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Abstract. In a set of dedicated ASDEX Upgrade shape-scan experiments, the

influence of plasma geometry on the frequency and amplitude behaviour of the geodesic

acoustic mode (GAM), measured by Doppler reflectometry, is studied. In both limiter

and divertor configurations, the plasma elongation was varied between circular and

highly elongated states (1.1 < κ < 1.8). Also, the edge safety factor was scanned

between 3 < q < 5. The GAM frequency ωGAM and amplitude are used to test

several models (heuristic, fluid and gyrokinetic based), which incorporate various

plasma geometry effects. The experimentally observed effect of decreasing ωGAM

with increasing κ is predicted by most models. Other geometric factors, such as

inverse aspect ratio ε and Shafranov shift gradient ∆′ are also seen to be influential in

determining a reliable lower ωGAM boundary. The GAM amplitude is found to vary

with boundary elongation κb and safety factor q. The collisional damping is compared

to multiple models for the collisionless damping. Collisional damping appears to play

a stronger role in the divertor configuration, while collisional and collisionless damping

both may contribute to the GAM amplitude in the limiter configuration.
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1. Introduction

One of the more important research topics in the field of magnetic confinement fusion

is the study of anomalous (or turbulent) transport, which is believed to be a major

contributor to particle and energy losses and thus plays a fundamental role in the global

confinement of a plasma [1, 2]. Any mechanism involved in determining the saturated

level of turbulent transport is therefore of great interest. One such mechanism in toroidal

plasmas (as well as other turbulent systems such as rotating planets or the sun) is the

zonal flow (ZF).

Zonal flows are radially localised axisymmetric E × B shear flows (m = n = 0,

with poloidal and toroidal mode numbers m and n) [3]. These quasi-stationary modes

(ωZF ≈ 0) are driven by non-linear interactions within the turbulence and thus can

self-regulate the plasma transport via flow shearing [4]. When coupled to an m = ±1

pressure side-band mode, the ZF gives rise to a resonant oscillation called the geodesic

acoustic mode (GAM) which can also contribute to flow-shear stabilisation of turbulence.

The GAM’s eigenfrequency in a simplified circular plasma geometry was first

presented by Winsor et al.:

ωGAM =
√

2 + q−2cs/R0, (1)

where cs =
√

(Te + γiTi) /mi is the sound velocity and R0 is the major plasma radius.

Te and Ti are the electron and ion temperatures respectively, q is the safety factor, mi

is the ion mass of the plasma and γi the ion specific heat ratio (typically understood

to be of the order of 1) [5]. For q � 1 in the tokamak plasma edge this reduces to

ωGAM =
√

2cs/R0.

In addition to the GAM frequency it is also important to investigate the behaviour

of the GAM amplitude AGAM, as it determines the effect that the GAM may have on the

E × B shearing rate. Only if the amplitude is sufficiently large to cause displacements

comparable to the turbulent structure size may the GAM play a significant role in the

moderation of turbulence. It has been found that the amplitude is also dependent on

plasma parameters such as the safety factor [6, 7].

Experimentally, GAMs have been observed in many tokamak plasmas [6, 8, 9,

10, 11, 12, 13], often in reasonably good agreement with Winsor’s predicted frequency,

especially in circular plasma discharges. However, for experiments with non-circular

plasmas in a divertor X-point configuration, deviations from the Winsor scaling were

found [6, 11, 14, 15]. In particular, larger plasma boundary elongations κb were found

to decrease the GAM frequency, which was expressed in a heuristic scaling law of the

form ωGAM ∝ 1/(1 + κb). Extending on the previous theoretical predictions and these

experimental results, a number of more involved models for the GAM frequency scaling

have been proposed in recent years, typically including plasma geometry factors such

as the safety factor q, the shear of the elongation sκ or the Shafranov shift gradient

∆′ [16, 17, 18, 19]. While Conway’s heuristic scaling [14] was determined from a

database of ASDEX Upgrade discharges containing experiments both at large and at
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small elongation, this article is based on a new set of specially designed experiments,

where the shape was varied from κb = 1.1 to 1.8 in both divertor and limiter discharges.

The new experimental results for the GAM frequency are used to test the range of

validity of Winsor’s simplified fluid scaling, the heuristic model as well as electrostatic

fluid and gyrokinetic models derived by Angelino [19] and Gao [17]. Electromagnetic

effects are also discussed. The test of these analytical models, which incorporate the

effects of κb and q, against an extensive single-machine database is the focus of section 4.

The amplitude scaling with respect to κ and q, as well as the role of collisional and

collisionless damping in the region of GAM activity are discussed in section 5. The

paper starts with descriptions of the experiments and the data analysis in sections 2

and 3, respectively.

2. Diagnostic and experimental setup

Figure 1. Schematic cross-section of ASDEX Upgrade during a divertor discharge,

highlighting the measurement locations of the Doppler reflectometer systems

Since geodesic acoustic modes are a type of flow perturbation, they are well

suited to be studied using microwave Doppler reflectometry. Doppler reflectometry

works by launching a microwave beam into the plasma at a specific tilt angle θ0 with

respect to the flux surface. The beam propagates into the plasma until it meets a

cutoff. Due to Bragg scattering by turbulent structures in the cutoff region, part

of the signal may be backscattered towards the launch antenna. For backscattering

to occur, the local perpendicular wavenumber k⊥ of the turbulence must fulfill the

condition k⊥ = −2k0N⊥ (≈ 2k0 sin θ0 for flat cutoffs), where k0 is the launched beam

wavenumber and N⊥ is the plasma refractive index at the reflection layer. Due to the

movement of the turbulent structures (i.e. the plasma flow), the received signal will
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be Doppler-shifted with a frequency 2πfD = v · k ≈ v⊥k⊥ (where k‖ � k⊥). Here,

v⊥ is the perpendicular velocity of the turbulent structure which is composed of the

E × B background flow of the plasma and the turbulent phase velocity (considered to

be negligible): v⊥ = vE×B + vph ≈ vE×B. [20, 21] Thus, oscillating E × B flows such as

GAMs will appear as fluctuations in the Doppler shift fD.

Three Doppler reflectometry systems are currently in operation on the ASDEX

Upgrade tokamak (AUG), as shown in figure 1: two fixed-tilt antenna V-band systems

(50–75 GHz, with O- and X-mode polarization) [22] and one W-band system (75–

108 GHz) with an adjustable tilt angle on the tokamak low-field-side [23]. The

20 MHz sampling rate of the heterodyne receiver in-phase (I = A cosφ) and quadrature

(Q = A sinφ) detector signals, using a 12 bit ADC, allows the investigation of velocity

fluctuations and radial electric field perturbations with high temporal resolution. The

perpendicular wavenumber k⊥ as well as the measurement location are obtained with

the beam tracing code torbeam [24] for each probing frequency, using a fitted

density profile and high resolution equilibrium reconstruction [21]. The two V-band

reflectometers can also be coupled together on the same bistatic antenna pair, in order

to launch and receive from the same poloidal angle and to allow radial correlation

Doppler reflectometry measurements [25].

ASDEX Upgrade has a major radius R0 = 1.65 m and a minor radius a = 0.5 m.

The tokamak is typically operated within lower X-point divertor configuration, however,

the flexible shape control also allows for limiter experiments.

In order to study the influence of the plasma elongation κ on the GAM, a set

of special shape-scan experiments were performed. During a single deuterium plasma

discharge, the boundary elongation κb was substantially varied. Figure 2 (bottom)

shows a case in which a lower single divertor configuration was modified from κb = 1.77

to κb = 1.44. The counterpart is shown in figure 2 (top), where a nearly circular

limiter plasma (κb = 1.12) is stretched to a higher elongation (κb = 1.69). This set of

experiments closes the gap in previous AUG experiments that featured mainly low-κ

limiter discharges and high-κ divertor discharges, allowing to separate the influence of

both the plasma elongation as well as the configuration, e.g. the presence of an X-point

null field. Overlayed in figure 2 are computed ray-traces for the lowest and highest

probe frequencies in X-mode that are used in these experiments. The corresponding

launch/receiver antennas are below the midplane, as pictured in figure 1.

Figure 3 shows time traces of typical plasma quantities from one of the limiter

discharges. Using control coils, the plasma boundary elongation κb is steadily increased

throughout the discharge, from 1.1 to approximately 1.7. At the same time, the plasma

current Ip is increased from 0.6 MA to 1.0 MA in order to maintain the edge safety

factor at a constant q95 ≈ 4. It was also attempted to keep the line-averaged density at

a constant level of ne ≈ 2.5× 1019 m−3 in order to maintain the Doppler measurements

in the same radial region, but small variation between 2 and 3× 1019 m−3 could not be

avoided. The edge density near the separatrix or last closed flux surface was typically

close to nedge ≈ 0.5 × 1019 m−3. In this discharge the magnetic field strength was kept
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Figure 2. Plasma shape during beginning and ending of two shape-scan discharges.

Top: Limiter discharge #29722. Bottom: Divertor discharge #29725. The red surfaces

indicate constant poloidal flux Ψpol. The black lines indicate the probing range and

measurement locations of the Doppler reflectometer.

constant at B = −2.4 T and a moderate electron cyclotron resonance heating power of

0.4 MW was applied. These values of magnetic field and density were chosen to allow

for X-mode Doppler measurements in the edge region of the plasma, where GAMs are
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Figure 3. Time traces of AUG shape-scan discharge #29722, showing the evolution

of a) plasma current Ip, b) central line averaged density H1, c) Ohmic and ECRH

heating power, d) edge safety factor q95 and e) boundary elongation κb. BT was kept

constant at -2.4 T.

typically observed during L-mode discharges at ASDEX Upgrade. Specifically, GAMs

are usually detected inwards from the region of the radial electric field minimum at the

plasma edge toward the ne pedestal top, and never outside of the separatrix or last

closed flux surface. The location and range of GAM measurements, i.e. slightly below

the midplane on the low field side edge, can also be seen in figure 2. The poloidal angle

of beam incidence θ, as well as the poloidal plasma location, remain roughly constant

in all configurations.

Figure 4 shows typical edge plasma radial profiles of electron temperature Te,

density ne and safety factor q during low- and high-elongation phases of a limiter

discharge. The radial range in which GAMs are detected is slightly wider in the case of

low boundary elongation.

To study the radial structure of the GAMs, the Doppler probing frequency is

stepped, with one radial sweep consisting of 10–13 steps separated by 1 GHz, each lasting

15 ms. The measurement locations were reconstructed using fitted density profiles from

the profile reflectometer and Lithium-beam diagnostics. The electron temperature Te,

which is important for comparison with the theoretical models, was measured with the

Thomson scattering and electron cyclotron emission (ECE) diagnostics. Experimental

measurements of the ion temperature were not available in all cases and have been

scaled from similar discharges. From previous experiments, for measurements towards

the plasma pedestal top, Ti ≈ Te was assumed, whereas in divertor discharges closer

towards the separatrix, the ion temperature can rise to Ti ≈ 1.2Te. [26]

For the comparison of GAM frequency and amplitude measurements to theoretical
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Figure 4. Radial profiles of electron temperature Te (top), density ne (middle) and

safety factor q (bottom) in limiter discharge #29722. Left: t = 1.5 s, κb = 1.16. Right:

t = 3.5 s, κb = 1.65. The radial region in which GAMs were detected is highlighted.

models a database consisting of 59 radial sweeps, taken during three shape-scan

discharges, was evaluated. During each radial sweep the strongest detected GAM peak

(or none, if no clear GAM peak could be determined) is used in the analysis. The range of

plasma boundary elongation in the database is 1.13 < κb < 1.78, GAMs are detected in

the radial range of 0.92 < ρpol < 0.99 at densities of 0.6×1019 m−3 < ne < 1.3×1019 m−3,

the local safety factor q varies between 3 and 5. Investigations of the radial GAM

structure and possible GAM propagation were made during the same experiments, but

are beyond the scope of this article and will be presented in a future publication.

3. Data analysis

The extraction of the GAM properties from the raw Doppler reflectometer signal is a

multi-step process, as shown in figure 5. First, the Doppler shift frequency fD and

amplitude AD are calculated from the IQ signal. The perpendicular velocity v⊥ is

then calculated from fD and the relative turbulence amplitude δn2 at the probed k⊥ is

proportional to AD. In order to measure GAMs, it is necessary to have a high-resolution

time series fD(t). Therefore, fD and AD are calculated from a small window of the

complete IQ signal, which slides forward in time. Finally, an average power spectrum

is calculated from fD(t). GAMs appear as distinct peaks in this frequency spectrum,

usually in the range of 5–25 kHz for AUG L-mode discharge conditions.

The conventional way to determine the Doppler shift from the raw IQ signal is by

calculating the power spectrum Sf (f) with a Fast Fourier Transform (FFT) algorithm
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Figure 5. Illustration of the GAM detection from reflectometer data. a) Power

spectrum calculated from a window of the raw data, exhibiting a clear Doppler shift.

b) Time series of the determined Doppler shift frequency (proportional to the flow

velocity). c) Power spectrum of the fD time series, showing a strong GAM peak at 20

kHz.

and computing a weighted mean: fD =
∑
f ·Sf (f)/

∑
Sf (f). Typically the original data

window (10-15 ms at 20 MHz sampling rate) is split into sub-windows of 256 points (or

12.8µs), with 50 % overlap, for this calculation. The resulting time series fD(t) has

therefore a sampling frequency of approximately fs = 156 kHz. The AD(t) time series

is computed from the area under the Doppler-shifted spectral peak.

An FFT is then once again used to calculate the average power spectrum from the

fD(t) time series, up to the Nyquist frequency fNy = fs/2 = 78 kHz, which is well-suited

for the study of GAMs at AUG.

An alternative approach to the sliding FFT is the Multiple Signal Classification

(MUSIC) method [27], which has recently been proposed [12]. This algorithm presumes

that the complex IQ signal x(t) consists of nf coherent frequency components fk and

an incoherent noise part n(t): x(t) =
∑nf

k=0Ak exp(−i2πfkt) + n(t). By calculating
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the eigenvectors of the autocorrelation matrix via singular value decomposition, the

contributions from signal and noise can be separated. The noise eigenvectors are then

used to compute the pseudospectrum PMUSIC , which shows a distinct peak at fD. The

main advantage of the MUSIC method is the possibility to calculate fD from a smaller

window of the IQ signal, leading to a higher time resolution in fD(t), but at the cost of

less stability.

Figure 6. Comparison of sliding window FFT (SWFFT) and MUSIC methods for

GAM detection. Left: Strong GAM (#29650, t = 2.190 − 2.205 s), Right: Weak

GAM (#29650, t = 2.220− 2.235 s). MUSIC algorithm parameters as defined in [12]:

nws = 32, nshift = 16, nw = 6, nf = 1 and nFFT = 8192.

Figure 6 shows average power spectra computed via FFT from two exemplary

experimental measurements, where GAMs of different intensity and frequency were

found. The fD(t) signal was computed with both the sliding window FFT (SWFFT)

method and with the MUSIC method for comparison. Both methods detect the GAM

at the same frequency. The MUSIC algorithm uses multiple parameters for window

size (nws), overlap between windows (nshift), number of detectable frequencies (nf ) and

frequency resolution (nFFT). Various combinations of these parameters were tested for

GAM detection, and best results were generally obtained with nws = 32, nshift = 16,

nw = 6, nf = 1 and nFFT = 8192. Generally, the SWFFT method is much faster to

compute and manages to detect the GAM with slightly better signal to noise ratio. This

is contrary to Tore Supra results where the MUSIC algorithm proved superior for GAM

detection [12]. All experimental GAM measurements presented in this article have been

obtained using the conventional SWFFT approach.

4. GAM frequency results

4.1. Comparison with Winsor’s scaling and Conway’s heuristic model

The prediction for the GAM frequency fGAM from equation 1, derived by Winsor [5]

from a fluid model for a circular plasma approximation, contains as parameters only

the sound velocity cs, the major radius R0 and the safety factor q. For figure 7,



GAM scaling in ASDEX Upgrade 10

Figure 7. Scale factor G = ωGAMR0/cs as function of the plasma boundary elongation

κb for the whole data set with 3.5 < q95 < 5, compared to the Conway and Winsor

models.

the scale factor G was determined from the shape-scan experiments, by measuring

the GAM frequency and normalizing to cs/R0 (to remove the dependence of fGAM

on the local plasma temperature). Variations in q were neglected for this figure.

G = ωGAMR0/cs was then plotted over the plasma elongation at the corresponding

time in the discharges. Highlighted is the area of intermediate plasma elongation, in

which no previous experimental data was available.

The main sources of uncertainty for the scaling factor G are the errors in the Te
and Ti (and therefore the sound velocity) and in the extraction of the GAM frequency

from the spectrum. The errors in the temperatures consist mostly of contributions

due to uncertainties in the ECE measurements and uncertainty in the measurement

position due to the fitted density profile. These are estimated to be of the order of

15 %. The error in the GAM frequency is dictated by the frequency resolution due to

the chosen FFT parameters and here is approximately 0.3 kHz, which is below 5 % for

all GAM measurements in the database. The uncertainty for the boundary elongation

κb is determined by the steepness of the κ profile. For plasmas with low κb, the profile is

relatively flat and small uncertainties in the radial coordinate only translate to minimal

variation in κb. For elongated plasmas the κ profile is steeper in the edge and an error

of up to 5 % is expected. A similar uncertainty is expected for variations in q.

As previously noted, Winsor’s model does not take into account the plasma shape.

In contrast, a clear trend can be observed towards lower GAM frequencies at higher

elongation. The trend of decreasing frequency with elongation is captured in the

heuristic model by Conway:

ωGAM =
cs
R0

4π
(

1

1 + κb
− ε0

)
. (2)

Here, ε0 = 0.3 is the inverse aspect ratio. However, simultaneously a systematic

difference between GAMs in limiter discharges (crosses) and in divertor discharges

(diamonds) can be seen.
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Figure 8. Comparison of the experimental results (fGAM) with Winsor’s scaling law

(fscale). All points refer to GAMs in a range of radial positions 0.91 < ρpol < 0.99 and

safety factor 3.5 < q95 < 5. The degree of elongation is indicated by colour.

Figure 8 shows the experimentally observed GAM frequency as a function of the

frequency predicted by Winsor’s scaling. The uncertainty in fscale is due to the errors

in the temperatures, as described above. The error in fGAM is not pictured as it is

comparable to the symbol size. As already seen in figure 7, Winsor’s scaling generally

overestimates fGAM. For a number of points at close to circular plasmas, which meet

the assumption made in the model, the prediction agrees with the data, but especially

for high κb the discrepancy becomes large. This confirms earlier AUG results [14].

Figure 9. Comparison of the experimental results fGAM with Conway’s scaling law

fscale.

Figure 9 shows a comparison with the heuristic Conway scaling, which accounts

for the effect of the plasma elongation. For better visibility there are no error bars

included in this and the following figures. As the uncertainties in the temperatures are

the strongest influence on the errors in all frequency scalings, the error bars in figure 8

may be used as a reference.
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This empirical model was found to give good agreement for GAMs in the edge of

elongated plasmas, but does not reduce to Winsor’s scaling for κb → 1. The model also

does not include the influence of q, as its effect on the experimental GAM frequency

was not found to be strong [14].

In comparison to Winsor’s scaling, the Conway model yields better agreement to the

present data. However, there are still systematic deviations from the experimental data:

in limiter discharges, GAMs closer towards the plasma center, i.e. in regions of higher

plasma temperature, are found to be at a lower frequency than predicted. For limiter

GAMs in the plasma edge region a good agreement is found. For GAMs in divertor

discharges the experimentally measured frequency appears to be generally higher than

predicted.

4.2. Comparison with Angelino’s fluid model

In order to establish an analytical relation between GAM properties and the plasma

geometry, in 2008 Angelino et al. derived a prediction for the GAM frequency from

a fluid model [19]. The derivation takes the geometry into account through the local

elongation κ [28]:

ωGAM =
vTi
R0

√√√√(τ + γi)

[
8

3− 2κ+ 3κ2
+

1

q2

]
(3)

Here, τ = Te/Ti, γi = 1 and vTi =
√
Ti/mi. Angelino also uses the local elongation

κ instead of boundary elongation κb. For the comparison, κ is obtained from the cliste

equilibrium code [29]. For κ→ 1, the formula reduces to Winsor’s scaling (equation 1).

Figure 10. Comparison of the experimental results (fGAM) with Angelino’s scaling

law (fscale).

The comparison of measured GAM frequencies to Angelino’s scaling are shown in

figure 10. The agreement is similar to that obtained with Conway’s heuristic model. In

general, the scaling fits the data much better than Winsor’s simplified fluid model, but
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there are large discrepancies for limiter GAMs at low κ, towards the plasma core. The

predicted GAM frequency lies above the measurements. However, Angelino’s scaling

appears to give a better fit for GAMs in divertor plasmas.

4.3. Comparison with Gao’s gyrokinetic model

A more involved approach based on an electrostatic gyrokinetic model and incorporating

the effects of finite orbit drift width (ODW) was derived by Gao [30, 31, 17] between

2009 and 2011. In contrast to Angelino’s approach, Gao includes a larger number of

geometric parameters. Non-linear effects are not included. In the small ODW limit the

GAM frequency is given by

ωGAM =
vTi
R0

√(
7

4
+ τ

)(
2

κ2 + 1

)(
1− sκ

2

7 + 2τ

7 + 4τ

) [
1− ε2 9κ2 + 3

8κ2 + 8

−∆′
2 κ2

4κ2 + 4
+ ε∆′

4κ2 + 1

4κ2 + 4
+

(23 + 16τ + 4τ 2)(κ2 + 1)

2q2(7 + 4τ)2

]
, (4)

with τ = Te/Ti, inverse aspect ratio ε = r/R0, Shafranov shift gradient ∆′ and

the radial derivative of the elongation sκ ≈ (κ− 1)/κ. Again, the local elongation κ is

used. Typical values for ∆′ in the region of GAM activity are between -0.4 and -0.2.

Therefore the contribution of the Shafranov shift gradient towards the GAM frequency

is of a similar order of magnitude as the inverse aspect ratio, both of which decrease

ωGAM by about 10% for typical values of κ.

Figure 11. Comparison of the experimental results (fGAM) with the Gao scaling law

(fscale).

The comparison of the experimental data with the Gao scaling in figure 11

shows some improvements. While in general the experimental frequency lies above

the theoretical prediction, the discrepancy between edge and core GAMs in limiter

discharges mostly disappears, and the deviation from divertor discharges is less severe.

In general, Gao’s scaling exhibits the least scatter between various radial regions or

plasma geometries and seems the closest approach so far to presenting a unified picture.
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4.4. Non-linear effects

Due to the linear derivation of Gao’s equation, the predicted frequency can be

understood to give only an estimate, whereas non-linear effects may also play a role.

The results show a measured GAM frequency always shifted upward with respect to

the linear theoretical prediction. This seems consistent with the nonlinear gyrokinetic

prediction, according to which the nonlinear frequency shift is always positive [32, 33],

whereas nonlinear MHD predictions give both upshifts and downshifts depending on

the phase delay between the nonlinear force and the GAM oscillation [34]. A detailed

analysis of the nonlinear frequency modification is outside the scope of this paper, and

will be addressed in a future paper.

4.5. Electromagnetic effects

A further factor that should be considered is the influence of electromagnetic

effects. While the investigated models are based on electrostatic approaches, recent

modelling [35] suggests that plasma β can lead to lowered GAM frequencies. This has

been observed in an ASDEX Upgrade discharge, where a 100% increase in β is observed

with ECR heating, the GAM frequency scaling is about 10% lower than expected.

For the discharges used in this database, however, β only changes by less than 5% in

limiter discharges in all cases, while in a few extreme divertor cases at low elongation

β increased only by a maximum of 50%. Therefore, electromagnetic effects are not

expected to play a significant role for the majority of the database, and may decrease

the frequency for a limited number of low-κ divertor GAMs, but within the error bars

given by the temperature measurements. As electromagnetic models are only recently

being investigated, further comparison is beyond the scope of this article.

5. GAM amplitude results

The amplitude of the GAM is obtained from the power spectrum of the fD(t) time

series. The GAM peak at frequency fGAM is typically distinct from the background, as

seen in the highlighted area of figure 5 (bottom). The amplitude is calculated as the

peak-to-peak velocity by integrating over the GAM spectral peak [7]:

AGAM =
4π

k⊥

√√√√√ f2∑
f1

S (fD)
4

1.5
, (5)

where f1, f2 ≈ fGAM ± 0.6 kHz. The factor 4/1.5 accounts for the Hanning bell-

window that is applied to minimize spectral leakage. The perpendicular wavenumber

k⊥ is calculated using beam tracing and is typically of the order of 9–10 cm−1. As shown

in figures 12 and 13, the GAM amplitudes for this set of discharges fall in the range of

0.2–1.0 km/s. For plasma conditions where GAMs are usually measured, i.e. the edge

region of L-mode plasmas, the mean perpendicular plasma velocity is in the range of
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2–5 km/s [22]. Hence the GAM can cause a perturbation of the plasma velocity by up to

50 %. The ratio between GAM amplitude and frequency is used to estimate the poloidal

displacement caused by the GAM, and is of the order AGAM/ωGAM ≈ 1 cm, which is

comparable to typical values of the poloidal turbulence correlation length in the edge

(see [36, 37] and references therein). The radial edge turbulence correlation length is

of similar size and is also comparable to the observed radial extent of GAMs in AUG

plasmas [14]. The dataset is formed from values taken at the GAM radial maximum in

each discharge condition.

The stationary GAM amplitude results from a balance between the non-linear

drive from the gradient-driven turbulence, damping due to collisional and collisionless

processes and the energy transfer between various scales. Previously, the local

temperature gradient ∇Te, normalized by
√
κb, was used as a proxy for the turbulence

drive in ASDEX Upgrade [7]. In this new dataset, the factor ∇Te/
√
κb is roughly

constant in the range of 5–7 keV/m. In addition, variations in the turbulence level have

also been measured directly using normal incidence reflectometers. Here, the turbulence

levels across the dataset are of similar orders of magnitude. Any variations may be

attributed to the radial dependence of the turbulence. Additionally, the turbulence

level is subject to the dynamics of energy transport processes. The energy transfer rate

between the background turbulence and the GAM is an unknown factor which is not

addressed further in this work. The primary focus here is placed on the importance of

the GAM damping terms.

5.1. Dependence on κb and q

Figure 12. GAM amplitude against boundary elongation κb, colour-coded for varying

local safety factor q.

Figure 12 shows GAM amplitudes for the whole dataset against the plasma

boundary elongation κb, colour-coded for ranges in local safety factor q. Figure 13

is the counterpart, showing GAM amplitude against q, with κb ranges marked by the

colour. The error in the GAM amplitude is influenced by the uncertainties of k⊥ and



GAM scaling in ASDEX Upgrade 16

Figure 13. GAM amplitude against local safety factor q, colour-coded for varying

boundary κb.

the integration over the GAM peak. It is approximated as 20 %. The errors in κb and

q are estimated as discussed in section 4.1.

For limiter discharges the results in figure 12 are similar to earlier ASDEX Upgrade

experiments [7] with the added benefit of a large number of points in a previously

unavailable region for κb. There is a clear inverse dependence of AGAM on the elongation

κb, and only a weak direct dependance on local q evident. For κb > 1.4 the amplitude

tends to become insensitive to elongation. There is also a trend for higher κb to be

accompanied by higher q.

For the case of divertor plasmas the effect of the X-point and strong shaping is

more evident with discharges generally having higher q. The lowest GAM amplitudes in

divertor plasmas are either found at low q, or at very high κb. Very high q raises AGAM,

while for moderate q (3.5–4.5), the impact of κb is seen again. For low to moderate q

(3–4), AGAM approaches the limiter values.

The dependence of AGAM on q is more clearly seen in figure 13. Low-amplitude

GAMs can appear regardless of the local q, κb or plasma configuration. Although, as

shown in figure 12, there is a tendency to higher AGAM at lower κb for a fixed q. There

is also a clear trend of high AGAM at higher q in divertor configuration. As a general

observation the influence of κb shows a clear trend for limiter data, while the influence

of q appears more important for divertor plasmas.

5.2. Dependence on damping

Previously there has been a focus on collisionless Landau damping, which is often

approximated as γ ∝ ωGAM exp(−q2) [38, 19, 7]. Gao has more recently derived a

more extensive formula from a gyrokinetic approach in the limit of negligible GAM

radial wavenumber kr → 0 [39]:

γc.less = −π
1/2

2

vTi
R

(RωGAM/vTi)
6

7/4 + τ
q5 exp

−(qRωGAM

vTi

)2
 (6)



GAM scaling in ASDEX Upgrade 17

This formula gives a monotonically decreasing γ in the experimental range 3 <

q < 5, which appears to be consistent with the results of figure 13 showing the GAM

amplitude increasing with q.

Figure 14. GAM amplitude against collisionless damping rate γc.less in the limit

kr → 0 (equation 6).

Figure 14 shows the measured GAM amplitude AGAM as a function of the

collisionless damping rate γc.less, according to equation 6. There is a very large variation

in γc.less, over 25 orders of magnitude. Due to the large scatter of AGAM, there is no

clear dependence between damping rate and GAM amplitude, contrary to what would be

expected if collisionless damping was the dominant process. While the lowest AGAM are

found at high γ, there is no straightforward trend for the limiter data, and the divertor

AGAM even tend to be larger at higher collisionless damping rates. If values below

10−10 Hz are ignored there is perhaps a trend of decreasing AGAM with rising γc.less.

Nevertheless, the plasma elongation appears to have an influence on the collisionless

damping rate, as most GAMs with κb > 1.4 have significantly lower γ. This is due to

the factor ωGAMR/vTi in the exponential, which will decrease for elongated plasmas (cf.

figure 7). Further, the damping rates for divertor plasmas are much lower than those

for limiter plasmas, with the exception of only a few points.

Recent theoretical work ([40] and references therein) and simulations [41], however,

suggest that finite orbit width effects, i.e. kr > 0, may play a significant role for the

collisionless damping rate in the case of q > 2. Sugama and Watanabe used a gyrokinetic

approach to derive an expression that includes the finite orbit width effects [18, 42]:

γSW = − π1/2

2

vTiq

R0

[
1 +

2(23/4 + 4τ + τ 2)

q2(7/2 + 2τ)2

]−1

×

exp(−ω̂2
G)
{
ω̂4

G + (1 + 2τ)ω̂2
G

}
+

1

4

(
krvTiq

Ωi

)2

× exp(−ω̂2
G/4)

{
ω̂6

G

128
+

1 + τ

16
ω̂4

G +
(

3

8
+

7

16
τ +

5

32
τ 2
)
ω̂2

G

}]
(7)
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Here, ω̂G = R0qωGAM/vTi and Ωi = eB/mi. For all calculations of the damping

rate, the experimentally measured GAM frequency ωGAM was used. The impact of the

finite orbit width effect is very sensitive to the radial wavenumber kr of the GAM. In

AUG the radial wavelength λr of the GAM is obtained from radial cross-correlation

measurements [43] to be of the order of 4–5 cm, i.e. typically twice the zonal width

of the GAMs. This estimate is consistent with previous width and spacing of the

GAM frequency plateaus [14]. A λr of this magnitude gives a corresponding kr of

approximately 150 m−1, which should be considered as an upper boundary. kr of this

magnitude have also been measured in DIII-D [44].

Qiu et al. [16] note that equation 7 is only valid for krvTiq
2/Ωi � 1, which is not

the case here. In the limit of large ODW the dominant resonant mechanism changes

from low order harmonic transit resonance to high order harmonic resonance, and the

damping rate becomes independent of q. Gao derives the following equation for the

collisionless damping rate in the large ODW limit from a gyrokinetic approach, which

includes various effects, such as the plasma geometry [31, 17]:

γLODW = −
4κ2

√
7/4 + τ

k̂2(κ2 + 1)3/2

vTi
R0

(
1 +

2κ2 + 5

4κ2 + 4
sκ −

27κ2 + 9

8κ2 + 8
ε2 − 7κ2 + 4

4κ2 + 4
∆′2

+
9κ2

4κ2 + 4
ε∆′

)
× exp

−
√

7/4 + τ

k̂

√
2κ2

κ2 + 1

(
1 +

3κ2 + 4

4κ2 + 4
sκ

−9κ2 + 3

8κ2 + 8
ε2 − 3κ2 + 2

4κ2 + 4
∆′2 +

4κ2 + 1

4κ2 + 4
ε∆′

)]
(8)

Figure 15 shows a comparison of the three collisionless damping values for the whole

database, plotted against the normalized poloidal flux radius ρpol, with γc.less in red from

equation 6, γSW in green from equation 7 and γLODW in blue from equation 8. For the

calculation of γSW and γLODW, a constant estimate of kr = 150 m−1 is used. While for

selected cases, kr has been measured between 75 and 150 m−1, accurate measurements

for each GAM in the database do not exist, and the calculated damping rates should be

taken as an upper boundary. Including the low kr effects raises γc.less by 4 to 12 orders

of magnitude, depending on radius and q. In the large ODW limit, the damping rate

γLODW lies approximately 2 to 3 orders of magnitude below γSW, but still significantly

above the γc.less (kr → 0) value.

The effect of collisional damping should also be taken into account. As recently

noted by Gao [40], collisional damping has often been ignored as it was not thought to

play a large role in the plasma core. But, as GAMs are observed in the plasma edge

region, the collisional damping may in fact play the dominant role. A first estimation of

the collisional damping rate for GAMs was given by Novakovskii et al. as γ = −4/7νi
(the original publication mistakenly included a q in the denominator) [45, 3]. The ion

collisionality in a deuterium plasma is defined as νi = 4.80× 10−2
√

1/2ne ln ΛT
−3/2
i s−1,

ne is in m−3, Ti in eV and the Coulomb logarithm is ln Λ ≈ 17.
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Figure 15. Comparison of damping rates against normalized poloidal flux radius ρpol.

(a) Collisional damping rate (black). (b) Collisionless damping for kr → 0 (red). (c)

Collisionless damping with finite ODW corrections (green). (d) Collisionless damping

in the large ODW limit (blue). A constant value of kr = 150 m−1 is used.

Using a gyrokinetic model, Gao derived the following equation for the collisional

damping rate [40]:(
7

4
+ τ

)
qR

vTi
γ +

3

8

qR

vTi
νi +

qR3

v3
Ti

γ
(
4γ2 + 4γνi + ν2

i

)
= 0 (9)

In the case of νiqR/vTi � 1 and γqR/vTi � 1, the formula simplifies to

γcoll = − 3

14 + 8τ
νi. (10)

Numerical calculations confirm that all the AUG experimental GAM measurements

satisfy this condition. Note, unlike equation 6, there is no implicit κ-dependence here.

Figure 15(a) shows the collisional damping γcoll from equation 10 in black. A

comparison of the various damping rates indicates that, if ODW effects are neglected,

the collisional damping rate is orders of magnitude above the collisionless damping

rate γc.less - an observation similarly noted recently in Tore Supra [15]. However, when

the contribution of kr is taken into account the collisionless damping rate can become

dominant in limiter low q conditions, while at high q limiter and divertor edge conditions

the collisional term may still dominate or be comparable to the collisionless damping

rate.
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Figure 16. Scaling of GAM amplitude against collisional damping rate γcoll. Left:

Divertor plasmas. Right: Limiter plasmas.

Experimentally, the variation of AGAM with collisional damping is different between

limiter and divertor configurations. Figure 16 shows the GAM amplitude as a function

of γcoll from equation 10 for divertor and limiter plasmas. In the divertor case there is a

much clearer trend of decreasing AGAM with rising γcoll. In the limiter case, there is more

spread in the data, and for each subset of measurements at similar κb there is almost

no variation with γcoll. The collisional damping appears to have the effect of setting

an upper boundary on the GAM amplitude, particularly for divertor plasmas. In the

case of limiter plasmas the GAM amplitude seems to be determined by the boundary

elongation, as seen in figure 12.

6. Discussion and summary

This article presents experimental results from Doppler reflectometry measurements on

a number of shape-scan experiments in order to study the influence of plasma geometry

on the properties of the geodesic acoustic mode. The MUSIC algorithm is tested as

an alternative to the conventional sliding FFT approach for GAM measurements, but

unlike results from Tore Supra [12] it is not shown to improve GAM detection at

ASDEX Upgrade. The measurements are compared to heuristic and various theory-

based models. It is confirmed that the GAM frequency prediction by Winsor’s

simplified fluid model shows inaccuracies, as it generally overestimates the GAM

frequency, with strong deviations for edge GAMs in elongated tokamak experiments.

A comparison with Conway’s heuristic model, which was based on a set of low- and

high-elongation discharges, yields better agreement, even with the inclusion of new

experimental points from limiter discharges at medium plasma elongation. However,

discrepancies are still found, especially for lower-κ limiter discharges, where the GAM

frequency is overestimated. Also GAMs in divertor discharges seem to show a systematic

disagreement with the empirical formula. More involved theory-based models attempt to

account for the observed effects: a fluid model derived by Angelino, which incorporates
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the effect of plasma elongation κ, yields some improvement on Winsor’s scaling.

However, large discrepancies are found for low-κ limiter plasmas. The overall agreement

with the experimental data is still better for the heuristic model. Angelino’s model is

nevertheless useful as an estimate of the ωGAM-dependence on κ based on theory. Gao’s

gyrokinetic-based scaling is the most rigorous model in its inclusion of plasma geometry

parameters such as ε, sκ and ∆′. It appears to give a lower boundary prediction of

the GAM frequency. The systematic underestimation of ωGAM suggests that non-linear

effects may play a significant role and should be considered for an accurate prediction

of the GAM frequency, however the possibility of non-linear frequency downshift must

also be considered.

The presence of GAMs has been confirmed in many plasma devices (see the

review by Fujisawa [8] and the references therein) and an overestimation of GAM

frequency by the Winsor model has been confirmed on a number of experiments, among

others at ASDEX Upgrade [11], DIII-D [6, 44], MAST [46] and Globus-M [47]. The

thorough comparison of circular Tore Supre measurements and simulations against

various models [15] points to several important influences on the GAM frequency. While

the divertor geometry allows for more flexible shaping studies at ASDEX Upgrade,

especially in terms of plasma boundary elongation κb, the Tore Supra results also stress

the importance of impurities, which may account for discrepancies of up to 10 % in case

of high effective charge Zeff > 2.5. In typical ASDEX Upgrade edge scenarios, Zeff is not

expected to exceed 1.5, therefore impurities should only provide a small correction. In

the comparison of ASDEX Upgrade data with the gyrokinetic model, it is shown that

other shaping terms which can be varied only in a limited range, such as the inverse

aspect ratio ε and the Shafranov shift gradient ∆′ may also play a non-negligible role.

Recent results from the spherical Globus-M tokamak only show good agreement with

the GAM frequency predicted by the gyrokinetic scaling, highlighting the importance

of the terms including the inverse aspect ratio ε. There are still more parameters

that are expected to influence the GAM frequency, but which are not always easily

varied and studied. Pressure anisotropy, for example, is expected to impact the GAM

frequency [48], but was shown to have little effect at Tore Supra [15]. Toroidal rotation is

expected to provide an upshift of the GAM frequency [49, 50] but the magnitude of this

effect might be small due to little external momentum input in the plasma discharges

investigated here. A relatively strong influence on the GAM frequency, which has not to

date been studied in detail, can be expected from variations in the isotope used during

a discharge. First ASDEX Upgrade results show an increase of the GAM frequency

by 30–40 % when the plasma fuelling is changed from deuterium to hydrogen, which

matches the change of cs ∝ m−0.5
i .

The behaviour of the GAM amplitude is also studied in relation to the plasma

parameters κ and q. The GAM amplitude is seen to decrease in limiter plasmas with

increasing elongation. Low-q GAMs from divertor plasmas exhibit similar amplitudes,

whereas the GAM amplitude is found to increase significantly at higher safety factor.

The GAM amplitude scaling has been less often studied than the GAM frequency
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scaling in recent research, with little detailed investigation of the effects of plasma

configuration and geometry [8]. Prior results from DIII-D suggest that a large safety

factor q might lead to higher GAM amplitudes due to reduced collisionless damping [6],

while first ASDEX Upgrade results exhibit different observations for limiter and divertor

plasmas [7]. In the limiter cases the boundary elongation has a clear effect on the GAM

amplitude, but not in the divertor case. Here, the role of the X-point in the divertor

configuration requires further investigation.

In this article the roles of collisionless Landau damping and collisional damping

were investigated in more detail for a dataset with roughly similar turbulence drive

∇Te/
√
κb. In the absence of kr effects collisional damping clearly dominates over

collisionless damping towards the outer plasma edge region. More towards the core

region, however, the rising trend of the collisionless damping may cause γc.less to become

dominant. Tore Supra results similarly predict a stronger influence of collisional damping

in the relevant plasma edge region [15]. With inclusion of finite orbit drift width effects,

the collisionless damping is increased overall (green and blue points in figure 15). The

green points can be considered an upper boundary to the collisionless damping rates,

based of the current measured kr estimates. A lower kr would reduce γSW towards the

original γc.less (red points). The large ODW limit values γLODW are likewise reduced with

decreasing kr. Within this picture, the collisional damping would play a larger role for

the divertor high q cases in the plasma edge, while collisional and collisionless damping

may play equal roles for limiter low q cases towards the plasma core. This switch in

damping dependency may go towards explaining the different behaviours observed in

figure 16 for the limiter and divertor configurations.

Comparisons to numerical modelling for ASDEX Upgrade plasmas are in progress,

but first results from the gyrokinetic code NEMORB for a circular plasma geometry [41]

already show a good agreement for the GAM frequency and damping rate with the

gyrokinetic based model of Sugama and Watanabe.
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