5(132 + Mg)? (214)

where the original covariant-SSC dynamical mass M,
given as a function of the original spin S#¥, is expressed
in terms of the new spin S*” via SH¥ = 77573550‘5, which

follows from (2.11), where P# = ¥ — pip,/p? is the



projector orthogonal to p*. Equation (2.14) can also be
obtained by a minimal coupling of the one derived in [60].

In the case of flat spacetime, [60] demonstrated that
C, is a first class constraint, and thus a generator of
infinitesimal gauge transformations, and that the ac-
tion (2.14) is invariant under these “spin gauge trans-
formations”. These transformations induce infinitesimal
Lorentz transformations of the tetrad Ag* and corre-
sponding shifts, S — SH 4+ 2plHEV] | of the spin, similar
to (2.10) and (2.11), while leaving the momentum p* and
the worldline Z* invariant. It is important to note that
the worldline z# here corresponds to the worldline defined
by the covariant SSC, S,,,p” = 0, and by the MPD equa-
tions for p* and S#¥. It is not the worldline defined by
the generic SSC C,, = S, (5" /\/—52 + Aog¥) = 0 and the
MPD equations for p* and S*¥; the equations of motion
for p* and S resulting from the action (2.14) are in fact
not the MPD equations. The action (2.14) would yield
the MPD equations if the Dp,,/ds term were removed.

We can transform the action (2.14) into a form which
does yield the MPD equations by making further changes
of variables, including a shift of the worldline to that
defined by the new generic SSC. We will see that the
necessary worldline shift, from Z(s) to a new worldline
z(s), to quadratic order in the spin, is given by moving
a unit interval along the affinely parametrized geodesic
whose initial tangent is the vector £ at Z given by (2.11).
In other words, z is the “exponential map” of §~ at z,

Z = expz gv T 9 (215)

and «fﬁ is the “deviation vector” at z pointing to z. Here,
we have inserted tildes on indices for the tangent space
at Z to distinguish them from unadorned indices for the
tangent space at z. We can then define a new tetrad A 4*
and spin S*¥ at z by parallel transporting A 4# and S#¥
along the geodesic from z:

Aa = g ahal = gh A LP 5 A 47, (2.16)
"ag” s SP = gt ng”s (SW + Qﬁ[ﬂgﬂ]) , (2.17)

where g* (2, Z) is the parallel propagator [9, 26] along the
geodesic from Z to z, and where the second equalities have
used (2.10) and (2.11) to relate back to covariant-SSC
quantities. Finally, in order to obtain a canonical form
for the action (and one which yields the MPD equations),
we will find that we must transform to a new momentum
p* at z according to

< Lo gabio . Lpa _~o7agh
P =" (p“— 3R 5a5 SO0 + SR o€ 5‘3)
no o Lon zagss 1

— gt [ pP _ ZRE__.GQaBev _

g #(p SR ap S0 — 3

With these transformations, as shown in the following

section, the action (2.14) becomes
S[p7 S? Z7 A] =

1
/ ds {puz’“ + is,wmv —Hp + 0(53)] ,

(2.19)
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Av
where QP = A H DA and
ds
pnv
gn = 0 (2.21)

—p2
which is the deviation vector at z pointing to Z, at least
to quadratic order in spin, as &* = —gtER + O(S3).
The original dynamical mass M is expressed in terms
of the new variables, to O(S?) accuracy, by using the
same functional form of M as for the original covariant-
SSC variables but with the spin replaced by its projection
PLPYS orthogonal to p, where P4 = 64 — p'p, /p.
As shown in Appendix A, the equations of motion result-
ing from the action (2.19) are the MPD equations (2.1,
2.2) [+0O(S?)] with the quadrupole given by

oM
OR,vap

= 9"19"59%a9" 37777
52 (pm gVl plaghl

4 plujvlaB +p[aj,3]uu) +O(S%),

JrvoB — 6/ 32 (2.22)
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The contributions involving & arise from the shift (2.20)
of the effective dynamical mass, which introduces new
curvature couplings arising from the use of a generic SSC
rather than the covariant SSC. These couplings vanish
(on the constraint surface) for the case of the covariant
SSC, and one can see that the generic action (2.19) re-
duces to the covariant-SSC action (2.6) when the gauge

field Ag* is taken to be p*/+/—p?.

The new curvature couplings in (2.20) arise here from
the transformations (2.17) and (2.18) of p* and S*, and
these arise, as shown in the following section, from de-
manding that the transformation from the covariant-SSC
action (2.6) to the generic-SSC action (2.19) preserves
the canonical forms of the kinematic terms (the terms
with s-derivatives). This coincides with ensuring that the
generic action (2.19) also yields the MPD equations (2.1,
2.2), as is shown in Appendix A, which provides a physi-
cal justification of the action (2.19) via the derivation of
the MPD equations from stress-energy conservation [14].

For further insights into the transformation laws (2.17)
and (2.18), we can note: the final expressions of (2.17)



and (2.18) for p# and S*¥ are the results of solving the
MPD equations along the geodesic connecting Z to z,
with % and SA” as initial data at Z, through O(S?).
We can also note: the holonomy of the MPD equations
around a loop of size S/p is the identity map through
O(S?%). In both of these statements, the quadrupole
terms in the MPD equations do not contribute at the
stated orders. It seems clear that the transformations
(2.17) and (2.18) of p* and S** under a shift of the world-
line should follow from their definitions in terms of the
body’s stress-energy tensor given by Dixon [14], and like-
wise for the transformation (2.22) of J#***#. While mak-
ing this connection explicit would require a careful anal-
ysis of the role of the surfaces of integration in Dixon’s
definitions, our analysis of the effective action here avoids
this complication.

We will use the generic action (2.19) as our starting
point in Sec. IV, where we specialize to the Newton-
Wigner SSC. First, in Sec. III, we provide a derivation of
how the covariant-SSC action (2.6) is transformed into
the generic-SSC action (2.19) via the transformations
(2.18), (2.17), (2.15), and (2.16) of p, S, z, and A, whose
inverses are (3.14), (3.15), (3.1, 3.13), and (3.16) below.

III. COVARIANT SHIFT OF THE WORLDLINE

We now show how to consider the shift of the worldline
and the transformations of quantities defined along the
worldline, in a manifestly covariant manner, using the
language of bitensors [9, 14, 26, 62, 63]. An alternative
derivation is presented in Appendix B.

It will be convenient to start with the worldline z(s)
defined by a generic SSC and shift to the worldline Z(s)
defined by the covariant SSC. In general, a new worldline
Z(s) can be specified by a deviation vector field &#(s)
along an old worldline z(s), according to

Z=exp, & & &'=-Vto(z2), (3.1)

where o(z, Z) is Synge’s world function [9, 26], giving half
the squared proper interval along the geodesic connect-
ing z to z. The point Z is reached by traveling a unit
interval along the affinely parametrized geodesic starting
at z with tangent &£#, as in Fig. 1.

Differentiating the second relation in (3.1),

Dem .
Ti = 2"V, Vto — "V, V"o, (3.2)
and solving for the tangent to Z(s) yields
. - _ DEH
= KF +H“#—€, (3.3)
ds
where
HPy = = (VaVi'o) ™ = g% + O(€%), (3.4)

_ - - 1

FIG. 1. Along the worldline z(s) defined by a generic SSC,
with tangent 2*(s), we have the deviation vector field £*(s),
which points (via the exponential map) to the worldline Z(s)
defined by the covariant SSC, with tangent 7.

are the “Jacobi propagators” [14, 62, 63], with the sec-
ond equalities giving their expansions in powers of the
deviation vector [63]. Thus,

per 1
d—i = 5 R ap2€¢" + 0(53)) :
(3.5)

which gives the tangent to the covariant-SSC worldline
Z(s) in terms of the generic-SSC worldline z(s) and the
deviation vector £"(s) along z(s).

Let us take the momentum p; at Z to be related to the
new momentum p,, at z by

Zh— gﬁu (yt +

P = 9i" (Pp + 0py) (3.6)

where dp,, is an O(5?) correction to be determined, an-
ticipating that £ ~ O(S). Then,

Dp; D - %
L = gt TP (2 Vgi + F Vgt pu + O(S7)
D .
= gi" ( di“ — R, 5paz’€” + 0(52)> . (3.7)

where we have used (3.5) and the expansions of the
derivatives of the parallel propagator [9],

1

Vg = _§gﬁuRuaVﬂfﬁ +0(8%), (3.8)
1

Vﬁgﬂa = _§gﬁ#gDyRuaV,@€B + O(§2) (39)

Similarly, taking the intermediate body-fixed tetrad A 4#
of (2.10) at Z to be related to the new tetrad at z by
parallel transport, Aa* = g*,A4*, we have

DAA" (DAA“
w

o ds

7 - Rshat 2 1 0().

(3.10)
and thus,

Qﬂﬁ = gﬁugﬂu (QMV + leaﬁ’éagﬁ + 0(52)>7 (311)



with Q" and QF” as defined in (2.7) and below (2.12).
Finally, the intermediate spin S#¥ of (2.11) at Z is parallel

transported into the new spin S*” at z, as in (2.17).
Putting everything together, we find that the kine-
matic terms of the action (2.6) transform according to

1 v 1 14 v Sﬂ’yp v
Pu + 6pu + §Rpua,8SaB€ - §Rua ﬂpufagﬁ - Rua ﬁpuga 2V> #

1 S*p,\ Dp D
IV ) SR S (pugt) + O(S?). 3.12
+gSu = (g4 20 ) Dy B 004 005 (3.12)
[
We see that we can remove the last two terms by choosing satisfying e,"ep, = 7Nap, Where 74 is the Minkowski

the deviation vector to be

wo_ Sl“/py
E - _p2 .

(3.13)

We then see that p,, will be (covariantly) conjugate to z#
if we choose

guﬁﬁﬂ =Pu + 6pu (314)

1 a v 1 v @
=DPp — §R[U/ BS&B€ - §R/La 5171/5 557

which is the inverse of (2.18). The complete transfor-

mation from generic- to covariant-SSC variables is then
given by (3.14) and

S = gl g”, (SM + 2ple”)),
AaP = LsFg" A 0",

(3.15)
(3.16)

along with the worldline shift defined by (3.1) and (3.13).
In the end, (3.12) has become

puzt +

- 1
o = p Lt 55’*”QW +0(S8%), (3.17)

N | =

and inserting this into the covariant-SSC action (2.6)
yields the generic-SSC action (2.19), with appropriately
modified Lagrange multiplier terms. The expression
(2.20) for the effective squared dynamical mass M? =
—p? follows from the transformation (3.14) of p* and
from M2 = —p2.

IV. CANONICAL HAMILTONIAN

We now take the final form (2.19) of the action for a
generic SSC and specialize to the Newton-Wigner SSC
(2.5), in order to obtain a Hamiltonian formulation in
terms of 3D dynamical variables with canonical Poisson
brackets.

This involves a choice of an arbitrary fixed orthonor-
mal frame or tetrad e,* on the background spacetime,

metric and is used to raise and lower the frame in-
dices. We write e,* = (eo”, e;*), where the frame in-
dices a,b,c,... take values 0 for the temporal compo-
nent and ¢,7,k,... = 1,2,3 for the spatial components.
We also use A = (0,4) for the body-fixed frame indices
on Aa*. We continue using Greek letters u,v,a, 3, ...
for coordinate-basis indices (though they could also have
been interpreted as abstract indices up to now). The
Greek coordinate-basis indices take values t for the time
coordinate and i,j,k,... (= 0,6, say) for the spatial
coordinates, with the unitalicized font distinguishing the
latter from spatial frame indices i,j, k. We use frame
components of tensors such as p, = (po,pi) = eqt'pu, to
be distinguished from the coordinate-basis components
pu = (pt, 1)

With this notation in order, we consider the generic-
SSC action (2.19):

1

S = /ds {pu,é“ + §SWQ’“’ - HD] , (4.1)
A
Hp = xCyq + 5(102 + M3 (p, S,z)).
As discussed in [60], the spin gauge constraint,

PP

Co=Sup | ——+ A" | =0, (4.2)
/—p2

is not itself a SSC, but it becomes a specific SSC with
a specific choice of the “gauge field” Ayp®. The following
choices for the gauge field Ag® turn (4.2) into various
familiar SSCs:

a

p

Ao = = Sup’ =0, (4.3)
_p2
p
2 05a _ a
Aoa = 7]9 0P =  Sa = 0, (44)
A /_p2
A =0 =  Swl+ VR =0 (45)

The first choice represents the covariant Tulczyjew SSC
[52, 53] and the second yields the Corinaldesi-Papapetrou



SSC [28, 64, 65]. The third condition (4.5), leading to
the Newton-Wigner (NW) SSC [27-29], is the one used
here. The NW SSC allows one to formulate a canonical
phase space algebra for the reduced degrees of freedom
on the constraint surface, as we shall see below. In gen-
eral relativity, this SSC saw a widespread use only more
recently. It was employed for post-Newtonian calcula-
tions in [24, 66-68], where [24, 67] apply it in the Feyn-
man rules, in the ADM canonical formulation of spin
[68, 69], for the test-spin Hamiltonian in [21], and at
the level of the MPD equations in [70]. However, while
Refs. [21, 66, 67] use the condition on the spin in (4.5),
their condition on Ay® differs from (4.5).

It is useful to write the rotational kinematic term in
the action in the local frame,

D(AAbebV)
ds
=Suw (AAGAAb + wuabZ'”) ,

S;LVQHV = S,uVAAaeau
(4.6)

where dots denote the ordinary derivative d/ds, and

ab _ b av
w,” =¢e",Vye

(4.7)
are the Ricci rotation coefficients. Choosing the NW SSC
(4.5) removes all temporal components from the SAA
term (notice that also As° = §9), leaving only spatial
components:

SapA AN = S, AFARI, (4.8)
where we understand that the first index of A refers
to the body-fixed frame and the second one to the lo-
cal frame. Thus, the RHS of (4.8) provides a canonical
kinematic term for the physical degrees of freedom A%
and S;;, and the dependent degrees of freedom Ao and
So: have no kinematic terms. The latter are fixed by the
gauge choice Ag® = §§ and the resultant NW SSC (4.5),
which can be solved to yield

S’p7
Soi = ——2 4.9
0 pO +M ( )
having used p? = —M?2. These arguments allow us to

avoid the Dirac brackets for handling the constraints,
which would be considerably more complicated [21].

Using (4.6) and (4.8) in (4.1), we see that the action
in the NW SSC has the form

1 o
S = /ds |:P,u73# + isijAkZAkJ - HD 5 (410)
where we have defined a new momentum,
1 ab
Pp, =Dpu+ iwu Sab, (411>
whose coordinate-basis components P, = (P, P;) are

canonically conjugate to the worldline coordinates 2# =
(t,z'). We refer to P, as the canonical momentum and to

pu as the covariant momentum, and we work with both
below.

The form (4.10) of the action still has unphysical de-
grees of freedom associated with reparametrization in-
variance. We can fix these by choosing the worldline pa-
rameter to be the time coordinate, s = t, so that ¢ = 1,
and thus,

P " = P, + P 2. (4.12)
We can then solve the mass-shell constraint p? = —M?
for P;, using (4.11). This is most easily accomplished
order by order in the spin, and we will discuss the so-
lution to linear order in the following subsection and to
quadratic order in Sec. VII.

Having solved both constraints, Hp vanishes, and we
obtain from (4.10) and (4.12) the final canonical form of
the action,

S= /ds [Pi # 4 %SijAkiA’W‘ —~H|, (4.13)

where
H(Zi,Pi,SZ‘j) = —Pt. (414)

A variation of the action with respect to the dynamical
variables z', Pj, and S;; leads to the equations of motion

. OH . oH . oH
= j = ——r i = €iik o Pk 4.1
S=apy Dmga ST cungg Sk (4.15)
where
1
Si = S€ijnSjk- (4.16)

These have the form of Hamilton’s canonical equations
with H being the Hamiltonian. The canonical Poisson
brackets for the dynamical variables z', P;, and S;; can
be “read off” from these equations of motion as

{Ziv Pj} - 53'17

{Si,S;} = €Sk, (4.17)

with all others vanishing.

A. Hamiltonian to linear order in spin

We can find the explicit Hamiltonian H = —P; to lin-
ear order in the spin by solving the mass shell constraint
p? = —M? for P, in terms of 2!, P;, and Sij, using
P,=p,+ %wu“bSab as in (4.11), and using the solution
for Sp; given by (4.9). Defining the lapse N, shift N, and
inverse spatial metric ¥ of the background spacetime,

(4.18)



NiNj B gtigtj

1)

N2 =9 gtt ’

VI = gl 4
we find

H = —Pt(Zi, Pi 5 S,'j)

N . [wrid  yu0i pi
:HNS_i-P/_L <UJ+ w

(4.19)

-_— S¢'+OSQ,
Q 92 P0+m> J ( )

where

Hxs = NQ - N'P;, Q= \/m2+~iPP;, (4.20)

PO =¢cmp Pt = e“‘PH,

PM - (_HNS7Pi)a 73]

and where we have taken M? = m? + O(S?) with m
being a constant.

The Hamiltonian becomes somewhat simpler if we
adopt the “time gauge” [71], i.e. if we specialize the local
Lorentz frame e, * so that its timelike vector points along
the direction of the time coordinate, so that e, = N,
and also e,! = 69/N. We will refer to this choice as a
time-aligned tetrad from now on. This choice also im-
plies that P® = NP! and thus, from (4.18) and (4.20),
that P° = Q. Tt also implies that P = ¢iP; = P?,
which is then independent of P;. We can then write the
Hamiltonian (4.19) as

N -~ (Waij  wao0ilj
H = Hyog— —po | 2% 2973
NS Q ( 2 Q+m

where P* = (Q, P'), with Hyg and Q still given by
(4.20). This agrees with Eqs. (4.41-45) of [21] if we note

Wyay = 2E,4p and mind some raised and lowered indices
and changes of bases.

) S +0(S8?), (4.21)

V. CURVATURE COUPLINGS AT QUADRATIC
ORDER IN SPIN

At quadratic order in the spin, the action is still given
by (4.13), with the Hamiltonian H = —P; determined
by solving the mass-shall constraint p?> = —M?, where
P, =p, + %wuabSab as in (4.11). But we must also
now take into account the spin-squared contributions to
the effective dynamical mass M, which arise both from
intrinsic couplings in the covariant-SSC dynamical mass
M and from what one might call the kinematic couplings
of (2.20),

M2 = MQ - Rabcdpaé-b(SCd +p°€d) + 0(53)7 (51)
where
u Sabpb
" =— 7 (5.2)

The form of the covariant-SSC dynamical mass M which
encodes a spin-induced quadrupole moment is given by

[30, 40, 69]
M2 = m? + CR 225957 + 0(5°) (5.3)
_ 2 PP Gbe ga 3
=m* 4+ CRaped s 578 + O(S?), (5.4)
where m and C' are constants, and
SNrab _ ngSscd — gab + 2p[a§b] (55)

is the projection of the spin tensor orthogonal to the mo-
mentum (which coincides with the covariant-SSC spin
tensor, up to parallel transport, at the considered or-
der). The constant C' measures the body’s spin-induced
quadrupolar deformation response. It is equal to 1 when
the body is a black hole [40, 72], and we will see that
special simplifications occur in this case. For neutron
stars C' depends on the equation of state [72, 73]. The
constant mass m(S) is a function of the likewise constant

spin length S = %\/ SabS . and encodes the moment of
inertia [30]. Notice that the spin-length is defined with
the spin in the covariant SSC.

The couplings to the Riemann tensor—the kine-
matic couplings of (5.1) and the intrinsic spin-induced
quadrupole coupling of (5.3)—can be better understood
by using the electric/magnetic decomposition of the Weyl
tensor. This goes hand-in-hand with the decomposition
of the spin tensor S% in terms of a Pauli-Lubanski spin
vector and the vector \/—p2£® which encodes the mass
dipole.

We restrict attention to vacuum spacetimes in four di-
mensions. Then the Riemann tensor equals the Weyl ten-

sor, and it can be decomposed into contributions from an

electric part EC(L’;) and a magnetic part B,(ff,) with respect

to a time-like vector p* [74-76]. In a compact complex
notation this reads

ER +iBY) = ;GacefRefbdp_cij (5.6)
= (Racbd + 1 *Racbd)p_cﬁj, (5.7)

where
Gabed = acGbd — Gad9ve + iNabed; (5.8)

the volume form is 1,v08 = vV—9€uap With €123 = 1,
and *Racpd = %T]ucef Rcfpq is the dual of the Riemann
tensor. The tensors E((l};) and B((LIZ) are orthogonal to p®,
and thus effectively three-dimensional, and are symmet-
ric and trace-free, making them easier to handle than
Rapeq- The following useful relations hold,

GabefGefcd = 4Gabcda
Gabgchdgfp_eiig = —Gabed;

(5.9)
(5.10)



. 1
Rapeqd + i >k-RoLbcd = éGabefRﬁfcd

1

- iRabgthdgh

1

= éGabe'fRefgthdgh (511)

In (5.11) the equality of the left and right duals of the
Riemann tensor was used. From these relations together
with (5.6), the Riemann tensor can be recovered as the
real part of

Rabcd +1 >liRabcd = Gabechdgh% (Ej(f;l) + ZBJ(CI;L)) :

(5.12)
Using (5.7) along with (5.5) allows us to express the
curvature couplings in (5.1) and (5.3) as

Rabcdpapcgbegde — 2E(b)s s
Rapeap®€pe = prEff,?g%b,
Rapeap®€"S°* = 20/=p?BY)s"¢" + B ev¢",

where the Pauli-Lubanski spin vector s is defined as

(5.13)

a __ 1 abed _ Pb Q
5 =73 — /jscd
1
= —fn“deipb Sed- (5.14)

2 \/ —p?

One further useful identity, which follows from (5.12), is

1
ZRabcdsabscd (5.15)

P)ab

= b S'S QE(p)g é—b

— 24/ — Bab s2Eb —

By combining (5.1), (5.3), (5.13), and (5.15), we can ex-
press the total effective dynamical mass as

— 924/ —= 2B(P)Sa€b_ 2E(§€)£a£b

1
=m® + 2 RupcaS*'S™ = (C ~ 1)Ef)s"s".  (5.16)

M? =m? — C’Eg)sasb

The coupling given by the second term was also con-
sidered e.g. in [77, 78], but therein the prefactor is an
arbitrary constant, analogous to C here. However, the
present derivation shows that this prefactor is actually
fixed. Indeed, it was argued in [24] that the only nonmin-
imal couplings which carry arbitrary coefficients should
be constructed from the projected spin S (or the vector
s%). The coupling terms agree with [40] in the case of the
covariant SSC.

Using (5.16), and using P, = p,+3w,"She asin (4.11),
we can rewrite the mass-shell constraint p? = —M? as

(5.17)
1
=m? — P%,"S,. + Zwabcwadesbcsde

+ iRabcdsabscd —(C-1)E®s2s® + 0(5%).
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We can then give a formal solution for the Hamiltonian

as
H=—P, = N/u2+~IP;P;— N'P;.

This is only a formal solution because p? depends on P;.
But because this dependence starts only at O(S), this
equation can be relatively easily solved for P, order by
order in the spin. We saw the fully expanded solution
to linear order in spin, for the general case in (4.19),
and with the time-aligned tetrad e, = N¢!, in (4.21).
We give the solution to quadratic order, in the case of a
time-aligned tetrad, in (7.31).

(5.18)

VI. THE KERR SPACETIME AND ITS
RIEMANN TENSOR

We now specialize to the case where the background is
the Kerr geometry, giving the vacuum spacetime around
a spinning black hole with mass M and angular mo-
mentum Ma. The metric in Boyer-Lindquist coordinates
(t,r,0,0) reads

M )
ds? = — (1 . r) di? + S dr® + 3 df?

A > e (6.1)
+ 5 sin? 0 d¢? — SR in? 0dtdop,
where
Y =72+ a®cos? 0,
A =w?—2Mr, (6.2)
A =w?— Ad®sin?0, ’

w? =r? +a>.

The Riemann tensor of the Kerr spacetime is alge-
braically special, of Petrov type D, meaning that it has
two repeated principal null directions (PNDs) [79, 80].
As follows from the decomposition of the Weyl tensor
in terms of the Weyl spinor [79, 80|, the Riemann/Weyl
tensor of any vacuum type D spacetime can be written,
along with its dual, in the compact complex form

Rocpa +i *Racbd = 71/} acbd + 7 (GT)ac(GT)bd . (63)

Here, v is a coordinate-invariant complex scalar ampli-
tude, Guepg is as in (5.8), and
(GT)ab = GadeTcd = 2(Tab + Z.Xab); (64)
where 7,5 is the real 2-form spanned by the two PNDs
(with TapT® = 2, with the sign of 74, being inconsequen-
tial), and xqp = *Tap = %nadeTcd is its dual.
It is convenient to use the orthonormal tetrad e,* on
Kerr introduced by Carter [37, 38|, for which the two



PNDs are the directions of ep” + e1#, given by

w2 0 a
VAY

1/ 0 0
(ea") = 1 , (6.5)

0 — 0

o)
asin 6 0 o 1
VE VEsinf

with a = (0,4) = (0, 1,2, 3) running down and p = (¢,i) =

(t,r,0,¢) running across. We will refer to the tetrad e,*
as the curvature-aligned frame. The components of the
2-forms 74, and Y, are given in this frame by

Tab = 25&5;]7 Xab = —€0lab- (6.6)
The complex amplitude v for Kerr is given by
M
Y=F—iB = (6.7)

(r +iacosf)3’

where we have defined the real scalars F and B, with
signs chosen to make them both positive in the region of
interest.

Using (6.3), the electric and magnetic parts of the Rie-
mann tensor (5.7) with respect to p* are compactly and
covariantly expressed as

cond

E(p) + ZB(p) (Racbd + 1 *Racbd) % (6.8)

= (E —iB)| — gabged + Yad9ve

pp*
- 3(Tac + iXac)(de + 7;Xbcl) _p2 .

If we take the electric/magnetic decomposition with re-
spect to the timelike component of the curvature-aligned
frame eg?, instead of p®, then the components of Eg,
and By, in the curvature-aligned frame are purely spa-
tial, symmetric, trace-free, diagonal tensors given by

EY) — _B§51 (3nin; — 6;),
BYY = BoL8] (3nin; — 6yy),

(6.9)
(6.10)

where n; = 6}

These results allow us to easily generate explicit ex-
pressions for the curvature couplings (5.16) in Kerr, us-
ing either the fully covariant expressions (6.3) and (6.8)
for the Riemann tensor and its electric and magnetic
parts, or the particularly simple components (6.9) in the
curvature-aligned frame. We will carry this to fruition
for two cases of interest. First, in Sec. VI A, we calculate
the curvature couplings in the curvature-aligned frame
e.", restricting attention to the case C' = 1. Then, in
Sec. VIB, we consider general values of C' and general
tetrads, and we introduce a second tetrad f,*, given by
a boost of e *, which satisfies the time-aligning condition
discussed above (4.21).
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A. Curvature couplings for a test black hole in the
curvature-aligned frame

Here we write out the C' = 1 curvature couplings in the
dynamical mass (5.16) in terms of the curvature-aligned-
frame components of the spin tensor S,;. We can exploit
an identity analogous to (5.15), using the decomposition
(5.12) but with p* — e, to express the dynamical mass
(5.16) with C' =1 as

1
M2 =m? + fRabcdS“bscd (6.11)

2 ESZO) aa Ab

= m-  —

2B(@0) Aa£b+E(@0)f fb

where we have defined vectors §* and £ analogous to

(5.2) and (5.14) but with p® — ep?,

. 1 abe
3% — abed

= —577

£ = —S%q;, = 67 So;,
whose frame components are purely spatial and are given
directly by the frame components of the spin tensor Sgp.

Using (6.11) with (6.9) then gives the remarkably simple
result

1
€obSed = 55?62‘]‘1@5}1@ =688;,  (6.12)

(6.13)

M2 = m2 + (3TL1’I7/J

”)[ (S:S; — So:So;) — 2BS:Su; ],
(6.14)

in the curvature-aligned frame with C' = 1.
Recall that the temporal components Sp; of the spin
tensor are determined by solving the SSC, which gives

them in terms of the spatial components S; = %eiijjk

and the momentum p® = (p°, p') with p?> = —M?2. For
the NW SSC, as in (4.9), we have
€ijkDj Sk

Spi = L= 6.15

0 pO _|_M ( )

For the covariant SSC, S,,p” = 0, we would have

(6.16)

B. Curvature couplings for general test bodies
1. In a general frame

Using (6.8), and noting that p,s® = p,&% = $,£* = 0,
the curvature couplings in the dynamical mass (5.16) can
be expressed as

—CE 5% = —C[E(sas“ — 37'32 + 3)@) - GBTSXS},

*QMBabsagb = GE(TSXS + TEXS) - 6B(737'£ - XSX§)7

MPEqp€6" = B(MP£,6" — 378 + 3x3) — 6BTe e,

(6.17)



where
Ts = Tabﬂsba Xs = Xabpﬂsbv (618>
p* p*
Te = TabﬂMgbv Xe = XabMMgb'

The components of the Pauli-Lubanski spin vector and
the mass dipole vector,

a __ 1 abcd&s

Py
_ = ds ME = —§ab 2 6.19
s 51 g Sed 3 v (6.19)
are given in a general orthonormal frame by
Ms? = p;S;, Ms' = p°S; + €;1pj o
M2 = p; S, M2 =p°Sp; — €ijkpiSk,  (6.20)

with S; = %eiijjk and with Sy; determined by the SSC,
as in (6.15) or (6.16).

The only further ingredients needed for an explicit ex-
pression of the curvature couplings are the components
of the 2-forms 7,5 and xgp in a given orthonormal frame.
These are given by (6.6) above in the curvature-aligned
frame e,*, and by (6.25) below in a new time-aligned
frame f,*, which we now describe.

2. In the time-aligned frame with the Newton- Wigner SSC

Consider the tetrad f,* which is obtained by boosting
the curvature-aligned tetrad e,* of (6.5) to achieve the
time-aligning conditions f°, = N¢!, and f,' = d7/N,
given by

fa¥ = Alept, (6.21)
where
v 00 —vy
b 0 10 O
A)=1 0 01 o (6.22)
—yv 00 ~
with
avAsinf 1 w?
V= —— == 6.23
w? ! Vi—vZ VA (6.23)
resulting in
i 0 0 2Mar
AY VAYXA
A
0 Bl 0 0
(fa) = ) (6:24)
0 0 — 0
Vv
by
0 0 0 L
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This coincides with the “spheroidal” tetrad used in [21].
The components of the 2-forms 7,5, and x4 in this frame
are then obtained from (6.6) and (6.21) as

Xab = 7€ade7—cda (625)

Tab = 27(5?0, - U[a)égb 2

where
(6.26)

It is convenient now to introduce a 3-vector notation
for the spatial frame components of vectors, as in p' = (p;)
and § = (S;) with 7 § = p;S; and 7 x § = (e4;1p; k).
Defining the (radial) unit vector 7 = (n;) = (J;) and a
vector @ = (a;) representing the spin of the Kerr black
hole,

Vg = 0,04, v; = v51-3.

1 cosf
n=10], d=a| —sind |, (6.27)
0 0

the boost velocity vector 7 = (v;) from (6.23) and (6.26)
is given by
L VA
V= _7271 X a.
w
Then, from (6.25) and (6.20), using the solution (6.15)
to the NW SSC, the scalars (6.18) entering the curvature
couplings (6.17) can be written as

(6.28)

ro= e [P S+ G x ) (5 x 9]
Yo = 27 [ B x S+p7 7x 5],
re = [P £+ (@ x 0) - (Fx )]
xe =7 |- FxE+p'7-TxE], (6.29)
where
o5l i o

with S being an auxiliary spin vector and with & = (£7) as
in (6.20). We thus have fully explicit 3-vector expressions
for the curvature couplings (6.17), if we also note that

Sq57 = §2, £,6% = €2, and, from (6.7) and (6.27),
_ Mr(r? —3(i-d)?)

E= =iy (6.31)
 Mii-d(3r2 — (- @)?)
B= a7y (6.32)

VII. EXPLICIT CANONICAL HAMILTONIAN
IN THE TIME-ALIGNED FRAME(S) AND ITS
POST-NEWTONIAN EXPANSION

Having found useful expressions for the curvature cou-
plings, the last major step in evaluating the Hamilto-
nian defined by (5.17) and (5.18) in Kerr is to evalu-
ate the Ricci rotation coefficients for a given choice of



tetrad. We address this in Sec. VIT A, giving results for
the (spherical) time-aligned frame f,*, and introducing a
new (Cartesian) time-aligned frame g,* which is obtained
from a spatial rotation of f,#. We find that the PN ex-
pansion is most easily accomplished by using the rotation
coefficients of the g-frame expressed in the f-frame. We
also give the rotation coefficients of the curvature-aligned
frame e,* in Appendix C.

In Sec. VII B, we take the fully relativistic Hamiltonian
defined by the g-frame (expressed in the f-frame) and
generate its PN expansion. We are able to recover the
test-mass limits of all known PN spin couplings through
4PN order. Some higher-order results (including next-to-
leading-order spin-cubed couplings at 4.5PN) are avail-
able upon request.
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A. Rotation coefficients for the spherical and
Cartesian time-aligned frames

Given an orthonormal frame f,* = (fo#, fi*), its Ricci
rotation coefficients,

Wi = L (Vo) feu

with ) = ol

4x 3 matrices

(7.1)

are conveniently encoded in the two

()

axi

L f !
561'.7’/6“((”'3@7 wfm?-

W= (7.2)

For the spherical time-aligned tetrad f,* (6.24), one finds

—2Ma’rv/Acosfsin?0  —Masin0(2r°% + w?p?) 0
1 0 0 Aa? cos 0sin @
(«) = 372 , (7.3)
N3/2A 0 0 ArvA
cot O(AX? + 2Mrw?*)  —VA(rE? — Ma?p?sin 0) 0
M (wp? — 4Ma?r®sin® 0) /A —2Ma*rw? cos 0 sin 0 0
1 0 0 —Masin (212 + w?p?)
(w‘%z) = ¥z 3 in2 (74
LA 0 0 2Ma®rv/A cos 0 sin” 6
—Masin (22 + w?p?) 2Ma’rv/A cos 0 sin? 0 0
[
where with
p* =12 —a®cos®h. (7.5) 1 0 0 0
(R b) | Osinfcos¢ cosfcos¢ —sing (7.7)

The same matrices for the curvature-aligned e-frame
are given in Appendix C. They have the same pattern
of nonzero components, but the expressions for the e-
frame components are somewhat less lengthy than the
f-frame results given here, allowing us to easily write the
exact e-frame coeflicients in a 3-vector notation (which
we do not do for the exact f-frame coefficients). The
advantage of the f-frame over the e-frame comes in the
post-Newtonian expansion, as we can see that several

components of wl%i are shifted to higher orders in M/r
(e)

and a/r relative to those in w,,’.

Further such simplifications for the PN expansion
can be achieved by using a third “Cartesian time-
aligned” tetrad g,*, which coincides with the “quasi-
isotropic” tetrad of [16]. It is obtained from f,* by a
spatial rotation—the rotation that takes the spherical-
coordinate triad (e,,eg,ey) into the Cartesian triad
(ex, €y, €.) in flat space—,

ga" = Ra" f", (7.6)

0 sinfsing cosfsing coso
0 cosf —sinf 0

We will find it most convenient to use the rotation coeffi-

cients w((lgb)c of the g-frame, but expressed in the f-frame:

Wabe = RdaRebec Wéi)f
= w(f) - fa'uRdcv/LRdb

abe

(7.8)

where the second line follows from f,* = Rl,gp", (7.1),
and (7.1) with f — g. We find that the components of
our hybrid rotation coefficients wgp. are given by

1
Waxi = 5 €ijkWajk = W) + Awgsi, (7.9)
Wa0i = w(%z, (710)



where

(Awgui) = (_;Eijkfa”Rbkv,uij> (7.11)
2Marcosf 2Marsin 6
" VATA  JAzA
0 0 0

- 1

0 0 -
by
D)) D)
—cot 0 n X 0

B. Post-Newtonian expansion of the Hamiltonian

The above results for the rotation coefficients wgp. com-
plete the list of ingredients needed for an explicit ex-
pression of the canonical Hamiltonian defined by (5.17)
and (5.18). We recall that the Hamiltonian is given by
H = —P,;, where P, = (P, P,) are the coordinate-basis
components of the canonical momentum P,, which is re-
lated to the covariant momentum p, by
be = p,.

1
P, — py = —WapeS (7.12)

2

The Hamiltonian H = — P, is found by solving the mass
shell constraint (5.17), p? = —M? =

/142 _ _P2
=m? = 2P%, + h%h,

(7.13)

1
+ 3 RabeaS°'S = (C DED 56" + 0(5%),

for P;. A formal solution is given by (5.18) above, and
the solution explicitly expanded to quadratic order in the
test spin is given by (7.31) below.

The following subsections collect results for the Kerr-
spin and PN expansions of the rotation coefficients, the
spatial triad, and the metric coefficients, and for the test-
spin expansion of the Hamiltonian. The results of the PN
expansion are then presented and discussed in Sec. VII C.

1. Expansion of the rotation coefficients

The components of the rotation coefficients are con-
veniently encoded in the vector h, of (7.12), which is
expressed via (7.9) as

1
be
ha = zWapeS™ = WaxiSi — Wa0iS0i-

> (7.14)

The results can be given in a 3-vector notation by ex-
pressing the components hg and h = (h;) in terms of
S = (S;) and Sy = (So;). The only other 3-vectors that
will appear in these expressions are the radial unit vec-
tor 77 and the Kerr spin vector @ of (6.27), and the only
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other quantities involved are the Kerr mass M and the
Boyer-Lindquist radial coordinate r. We present the re-
sults here as an expansion in the Kerr spin a:

ho = h + 8 +h% + RS + O(a),
h=h"+h" +5° + 5 +O0(ab).

At O(a®) and O(al), keeping all powers of M /r, we have

0 M
ho = _Tz\/an . SO, (7.17)
. 1— .
ha’ = ﬂﬁxs, (7.18)
T
al 3M - A 2M > g
hg :T—S(wS—n-an-S)—mws’ (7.19)
- 1 3M S oo o o o =
he 777“73 Son xd+ (7-dx Sy, (7.20)
where
2M
w=1- "2, (7.21)
r
At O(a?) and O(a?), expanding in M /r, we have
o2 a? a2 M3a250
hg = h§%" + Yo +o(r6>, (7.22)
R’ = pPLOe’ 4 jLOe® | pNLOG® | o (MSCGLQS) :
T
with
. 1 . .
hPLOa2:7[ﬁ.a@xS—kﬁﬂxS(ﬁ—‘lﬁ'ﬁﬁ)}v
2r3
Loa> _ M 2 22 d
hg _ﬁ[—lm ada-Soy
(- + 16?5,
— 2 M al
LOa” __ =2 2.2\ =
h _ﬁ[_@ +3(7 - a) )nXS
+2(a-§-4i-aq-§)ixal,
2
NLoa? _ M” (o0 oo o)\ o &
hy =55 (13a 5(7 - @) )n So,
2
"NLOaz_%{_ =2 —'.-'2)" 3
h =5 3(a +(@-a)’)ixS
+14<—6 S+i-an g)nxa],
and
a a3 M2a3S
he = h§© +O< = ) (7.23)
=43 MGBS()
he = ( o ), (7.24)
with
P M — 5
nkor = Sy (it aii-§—9a-§). (7.25)



2. Ezpansion of the spatial triad; coordinate-basis versus
frame components of the canonical momentum

While our expressions for the spin coupling terms
in (7.13) involve the spatial components P; = P? of
the f-frame components P* = (P° P%) of the canon-
ical momentum, our true canonical variables are the
spatial components P; of the coordinate-basis com-
ponents P, = (P, P;) of the canonical momentum.
The two are related by P, = fJP, where fJ =

diag («/A/E, 1/VE,VE/(VAsin 0)), from (6.24). Writ-

ing these two sets of components in 3-vector notation as

Py =(P), P=(P) (7.26)

(which are in two distinct spherical-like bases which will
now be identified component-wise), the explicit relation-
ship P; = fz-ij, expanded in the Kerr spin but not in PN
orders, is given by

The translation needed to connect with the curvature
coupling results of Sec. VI B, where we denoted the spa-
tial f-frame components of the covariant momentum as
the 3-vector p' = (p;), is simply p' = f’(f) + O(5), from
(7.12).

3. Ezxpansion of the metric coefficients

The lapse N, shift N', and inverse spatial metric 44 of
(4.18) are given by

AY NN 2Ma?
M, M?a*
- a)4+(9( — >+(’)(a6)7
; 2Mar ,
N=(N)=- A (5¢) (7.29)
= 2 a2
_ %ﬁ % & (1 _ w(7 - @) +2(2 w)a ) O(a®),
T r
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and

VPP = P,P; = Ij(f) '—ﬁ(f) (7.30)

= P-diag (A/,1/%,2/(Asin?9)) - P

=ﬁ2—%gm_m2
T
+i(#m_ﬁ2—m4Wﬁ2—m_ﬁxmﬁ
7'2
OM (. o B . 5 -
+ﬁ{maﬂnpf—mpx@ﬂ

4. FExpansion in powers of the test spin

The explicit expression of the Hamiltonian H = —F;,
expanded to quadratic order in the test spin—in a gen-
eral spacetime, using the frame components of a gen-
eral tetrad obeying the time-aligning conditions—can be
found by perturbatively solving equation (7.13) for P,
using (7.12), (4.9), and (4.18). One finds

N ek (P
H=NQ@—-N'P;+—| - P* - —
Q i+ g ha + = 207
iLO ISP P waOZSj ~ PJthk
4+ W paj, h;
Q Q+m (ﬂ Q(Q +m)
1 ab ged c 1 (P) .a b 3
+ gRabcdS S Eab + O(S ),
(7.31)
where
P*=(Q,P), Q=\/m*+4iPP;,  (7.32)
and where
~ ~ ~ ElkPSk
ha: axiPi — Wa0iP0iy izij J .
WawiS, Wa0 S() SO Q Tm (7 33)

are the solutions for h, and Sp; to linear order in the test
spin.

C. Results of the post-Newtonian expansion

Taking the results of Sec. VIB for the curvature cou-
plings in the f-frame, and the results of Secs. VIIB1-
VIIB3 for the expanded f-g-hybrid-frame rotation co-
efficients and spatial triad and the metric, and substi-
tuting them into (7.31) yields the explicit expression of

the Hamiltonian H(Z, P, S), where z = rii, T = (6}),



P = (P;), and S = (S;). It is in a form which can be
easily expanded in powers of the Kerr spin a and then
further expanded in PN orders, measured by the PN pa-
rameter

M 2

€~y — ~ U,

- (7.34)

Details of this procedure are provided in an accompany-
ing Mathematica notebook using the xTensor package.

We summarize the results in the following subsections,
going order by order in the Kerr spin a = Skerr/M and
the test spin .5,

H=H,, +H,+ Hs
+ Hp+ Hyg+ Hge
+ Hys + Ho2g + Hag2 + {Hgs }
+ Hos + Huss + Hyzs2 + (Hags) + (Hss)
+ O(a, S)°.

(7.35)

For the first two lines, through spin-squared order, we
give explicit results for H to all powers in the PN param-
eter € in Appendix D. Instead of giving explicit results
for our H at third and fourth orders in the spin (which
are available upon request), we give PN expanded results
for a Hamiltonian H which is obtained from a canon-
ical transformation of our H via a generating function
G(Z, P, S) according to
H:H+{g,H}+%{g,{g,H}}+... (7.36)
The canonical transformation brings our Hamiltonian
into accord with the test-mass limits of PN results ob-
tained in harmonic coordinates, as detailed below.

Our test-spin-squared Hamiltonian does not allow us
to compute the contributions Hgs, H,g3, and Hga. How-
ever, one finds from the PN calculation of [47] that, at the
leading PN order (LO), for binary black holes (C' = 1),

Hi0a53 = Huoass(M@ < S),
Hyos1 = Hpogs (M3 + 5'),

(7.37)
(7.38)

so that these results as well can be “deduced” from
our test-spin-squared Hamiltonian. (Note the correspon-
dence here with the EOB prescription of replacing the
Kerr spin with the sum of the two individual spins [16].)
At leading PN orders, the true (finite-mass-ratio) Hamil-
tonians at second and fourth orders in spin are equal to
their test-body limits, so that all of these contributions
for finite mass ratios (for binary black holes) can be de-
duced from our Hamiltonian. The situation for Hgs is
different because, even at leading PN order, the spin-
cubed terms (like the linear-in-spin terms) have contri-
butions at zeroth and first orders in the mass ratio m/M,
only one set of which can be deduced from our Hamil-
tonian by exchanging the bodies. However, the com-
plete finite-mass-ratio leading-PN-order results at first
and third orders in spin (with a restriction to binary black
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holes for the third order terms) can still be deduced from
the test-body limit, exploiting a body-exchange symme-
try (given an extension of the test-body results to cubic
order in the test-spin).

We now present the PN-expanded results for the test-
body Hamiltonian in a form in which the quantities ]3,
S, H and G have each absorbed one factor of 1/m, which
removes all factors of m from the equations (i.e., we set
m=1).

1. No spin

The Hamiltonian to zeroth order in a and S, the point-
particle Hamiltonian, is given to all PN orders by (D1).
Its expansion through 2PN, transformed with the contri-

bution
Gipn = —M7i - P (7.39)

to the generating function in (7.36), with no Gopn needed,
yields

_ P2 M
P4 3MP? N M?
8 2r 2r2
+E+5M]34+5M21327%3+0( i
16 8 202 43 €)

which matches the test-body limit of Eqs. (4.23-4.25) of
Ref. [46] (and the original calculation in this gauge of
Eq. (63) of Ref. [81], after a Legendre transformation).
The OPN terms in the first line get no mass-ratio correc-
tions in the true Hamiltonian, the 1PN terms in the sec-
ond line get corrections at linear order in the mass ratio,
the 2PN terms in the third line get corrections through
second order in the mass ratio, and so on.

2. Linear in spin

The Hamiltonians at linear order in the spins are
given to all PN orders by (D3) and (D4). Their ex-
pansions through next-to-next-to-leading order (NNLO),
subjected to the canonical transformation (7.36) with

3M?

n-Pn-PxS
)

OnNNLOS = — (7.41)

as the only new contribution (being added to Gipn), yield

_ M, - 6M  12M2 3
Ha:rQn~P><a{2—r+ 2 + O(e )} (7.42)
and
_ M_ = =2[3 5P? 5M
7P%  21MP? 3M(ii- P)2  45M? 5
16 8r r 472 + Ol )] ’
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FIG. 2. Orders (relative to Newtonian order) of the PN-spin expansion through 4.5PN, counting ¢ ~ v*> ~ M/r ~ a/r ~ S/r

(ignoring the scalings with the mass ratio) for rapidly rotating bodies.

which match (e.g.) the test-body limits of Eqs. (4.26-
4.28) of Ref. [46]. The LO terms get corrections at linear
order in the mass ratio which can be deduced from the
test-body results via exchange of the bodies. The NLO
terms get corrections through second order in the mass
ratio, and the NNLO terms get contributions through
third order in the mass ratio, and so on.

3. Quadratic in spin

The Hamiltonians at quadratic order in the spins are
given to all PN orders by (D5), (D6), and (D7). At
leading order, with

1 -
G1.0a2 = 2—(5 x @) - (P x @), (7.44)
r
and no other G’s, we have
_ M L .
Hiog: = ﬁ (3(n L3)? - a2), (7.45)
Hions = (3 ain-§—a- §) : (7.46)
_ CM
Hyos2 = T( ), (7.47)

which match Eqs. (4.29, 31) of Ref. [46] with no mass
ratio corrections.
At next-to-leading order, with

gNLOa’A‘:ﬁZ\;Q[_??’ ﬁ(&’i—&-("fl’)Z):Qﬁ aP EL{|,
QNLOQS:T—Q(P ii-5—ii-Pa s),
OnLos? = —C;]Qwﬁ -§P-S, (7.48)
we find
M

Hxroa2 = —3
,

3P%2 5M
(—4 + 2T> a? (7.49)

_ M 5P2 o=y TMY .
HNLOaS:ﬁ 77 6(TL P) +T>a S
(3132 1M .
+ - n-amn-S
2 r
93 L= 7 3., 5/ =3 = = L, S
—|—§P aP 5_5 ~P(n aP-S+4P-a S) ,
and
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_ M 5 =, 3 q M\ 4
Hyros? = —3 [(—4(1 —C)P? + Z(4C = 3)(7i - P)* + (2C + 1)r> S? (7.50)

oo

_ _ 1 . _ R
+<g(60—7)P2+(1—5C)M> (ﬁ-S)2+i(2C—5)(P.5)2+2(5—0)77.135-513.5 :
T

which match the test-body limits of Eqs. (4.30, 32) of 4. Cubic in spin
Ref. [46].
At next-to-next-to-leading order, results for HnnLoas At third order in the spins, to leading order, with
are available in Ref. [82], and we have found agreement
with the test-body limits of those results. However, those G I S g 7 51
results are presented in a different gauge than the other PLOa2§ = 5 370 G- a4 X0, (7.51)
results presented here. Details are available upon re- M, .., . =
quest. Results for Hynpog2 and Hynios2 are available GLoa2s = ﬁn afm-axs, (7.52)
in principle from Ref. [83], but those results are not yet 3CM _ ~_ _ =
sufficiently reduced to allow a comparison. The expres- Groas? = — 3 m-Sm-dxS, (7.53)
sions of our untransformed Hamiltonians at NNLO spin-
squared order are available upon request. we find
_ M -
Hyous = 7(@*2 —5(7 - 5)2)71 Pxa, (7.54)
T

_ OM [/, o\ e B A e m L

HLoazS:w[(a —5(f - @) n~P><S—2n-aP-a><S}, (7.55)

- 3CM 1/ = - — " -

Hions? = [( 2 57 S)Q)ﬁ-PxEH—Qﬁ 3P axs} ,

r
3 . n L - ;
+ [(5ﬁ in-5—a S)ﬁ~P><S+ﬁ S P axs}7
r
[

which match the test-body limit of Eq. (3.10) of Ref. [47]. 5. Quartic in spin

These, together with Hpogs, receive corrections at lin-
ear order in the mass ratio. For binary black holes, all
but one term of these can be deduced from our Hamil-
tonian via body exchanges, with the final term requiring

At fourth order in the spins, at leading order, with

. . M -
a treatment of ‘.ces.t—spm—cubefl effects to be derived from GLow: = _74(77 . &')2 (7 x @) - (P x @), (7.56)
the test-body limit. Expressions for our untransformed 4r
Hamiltonians at NLO spin-cubed are available upon re-
quest. and no other G’s, we find
3 Mo, 2202 N2 gr(= 4
Hi o = o [-3a” +30a’(i-a)” —35(ii- @), (7.57)
_ M ~ . - ~
Hiows = 55 —3525-s+15(ﬁ-5)25-s+15a2ﬁ-aﬁ.5—35(ﬁ~a)3ﬁ-s] : (7.58)
_ 3CM = = = - R -
Hyou2s2 = =5 [—5252 —2(@-8)? +5(ii-a)*S?+5a%*(i-S)* +207-an-Sa-S—35(i-a)(i- 5)2] . (7.59)

which match the test-body limit of Eq. (4.4) of Ref. [47].  ratio corrections, and the latter can be deduced from our
These, along with Hyo,.g3 and Hrog4, receive no mass



Hamiltonian via (7.37) and (7.38) for binary black holes.

VIII. DISCUSSION

In this paper, we derived a canonical Hamiltonian for
an extended test body in a curved background which
is valid to quadrupolar order and includes spin-induced
quadrupoles as well as other spin-squared effects. We
employed a new approach that avoids the Dirac brack-
ets used in previous work and instead enables working
with an arbitrary spin supplementary condition at the
level of a constrained action principle. This method pro-
vides substantial simplifications of previous calculations
at the dipolar order and yields novel results at quadrupo-
lar order. We highlighted how a change of the SSC,
corresponding to a shift of the center-of-mass worldline
which we treated in a manifestly covariant manner using
bitensor calculus, entails transformations of the body’s
multipole moments and exhibited the resulting modifica-
tions of the action. While our analysis focused primarily
on variables determined by the Newton-Wigner SSC, we
provided the explicit translation into variables defined by
other SSCs.

We constructed a very general Hamiltonian in terms
of three-dimensional position, momentum, and spin vari-
ables with a canonical Poisson bracket structure to
quadratic order in the spin, given in Egs. (1.1) and (1.2),
or (5.17) and (5.18). By specializing the above general
results to the case where the background spacetime is
Kerr, we arrived at an explicit expression for the canon-
ical Hamiltonian of the relativistic spinning two-body
problem in the test mass limit, valid to quadrupolar or-
der in the test body’s multipole expansion and given in
Eq. (7.31) for a general choice of tetrad whose timelike
vector is along the direction of the time coordinate.

Our results for the dynamics allow for fully generic or-
bits and spin orientations, both of which have not been
considered before. We provided compact expressions for
curvature couplings valid for generic orbits in Egs. (6.17-
6.20) in a general frame and provided explicit results for
two different choices of frame. Expanding the Hamilto-
nian in powers of the Kerr spin and in PN orders allowed
us to make comparisons with the test-mass limits of the
results of high-order PN calculations. We found com-
plete agreement with the test-mass limits of all available
PN results and provided new test-mass results at higher
PN orders. We also pointed out how the complete finite-
mass-ratio PN results for the leading-PN-order spin cou-
plings for binary black holes, through fourth order in the
spins, can all be inferred from the results in the test-mass
limit through an EOB-like identification of variables.

While much of our analysis and many of our inter-
mediate results are fully covariant, our final result for
the Hamiltonian in Kerr depends on a choice of coordi-
nates and a choice of tetrad. We showed that expansion
of the Hamiltonian and comparison with PN results can
be relatively easily accomplished using Boyer-Lindquist
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coordinates and the “quasi-isotropic” tetrad, though we
also explicitly related this tetrad to the tetrad used by
Carter which diagonalizes the electric and magnetic com-
ponents of the Weyl tensor. Other choices of coordinates
and tetrads are likely to yield other useful forms of the
Hamiltonian and can readily be used in the general ex-
pressions we provide for the Hamiltonian.
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Appendix A: Variation of the action

Here we show that the variation of the action (2.19)
for a generic SSC, S = [ds L, with

v

oy L v p v
L= puzﬂ + is;wﬂﬂ — X#S;LD (\/_7])2 + AO ) (Al)

- % <p2 + M2(p> S> Z))7
leads to the quadrupolar MPD equations (2.1, 2.2). This
also shows that the covariant-SSC action (2.6) yields the
MPD equations, as (2.6) is a special case of (2.19), when
the gauge field Ag* is taken to be p*/y/—p?. See also
[48] for a related derivation.

The independent variables to be varied are p,, Sy,
z#, and A4* (along with the Lagrange multipliers A and
x*). The variations with respect to p and S are straight-
forward. Under p, — p, + 0p, and Sy — Suw + 05,0,
the linear variations of the Lagrangian are

P N OM?
§,L = | 2H — A\p* — X%Saw - = 0Py,
P X /_p2 2 ap# ] H
(A2)
1 p¥! oM?
L==|Qm — 2yl AY | — A .
sz g o2 (s at) 4220,

To maintain its orthonormality, the body-fixed tetrad
A A" must be varied according to A4* — Aq*+AAY 60,4,
where 66, is antisymmetric (giving an infinitesimal



Lorentz transformation). We find the linear variation

1DS,,
onL = {_2 ds

n 2 S, 60
ds 2 '

Finally, one can vary with respect to the worldline by
letting z move to a nearby point Z specified by a devi-
ation vector & at z, just as in Sec. III, while parallel-
transporting p, S, and A (and x) along. The result for
the linear variation, using (3.5) and (3.11), is

+ Spufl)” + AopuSujpx” | 60

(A3)

- Dp,, 1 v gaf AIDM2 m
0:L =1~ ds ZRMVQBZ s 2 OzM ¢
D
+ 2 (), (A1)

D
where the derivative Fm covariantly differentiates with

z
respect to z while parallel transporting p and S. It is
the “horizontal covariant derivative” of [14] (where it is
denoted V), and the covariant variation A of DeWitt

D
[30, 84] is A = f“@. If M? depends on z only through
the metric and the Riemann tensor at z, then
DM?  OM?
ozt 8Rl,pa@

ViuBypap- (A5)

Stationarity of the action requires that all four quan-
tities in square brackets in (A2-A4) vanish. Using the
first three, one can eliminate Q*” and x* (needing only
to solve for the projection of Sy, x" orthogonal to p,),
finding

DS,

2 2
v o= oplrsrl — ) <p[u oM + 28I+ oM
ds

— 42 - A
25 aasm), (AG)

and then (A4) and (A5) yield

Dp, 1 A OM?

=-R vo ~1/5aﬁ -5 Rl/ af- A7
ds — 2 mves® 2 0R, gy *Fvwese (A7)
Contracting the d,L equation with p,, yields
Put —#? 2
= = O(S57). A8
L = e+ O (48)

In the first equality, we have assumed that M? de-
pends on p, only through p,/+/—p?, implying that
puOM?/dp, = 0, which is true for (5.16). If we do not
assume this, it introduces O(S?) corrections in the first
equality. The fact that M2 is a scalar implies that

oM? oM? oM?
2= poglr, 2 p 4RI, s =0. (A9
P 82?;/] * aasy]a * pas 8Ru]p(x6 ( )
Finally, with the identification
32 2
Juwas _ 3V 2 _OM (A10)

M ORvap’
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which is as in (2.22), we see that (A6-A10) yield the
quadrupolar MPD equations (2.1, 2.2) up to O(S?) cor-
rections.

One may also refer to the derivation in Ref. [30], where
a rather generic action for spinning bodies is considered.
In order to meet the requirements from [30], one must
rewrite the Lagrange multipliers in the corotating frame
as &4 = £4X 4", Then [30] shows that (A1) leads to the
MPD equations.

Appendix B: Worldline shift from a covariant
variation

It is important to formulate a shift of the position in
a manifestly covariant manner, e.g., using bitensors as in
Sec. III. As a check, we rederive this shift using a mani-
festly covariant variation symbol A, defined in the previ-
ous section, which was used in Refs. [30, 84] for obtaining
the equations of motion. It reads explicitly

A =64TH,,8%G",, (B1)

where G¥, is a linear operator which rearranges space-
time indices such that the covariant derivative V., can
we written in the abstract form V,, := 0, +I'*,,GY ). It
holds

5o = g (B2)

which makes it manifest that §z* it a tangent vector and
not a coordinate difference. This is important when one
considers finite worldline shifts.

We require the particle’s properties to be parallel
transported along the geodesic connecting the two world-
lines by setting

Ag” = 07
AS,, =0,

Ap, =0, (B3)
AALH = 0. (B4)

This implies that the component values of the worldline
quantities are actually transformed. However, since ge-
ometrically this is just a parallel transport, we refrain
from denoting this change by a tilde on the indices in
this section. Notice that A&* = 0 is just a restatement
of the geodesic equation for the worldline shift £*.

Since the action is a scalar, the ordinary variation §
and the covariant one A can be used interchangeably,

oS A"S A

where on the right hand side S is given by (2.14). Ounly

the functional form of S is important here, so that we

ignore the bars and twiddles on the variables for now.

For the present paper the series stops at second order in

&*. Useful formulas for the variation can be found in [30],
for instance

Dgr
Ayt = ——| B6
“ do (B6)



[A, D] = RV, ,56%d2PG" ,, (BT7)
AQH = RM suc€P. (B8)
An application to the terms in (2.14) leads to
. Dp D(pu&")
A(pyt) = —Z2hen " B
(pui") 77 A P (B9)
A? (puit) = =R upailp €t (B10)
1 1
A <2SWQ’“’> = 3SR a2, (B11)
S*py, Dp I T
< P2 Ck‘#) =R Vﬁazﬁp'y 2 Be. (B12)

After this shift was performed, one can again redefine
the linear momentum p, — p, + dp,. This reproduces
(3.12), which completes the check of the worldline shift.
It should be stressed again that this shift represents just a
simultaneous transformation of all dynamical variables,
understood as components, at the level of the action.
However, interpreted in geometric terms, the change of
components is just a parallel transport and the dynamical
variables as geometric objects remain invariant.

Appendix C: Rotation coefficients for the
curvature-aligned frame

The components of the Ricci rotation coefficients for
the curvature-aligned tetrad e,* (6.5), as in (7.1) and
(7.2) with f — e, are given by

\/7 a1 Qs 0
(e)\ _ A 0 0 7&1(_142/7”
(wa*i> - 23/2 0 0 r ) (Cl)
wsr —r 0
(C2)
72 - —
wor — a3/r ayas/r 0
( (e)) . VA 0 0 a» (C3)
abi ] ™ $23/2 0 0 ai |’
ao —a; 0
where we have defined
M, 2 2
wozr—A( — a” cos 9),
o2
w3 = ——cot f,

A

a; = acosb,

T .
ay = ———asin6.

VA

We can express these in a 3-vector notation by forming
the 4-vector

B = wiSi — w5 Soi, (C4)
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as in (7.14), and defining the 3-vectors

a1 r 0
a=|a |, r=rai=10], =1 0 |,
0 0 ws

find

VA R
ho_iﬁ/?{_wor So+a-8——(ixa) (axS)|,
. VA - = - = g
h:w[—f'xs—l—? SwW+axSy+2(a-ixS)n

1_, -, o o\ —
+;n a(a-ixS)i|, (C6)

from which, via (C4), we can read off the components of
the rotation coefficients.

Appendix D: Hamiltonians through quadratic order
in the spins to all PN orders

We present here the (untransformed) Hamiltonians
through quadratic order in the test spin S and the Kerr
spin Skerr = Ma, obtained as described at the begin-
ning of Sec. VIIC, to all orders in the PN parameter
€ ~ P?/m? ~ M/r. We retain here all factors of m.

At zeroth order in both spins, the point-particle Hamil-
tonian is given by

H,p = VwQ, (D1)
where w =1 —2M/r as in (7.21), and
2M _
Q:\/m2+P2—(fi P)2, (D2)
r
which is the @ of (7.32) with a — 0.
The linear-in-spin Hamiltonians are
2M ., =
Ha:rTn.PXG7 (D?))

and

B M Vw—w)\ . 5 =z
H5_<T2(Q+m)—|— 5 >n BPx§. (D4

At quadratic order in the spins, we have
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