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Abstract

The structure of a thin MoO3 layer on Au(111) with a c(4×2) superstructure was

studied with LEED I/V analysis. As proposed previously (Quek et al, Surf. Sci.

577 (2005) L71), the atomic structure of the layer is similar to that of a MoO3

single layer as found in regular α-MoO3. The layer on Au(111) has a glide plane

parallel to the short unit vector of the c(4×2) unit cell and the molybdenum atoms

are bridge-bonded to two surface gold atoms with the structure of the gold surface

being slightly distorted. The structural refinement of the structure was performed

with the CMA-ES evolutionary strategy algorithm which could reach a Pendry

R-factor of ∼0.044. In the second part the performance of CMA-ES is compared

with that of the differential evolution method, a genetic algorithm and the Powell

optimization algorithm employing I/V curves calculated with tensor LEED.
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Introduction

Molybdenum is extensively used as a key component in mixed oxide catalysts

like for instance iron-molybdate catalysts for the selective oxidation of methanol

to formaldehyde [1]. It is assumed that Mo sites play a relevant role for the re-

activity of these systems, but many questions regarding the active sites and the

reaction mechanism are still open at present [1]. Pure MoO3 exhibits good activ-

ity for several reactions like the partial oxidation of methanol to formaldehyde [2]

and the partial oxidation of propene [3].

The reactivity of large aggregates will usually be different from that of sys-

tems with a small extension in one or more dimensions like clusters or thin films

[4, 5]. In such cases surface or interface atoms contribute significantly to the over-

all properties of the system, which has a strong effect on the electronic and ge-

ometric structure and thus onto the reactivity. Having the peculiarity of systems

with a reduced dimensionality in mind, well-ordered monolayer thick MoO3 is-

lands have been prepared on Au(111) some years ago by Friend and co-workers

[6–9]. Guided by computations, LEED (low-energy electron diffraction) and STM

(scanning tunneling microscopy) results the authors concluded that the structure

of the layers is similar to that of a single layer of α-MoO3. Regular α-MoO3 con-

sists of pairs of such layers weakly interacting with the neighboring double layers

via van der Waals forces.

In the context of studies of thin well-ordered α-MoO3 layers on Au(111) [10]

we prepared monolayer thick films which exhibit the same LEED pattern as the

layers prepared by Friend et al [6–9]. These layers were studied with TDS (thermal

desorption spectroscopy), XPS (X-ray photoelectron spectroscopy) [10], NEX-

AFS (near-edge X-ray absorption fine structure spectroscopy) and DFT (density

functional theory) modeling of the NEXAFS spectra [11]. The I/V LEED (LEED

spot intensity analysis) investigation discussed in this publication was started in
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order to verify or improve the structural data of Friend et al [8], and thus to pro-

vide an improved structural input for DFT modeling. The I/V LEED structural

optimization was performed with an evolutionary strategy algorithm, CMA-ES

(covariance matrix adaption evolutionary strategy) [12], employing fully dynam-

ical LEED I/V computations. This approach works well but is computationally

expensive. CMA-ES is a population based robust local optimization method with

a limited global optimization capability. In this context the question came up, how

the performance of this method compares with that of other search methods used

for I/V-LEED structure optimization methods. Therefore in the second part of this

manuscript the performance of CMA-ES is evaluated and compared with that of

two other population-based search methods: differential evolution (DE) [13] and

a genetic algorithm (GA) as common global optimization methods, and with the

local Powell optimization method based on tensor LEED computations.

Experimental

The measurements were performed in a chamber which contained a LEED

system for I/V LEED measurements and sample characterization, Helmholtz coils

for magnetic field compensation, a high-pressure cell for pressures of up to 1 bar,

an electron-beam metal evaporator for the deposition of molybdenum, a sputter

gun for sample preparation, a quadrupole mass spectrometer for residual gas anal-

ysis and thermal desorption spectroscopy, and a manipulator with a sample holder

on which the sample was mounted. The LEED system was equipped with a chan-

nel plate electron multiplier combined with a phosphorous screen which permitted

to record LEED images with small electron beam currents. Primary electron cur-

rents of some nA were sufficient to generate a reasonably intense LEED pattern.

Low currents are important when sensitive materials like oxides are investigated

since oxides may suffer from electron beam induced damage. A set of Helmholtz

coils was mounted such that a homogeneous horizontal magnetic field could be
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produced which was adjusted to compensate the earth magnetic field at the posi-

tion of the sample. The magnetic field perpendicular to the path of the incident

electrons must be very weak for I/V LEED measurements, since the incoming

electrons have to impinge onto the sample along a direction which deviates from

the surface normal by not more than a few tenth of a degree for all energies. Com-

plete compensation of the magnetic field would have required an additional set of

Helmholtz coils to also compensate the vertical earth field component. However,

due to space constraints such coils could not be mounted. In order to minimize

the effect of the non-compensated vertical magnetic field component, I/V LEED

curves for high and low electron energies were recorded with slightly different

sample alignment angles and matched in the overlapping energy range.

The need for perpendicular beam incidence required that the surface normal

of the sample could be tilted, which was achieved by mounting the sample manip-

ulator on a tilt mechanism, such that the whole manipulator could be tilted. The

sample orientation was adjusted by minimizing the difference between I/V curves

of symmetry-equivalent LEED spots.

The first step of the experimental determination of the I/V curves was the

measurement of LEED patterns as a function of the electron energy with a step

size of 1 eV, which was done with a commercially available software from OCI

Vacuum Microengineering Inc. The I/V curves were derived from these images

with a program which is able to perform spot-tracking and to integrate the inten-

sity in a circular area around the spot maxima with sub-pixel accuracy. The I/V

curves obtained this way were normalized to the beam current and subjected to

a Sawatzky-Golay smooth of 2nd or 4th order depending on the noise of the data,

followed by subtraction of a smooth background.

The Au(111) substrate was fixed on a molybdenum plate by two Mo sheets

which were fitted into slits at the sides of the crystal. With these sheets the sample
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was pressed towards the molybdenum plate to provide a good thermal contact and

a well-defined position. The sample could be heated by electrons emitted from

a glowing filament behind the plate if high voltage was applied to the plate or

just by heat radiation from the filament if no high voltage was applied. Cooling

with liquid nitrogen was possible by filling the hollow rod, on which the sam-

ple holder was mounted, with liquid nitrogen. A temperature of 110 K could be

reached with this setup. At this temperature the I/V LEED curves were measured

since the background intensity in LEED patterns is smaller at low temperature,

which is especially true for gold due its small Debye temperature. For tempera-

ture measurement a K type thermocouple was attached to the Au(111) sample.

Standard sputtering/annealing sequences were employed to clean the Au(111)

sample with the surface quality being judged from the quality of the LEED pattern.

The MoO3 layer was prepared according to a procedure described in reference 10.

In the first step 0.5 MLE of molybdenum were deposited onto the Au(111) sub-

strate (1 MLE =̂1 atom per gold surface atom) with a Mo flux of 0.2 MLE/min as

calibrated with a quartz micro balance After this, the sample with the Mo layer

was transferred into a high-pressure cell where the layer was oxidized for 10 min-

utes at 673 K in a stream of oxygen with a pressure of 50 mbar. Heating in the

high-pressure cell was performed with a commercial halogen lamp equipped with

a focusing gold mirror. During heating the sample was positioned into the focus of

the mirror. After the end of the preparation procedure the lamp was switched off

and the high-pressure cell was evacuated when the sample had reached a tempera-

ture of 373 K. Finally the sample was transferred back into the measuring chamber

where a well-defined c(4×2) LEED pattern with sharp spots could be observed.

Computational

The LEED intensity computations were performed with the Barbieri/Van Hove

Symmetrized Automated Tensor LEED (SATLEED) package [14]. For optimiza-
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tion runs employing CMA-ES [12], differential evolution [13] and the genetic

algorithm the SATLEED package was modified such that the calculated ampli-

tudes of the diffracted beams were outputted and computations related to tensor

LEED were skipped. Tensor LEED optimization runs were performed with the

non-modified SATLEED package using the Powell optimization method as im-

plemented in this package.

The agreement between the computed and the measured curves was quantified

by the reliability factor (R-factor) defined by Pendry [15] (RP). Smaller R-factors

mean better agreement with a value of zero indicating that the compared curves

are identical. In IV-LEED studies R-factors below ∼0.2 are usually considered to

indicate that the model structure is similar to the real one. In the CMA-ES, the DE

and the GA optimization runs the R-factor computation and the refinement of the

structure by minimization of the R-factor were performed by a C++ program with

the experimental data and the amplitudes of the diffracted beams computed by the

modified SATLEED package as input. The program is able to subtract a linear

or constant background from the experimental data, which was adjusted together

with the other optimization parameters to minimize the R-factor. This was done

in order to (partially) compensate for errors made in the initial background sub-

traction procedure. In the present case a linear background was subtracted. The

required phase shifts were computed with the phase shift program accompanying

the SATLEED package (see supplemental material, Figure SI5). The highest an-

gular momentum value considered in the computations was Lmax = 9. I/V curves

were computed for an energy range from 60 to 400 eV with a 1 eV energy step

width. For the calculation exploring the convergence ranges of the different meth-

ods Lmax was set to 7, a constant background was optimized and the energy step

width was set to 1.5 eV. In the case of the Powell method/tensor LEED optimiza-

tion runs the R-factor routine implemented in the SATLEED package was used.
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Finding the structure with the smallest difference between the computed I/V

curves and the measured ones is essentially an optimization problem. In I/V

LEED, an algorithm trying to find the structure under investigation will usually

vary the coordinates of the atoms in a trial structure and possibly some other pa-

rameters like vibrational amplitudes and the inner potential in order to minimize

the difference between the measured I/V curves and the I/V curves calculated for

the trial structure. The parameters span a search space with a dimension equal to

the number of parameters, and the volume equal to the product of the parameter

variation ranges (V =
∏D

i=1 Ωi with Ωi being the variation range of parameter i and

D the number of parameters).

The R-factor which maps a parameter vector to a real number (RD → R)

defines a hyper surface in this space, and the optimization algorithm has to find

the deepest minimum, the global minimum, of this surface. In general this hyper

surface will not just have one minimum but many of them. Only one of them, the

deepest one, is the desired global minimum and the other ones, the local minima,

have to be disregarded by the search algorithm. The number of minima increases

with the volume of the search space, such that a vast number of local minima may

be expected for high-dimensional problems and large parameter variation ranges.

A safe method to find the global minimum is a grid search on a sufficiently densely

spaced grid in the search space. However, this is computationally too demanding

in most cases, especially for high-dimensional problems, and therefore the search

problem is usually made manageable by two measures:

1. Use of an appropriate search method.

Search algorithms are usually designed such that minima on the hyper sur-

face are attractive which means that the algorithm will try to adjust the pa-

rameters such that the R-factor approaches the minimum. This applies to

local and global minima, and therefore the problem of identifying the global
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minimum is not necessarily solved by this approach.

The multitude of such search methods may roughly be divided into local and

global methods. If a local method starts the search in the convex area around

a minimum, then it will just find this minimum and no other one. Therefore

a good approximate knowledge of the location of the global minimum is

required for the application of a local method. Global methods, on the other

hand, promise to find the global minimum also from search starting points,

which are not near to the global minimum. However, in real life it may

take an unacceptably long time to find the global minimum with such a

method from a search start point far away from the global minimum, and

at least temporary trapping of the search in local minima may be expected.

Therefore, even if global methods are applied it is relevant to start the search

from a point not too far away from the global minimum. In general global

search methods converge much slower than local ones.

2. Restriction of the search space.

The search is confined to a sub-space of the whole parameter space in which

the parameter set of the structure to be found is probably located. Such a

sub-space is usually identified by chemical/physical intuition, possibly by

assuming that the structure of the system under investigation is similar to

that of another system with a known structure. A further reduction of the

search space volume can be achieved by ignoring model structures with un-

physical atomic distances. Also, proper consideration of the the symmetry

is relevant since this usually reduces the dimension of the search space.

For the calculation of I/V curves, which are required for the computation of

the R-factor, the tensor LEED approximation may suffice in many cases, but there

are situations where R-factors calculated from tensor-LEED I/V curves exhibit

significant errors even at a point not far away from the point for which the ref-
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erence calculation was performed (see Figure SI1 in the supplemental material,

especially curve c in the upper panel). To avoid this issue the tensor LEED approx-

imation was not used for optimization runs employing global search methods. In

these cases fully dynamical LEED calculation were performed for all points in the

search space where the search algorithm required the computation of a R-factor.

This is computationally much more demanding than tensor LEED, but parallel

calculations on state-of-the-art compute clusters make this approach feasible. The

tensor LEED approximation was only used for optimization runs employing the

Powell method as implemented in the SATLEED package in order to get a clue

on the performance of tensor LEED based local optimization in comparison with

the other methods.

A large subset of the set of global optimization methods involves the optimiza-

tion of a set of trial solutions. A large subset of these methods, the evolutionary

strategies and the genetic algorithms, is inspired by the evolution of species in

nature (“survival of the fittest”), which can be understood as an optimization pro-

cess. As such, the set of trial structures is called population in these methods and

the algorithms try to optimize the fitness of this population. Each individual is de-

fined by its genome, which in the present case is simply a parameter set describing

a trial structure for I/V LEED calculations, possibly plus some non-structural pa-

rameters as discussed later. Therefore, the population of individuals is essentially

a population of trial structures. The individuals have a fitness which is calculated

from the R-factor of the trial structures: the smaller the R-factor the better the

fitness of the individual.

Three population-based search methods were employed: CMA-ES, DE and

a real-valued GA. The GA is called real-valued because the genome consists of

real numbers in the present case. For CMA-ES the Shark library [16] was used

while the GA and DE codes were programmed by the authors. The I/V curve
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computations for the individuals of the population were performed in parallel on

a multi-processor system which reduced the computation time (but not the overall

computational effort) significantly. Genetic algorithms have been employed before

for LEED structural optimization [17–20], like differential evolution [21], and

CMA-ES [22, 23] . The methods are derivative-free robust search methods, not

very sensitive to discontinuities and noise.

Population-based search methods try to optimize the fitness of the population

via production of offsprings, new individuals which may join the population only

if they are able to pass a certain selection scheme which is usually based on the

offsprings fitness. The genetic algorithm employs crossover and mutation opera-

tions for the production of offsprings combined with selection mechanisms which

are designed to let individuals with a higher fitness survive with a higher probabil-

ity on the one hand, and to preserve a certain genetic diversity on the other hand.

The crossover operations combine the genomes of two individuals in certain ways

to produce offsprings with new genomes and the mutation operations produce a

new individual by modification of the genome of an individual of the popula-

tion. Selection operations delete genetic material, crossover operations combine

existing genetic material in a new way while mutations produce new genetic mate-

rial. Thus, the genetic diversity within the population is defined by the balance of

these operations. In the implementation used here, selection of the individuals to

become parents and of the individuals to be replaced by offsprings was performed

by a tournament selection scheme [24] preferring high fitness in the first case and

low fitness in the second one.

The mutation and crossover operations of the GA are highly dependent on

random numbers which control many aspects of these operations. In the present

case the crossover operations ‘exchange of a random parameter between two in-

dividuals’, ‘exchange of parameters with 50% probability’, ‘one point crossover’
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Figure 1: Schematic representation of the implemented crossover schemes for the genetic algo-
rithm.

and ‘two point crossover’ as visualized in Figure 1 are implemented for the GA

method. The implemented mutation operations for the GA are:

• Change of a random gene by a random value calculated using a Gaussian

distribution.

• Change of a random gene by a random value calculated using an uniform

distribution.

• Change of a randomly selected block of genes along a random direction

in the search space with a distance calculated using a Gaussian random
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distribution.

For the computation performed in the context of this I/V LEED study all listed

crossover operations were executed with identical probabilities, likewise the mu-

tation operations.

Differential evolution [13] is a rather simple but effective population based

search scheme. In this method a set of next generation (G+1) mutants MG+1
i is

created from the individuals PG
i of the population generation G according to

MG+1
i = PG

m + F × (PG
l − PG

j ) (1)

with i,m, l, j ∈ [0,NP] all different and m,l,j being integer random numbers.

NP is the number of individuals in the population and i is a loop variable. F ∈ [0, 2]

is a pre-selected constant factor which controls the contribution of the difference

PG
l − PG

j to the mutants. In the next step a set of trial vectors TG+1
i is computed

according to

TG+1
ij =


MG+1

ij if RRN < CR or i = IRN

PG
ij otherwise

(2)

RRN ∈ [0, 1] is a real valued uniform random number which is drawn anew

for every vector component, IRN ∈ [1,D] is an integer valued random number

which is drawn once per individual with D being the number of optimization pa-

rameters (=number of vector components). j ∈ [1,D] is a loop index running over

all vector components of the individuals. This procedure ensures that at least one

parameter in each trial vector stems from a mutant. CR ∈ [0, 1] is a pre-selected

constant which controls the degree of inclusion of mutated genetic material into

the population of trial vectors.

Finally the next generation of the population is produced by a simple selection

scheme – an individual in the population is replaced by the corresponding trial
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vector if the fitness of the individual is smaller than that of the trial vector and it

is kept otherwise.

PG+1
i =


MG+1

i if Fitness(MG+1
i ) > Fitness(PG

i )

PG
i otherwise

(3)

The parameters CR and F control the performance of the algorithm – a large

F will lead to mutants which differ significantly from the original individuals PG
i

while a small F produces mutants which are similar to them. Therefore, F controls

the extension of the search space probed by the algorithm. A large F may lead to an

improved global search capability, but may also lead to dilution of the population

in the search space. The degree of acceptance of mutated genetic material, and

thus the diversity of the population, increases with increasing CR, which there-

fore has a similar effect as an increasing F. The number of individuals also has an

influence on the probability of finding the global minimum in that a larger pop-

ulation permits to sample the search space more thoroughly. For the differential

evolution algorithm it is suggested that the number of individuals is between five

and ten times the number of optimization parameters [13], which would have been

between 120 and 240 in the present case. However, in order to keep comparability

between the computations for the differential evolution algorithm and for the other

methods, a population size of 20 was chosen, which, as will be shown later is large

enough to make differential evolution a very competitive search algorithm.

In CMA-ES new individuals are produced exclusively by mutation. The

genomes of the newly produced individuals are realizations of a multi-variate nor-

mal distribution which is defined by its covariance matrix. The parameters of the

normal distribution, the covariance matrix, are adapted to the morphology of the

R-factor hyper surface in the search space covered by the population. Due to this

a higher convergence speed compared to that of the GA may be expected since
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the latter method does not adapt its search strategy. The price of adaption may be

a somewhat smaller chance to escape from local minima.

The parameters of the CMA-ES algorithm are the numbers of parents (µ) and

offsprings (λ) with λ > µ as well as the initial standard deviations of the algo-

rithm’s normal distributions which, in the calculations leading to the results re-

ported in the following, also define the distribution of individuals in the initial

population. Such normal distributions were also used to set up the initial popu-

lations for GA and DE, and therefore their standard deviations were parameters

which had to be chosen also in these cases. In GA the numbers of offsprings and

parents had to be defined plus a number of other parameters like the widths and

types (uniform, normal) of the distributions used for the computation of the ran-

dom mutation step widths and parameters setting the selection pressure of the

selection schemes. For DE only the population size and the parameters F and CR

had to be supplied. The population size and the number of offsprings were defined

such that not too many processor cores were needed for the optimization runs.

15-20 parallel computations per generation appeared to be reasonable. The other

parameters were determined by test runs. However, GA has too many parameters

for a thorough optimization. Therefore single parameter optimization test runs

were performed for the most relevant parameters while the other parameters were

set to some reasonable values. Elitism, which is the guaranteed survival of the

individual(s) with the highest fitness was not applied in any search scheme since

this leads to a higher chance that the search gets trapped in a local minimum for a

prolonged time.

In order to avoid unnecessary computations, only structures with the symme-

try suggested by the LEED pattern were accepted as individuals. Another imple-

mented constraint was that only trial structures were considered, where the spac-

ings between the atoms were larger than certain minimal distances. The minimum
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distances were tabulated in a (3x3) matrix, such that different minimum spacings

could be considered for different pairs of the three atom types (Au, Mo, O). The

chosen minimal distances were inspired by known atomic and ionic radii.

Results and discussion

Structure

An image of the MoO3 layer’s LEED pattern taken with electrons with an

energy of 45 eV is shown in Figure 2. The oxide produces a c(4×2) superstruc-

ture LEED pattern which is schematically illustrated in Figure 3. The black circle

indicates the area of the experimental LEED pattern in Figure 2. Due to the sym-

metry of the Au(111) surface the oxide layer has three rotational domains which

are shown in different colors in Figure 3. An important difference between the
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Figure 2: LEED pattern of c(4×2)
MoO3/Au(111). Ep=45 eV. The image
was digitally enhanced by variation of contrast
and brightness in order to make sure that all
spots are clearly visible.

Figure 3: Simulated LEED pattern of c(4×2)
MoO3/Au(111). For the simulation the LEED-
pat3 software [25] was used. Red, blue and
green arrows and circles illustrate reciprocal
unit vectors and LEED spots of different do-
mains of the overlayer, while the Au(111) re-
ciprocal unit vectors and LEED spots are drawn
in white. The black circle marks the area of the
LEED pattern shown in Figure 2.
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scheme in Figure 3 and the LEED pattern in Figure 2 is that the (0,1) type spots

are missing in the experimental LEED pattern. This indicates that the overlayer

domains have a glide plane along the direction of the missing spots. As expected

for a glide plane these spots do not show up at any electron energy. However, they

get visible if the crystal is rotated by some degrees out of the glide plane which

breaks the glide plane symmetry. The spots of the herringbone reconstruction of

Au(111) [26] are not visible in the LEED pattern (Figure 2), which shows (1) that

the reconstruction is lifted below the oxide layer due to the Au(111)-MoO3 inter-

action and (2) that there are no large uncovered substrate areas.

Quek et al [8] have studied MoO3 islands on Au(111) with STM and density

functional theory. These islands exhibit a c(4×2) unit cell with missing (0,1) type

spots [7] like the layers discussed here. Quek et al [8] argued that the structure

of the islands might be similar to that of half of a double layer in α-MoO3. The

α-MoO3 structure is illustrated in Figure 4A, and Figure 4B depicts the structure

of a single layer (i.e. half of a double layer). Such a layer can be positioned onto

Mo O

A B

Figure 4: Geometric structure of α-MoO3. (A): stacking of the double layers seen along [001].
(B): top view of a single layer (right half: without molybdenyl oxygen, left half: with molybdenyl
oxygen).
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Au(111) without much distortion such that a c(4×2) repeat unit results.

I/V LEED structural optimization computations with the CMA-ES optimiza-

tion scheme were performed for a number of trial start structures consisting of

MoO3 single layers on Au(111) at different lateral positions on the substrate with

the glide pane symmetry of the arrangement preserved in all cases. The optimiza-

tion runs converged in most cases towards R-factors larger than 0.2, but for one

position of the oxide layer on the substrate a R-factor of ∼0.044 was obtained. This

small R-factor is a good indication that the structure represented by this R-factor

is the right one.

Figure 5 illustrates the structure of the system with the smallest R-factor. The

Mo atoms are located on bridging positions on the Au(111) surface and the oxygen

atoms are arranged similar to the positions they have in a single layer in α-MoO3.

This is somewhat different from the results obtained by Quek et al [8] who found

Mo

O

Au

X

Y

Figure 5: Graphical rep-
resentation of the best-fit
structure of a single layer
of α-MoO3 on Au(111).
The overlayer unit cell
(square) and a glide plane
(dashed line) are indicated.
In the bottom half of the
image the optimized struc-
ture of the gold surface is
shown without the over-
layer. The directions of the
x and y axes as used in this
text are indicated.
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Positions X Y Z X Y Z
Omolybdenyl -1.34 1.31 4.24 Mo -1.51 1.30 2.56
O(1)

bridging 0.00 2.66 2.41 O(2)
bridging -2.78 2.60 2.38

Au(1)
layer 1 -0.71 -0.05 0.09 Au(2)

layer 1 -2.03 2.62 -0.02
Au(1)

layer 2 -0.74 1.67 -2.38 Au(2)
layer 2 -2.16 -0.84 -2.37

Au(1)
layer 3 -0.72 -1.66 -4.71 Au(2)

layer 3 -2.16 0.83 -4.71
Au(1)

layer 4 -0.72 0.00 -7.06 Au(2)
layer 4 -2.16 2.50 -7.06

Other parameters Debye temperatures Inner potential (imag)
Mo O Au
421 382 137 4.74

Table 1: Parameters of the structure with the smallest Pendry R-factor. Debye temperatures are in
Kelvin, the imaginary part of the inner potential is in eV and the coordinates are in Å. The table at
the top lists only data for symmetry-inequivalent atoms. The coordinates of the bottom four atoms
(Aulayer 3 and Aulayer 4) were set to the bulk positions and kept fixed in the optimization run. They
are listed here to provide a reference for the coordinates of the atoms in the layers above.

that the Mo atoms are located in threefold hollow sites on the Au(111) surface.

In that case the layer had a quasi glide plane rotated by 90◦ with respect to the

one shown in Figure 5. In the present case the overlayer glide plane matches a

substrate glide plane. The system does not have any mirror planes, and therefore

the symmetry of the overlayer is pg. The gold atoms in the two top layers which

were included in the optimization were found to be slightly displaced by distances

in the range of a tenth of an Ångstrøm.

For the LEED computations seven experimental I/V curves with a total energy

range of 1616 eV were considered. Each of these curves is the sum of the intensi-

ties of symmetry-equivalent spots which were summed up for the three different

domains of the layer. The experimental curves are shown in Figure 6 together with

the computed curves for the structure with the smallest R-factor. The parameters

for the structural optimization process were the atomic coordinates of all atoms of

the overlayer and the first two gold layers (2 molybdenum atoms, 6 oxygen atoms,

and 8 Au atoms per c(4×2) unit cell). The presence of the glide plane reduces the
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Figure 6: Experimental data and calculated I/V
curves for the structure with the smallest R-
Factor.

numbers of independent atomic positions by a factor of two such that 24 struc-

tural parameters (8 atoms, each with 3 coordinate values) had to be optimized.

Further optimization parameters were the imaginary part of the inner potential

and the Debye temperatures of the three elements involved (Mo, O, Au), giving a

total number of 28 optimization parameters. The best-fit parameters are listed in

Table 1.

Convergence speed of CMA-ES, differential evolution and the genetic algorithm

This chapter compares the convergence speeds of CMA-ES, DE and GA for

the case of the MoO3 layer on Au(111) discussed in this text. In the case of CMA-
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Figure 7: Pendry R-factor
of the fittest individual as a
function of the number of
generations for CMA-ES,
differential evolution and
the genetic algorithm.

ES the number of individuals in the population and the number of offsprings were

set to 8 and 17, respectively, as suggested for this number of parameters. In every

next generation the 8 best offsprings replace the parents and become the new pop-

ulation. Thus, for every generation 17 I/V curves had to be computed. In the case

of the genetic algorithm a population size of 30 was chosen. In each generation

12 offsprings were produced by crossover and 3 by mutations. These were mixed

into the new generation, replacing 15 parents. In this case 15 computations of I/V

curves had to be performed in every generation. The population size in the case

of the DE algorithm was set to 20, which is also the number of I/V curve calcu-

lations performed in every generation. Optimization of the imaginary part of the

inner potential and of the Debye temperatures was not implemented in the case

of the GA program and therefore these parameters were set to the numbers given

in Table 1. In order to establish comparability between the methods this was also

done in the CMA-ES and differential evolution runs.

The Pendry R-factor of the fittest individual is plotted as a function of the num-

ber of generations in Figure 7 for computations employing the CMA-ES method,

differential evolution and the genetic algorithm (The R-factor of the fittest individ-

20



uals as a function of the number of fully dynamical computation is shown in the

supplemental material, Figure SI2). The convergence speeds of the three methods

are different with the genetic algorithm being slowest and the two other methods

having somewhat similar performance with CMA-ES being slightly faster. CMA-

ES reaches a R-factor of less than 0.1 after 60 generations, differential evolution

requires 129 generations while the genetic algorithm needs 417 generations. Es-

pecially, the genetic algorithm is very slow at high generation numbers where

the structural fine tuning takes place. Here complex small parameter changes are

required to approach the global minimum. This can be done much better by CMA-

ES which adapts the search strategy to the local topography of the R-factor hyper

surface and by DE due to the contraction of the population in the search space

near to the global minimum and the consequent reduction of the mutation dis-

tances. Thus we conclude that search strategy adaption is relevant especially for

the final steps of the search. We note that mutation width adaption according to

a “20% of the mutated offsprings must be fitter than their parents” rule as some-

times employed in evolutionary strategy computations is able to increase the GA

convergence speed significantly, though it does not reach the performance of the

two other methods (not shown here).

A parameter which is relevant for the convergence speed and the ability of

a search method to find the global minimum is the integration of some kind of

randomness into the search algorithm. All three population based search meth-

ods discussed here make heavy use of random number generators to produce new

generations, which introduces randomness into the populations. This permits to

explore remote search space areas, probably not explored without randomness.

Individuals somewhat remote from the center of the population can also help the

search to escape from local minima. However, these advantages have a price, a

reduced convergence speed due to the presence of these remote individuals. The
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randomness of CMA-ES and DE adapts to the search space such that it is smaller

near to a minimum, i.e. the average mutation distances decrease. The impact of

randomness on the convergence speed is smaller for these methods than for GA

where the mutation step width distributions, and thus the randomness introduced

by mutations, are constant, independent of the local search space and the distri-

bution of individuals in the population, which is another reason for the observed

lower convergence speed of GA.

Accuracy

Different CMA-ES optimization runs (full parameter sets including Debye

temperatures and the imaginary part of the inner potential) which were stopped

after having reached R-factors below 0.05 gave Debye temperatures different by

up to 30 K. The corresponding spread of the imaginary part of the inner potential

was in the range of 0.3 eV. These numbers may give an impression of the accuracy

of the obtained Debye temperatures and the imaginary part of the inner potential.

The spread of the coordinate values among the three methods af-

ter 1000 iterations (R-factors=0.0437, 0.0449 and 0.0661, see Figure 7) is

∆x = 8.4 × 10−3 Å,∆y = 5.7 × 10−2 Å,∆z = 5.5 × 10−4 Å. For the other atoms the

results are similar regarding size and order of the differences (x medium, y largest,

z smallest). These differences shed some light onto the accuracy of the coordi-

nates. The small difference of the z coordinate values is indicative of a good ac-

curacy, which may be traced back to the high sensitivity of the IV curves to the z

coordinates of the atoms due to the geometry of the experiment with the primary

beam traveling along the z axis and the diffracted beams detected within only ±35◦

around the z-axis. The accuracy of the horizontal coordinates is much smaller with

the accuracy of the y coordinate being smaller than that of the x-coordinate which

may be due to glide plane related absence of the (0,1) type spots. These could

therefore not be considered in the computations which reduces the weight of the
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y coordinates in the R-factor computation.

Convergence ranges of CMA-ES, the genetic algorithm, differential evolution and
tensor LEED

A very relevant parameter of a search method is the probability of finding the

global minimum as a function of the distance between the global minimum and the

position from which the search is started. A reasonable probability also for some-

what larger distances helps to find the global minimum even if the first guess of the

structure is not very near to the real structure. In order to get an idea of the prob-

ability of convergence towards the global R-factor minimum as a function of the

distance between the search starting point and the global minimum, optimization

runs were performed with start configurations randomly distributed in sub-spaces

with parameters Pi ∈ [Bi − ∆i/2 . . .Bi + ∆i/2] centered around the best-fit atomic

configuration with parameters Bi. For ∆i = ∆, i.e. all ∆i set to the same value this

leads to a distribution of euclidic distances between the start structures and the

global minimum with a well-defined probability maximum at ≈ 1.4∆ and a half-

width of ≈ 0.3∆ (see supplemental material, Figure SI3). The parameters of the

start population’s individuals were centered around these start positions following

normal distributions with standard deviations σi. Like the ∆i, the σi were all set to

the same value, σi = σ. In short, ∆ defines the average distance between the start

population and the global minimum and σ defines the spread of the individuals in

the initial population. In all runs, the Debye temperatures and the imaginary part

of the inner potential were set to the best-fit values listed in Table 1.

The optimal parameters F and CR for the differential evolution algorithm were

determined in a series of test runs in which F and CR as well as σ were varied

for fixed ∆=0.8 Å. This means that the mean difference between the best fit coor-

dinate values and the corresponding values in the start population individuals is

0.4 Å, which is a distance somewhat beyond the distance which tensor-LEED can
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Figure 8: Number of converged runs (RP<0.1) out of seven differential evolution runs for different
values of the parameters F, CR and σ. The parameter ∆ was set to 0.8 Å in all runs.

commonly handle. Figure 8 shows that the success rates are largest for σ=0.1 and

0.2 Å with F and CR both being about 0.5-0.6. The DE computations discussed in

the following were performed with F=CR=0.5.

Powell method/tensor LEED optimization was performed for different ∆’s

with the non-modified SATLEED package [14]. The runs were iterated by using

the structure obtained in an optimization run as start structure for the following
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CMA-ES σ = 0.05 Å σ = 0.1 Å
∆ [Å] RP<0.1 RP<0.15 RP<0.2 RP<0.1 RP<0.15 RP<0.2
0.2 7 7 7 7 7 7 7 7 7 7 7 7
0.3 5 5 5 5 6 6 7 7 7 7 7 7
0.4 6 6 6 6 6 6 7 7 7 7 7 7
0.5 4 4 4 4 4 4 4 4 4 4 5 5
0.6 1 1 1 1 1 1 3 3 3 3 3 3
0.7 3 3 3 3 3 3 2 2 2 2 3 3
0.8 0 0 0 0 0 0 0 0 0 0 1 1
Σ 26 26 26 26 27 27 30 30 30 30 33 33

CMA-ES σ = 0.2 Å σ = 0.3 Å
∆ [Å] RP<0.1 RP<0.15 RP<0.2 RP<0.1 RP<0.15 RP<0.2
0.2 3 3 3 3 3 3 1 1 1 1 1 1
0.3 0 0 0 0 0 0 0 0 0 0 0 0
0.4 1 1 1 1 1 1 0 0 0 0 0 0
0.5 0 0 0 0 2 2 0 0 0 0 0 0
0.6 1 1 1 1 1 1 0 0 0 0 0 0
0.7 0 0 0 0 1 1 0 0 0 0 0 0
0.8 0 0 1 1 1 1 0 0 0 0 0 0
Σ 5 5 6 6 9 9 1 1 1 1 1 1

Table 2: Convergence properties of the CMA-ES algorithm (without optimization of Debye tem-
peratures and the imaginary part of the inner potential). Each double column list the number of
runs out of seven runs which have reached a R-factor smaller than the one given in the second row
after 300 iterations (first column) and 600 iterations (second column). For details see text.

run until the difference of the R-factors obtained in subsequent runs was smaller

than 0.001.

Tables 2 (CMA-ES), 3 (DE, F=CR=0.5), and 4 (GA) list for a number of (∆, σ)

combinations the number of runs out of seven runs which have reached Pendry

R-factors of less than 0.1, 0.15, and 0.2 after 300 and 600 generations. Tables

for some other F and CR combinations are shown in the supplemental material,

Tables SI1-SI3. We note that there is an obvious statistical noise in the numbers

given in the tables which is related to the limited number of optimization runs per

parameter combination. This limitation was imposed by the finite availability of
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DE σ = 0.05 Å σ = 0.1 Å
∆ [Å] RP<0.1 RP<0.15 RP<0.2 RP<0.1 RP<0.15 RP<0.2
0.2 7 7 7 7 7 7 7 7 7 7 7 7
0.3 7 7 7 7 7 7 7 7 7 7 7 7
0.4 6 6 6 6 6 6 6 6 6 6 6 6
0.5 5 5 5 5 5 5 7 7 7 7 7 7
0.6 2 2 2 3 3 3 3 3 3 3 3 3
0.7 3 3 3 3 3 3 1 1 1 1 1 1
0.8 0 0 0 0 0 0 2 2 2 2 4 4
Σ 30 30 30 31 31 31 33 33 33 33 35 35

DE σ = 0.2 Å σ = 0.3 Å
∆ [Å] RP<0.1 RP<0.15 RP<0.2 RP<0.1 RP<0.15 RP<0.2
0.2 7 7 7 7 7 7 1 3 1 3 1 3
0.3 7 7 7 7 7 7 0 2 0 2 1 2
0.4 4 6 5 6 5 6 0 2 0 2 0 2
0.5 2 7 4 7 5 7 0 0 0 0 0 0
0.6 4 5 4 5 4 5 0 1 0 1 0 1
0.7 1 3 1 4 1 4 0 0 0 0 0 0
0.8 0 0 0 0 0 0 0 0 0 0 0 0
Σ 25 35 28 36 29 36 1 8 1 8 2 8

Table 3: Convergence properties of the differential evolution algorithm (without optimization of
Debye temperatures and the imaginary part of the inner potential). The parameters F and CR were
both set to 0.5. Each double column list the number of runs out of seven runs which have reached
a R-factor smaller than the one given in the second row after 300 iterations (first column) and 600
iterations (second column). For details see text.

computational resources.

The σ’s and the ∆’s clearly have a significant effect onto the probability of

convergence. For the ∆ parameter the dependence is such that the success rate

simply decreases with increasing ∆. For the σ parameter, which defines the width

of the initial population, it appears that the probability of convergence for medium

range ∆ is somewhat enhanced if σ is not too small. This kind of ∆−σ correlation

is expected since for a given ∆ there is a reasonable chance that the start population

includes individuals with at least some parameters in the convex area near to their
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GA σ = 0.05 Å σ = 0.1 Å
∆ [Å] RP<0.1 RP<0.15 RP<0.2 RP<0.1 RP<0.15 RP<0.2
0.2 7 7 7 7 7 7 7 7 7 7 7 7
0.3 7 7 7 7 7 7 7 7 7 7 7 7
0.4 3 6 5 6 6 6 7 7 7 7 7 7
0.5 0 1 0 1 0 1 3 6 5 6 5 6
0.6 0 0 0 0 0 0 1 2 2 2 2 3
0.7 0 0 0 0 0 0 0 2 1 2 2 2
0.8 0 0 0 0 0 0 0 0 0 0 0 0
Σ 17 21 19 21 20 21 25 31 29 31 30 32

GA σ = 0.2 Å σ = 0.3 Å
∆ [Å] RP<0.1 RP<0.15 RP<0.2 RP<0.1 RP<0.15 RP<0.2
0.2 6 7 6 7 6 7 0 1 1 3 1 3
0.3 5 6 6 6 7 7 0 4 2 4 2 4
0.4 4 5 4 5 5 5 0 2 1 2 1 2
0.5 1 2 1 2 1 2 1 1 1 1 1 1
0.6 2 2 2 2 2 3 0 0 0 0 0 0
0.7 0 1 1 1 1 1 0 0 0 0 0 0
0.8 0 0 0 0 0 0 0 0 0 0 0 0
Σ 18 23 20 23 22 25 1 8 5 10 5 10

Table 4: Convergence properties of the genetic algorithm. Each double column list the number of
runs out of seven runs which have reached a R-factor smaller than the one given in the second row
after 300 iterations (first column) and 600 iterations (second column). For details see text.

Tensor LEED
∆ [Å] RP<0.1 RP<0.15 RP<0.2
0.2 7 7 7
0.3 6.7 6.7 6.7
0.4 4.7 5 5
0.5 2.7 2.7 2.7
0.6 0.3 0.3 0.3
0.7 0 0 0
0.8 0 0 0
Σ 21.3 21.7 21.7

Table 5: Convergence properties of Powell method/tensor LEED. For details see text.
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global minimum values only if σ is large enough.

The difference between the success rates after 300 and 600 generations is an

indicator for the convergence speed. In agreement with Figure 7, CMA-ES and

DE are apparently faster than GA. The similarity of the numbers in the RP<0.1,

RP<0.15 and RP<0.2 columns demonstrates that in most cases the search algo-

rithms directly approach the global minimum if they could reach a point in the

search space with RP<0.2, which is with a high probability a point in the convex

area around the global minimum.

The winner of this contest with respect to the convergence range is clearly the

differential evolution algorithm which could find the global minimum for ∆=0.8 Å

in a significant number of cases. Therefore one would likely resort to this method

if the knowledge about the structure to be found is rather limited. In the case of

CMA-ES only a few runs succeeded for ∆=0.8 Å, while GA could not produce

any success for this ∆ value. To repeat the role of ∆: this is the parameter which

defines the mean euclidic distance between the center of the start population and

the global minimum. However, if it comes to converge speed, especially in the

region near to the global minimum, then CMA-ES is the winner among the global

methods, which is probably due to the more sophisticated search strategy tuning

of this method as compared to the other ones. GA lags somewhat behind which

is a result also obtained by other authors for different optimization problems (see

for instance [27]).

Table 5 lists how many runs out of 21 tensor LEED runs combined with the

Powell search method stopped with R-factors below 0.1, 0.15, and 0.2 for different

∆’s. To simplify comparison with the results for the other algorithms, where only

seven runs were performed due to the higher computational effort, the numbers

in Table 5 were divided by three. The success rate lags clearly behind the success

rates of the other methods for σ = 0.1 (see the Σ columns in Tables 2, 3, and 4),
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dropping to a very small value for ∆=0.6 Å and vanishing above. This is not a

small difference to DE since in a 24-dimensional search space the ratio of the sub-

space volumes in which success may be expected with a reasonable probability

is the ratio of the ∆’s (0.8 and 0.5 Å for DE and tensor leed/Powell, respectively)

to the power of 24, which is about 80000 in the present case. On the other hand,

the computational effort for tensor LEED is much smaller which may compensate

for this in many cases, especially if a compute cluster for parallel computations is

not available. Therefore, tensor LEED/Powell method (or any other local search

method) based structural optimization is attractive in case that the structure from

which the search is started is expected to be not much different from the global

minimum structure.

The DE and CMA-ES implementations used in this study can optimize the

Debye temperatures and the imaginary part of the inner potential in addition to

the structural parameters, but it is surely possible to implement optimization of

such non-structural parameter also for the iterated Powell method/tensor LEED

search method. Above ∆ ≈ 0.4 Å, the convergence rate decreases significantly

for all methods since the convex area around the minimum has a width of ≈ 0.4 Å

for the z coordinates (they are wider for the x and y coordinates, see supplemen-

tal material, Figure SI4) which means that for ∆ ≥ 0.4 Å there is an increasing

chance that some parameters of the individuals refer to positions outside of the

convex area around the global minimum. For the local Powell method it is es-

sentially impossible to find the global minimum from such a starting point, and

apparently the probability of failure increases also for the global methods. Using

larger populations with a larger spread of the individuals will probably help, but

this will also increase the computational effort. Yet untested is the use of tensor-

LEED in combination with a global search method with an appropriately set limit

of the difference between the structure for which the reference calculaton is per-
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formed and the structure for which the tensor LEED computation is performed

(in order to limit the error related to the tensor LEED approximation). Due to the

limited computational effort of tensor LEED one may expect that this approach is

competitive.

Summary

We have investigated the structure of a c(4×2) MoO3 monolayer on Au(111)

with I/V LEED structural analysis employing the CMA-ES evolutionary strategy.

The structure of the c(4×2) MoO3 layer is very similar to that of the single layers

constituting the double layers found in α-MoO3. A glide plane in the structure

leads to spot extinctions in the LEED pattern.

The experimental I/V-LEED results were used to comparatively evaluate the

convergence speed and the convergence ranges of CMA-ES, a genetic algorithm,

differential evolution and tensor LEED combined with the Powell optimization

scheme. The latter is, in contrast to the three other methods, a local optimization

method. The best choice with respect to the convergence range is the differential

evolution scheme. Regarding convergence speed CMA-ES is superior while the

genetic algorithm lags behind both methods in both respects. The convergence

range of tensor LEED is somewhat smaller than that of the global methods while

the computational effort is much smaller. Therefore in a number of cases the use

of tensor LEED for the determination of a structure with I/V-LEED might still be

preferable, but in cases where the initial structural guess is expected to be con-

nected with a significant uncertainty global methods become relevant. The dif-

ferential evolution and CMA-ES implementation used in this study are enabled

to optimize arbitrary non-structural parameters like Debye temperatures and the

imaginary part of the inner potential which is not possible with the employed ten-

sor LEED implementation, but there are no general issues preventing the optimiza-

tion of such non-structural parameters also in combination with tensor-LEED.
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