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1 Introduction

Particle physics models are built on the basis of both experimental results and theoretical

expectations. On the one hand one can start from a well-defined high-energy theory and

try to build a low-energy effective theory. A notable example is string theory which, in

its best known phase, lives in ten spacetime dimensions. Compactification of the six extra

dimensions provides us, in principle, with a systematic way to construct effective low-energy

theories in four-dimensional spacetime. Another possibility consists of starting from the

low-energy side and building intermediate theories that can then be linked to high-energy

models. Although this second approach does not have the ambition to bring a complete

solution all the way up to the Planck scale, it has the advantage of allowing the construction

of new theories beyond the Standard Model, which may be able to tackle at least some

of the present problems. A popular example has been to consider extra compact spaces

which can be large with respect to the Planck scale, leading in some cases to measurable
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consequences at the TeV scale [1–4]. Compact manifolds studied in this setup are typically

flat or positively-curved, stemming from the simple examples of the torus or the sphere.

In recent years compact negatively-curved spaces (CNS) have been put forward in

extra-dimensional models [5], but they are much less studied than positively-curved com-

pact spaces. They also appear in string theory [6–9], hence they can be connected to more

fundamental theories. The main motivation for the study of CNS is that some of their

properties are extremely interesting for realistic model building. Among them one can list:

• Zero modes of the Dirac operator are typically present in the effective four dimen-

sional theory [10]. This contrasts with the case of positive curvature, as for spherical

orbifolds, where breaking of gauge invariance or background fields are needed, see for

example [11–13].

• Explanation of the hierarchy between the Planck scale and the electroweak scale,

thanks to their potentially large volume with respect to a linear size only slightly

larger than the new fundamental length scale (see for example [5]). In particular

compact hyperbolic manifolds, which are special cases of CNS, have two length scales:

lc linked to local properties such as the curvature, and lG, related to global properties

such as the volume (which appears in the expression of the effective Planck mass).

Typically large lG values correspond to large genus. The volume grows exponentially

with the ratio lG/lc, allowing a natural solution to the hierarchy problem [14].

• Typical mass spectra for the Kaluza-Klein (KK) reduction of these spaces feature

a mass gap similar to the one present in Randall-Sundrum models [15], therefore

allowing for a solution to the hierarchy problem that does not require light KK

modes [14].

• When the extra compact space is negatively-curved, rather than flat, the dynamics of

the very early universe alleviate standard cosmological problems, allowing to account

for the current homogeneity and flatness of the universe [16–18].

• Finite volume hyperbolic manifolds of dimension greater than two have the remark-

able property of rigidity (Mostow’s theorem [19]): geometrical quantities as the length

of its shortest closed geodesics, the volume, etc. are topological invariants. In practice

this means there are no more moduli once volume and curvature are fixed [20].

Different scenarios using these properties have been proposed for cosmology and inflation

(see for example [21, 22]). One striking point is the lack of detailed particle physics models

based on orbifolds of CNS. The reason is the difficulty in obtaining detailed predictions for

the spectra of these models: for example the Laplacian eigenmodes of a generic compact

hyperbolic manifold cannot be obtained in closed analytic form, thus the spectra must be

sought by means of expensive numerical methods [23–25].

We shall therefore focus here on the study of a specific case which allows analytical

control of the spectra and their KK reductions: twisted tori, compact manifolds built as

non-trivial fibrations of tori over tori. They can be constructed from solvable (Lie) algebras
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and related groups, hence their mathematical name of solvmanifolds. Nilpotent algebras

and groups are subcases thereof, from which one gets nilmanifolds. For the latter, the Ricci

scalar is always negative; this also holds for most of the solvmanifolds. We have therefore

at hand simple and calculable examples of CNS. Reviews on nil- and solvmanifolds can

be found in [26–29]. Here, we will consider the unique three-dimensional nilmanifold M3

(apart from the torus T 3), built from the Heisenberg algebra, and we will determine the

Laplacian scalar spectrum, both analytically and numerically.

The Laplacian spectrum on this manifoldM3 has been determined in the mathematical

literature [30–33] for a certain canonical metric. We will present in section 3.1 these known

mathematical results in a way more accessible to physicists, in the simple and explicit

language of KK reductions. We then generalize the metric from the canonical one to include

all extra metric parameters compatible with the Heisenberg algebra. Given the previous

mathematical results, we easily obtain the Laplacian scalar spectrum now depending on all

metric parameters. To our knowledge this result is new, and will be presented in section 3.2.

Twisted tori have played an important role in compactifications of string theory and

supergravity down to four dimensions. Used as six-dimensional internal manifolds, they

appear for instance in ten-dimensional vacua of type II supergravities. The first example

of such a supersymmetric flux vacuum was found in [34] on a four-dimensional Minkowski

spacetime times M3 × T 3. Many more have been found since, as e.g. in [26] (see [35]

for a review). M3 also appeared as part of the internal manifold in the first example of

axion monodromy inflation mechanism [36] (see [37, 38] on the ten-dimensional comple-

tion of this cosmological model). A partial quantisation of closed strings on M3 appeared

in [39]. Since twisted tori are used as internal manifolds, it is important for string phe-

nomenology to determine the corresponding low-energy effective theory in four dimensions.

Four-dimensional gauged supergravities can be obtained by a truncation to a finite set of

modes, as e.g. in [40, 41]. Whether this set corresponds to the light modes in a controlled

low-energy approximation has not yet been settled. Contrary to reductions on pure Calabi-

Yau manifolds or even torus, where the light modes are massless and the truncation of the

KK tower is a good low-energy approximation, here the curvature induces additional en-

ergy scales that should be compared to the KK scale, and gives rise to massive light modes

that complicate the truncation. The concrete KK scalar spectrum obtained in the present

work should help clarify these issues.

The main phenomenological application we aim at is the construction of models con-

taining a Dark Matter candidate in the form of a stable KK mode [42]. In particular, we

want models where such candidates arise naturally, without the need to impose symmetries

on the interaction terms localised on the singularities of the space, as in [43]. Constructing

models of Universal Extra Dimensions where all the fields propagate in the extra dimen-

sions would require a detailed knowledge of the spectra for scalars, fermions and vectors. In

this exploratory work we aim at constructing a toy model where a bulk scalar field provides

a Dark Matter candidate, while the Standard Model particles (including the Higgs boson)

live in four dimensions and are localised on a singular point of the internal space.

The paper is organised as follows. In section 2 we present twisted tori and build our

nilmanifold M3, defining in particular explicit coordinates together with discrete identifi-
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cations that make the manifold compact; we also write down the most general left-invariant

metric on M3. In section 3 we analyse the KK spectrum of a scalar field for that metric,

first in a simple case and then in the most general one. Section 4 contains a numerical pro-

cedure used to study spectra on CNS that we test against the analytical solutions obtained

in the previous section. Finally, in section 5 we discuss how a Dark Matter candidate

may arise in an orbifolded version of the twisted torus. We conclude in section 6. Further

technical details can be found in the appendices.

2 The three-dimensional nilmanifold

2.1 From algebras to compact manifolds

We consider here Lie algebras and Lie groups in one-to-one correspondence with the ex-

ponential map. Those are closely related to geometry, since any Lie group of dimension d

can be viewed as a d-dimensional manifold. To build a (compact) solvmanifold, or twisted

torus, one divides a solvable Lie group by a lattice, namely a discrete subgroup that makes

the manifold compact thanks to discrete identifications. Given a d-dimensional algebra

generated by the vectors {Za, a = 1, . . . , d} satisfying

[Zb, Zc] = fabcZa , (2.1)

with structure constants fabc = −facb, the corresponding d-dimensional manifold admits

an orthonormal frame {ea, a = 1, . . . , d} obeying the Maurer–Cartan equation

dea = −1

2
fabce

b ∧ ec . (2.2)

These one-forms are globally defined on the manifold. One can see from (2.2) that fabc is

related to the spin connection. The Ricci tensor (in flat indices) can then be expressed in

terms of the structure constants: for a unimodular Lie algebra, one gets

Rcd =
1

2

(
−f bacfabd − δbgδahfhgcfabd +

1

2
δahδbjδciδdgf

i
ajf

g
hb

)
, (2.3)

with the flat, here Euclidian, metric δab; see e.g. [35]. For a nilpotent algebra (subcase of

solvable), and hence for nilmanifolds, the first term is zero so the Ricci tensor is nowhere-

vanishing and the corresponding Ricci scalar

R = −1

4
δadδ

beδcgfabcf
d
eg , (2.4)

is constant and strictly negative.

For d = 3, in addition to the trivial abelian algebra leading to the three-torus, there

are three different solvable algebras. Only one of them is nilpotent: it is the Heisenberg

algebra, given by

[Z1, Z2] = −fZ3 , [Z1, Z3] = [Z2, Z3] = 0 , (2.5)

with f = −f312 6= 0, for which (2.2) takes the form

de3 = f e1 ∧ e2 ; de1 = 0 ; de2 = 0 . (2.6)
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The constant f thus has dimension of an inverse length. To build our 3-dimensional nilman-

ifold M3, and to discuss in detail associated physical models, a set of explicit coordinates

has to be selected. The following choice is consistent with (2.6)

e1 = r1dx1 ; e2 = r2dx2 ; e3 = r3
(
dx3 +Nx1dx2

)
; N =

r1r2

r3
f , (2.7)

for some constant (positive) “radii” r1, r2, r3, and angular coordinates xm. This is the

most general solution up to redefining the coordinates.1

For a compact three-dimensional M3, we impose the following discrete identifications

(under a unit shift of the angles)

x1 ∼ x1 + n1 ; x2 ∼ x2 + n2 ; x3 ∼ x3 + n3 − n1Nx2 , n1, n2, n3 ∈ {0, 1} , (2.8)

which come from demanding that (2.8) should leave (2.7) invariant. Choosing different

integer values for the nm is in general allowed, but corresponds to another lattice. We see

from (2.8) that M3 is a twisted S1 fibration over T 2, i.e. a twisted torus, with fiber coor-

dinate x3 and base parameterised by x1, x2. The discrete identifications (2.8) correspond

to the lattice action, making M3 a quotient of a nilpotent group by a discrete subgroup:

a nilmanifold. Finally, for consistency we must require

N ∈ Z∗ . (2.9)

The integrality of N is discussed in appendix A. Once the unit lattice in (2.8) is defined,

one can verify that translations along the three directions with arbitrary nm ∈ Z are also

identified as in (2.8). In addition, the lattice cell defined by a non unitary identification is

equivalent to a unit cell with

r′
m

= nmrm , N ′ = N
n1n2

n3
= f

r′1r′2

r′3
. (2.10)

From the results in appendix A, it follows that N ′ ∈ Z∗, thus implying that

N
n1n2

n3
∈ Z∗ . (2.11)

To summarise, the spaceM3 is characterised by three independent radii rm=1,2,3 and an

integer N , related as in (2.7) to the structure constant or geometric flux f. The coordinates

xm chosen are angles ranging in [0, 1]. In terms of physical dimensions, xm are dimensionless

while the rm are a length, and f is the inverse of a length, i.e. an energy.

2.2 General left-invariant metric on M3

In vielbein basis the most general left-invariant metric for M3 reads

ds2 = δabE
aEb , (2.12)

1Of course we could absorb the radii by rescaling the coordinates. However we have preferred to factor

out the normalisation of the xm’s so that we can impose integral identifications, see (2.8) below. Note also

that fixing the value of f makes (2.5) a single representative of a class of isomorphic algebras.
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where Ea are one-forms related to the orthonormal frame ea through a constant GL(3,R)

transformation L

Ea =
(
L−1

)a
be
b . (2.13)

This description is redundant since we should mod out by the group Aut of automorphisms

of the Heisenberg algebra, i.e. by any M ∈ Aut that leaves (2.2) invariant. The M ’s such

that ma
be
b satisfy (2.2) are constrained by

ma
df

d
ef = fabcm

b
em

c
f , (2.14)

condition that, for the Heisenberg algebra, is solved by a matrix of the form (see also [44]):

M =

 m11 m12 0

m21 m22 0

m31 m32 m11m22 −m12m21

 ∈ Aut , m11m22 −m12m21 6= 0 . (2.15)

We want to mod out by such elements, i.e. we want to consider in (2.13) only those L’s that

are not related to each other by some M . So we want to identify any elements L1 and L2 for

which ∃M ∈ Aut such that L−11 = L−12 M . Such an identification, rewritten as L ∼M−1L,

defines the equivalence class [L] of Aut in GL(3,R) (M and M−1 take the same form); the

set of these classes is precisely the coset Aut\GL(3,R), as expected. To determine this

coset, we need to find representatives of each equivalence class. Consider the following

generic matrix G ∈ GL(3,R) and pick the M with the corresponding components, then

G =

m11 m12 m13

m21 m22 m23

m31 m32 m33

 =⇒M−1 ·G =


1 0 m13m22−m12m23

m11m22−m12m21

0 1 m11m23−m13m21
m11m22−m12m21

0 0 det(G)
(m11m22−m12m21)2

 . (2.16)

Requiring for this M that G = M−1G implies that G must be an element of

E =

{
L =

 1 0 a

0 1 b

0 0 c

 , a, b ∈ R, c ∈ R∗
}
. (2.17)

E turns out to be the set of representatives. Indeed, consider first L1 ∈ E andM ∈ Aut, then

one can easily verify that ML1 ∈ E ⇔M = 1. Consider now L1, L2 ∈ E and L1 6= L2, then

∀M ∈ Aut, M 6= 1, ML2 /∈ E so ML2 6= L1. In addition, for M = 1, ML2 = L2 6= L1.

We conclude that ∀M ∈ Aut, ML2 6= L1, so [L1] 6= [L2]. Finally, one can verify that

the matrices ML span GL(3,R) since the product gives generic matrices with non-zero

determinant, so E is the set of representatives of the coset Aut\GL(3,R).2 As a side

remark, for the torus one gets E = {13}.
We now want to act with this set of transformations in (2.13). The inverse matrices

in (2.17) being of the same form, we finally obtain from (2.12) and (2.13) the most general

form of the metric

ds2 =
(
e1 + ae3

)2
+
(
e2 + be3

)2
+ c2

(
e3
)2
, a, b ∈ R, c ∈ R∗ . (2.18)

2Note that the matrices L form a group isomorphic to R∗ n R2. However this does not mean that

Aut\GL(3,R) has the structure of a group: indeed Aut is not a normal subgroup of GL(3,R).
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We deduce that
√
g = r1r2r3|c|. Hence the volume is given by

V =

∫
d3x
√
g = r1r2r3|c| , (2.19)

where we used that xm ∈ [0, 1].

Let us finally discuss the geometric meaning of the metric parameters a, b, c present

in (2.18) besides the three radii rm and the twist N of (2.7). First note that c is not a true

parameter and can be set to c = 1 without loss of generality. Indeed c can be absorbed in

the remaining parameters by the rescaling

a→ a|c| ; b→ b|c| ; r3 → r3

|c|
; f→ f

|c|
, (2.20)

as can easily be seen from (2.7) and (2.18). For notation convenience we shall keep c

explicit in the following though, but let us set c = 1 for the remainder of this section.

The remaining parameters a, b can be thought of as analogues of the complex structure

or “angle” parameters of an untwisted torus. To show this, let us restrict the S1 fibration

over the circle of the T 2 base parameterized by x1 (by fixing x2 to a constant value) and

set b = 0, N = 0. The resulting space is an untwisted two-torus with metric

ds2 = (r1)2

((
dx1 + a

r3

r1
dx3
)2

+

(
r3

r1
dx3
)2
)
. (2.21)

On the other hand, the metric of a two-torus with area v and complex structure τ = τ1+iτ2
is given by

ds2 =
v

τ2

(
(dx1 + τ1dx

3)2 + (τ2dx
3)2
)
. (2.22)

Comparing the two metrics above we obtain: v = r1r3, τ1 = ar3/r1, τ2 = r3/r1. The two

sets of parameters (r1, r3, a) and (v, τ) thus provide equivalent parameterizations of the

torus, and in particular a is given by the ratio τ1/τ2. A completely analogous interpretation

can be given for b.

3 Kaluza-Klein spectrum for a scalar field

Given the explicit form of the metric (2.18), we will calculate the Laplacian of a scalar Φ

∇2Φ =
1
√
g
∂m (
√
ggmn∂nΦ) . (3.1)

The determinant of the metric being constant, it drops out here.

3.1 Simplest case: a = b = 0

As a warm-up we start by considering the special case a = b = 0, and we set all other

parameters to unity: c = 1, unit radii r1 = r2 = r3 = 1 and f = 1. Then the metric (2.18)

becomes

ds2 =
(
dx1)2 +

(
dx2)2 +

(
dx3 + x1dx2

)2
, (3.2)
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which gives the Laplacian

∇2u =
(
∂21 + (∂2 − x1∂3)2 + ∂23

)
u . (3.3)

In this paper we limit ourselves to studying a scalar field, thus the wave-functions are

simply eigenmodes of the above Laplacian.

We would like to expand u on the space of functions invariant under (2.8). For functions

that do not depend on the coordinate x3, the Laplacian can easily be diagonalised(
∇2 + µ2p,q

)
ṽp,q = 0 , (3.4)

where the Klein-Gordon masses µp,q are given by

µ2p,q = 4π2(p2 + q2) , (3.5)

and we defined

ṽp,q(x
1, x2) = e2πpix

1
e2πqix

2
; p, q ∈ Z , (3.6)

which are manifestly invariant under (2.8).

More generally a basis of invariant functions uk,l can be expressed in terms of Weil-

Brezin-Zak transforms [31]

uk,l(x
1, x2, x3) = e2πki(x

3+x1x2)e2πlix
1
∑
m∈Z

e2πkmix1f(x2 +m) ; k, l ∈ Z . (3.7)

It can be checked that these functions uk,l are indeed invariant under (2.8) for any f(x), so

they are well-defined on our manifold. Plugging (3.7) into the Laplacian (3.3) we obtain

∇2uk,l = e2πki(x
3+x1x2)e2πlix

1
∑
m∈Z

e2πkmix1
{
∂22 − 4π2

(
k2 +

(
k(x2 +m) + l

)2 )}
f(x2 +m) ,

(3.8)

where we consider k 6= 0 to maintain an x3 dependence. Setting zm = x2 + m + l/k and

g(zm) = f(x2 +m) this becomes

∇2uk,l = e2πki(x
3+x1x2)e2πlix

1
∑
m∈Z

e2πkmix1
{
∂2zm − (2πk)2(z2m + 1)

}
g(zm) . (3.9)

Let us now recall the definition of the normalised Hermite functions

Φn(z) = e−
1
2
z2Hn(z) ; n ∈ N , (3.10)

where Hn are the Hermite polynomials.3 Following [31], for λ ∈ R∗ we define

Φλ
n(z) = |λ|

1
4 Φn

(
|λ|

1
2 z
)
, (3.11)

which obeys the differential equation

(∂2z − λ2z2)Φλ
n(z) = −(2n+ 1)|λ|Φλ

n(z) . (3.12)

3Recall that the Hermite polynomials are defined as Hn(y) = (−1)ney
2

∂ny e
−y2 and satisfy the differential

equation ∂2
yHn − 2y∂yHn + 2nHn = 0.
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Hence by setting g(zm) = Φ2πk
n (zm) in (3.9) we obtain:(

∇2 +M2
k,l,n

)
ũk,l,n = 0 , (3.13)

where the Klein-Gordon masses Mk,l,n are given by

M2
k,l,n = (2πk)2

(
1 +

2n+ 1

2π|k|

)
, (3.14)

and we defined

ũk,l,n(x1, x2, x3) = e2πki(x
3+x1x2)e2πlix

1
∑
m∈Z

e2πkmix1Φ2πk
n (x2 +m+

l

k
) ;

l = 0, . . . , |k| − 1 , k ∈ Z∗ , n ∈ N.
(3.15)

There is a mass degeneracy since (3.14) is independent of l. However the wave-functions

(3.15) are parameterised by a finite number of inequivalent l’s, 0 ≤ l ≤ |k|−1, i.e. the level

of degeneracy is |k|. We have restricted l to the range of values indicated above due to the

fact that l is only defined modulo k:4 this is a consequence of the identity

ũk,l+pk,n(x1, x2, x3) = ũk,l,n(x1, x2, x3) , ∀p ∈ Z , (3.16)

which readily follows from the definition of ũk,l,n. Finally, we remark that the only zero

mode (with vanishing mass) is given by the wave-function ṽ0,0, thus it belongs to the modes

on the torus base (see a related point around (B.5)).

In order to have a physical spectrum, we now reintroduce the dimensional parameters

mentioned in section 2.1, namely rm, f, and we also want to include c. We obtain

M2
k,l,n = k2

(
2π

r3c

)2

+ (2n+ 1)|k| 2π|f|
r3

,

µ2p,q = p2
(

2π

r1

)2

+ q2
(

2π

r2

)2

,

(3.17)

while the orthonormal modes are given by

uk,l,n(x1, x2, x3) =

√
r2

|N |V
1√

2nn!
√
π
e2πik(x

3+N x1x2)e2πilx
1
∑
m∈Z

e2πikmx
1
Φλ
n(wm) ,

vp,q(x
1, x2) =

1√
V
e2πipx

1
e2πiqx

2
,

(3.18)

with λ = k c
|c|

2πf
r3

and wm = r2
(
x2 + m

N + l
kN

)
. These results are compatible with those

obtained in the general case, derived in the next section.

4We remark that l being bounded by the frequency k along x3 is reminiscent of the integer condi-

tion (2.11) on the winding modes, obtained via consistency of the compact space.
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3.2 Most general case

The vielbeins eam giving the one-forms (2.7) can be written in terms of the matrix e

e =

 r1

r2

r3Nx1 r3

 , ea = eamdxm , (3.19)

and we denote (e−1)ma ≡ ema. The general metric (2.18) can be written as a matrix

g = (Le)T δLe for L ∈ E (2.17) with δ = 13. It is easy to verify the value of
√
g given

below (2.18). The inverse metric is then simply g−1 = (Le)−1δ−1(Le)−T . The vector e−T∂,

of component (e−T )a
m∂m = ema∂m, is the dual vector or co-frame to the above one-forms;

analogously, (Le)−T∂ = L−T e−T∂ is the co-frame to Ea in (2.12) (the L here is the inverse

of the one in (2.13)). Using (2.7), those vectors are given by

(Le)−T∂ =


∂1
r1

∂2
r2
− f r1x1 ∂3

r3

1
c

(
−a∂1

r1
− b∂2

r2
+ (1 + f br1x1)∂3

r3

)
 . (3.20)

Since the determinant of the metric is constant, and because of the easily checked property

∂me
m
a = 0 (without sum), the Laplacian (3.1) is simply given by the square (with δ−1) of

these vectors

∇2Φ =
(
(Le)−T∂

)2
Φ , (3.21)

that results here in

∇2 =

(
∂1
r1

)2

+

(
∂2
r2
− f r1x1

∂3
r3

)2

+
1

c2

(
−a∂1

r1
− b∂2

r2
+ (1 + f br1x1)

∂3
r3

)2

. (3.22)

Introducing Xm = rmxm, the Laplacian reads

∇2 = (∂X1)2 +
(
∂X2 − fX1∂X3

)2
+

1

c2
(
∂X3 − a∂X1 − b

(
∂X2 − fX1∂X3

))2
. (3.23)

In terms of the Xm’s the discrete identifications (2.8) take the form

X1 ∼ X1 +n1r1 ; X2 ∼ X2 +n2r2 ; X3 ∼ X3 +n3r3− fn1r1X2 , n1, n2, n3 ∈ {0, 1} .
(3.24)

The following set of functions is invariant under these identifications, thanks to (2.9),

Uk,l(X
1, X2, X3) = e2πKi(X3+fX1X2)e2πLiX

1
∑
m∈Z

e2πKM iX1
F

(
X2 +

M

f

)
, (3.25)

where

K =
k

r3
, L =

l

r1
, M =

r3

r1
m ; m, k, l ∈ Z . (3.26)
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Now we follow a similar procedure as in the simple case before. We consider K 6= 0.

Plugging (3.25) into the Laplacian (3.23), setting zm = X2 +M/f+L/(Kf) and G(zm) =

F
(
X2 + M

f

)
we obtain

∇2Uk,l = e2πKi(X3+fX1X2)e2πLiX
1
∑
m∈Z

e2πKM iX1

×
{
∂2zm − (2πKf)2z2m +

1

c2
(2πKi(1− fazm)− b∂zm)2

}
G(zm) .

(3.27)

The above can also be rewritten as

∇2Uk,l = e2πKi(X3+fX1X2)e2πLiX
1
∑
m∈Z

e2πKM iX1
exp

[
− iπKb

b2 + c2
zm(fazm − 2)

]
×
{
∂2zm −

4π2K2c2

(b2 + c2)2
[
(1− fazm)2 + f2(b2 + c2)z2m

] }
H(zm) ,

(3.28)

where we have defined

H(z) =
b2 + c2

c2
exp

[
iπKb

b2 + c2
z(faz − 2)

]
G(z) . (3.29)

With a further change of variable

wm = zm −
a

f(a2 + b2 + c2)
, (3.30)

equation (3.28) becomes (for convenience we do not change notation in the first row: zm
should be thought of as a function of wm)

∇2Uk,l = e2πKi(X3+fX1X2)e2πLiX
1
∑
m∈Z

e2πKM iX1
exp

[
− iπKb

b2 + c2
zm(fazm − 2)

]
×
{
∂2wm −

4π2K2c2

(b2 + c2)2

[
b2 + c2

a2 + b2 + c2
+ f2(a2 + b2 + c2)w2

m

]}
T (wm) ,

(3.31)

where T (wm) = H(zm). Finally substituting in (3.31) T (wm) = Φλ
n(wm), with

λ =
2πKc

b2 + c2
(a2 + b2 + c2)

1
2f , (3.32)

taking (3.12) into account, we obtain(
∇2 +M2

k,l,n

)
Uk,l,n = 0 , (3.33)

where the Klein-Gordon masses Mk,l,n are given by

M2
k,l,n =

4π2k2

(r3)2(a2 + b2 + c2)

[
1 +

(2n+ 1)r3|f|
2π|kc|

(a2 + b2 + c2)
3
2

]
, (3.34)

and we defined

Uk,l,n(x1, x2, x3) =

√
r2

|N |V
1√

2nn!
√
π
e2πKi(X3+fX1X2)e2πLiX

1
∑
m∈Z

e2πKM iX1

× exp

[
− iπKb

b2 + c2
zm(fazm − 2)

]
Φλ
n(wm) ; k ∈ Z∗ , n ∈ N.

(3.35)
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Note that the Uk,l,n differ from the Uk,l by a factor b2+c2

c2

√
r2

|N |V
1√

2nn!
√
π

, V being the

volume (2.19). This has no influence on the mass, but allows the Uk,l,n to be orthonormal

as verified in appendix B. We rewrite the above as (with λ given in (3.32))5

Uk,l,n(x1, x2, x3) =

√
r2

|N |V
1√

2nn!
√
π
e2πKi(X3+fX1X2)e2πLiX

1
∑
m∈Z

e2πKM iX1

× exp

[
− iπKb

b2+ c2

(
X2+

M

f
+

L

Kf

)(
fa

(
X2+

M

f
+

L

Kf

)
− 2

)]
× Φλ

n

(
X2 +

M

f
+

L

Kf
− a

f(a2 + b2 + c2)

)
;

l = 0, . . . , |k| − 1 , k ∈ Z∗ , n ∈ N .

(3.36)

As in section 3.1 the range of l is finite, leading to a finite degeneracy in the masses. This

can be seen from the invariance of (3.36) under L→ L+KP , where P = r3

r1
p with p ∈ Z:

taking (3.26) into account it then follows that (3.36) is invariant under l → l + kp. It is

also straightforward to recover the results of section 3.1 by setting the parameters to the

appropriate values.

The masses obtained in (3.34) only depend on the radius of the fiber, r3 (or r3c).

This is a way to understand the modes just discussed as coming from the fiber. As in

the simple case, there should be other modes coming from the base, independent of the

fiber coordinate. The most general decomposition of such modes, invariant under the

identifications (3.24), can be given in terms of a Fourier basis, i.e. in orthonormal form

Vp,q(x
1, x2) =

1√
V
e2πiPX

1
e2πiQX

2
, P =

p

r1
, Q =

q

r2
, p, q ∈ Z . (3.37)

One then gets

(∇2 + µ2p,q)Vp,q = 0 , µ2p,q = 4π2
(

p2

(r1)2
+

q2

(r2)2
+

1

c2

(
a
p

r1
+ b

q

r2

)2)
. (3.38)

As expected, these masses only depend on the base radii. The modes Vp,q and Uk,l,n form

the complete set of eigenmodes of the Laplacian on M3, as verified in appendix C.

4 Numerical study of the spectrum

Having an analytical solution for the KK spectrum on a non-trivial manifold is an interest-

ing opportunity to check the validity of numerical methods that could be used in situations

where a complete derivation is out of reach, or as a cross-check on the completeness of

5As a side remark, we indicate that the product of exponentials can be rewritten as

exp

[
2iπK

b2 + c2
c2(X3 + fX1zm)

]
exp

[
2iπK

b2 + c2
b

(
b(X3 + fX1zm)− fa

2
z2m + zm

)]
,

where each of those two exponentials gets acted on non-trivially by only one of the three terms in the

Laplacian (3.23). This might be of interest in generalizing the solution to other nilmanifolds.
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the set of modes analytically obtained. In this section we will check the validity of our

implementation of a numerical method that determines the eigenvalues of the Laplacian.

We will use the results derived in section 3.1 in the simplest case where a = b = 0, c = 1,

rm=1,2,3 = 1 and f = 1.

Principle of the analysis. Several methods have been proposed to find the spectrum

of Laplace operators numerically, in particular on hyperbolic manifolds [23–25] where no

analytic results are known. We found the algorithm by Cornish and Turok [23] to be the

most straightforward to adapt to nilmanifolds since it does not require any data apart from

the Laplacian operator (3.3) and a definition of the fundamental domain of the compactified

manifold (2.8). Let us first review the principle of the algorithm:

• define a lattice representing the geometry of a choice of fundamental domain;

• define an approximate Laplacian operator ∆ on this lattice, using appropriate bound-

ary conditions to evaluate derivatives on the edge of the lattice;

• define an initial condition φ(x, t = 0) = φ0(x) for the field (for simplicity we always

take ∂tφ(x, t = 0) = 0);

• generate the time evolution of this field according to the equation ∂2t φ = ∆φ.

The rationale is that the wave equation has a set of solutions given by φ(x, t) = ψq(x)eiqt

where ψq is an eigenfunction of ∆ with eigenvalue −q2 so that if φ0(x) =
∑
αqψq(x), the

solution can be expressed as φ(x, t) =
∑
αqψq(x)eiqt. Provided the spectrum is discrete (the

case for a compact space), the field has a Fourier transform in the time variable composed

of Dirac peaks whose positions are given by the spectrum of the Laplace operator. A second

step in the algorithm is therefore to post-process the solution φ(x, t) as follows:

• perform a point-wise Fourier transform to get φ̂(x, ω) =
∫

dtφ(x, t)e−iωt;

• extract the power spectrum C(ω) =
∫
M3

d3x
√
g
∣∣∣φ̂(x, ω)

∣∣∣;
• extract the peaks to obtain a numerical spectrum.

Details of the implementation. In the simple case studied, the fundamental domain is

a cube of physical dimension 1× 1× 1 with boundary conditions straightforwardly derived

from (2.8):

• x2 ∈ [0, 1[ and (x1, 0, x3) ∼ (x1, 1, x3),

• x3 ∈ [0, 1[ and (x1, x2, 0) ∼ (x1, x2, 1),

• x1 ∈ [0, 1[ and (0, x2, x3) ∼ (1, x2, x3 − x2).

A cubic lattice on this fundamental domain is therefore perfectly suited for our purpose:

it is stable under the boundary conditions for any value of the spacing δx. We performed
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(a) (b)

Figure 1. Fourier spectra found for two initial conditions: (a) wide gaussian, (b) narrow gaussian.

The black curve is the numerical spectrum and the vertical red lines indicate the position of the

eigenvalues derived analytically in section 3. The vertical axes have arbitrary units. As expected,

the narrow Gaussian excites a larger number of modes than the wide Gaussian.

the time evolution using the leapfrog method, which relies on the O(δt2) approximation of

the time derivative in the wave equation:

φ(x, t+ δt) ' 2φ(x, t)− φ(x, t− δt) + δt∆φ(x, t) , (4.1)

where the Laplace operator is computed using the O(δx2) centred finite difference definition

of the second order derivatives in (3.3). Whenever a derivative requires the value of the

field outside the fundamental domain, the boundary conditions are used to provide a value

from within the fundamental domain. At this order of precision in time and lattice spacing,

the leapfrog method in flat space is proved to be stable under the condition that δt < 1√
3
δx

and, while the proof does not carry on to our situation, it seems indeed that, at small

enough time spacings, stability is ensured to very long simulation times on nilmanifolds as

well. In practice, we used a lattice spacing δx = 0.01 and a time spacing δt = 0.005, which

allowed simulations to be run to t = 100.

The Fourier transforms were calculated using the Gnu Scientific Library [45] imple-

mentation of the discrete Fourier transform, which takes as input a sampled function

{f(k∆t)}0≤k≤n at a rate ∆t over a period T = n∆t and returns a discrete spectrum

{f̂(l∆ω)}0≤l≤n/2, with resolution ∆ω = 2π/T and range up to a maximum pulsation of

ω = 2π/∆t. The long evolution time we used in our simulations therefore resulted in a

good resolution in the spectra we computed, ensuring a sufficient separation between the

different peaks.

Results. To obtain a spectrum, we used initial states φ0(x) generated using randomly

centred gaussians within the central region of the fundamental domain. The standard

deviation of these functions gave us a handle to probe different length scales while ensuring

that the boundary conditions were verified by having φ0(x) ' 0 on all the edges of the

fundamental domain. As can be seen in figure 1, we find very good agreement with the

low-energy spectrum derived analytically in (3.5) and (3.14).
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(a) (b)

Figure 2. Analysis of the ũ1,0,1 + ũ−1,0,1 eigenmode initial state. (a) The short-time evolution

of the wave-function at a given point x0 exhibits an approximate sinusoidal behaviour with the

appropriate pulsation ωe = 7.63 (φ(x0, t) in dotted black, − cos(ωet) in continuous red). (b) The

Fourier spectrum of the field over an evolution time of 100. A significant leaking has happened to

the lower mode ũ1,0,0 + ũ−1,0,0 due to the long evolution time needed to produce a well-resolved

spectrum.

Another check of the validity of the implementation is to use the eigenfunctions of

the Laplacian as an initial state. As seen in their expression (3.15), the combination

ũk,0,n + ũ−k,0,n is real and contains a series with a fast convergence due to the exponential

in the definition of the Hermite functions (3.10). A truncation of this series gives therefore

a good approximation of its values and we could check that such an initial state does show

the expected harmonic oscillation as depicted in figure 2 (a). At the level of discretisation

we used for our simulations, however, this pure frequency behaviour is not stable for long

evolution times and significant leaking to neighbouring modes happens, leading to the

double peak feature seen in figure 2 (b).

In light of these results, we remark that the algorithm we used to obtain the low-

energy scalar KK spectrum on the simplest nilmanifold works precisely enough to be used

as a predictive tool in contexts where an analytical solution is difficult or impossible to

obtain. In particular, it could be applied to find the spectrum of gauge fields and fermions

in particle physics models with nilmanifold extra-dimensions without localised fields.

5 Isometries, orbifolding, and Dark Matter

We first study in this section two discrete isometries of our Heisenberg nilmanifold M3.

Considering the resulting orbifolds, we discuss their fixed points. Using these results and

the above KK spectrum, we propose a simple model for Dark Matter.

5.1 Orbifolding and fixed points

We look for discrete isometries of the nilmanifold, such that an orbifolding can be per-

formed. Explicitly we consider transformations of the form: x1

x2

x3

→
 x′1

x′2

x′3

 = J ·

 x1

x2

x3

 , (5.1)
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where J ∈ GL(3,R) is a constant matrix (more generally, J corresponds to ∂x′/∂x). The

isometry condition then takes the form (in matrix notation):

g(x) = JT · g(x′) · J . (5.2)

The metric can be written as

g(x) = (L · e(x))T · L · e(x) , (5.3)

where the matrices L, e were defined in (2.17) and (3.19) respectively.

Transformation T . Rather than examining the most general case, we first focus on

discrete actions on the T 2 base of the fibration, such that the fiber coordinate x3 remains

invariant. It can then be seen that there is only one nontrivial solution to (5.2), corre-

sponding to the transformation

T : x1,2 → −x1,2 ; x3 → x3 , (5.4)

and we must set a = b = 0; all other parameters of the metric can be arbitrary. The

resulting orbifolded base T 2/Z2 is a square, topologically a disc: it consists of the inter-

val parameterised by x1 ∈ [0, 12 ] tensored with the interval parameterised by x2 ∈ [0, 12 ].

There are four fixed (fiber) circles, stemming from the points on the base: (x1, x2) =

(0, 0), (12 , 0), (0, 12), (12 ,
1
2). The scalar spectrum can be reorganised in eigenstates of the

orbifold involution (5.4). For the torus modes, we obtain the usual spectrum of a T 2/Z2

orbifold: starting from (3.18), the linear combinations

1√
2

(vl,n ± v−l,−n) , (5.5)

are even, odd respectively. For the modes propagating in the fiber, it is the linear combi-

nations
1√
2

(uk,l,n ± (−1)nuk,|k|−l,n) , (5.6)

that are even, odd respectively. This can be seen by taking into account the definition

in (3.18), and the fact that the Hermite polynomials Hn are even (odd) under parity

transformations for n even (odd), and we have used the identity uk,−l,n = uk,|k|−l,n.

Transformation P . We would now like to perform an orbifolding of M3 by taking the

discrete quotient with respect to the involution P defined as

P : x1 ↔ x2 ; x3 → −x3 −Nx1x2 . (5.7)

This is an isometry only for b = −a in the metric, and for equal radii along the torus

directions, i.e. r1 = r2. It is interesting to note that P commutes with T defined in (5.4):

if we define an orbifold projection on P , then (if a = b = 0) T acts as an exact global

symmetry that may preserve some of the KK modes as stable. Here, by stable, we mean

that all decays into zero modes are forbidden. As a first step, we need to define the

geometry of the orbifold quotient.
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Firstly let us make the definition of P more precise. For that we will make use of

the open cover of M3 given in appendix A (see figure 6). P exchanges x1 with x2, which

is well-defined if 0 ≤ x1, x2 < 1, since in that case x1 ∈ U+ both before and after the

transformation. Similarly P is well-defined in the case x1 = x2 = 1. If however 0 ≤ x1 <

1, x2 = 1, then x1 ∈ U+ before the transformation but x1 ∈ U− after the transformation. In

that case P should be understood as sending x1+ to x1− = 1 and correspondingly the value

of the x3 coordinate before and after the transformation should be understood as that of

x3± respectively. The case 0 ≤ x2 < 1, x1 = 1 is completely analogous. More explicitly, P

is defined in these two cases as

P :

{
(x1+, x

2, x3+) = (s, 1, t) −→ (x1−, x
2, x3−) = (1, s,−t−Ns)

(x1−, x
2, x3−) = (1, s, t) −→ (x1+, x

2, x3+) = (s, 1,−t−Ns)
, (5.8)

where 0 ≤ s < 1, t ∈ R with the understanding that x3 ∼ x3 + 1.

No potential inconsistency can arise from the definition of P when 0 ≤ x1, x2 < 1 since

the bundle is trivial over that region of the base, being a subset of B+ × S1
x3 . In that case

P relates the fiber S1
x3 over a generic point (x1, x2) with S1

x3 over a different point (x2, x1)

and identifies the respective points on the base, “folding” the base along the diagonal in

the x1, x2-plane. Over a point on the diagonal (x1, x2) = (s, s), s ∈ [0, 1[, P acts as an

involution on S1
x3 resulting in an interval Is = S1/Z2. More precisely for each s ∈ [0, 1[, Is

can be parameterised by x3 ∈ [−1
2Ns

2,−1
2Ns

2 + 1
2 ]. This can be seen from the fact that

for each (x1, x2) = (s, s), P identifies the points x3 = −1
2Ns

2 ± ε (therefore it fixes the

point x3 = −1
2Ns

2), and we have x3 ∼ x3 + 1.

On the other hand there is a potential source of inconsistency arising from defini-

tions (5.8), which can be seen as follows: for s ∈ [0, 1[ define Ss1, Ss0, S1s, S0s to be

the fiber over the points (x1, x2) = (s, 1), (s, 0), (1, s), (0, s) respectively, as illustrated in

figure 3. Ss1 = Ss0 since the respective base points are identified and the bundle is trivial

for 0 ≤ x1 < 1. Moreover Ss1 is mapped to S1s under (5.8) and Ss0 is mapped to S0s
under (5.7). The consistency check is therefore that x3− ∈ S1s and x3+ ∈ S0s should respect

the gluing condition (A.4) which in this case reads,

x3− = x3+ −Ns . (5.9)

Let x3+s denote the coordinate of the fiber Ss1 = Ss0. The mapping (5.8) of Ss1 to S1s
implies: x3− = −x3+s − Ns; similarly, the mapping (5.7) of Ss0 to S0s implies: x3+ =

−x3+s. Eliminating x3+s from the previous two equations gives (5.9), hence the orbifolding

is consistent with the fibration.

Having verified the consistency of the orbifolding action P , let us now determine its

fixed points. As we already noted, these can only occur over the diagonal in the x1, x2-plane.

Before orbifolding, let us first make some further remarks. Let x3− be the fiber coordinate

over (x1−, x
2) = (1, 1) and let x3+ be the fiber coordinate over (x1+, x

2) = (0, 1) ∼ (0, 0). In

this case the gluing condition (A.4) implies: x3− = x3+. It follows that, when restricted over

the diagonal in the base space, the S1
x3-fibration is trivial. Note that the diagonal is in fact

a circle, Sdiag, since the endpoints s = 0, 1 are identified. In particular the total space of
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Figure 3. The fibers over the points (s, 1), (s, 0), (1, s), (0, s) on the base are the circles Ss1,

Ss0, S1s, S0s, respectively. The pairs of points (s, 1), (1, s) and (s, 0), (0, s) are mirror symmetric

with respect to the diagonal joining (0,0) and (1,1). The fibers over each pair are related by the

orbifolding involution P . Points joined by dashed lines on the base are identified.

the fibration restricted over the diagonal in the base is a trivial fibration of S1
x3 over Sdiag,

i.e. a torus (see figure 4.a). This fact simplifies the analysis of the fixed-point locus when

orbifolding since we can then parameterise all points in the diagonal (x1, x2) = (s, s) ∈ Sdiag
with a global coordinate s ∈ [0, 1].

As discussed earlier, upon orbifolding the fiber becomes Is over the diagonal base point

parameterised by s. This fiber can be thought of as the circle x3 ∈ [0, 1] “folded” along

the antipodal points x3 = −1
2Ns

2,−1
2Ns

2 + 1
2 ; these are the endpoints of the interval Is

defined earlier. Therefore we have two lines of fixed points: (x1, x2, x3) = (s, s,−1
2Ns

2)

and (x1, x2, x3) = (s, s,−1
2Ns

2 + 1
2), s ∈ [0, 1]. If N is even, the endpoints of these lines

at s = 0, 1 are identified, so instead of two lines we have in fact two circles of fixed points.

These two circles define the boundary of the Is fibration over Sdiag which in this case is

trivial, i.e. topologically a cylinder (see figure 4.b).

If however N is odd the endpoints differ by 1
2 in the x3 coordinate. Hence starting at

one endpoint of Is over s ∈ Sdiag, after going once around Sdiag we end up at the other

endpoint of Is. In this case the Is fibration over Sdiag is therefore a Möbius strip. The

fixed-point locus is the boundary of the strip, which has the topology of a (single) circle

(see figure 4.c).

Combining T and P . Finally, let us perform an orbifolding of the Heisenberg nilmani-

fold by taking the discrete quotient with respect to the action generated by both involutions

T and P defined in (5.4) and (5.7), (5.8) respectively. Noting that P , T commute, we will

denote the resulting orbifold by M̃3 =M3/Z2 × Z2.

To determine the topology of M̃3 it is easier to first mod out by the action of T . As was

described below (5.4), the orbifolding by T gives a three-manifold which can be thought

of as an S1 fibration over a square base. More precisely the base is parameterised by

(x1, x2) and it is a square with vertices (x1, x2) = (0, 0), (12 , 0), (0, 12), (12 ,
1
2). The S1 fiber is

parameterised by x3. After modding out by T there are no remaining discrete identifications

among the base points, hence the x1,x2 are globally well-defined coordinates and the S1
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Figure 4. (a) The S1
x3 -fibration restricted over the diagonal Sdiag in the base is topologically a

torus. (b) For N even the orbifold fibration of Is over Sdiag is a cylinder. The fixed-point locus

is the boundary of the bundle, which consists of two circles. (c) For N odd the orbifold fibration

of Is over Sdiag is a Möbius strip. The fixed-point locus is the boundary of the strip, which is

topologically a circle.

fibration is topologically trivial, i.e. modding out by T gives a square (topologically a disc)

tensored with a circle.

Next let us mod out by P . Its action on the (x1, x2)-base can be viewed as a folding

of the square to form the triangle with vertices (x1, x2) = (0, 0), (12 , 0), (12 ,
1
2), which we

denote by O, A, B respectively. Let us now turn to the result of the action of P on the

S1 fiber. Above each base point (x1, x2) in the interior of OAB we have the same circle

parameterised by x3 as before: the action of P simply relates the circle over (x1, x2) ∈ OAB
to a circle over (x2, x1) /∈ OAB. The same is true for the sides OA and AB, excluding

the points O and B: over each point (x1, x2) we have the same circle parameterised by x3

as before. However on the circle S1 over each point (x1, x2) = (s, s) ∈ OB, s ∈ [0, 12 ], the

action of P results in an interval Is = S1/Z2, as mentioned previously.

To summarise: the M̃3 orbifold can be described as a topologically trivial fibration

with base the triangle OAB. Over each point on the base we have a circle fiber, except

over the interval OB where the fiber degenerates to an interval with endpoints J1, J2. The

fixed locus of the Z2 ×Z2 orbifolding consists of the two intervals: OB × J1 and OB × J2.

5.2 A simple Dark Matter model

As a first example, and as a proof of concept, we want to build a model where the Dark

Matter candidate is provided by a scalar field, singlet under the Standard Model (SM)

gauge symmetries, which propagates in the bulk of the nilmanifold. The SM fields, on the

other hand, are ordinary four-dimensional (4D) fields which propagate on a 4D subspace,

i.e. a point in the nilmanifold. For this construction to be consistent, therefore, we would

need an orbifold that contains singular points where a 4D brane can be localised, supporting

the SM fields. The orbifold examples given above do not satisfy this requirement, as the

singular points, left fixed under the orbifold symmetry, form circles or intervals in the extra

space and thus correspond to 5D subspaces. For the existence of a natural Dark Matter

candidate, we further require that the orbifold space possesses at least another symmetry,

the Dark Matter parity, under which the KK modes can be labelled. The lightest state

odd under the latter will thus be our Dark Matter candidate, as it cannot decay into zero

modes nor into SM fields.
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In this work, we do not attempt a complete classification of the possible orbifolds,

rather we look for a simple example, i.e. the orbifold defined by the involution P defined

in (5.7) and (5.8) as it commutes with T in (5.4) which can be identified with the Dark

Matter parity. Note that the space is characterised by a = b = 0 (thus corresponding to

the simple case in section 3.1, more precisely to (3.18)), and by r1 = r2 = r. While this

orbifold has no fixed points but circles, the origin (0, 0, 0) ∼ (1, 1, 1) plays a special role, as

it belongs to the fixed points of the orbifold and it is also left fixed by T . Thus, localising

the SM on the origin is consistent with the orbifold and it does not break the Dark Matter

parity. We will therefore discuss a scenario where the SM is localised there, and the singlet

bulk scalar field communicated to the SM via a Higgs portal coupling (which is the only

one allowed by gauge invariance).

To recapitulate, the symmetries we use to define the orbifold and Dark Matter (DM) are

orbifold: → x1 ↔ x2 , x3 → −x3 −Nx1x2 ;

DM parity: → x1,2 ↔ −x1,2 , x3 → x3 .
(5.10)

The wave-functions (3.18) for a = b = 0 can now be reorganised in terms of their parities

under the orbifold projection and the DM parity: for the torus modes

orbifold even:

{
vl,n + vn,l + v−l,−n + v−n,−l DM parity even ,

vl,n + vn,l − v−l,−n − v−n,−l DM parity odd ,

orbifold odd:

{
vl,n − vn,l + v−l,−n − v−n,−l DM parity even ,

vl,n − vn,l − v−l,−n + v−n,−l DM parity odd ,

(5.11)

where l ≥ |n| ≥ 0 to avoid double counting; for the fiber modes

orbifold even:

{
uk,l,n + u−k,k−l,n + (−1)n(u−k,l,n + uk,k−l,n) DM parity even ,

uk,l,n − u−k,k−l,n + (−1)n(u−k,l,n − uk,k−l,n) DM parity odd ,

orbifold odd:

{
uk,l,n − u−k,k−l,n + (−1)n(−u−k,l,n + uk,k−l,n) DM parity even ,

uk,l,n + u−k,k−l,n + (−1)n(−u−k,l,n − uk,k−l,n) DM parity odd ,

(5.12)

where k > 0, and 0 < l < k/2 for even k or 0 < l < (k + 1)/2 for odd k, to avoid double

counting.

A summary of the spectrum (for both orbifold even and odd scalar fields) is presented

in table 1. The masses are expressed in units of the radius of the torus, r/(2π), and we

define a dimensionless parameter

ξ =
1

|N |

( r

cr3

)2
(5.13)

that encodes the size of the third space dimension. We note that all mass levels contain

both DM-even and DM-odd states, except for the zero mode on the torus, and the modes

with k = 1 on the fiber. Furthermore, the lightest KK mode is the DM-even fiber mode

(k = 1, l = 0, n = 0) for

ξ <
2π − |N |

2π|N |
(= 0.84 for N = 1) . (5.14)
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M2
KK

(
r
2π

)2 orbifold even orbifold odd

DM-even DM-odd DM-even DM-odd

(l, n) Torus modes

(0, 0) 0 1 - - -

(l, 0) l2 1 1 1 1

(l, l) & (l,−l) 2l2 1 1 1 1

(l, |n|) & (l,−|n|) l2 + n2 2 2 2 2

(k, n) Fiber modes

even k |N |
(
k(2n+1)

2π + k2ξ
) k/2 k/2 k/2 k/2

odd k (k + 1)/2 (k − 1)/2 (k + 1)/2 (k − 1)/2

Table 1. Spectrum of a scalar field on the orbifold. For both odd and even cases, the tiers are

labelled in terms of the DM parity. In the last four columns we report the degeneracy of each mass

tier in both cases. We take here k > 0.

0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0

ξ

M
K
K
R

Figure 5. Plot of the spectrum of a scalar field for N = 1, projected on the orbifold-even states,

as a function of ξ: in blue the lightest torus states, in red the fiber ones. The dotted red lines

correspond to the fiber modes with k = 1 that have no DM-odd states, while all the solid lines

contain both DM-even and DM-odd states, with degeneracies as in table 1.

For larger values, it is the torus mode (1, 0) that is the lightest. Also, the DM state lives

in the DM-odd (k = 2, l = 0, n = 0) fiber tier for

ξ <
π − |N |
4π|N |

(= 0.17 for N = 1) , (5.15)

else it is in the lightest torus mode. A plot of the spectrum for N = 1 as a function of ξ can

be seen in figure 5: we clearly see that for small ξ, i.e. large r3, a dense spectrum of fiber

states forms above a mass gap determined by the radius of the torus base. For increasing

ξ (decreasing r3), these states are lifted and for ξ > 1 the phenomenology is dominated by

the torus modes alone.
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6 Conclusions and outlook

Nilmanifolds are a class of negatively-curved manifolds which offer the possibility to an-

alytically calculate the spectrum of propagating fields. This property can be very useful

for the construction of effective models of new physics beyond the Standard Model. One

attractive feature is that the spectrum of masses is quite different from that of the more

familiar cases of flat or positively-curved spaces. Moreover these models are likely to be

embeddable in string theory compactifications.

In this work, we considered three extra spatial dimensions, compactified as the three-

dimensional Heisenberg nilmanifold. This space consists of a one-dimensional fiber over a

two-dimensional torus base. After constructing an explicit metric and coordinate system

on the manifold, we studied the eigenvalues and eigenfunctions of the three-dimensional

Laplacian, which directly determines the spectrum and wave-functions of a scalar field

propagating in the bulk of the manifold. We found that the spectrum contains a complete

tower of modes on the torus, which do not depend on the coordinate and radius of the

fiber. Additionally, there are states whose masses only depend on the fiber radius and on

the energy scale f related to the curvature. These fiber modes can be made lighter than

the torus modes by tuning the various scales, as discussed in section 5.2, and the energy

gaps can be enhanced thanks to additional parameters in the general case (3.34). The fiber

modes are novel: the first term in their masses (3.17) is the standard KK one, showing a

mass gap given by the radius, but the second term involving also f is unusual and gives

more finely-spaced modes following a linear Regge trajectory. The fiber can thus provide

a unique signature at a collider, if a particle physics model is built in this background.

As a first example, we built a model consisting of a singlet scalar field propagating in

the bulk, while the SM fields are localised on a brane in four dimensions. The orbifolding

of the nilmanifold is necessary in order to define fixed points where the SM brane might

be localised. In the case we present, only fixed circles are possible, however the orbifold

space has a residual isometry that can play the role of Dark Matter parity. This example

shows that this class of models are indeed possible.

We discussed in the Introduction the problem of the low energy approximation in

supergravity compactifications. The scalar spectrum obtained here does not allow to de-

couple the KK tower while keeping a few light massive modes. Indeed, despite the presence

of the geometric flux f in the masses in addition to the radii, there is no approximation

leaving a finite set of massive modes while getting rid of the tower: sending the radii to

zero makes all fiber modes disappear and leaves only the torus base massless modes. This

can also be seen when replacing f
r3

by N
r1r2

in (3.17). If any, light massive modes (or equiv-

alently masses for moduli) then do not come from the reduction of scalars, but from that

of different fields.

The spectrum of fields carrying non-trivial spin is more complicated to obtain, but the

algorithm presented and tested in section 4 could be used for this purpose. This is the

natural next step in order to allow the whole SM to propagate in the bulk of the nilmanifold

instead of being localised. Indeed, while this paper focuses on a setup with a bulk scalar field

whose excitations contain a dark matter candidate, it would be interesting to investigate
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Figure 6. A cover of S1
x1 consisting of the two open intervals U±.

the case in which all SM fields are bulk fields and the dark matter candidate is an excitation

of a neutral SM field, as realized in other types of extra-dimensional models [11, 12, 46–48].

Furthermore, a more complete study of the orbifolds is necessary to identify a space that

can accommodate both a Dark Matter candidate and chiral fermion zero modes. Our work

is a first step in using negatively-curved spaces for particle phenomenology.
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A On the integrality of N

The integrality of N given in (2.7) can be understood as follows. The nilmanifold is a

circle fibration of an S1 parameterised by x3 fibered over a T 2 base parameterised by

x1, x2. Let us consider the associated principal U(1) bundle with fiber parameterised by

{g := e2πix
3
, x3 ∈ [0, 1]}. From (2.7) we see that the vertical displacement on the fiber can

be rewritten as: (
dx3 +Nx1dx2

)
=

1

2πi
g−1Dg , (A.1)

where D := d + A is the U(1)-covariant derivative with connection A := 2πiNx1dx2. The

base of the bundle may be covered by the open patches B+ = U+×S1
x2 and B− = U−×S1

x2 ,

where S1
xm denotes the circle parameterised by xm; the open intervals U± furnish a cover

of S1
x1 and are defined as:

U+ := {−ε < x1 < 1− ε} ; U− := {1− 2ε < x1 < 1 + ε} , (A.2)

with ε an infinitesimal positive number. An illustration is provided in figure 6. The overlap

U−∩U+ consists of the point {x1+ = 0}, in terms of U+ coordinates, or equivalently {x1− = 1}
in terms of U− coordinates. Let us denote by Q the point of S1

x1 parameterised by x1+ = 0,

or equivalently x1− = 1, i.e. Q = U− ∩ U+. The overlap B− ∩ B+ = Q× S1
x2 is thus a copy

of S1
x2 . Let t be the transition function on B− ∩B+, so that t : Q×S1

x2 → U(1). Since t is
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a map from S1
x2 to S1 ∼= U(1), it is classified by π1(S

1) ∼= Z and we may set t = e−2πiMx2 ,

with M ∈ Z. The connection on B± is given by A± = 2πiNx1±dx2± respectively. On the

overlap B− ∩ B+ = Q× S1
x2 , these are related via:

A+ = t−1A−t+ t−1dt . (A.3)

Evaluating the above at Q (x1+ = 0, x1− = 1) we obtain t = e−2πiNx
2
. For the latter to

be a well-defined element of U(1) for all x2 ∈ S1
x2 , N must be an integer. Alternatively

we can arrive at the same conclusion by noting that the first Chern class of the principal

U(1)-bundle is integral in cohomology and is given by c1 = Ndx1 ∧ dx2.

To obtain the twist of the fiber coordinate, let x3± be the coordinate of the S1
x3 fiber

over B± respectively and let g± = e2πix
3
± denote the corresponding points on the fiber of

the associated principal U(1) bundle. On the overlap B− ∩B+ = Q×S1
x2 these are related

via g− = t · g+, which leads to

x3− = x3+ −Nx2 . (A.4)

Note that the above equation is invariant under x2 ∼ x2 + 1, since x3 itself is only defined

modulo integral shifts and N is an integer.

Finally, let us give a further derivation of these results. We first consider the lattice

identifications (2.8) for nm=1,2,3 being either zero or some fixed value in Z∗, and N ∈ R∗:
those can be rewritten as

(x1, x2, x3) ≡ (x1, x2 + n2, x3) ≡ (x1, x2, x3 + n3) ≡ (x1 + n1, x2, x3 − n1Nx2) , (A.5)

with nm ∈ Z∗. Using each of them, one can prove the following chains of identifications:

(x1, x2, x3) ≡ (x1, x2, x3 + n3) ≡ · · · ≡ (x1, x2, x3 +N ′n3) , (A.6)

for any N ′ ∈ Z∗ and

(x1, x2, x3) ≡ (x1, x2 + n2, x3) ≡ (x1 + n1, x2 + n2, x3 − n1Nn2 − n1Nx2)
≡ (x1 + n1, x2, x3 − n1Nn2 − n1Nx2) ≡ (x1, x2, x3 − n1Nn2) .

(A.7)

For consistency, one should have

N ′ =
n1n2

n3
N ∈ Z∗ ⇔ N =

n3

n1n2
N ′ ∈ Q∗ . (A.8)

This reproduces for our M3 the mathematical result by Malcev [49], stating that for

nilpotent groups, a lattice exists (allowing to build the nilmanifold) if and only if the

structure constants of the algebra are rational in some basis. After rescaling the algebra by

the radii, N is nothing but the non-zero structure constant, and we indeed conclude that

having identifications by a lattice is equivalent to N being rational. In addition, specialising

to the case nm = 1, one deduces N = N ′ ∈ Z∗, in agreement with the above result.
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B Orthonormal modes

In this appendix, we show that the modes (3.35) are orthonormal, i.e.∫
d3x
√
g Uk,l,n(x1, x2, x3)U∗k′,l′,n′(x

1, x2, x3) = δk,k′δl,l′δn,n′ . (B.1)

To that end, we compute the left-hand side given by

I =
r2

|N |
1

2nn!
√
π

∑
m,m′∈Z

∫
[0,1]3

d3x e2πix
3(k−k′)e2πif

r1

r3
x1(kzm,k,l−k′zm′,k′,l′ )

× e−
iπb

r3(b2+c2)
(kzm,k,l(fazm,k,l−2)−k′zm′,k′,l′ (fazm′,k′,l′−2))

× Φλ
n(wm,k,l)Φ

λ
n′(wm′,k′,l′) ,

(B.2)

where zm,k,l and wm,k,l correspond to zm and wm, and we refer to section 3.2 for the

definitions of the various terms. First, the integral over x3 gives δk,k′ . Then, the integral

over x1 imposes similarly l− l′ = −k(m−m′). Since 0 ≤ l ≤ |k|−1 and similarly for l′, one

deduces |m−m′| < 1 i.e. m = m′, thus l = l′. We deduce zm,k,l = zm′,k′,l′ and similarly for

wm. We are then left with

I = δk,k′δl,l′
r2

|N |
1

2nn!
√
π

∑
m∈Z

∫ 1

0
dx2 Φλ

n(wm,k,l)Φ
λ
n′(wm,k,l) . (B.3)

We recall that wm,k,l = r2

N

(
Nx2 +m+ ω

)
with ω = l

k −
aN

r2f(a2+b2+c2)
. So

I = δk,k′δl,l′
r2

|N |
1

2nn!
√
π

∑
m∈Z

∫ N+m

m

dy

N
Φλ
n

(
r2

N
(y + ω)

)
Φλ
n′(. . . )

= δk,k′δl,l′
r2

2nn!
√
π

∑
m∈Z

∫ m+1

m

dy

|N |
Φλ
n

(
r2

N
(y + ω)

)
Φλ
n′(. . . )

= δk,k′δl,l′
r2

2nn!
√
π

∫ +∞

−∞

dy

|N |
Φλ
n

(
r2

N
(y + ω)

)
Φλ
n′(. . . )

= δk,k′δl,l′
1

2nn!
√
π

∫ +∞

−∞
dzΦλ

n(z)Φλ
n′(z)

= δk,k′δl,l′
1

2nn!
√
π

∫ +∞

−∞
duΦn(u)Φn′(u)

= δk,k′δl,l′
1

2nn!
√
π

∫ +∞

−∞
du e−u

2
Hn(u)Hn′(u)

= δk,k′δl,l′δn,n′ .

(B.4)

This concludes our proof of (B.1).

As a side remark, consider a smooth eigenfunction U of eigenvalue λ0. Let us use

for U the same norm as in (B.1) and take it to be non-zero; we define with the metric

an analogous norm for a one-form. Then, we have on the compact manifold (without
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singularity)

0 ≤ ||dU ||2 =

∫
d3x
√
g gmn∂mU

∗∂nU = 0−
∫

d3xU∗∂m (
√
g gmn∂nU)

= −
∫

d3x
√
g U∗∆U = −λ0||U ||2 .

(B.5)

We deduce that λ0 ≤ 0 and λ0 = 0 ↔ dU = 0. This means that there is no tachyon,

and the only massless modes are constant functions. Consequently, modes depending on

x3 cannot be massless. It should be possible to extend this reasoning to differential forms,

with closed and co-closed forms.

C On the completeness of the set of modes

In this appendix we argue that the set of Laplacian eigenmodes found in the main text,

namely Uk,l,n in (3.35) and Vp,q in (3.37), is complete. To show this, we verify that the

most general normalisable solutions to the differential equation have been found, given the

boundary conditions. To that end, we first give the most general form of the functions

satisfying the boundary conditions, namely the identifications (3.24), and then solve the

equation for those. For eigenfunctions independent of X3, (3.24) simply indicates functions

periodic in X1 and X2. Such a function can be written in full generality as two Fourier

series, leading to the modes Vp,q. Then, solving the equation does not introduce new

constraints. So we turn to the case of a non-trivial dependence on X3.

Boundary conditions. Consider a function U(X1, X2, X3) that satisfies the boundary

conditions (3.24) with n1 = n2 = n3 = 1. First of all, it is periodic in X3 of period r3. It

can thus be written in full generality as a Fourier transform

U(X1, X2, X3) =
∑
k∈Z

e2πiKX
3
ck(X

1, X2) , (C.1)

where we use the notation (3.26). As we are interested in a dependence on X3, we focus

on the modes with K 6= 0. For convenience, we rewrite ck as

ck(X
1, X2) = dk,l(X

1, X2)e2πi(KfX1X2+LX1) . (C.2)

We now study the boundary condition X1 → X1 + r1, X3 → X3 − fr1X2: identifying

each X3 mode, we arrive at the condition

dk,l(X
1 + r1, X2) = dk,l(X

1, X2) . (C.3)

In addition, U should as well be periodic under X2 → X2 + r2, last of the three boundary

conditions. This translates into

dk,l(X
1, X2 + r2) = e−2πiKfX1r2dk,l(X

1, X2) . (C.4)

The periodicity condition (C.3) could lead to a Fourier series with coefficients depending

on X2. The remaining condition (C.4) translated on these coefficients is then not easy to
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solve. We proceed differently and introduce the Zak transform Zf(w, t) of a function f(t),

defined as

Zf(w, t) =
∑
m∈Z

e2πimwf(t+m) , (C.5)

given some conditions on f that we will come back to. This transform verifies precisely

the two properties of periodicity (C.3) and translation (C.4), up to appropriate normalisa-

tions. In addition, this transformation is invertible. We thus consider that dk,l is the Zak

transform of a function fk,l(X
2). Following [30, 31], this should be the only solution to the

boundary conditions. We get

dk,l(X
1, X2) =

∑
m∈Z

e2πiMKX1
fk,l

(
X2 +

M

f

)
, (C.6)

and one can verify that (C.3) and (C.4) are satisfied using (3.26) and (2.9). We conclude

that the modes Uk,l in (3.25) with k 6= 0 are the most general ones verifying the boundary

conditions (3.24).

Solving the equation. We turn to the differential equation and follow the proce-

dure presented in section 3.2. Going from F to G to H to T are smooth operations

that can be done in full generality. Furthermore we perform the redefinitions T (wm) =

|λ|
1
4 Φ(|λ|

1
2wm) = |λ|

1
4 e−

|λ|
2
w2
mH(|λ|

1
2wm) where Φ and H are for now completely general.

We redefine y = |λ|
1
2wm and choose λ as in (3.32). Our initial equation (∇2 +M2)Uk,l = 0

becomes (identifying the X1 or m modes)

∂2yH− 2y∂yH+ ΛH = 0 ,

with Λ =
1

|λ|

(
c2

b2 + c2
M2 − |λ| −A

)
, A =

4π2K2c2

(b2 + c2)(a2 + b2 + c2)
.

(C.7)

For a generic Λ ∈ R, this is precisely the Hermite differential equation. Using series, this

equation can be shown to admit two independent solutions, sometimes called confluent

hypergeometric functions of the first kind. These series solutions, one of which consists of

odd powers of y and the other of even powers, converge for all y so are defined without

restrictions (a particular case of Fuch’s theorem). For Λ = 2n ≥ 0 and for these values

only, one of these two series (depending on n being an even or odd integer) gets truncated

to a Hermite polynomial; the other one remains an infinite series. In sections 3.1 and 3.2,

we took precisely this Λ and the Hermite polynomial to solve the equation. More generally

for Λ ∈ R, one would obtain the following mass

M2 = (A+ |λ|(1 + Λ))
b2 + c2

c2
. (C.8)

Such a continuous spectrum is not consistent with the fact that the Laplacian spectrum of

normalisable functions on a compact manifold should be discrete. Here, the only distinction

among solutions allowing a discretisation would be the value Λ = 2n ≥ 0 and the Hermite

polynomials. One may then wonder about the infinite series solutions. They turn out to

be very divergent at infinity. For instance, when Λ 6= 2n, the even series behave at y ∼ ∞

– 27 –
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as a constant times ey
2
. Coming back to T , the e−

1
2
y2 factor is not enough to compensate

this divergence. Coming back to F , one obtains at X ∼ ∞

|F (X)| ∼ e
|λ|
2
(X)2 . (C.9)

As a consequence, the Zak transform on F cannot be defined (its defining series does not

converge). More precisely F /∈ L1(R,C), F /∈ L2(R,C), nor does F satisfy the “decay

condition”, which is problematic for the Zak transform as discussed in chapter 16 of [50].

This illustrates why the infinite series solutions and their continuous spectrum are excluded.

On the contrary, for a (Hermite) polynomial H(y), the combination with e−
1
2
y2 in T is not

divergent at infinity, and the convergence is good enough to define the Zak transform.

We conclude that the modes Uk,l,n in (3.35) are the only solutions to our problem.

They are normalisable wave-functions, as shown in appendix B, and give the discrete

spectrum (3.34).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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[41] C. Caviezel, P. Koerber, S. Körs, D. Lüst, D. Tsimpis and M. Zagermann, The Effective

theory of type IIA AdS4 compactifications on nilmanifolds and cosets, Class. Quant. Grav.

26 (2009) 025014 [arXiv:0806.3458] [INSPIRE].

[42] G. Servant and T.M.P. Tait, Is the lightest Kaluza-Klein particle a viable dark matter

candidate?, Nucl. Phys. B 650 (2003) 391 [hep-ph/0206071] [INSPIRE].

[43] G. Cacciapaglia, A. Deandrea and J. Llodra-Perez, A Dark Matter candidate from Lorentz

Invariance in 6D, JHEP 03 (2010) 083 [arXiv:0907.4993] [INSPIRE].

[44] A. Rezaei-Aghdam, M. Sephid and S. Fallahpour, Automorphism group and ad-invariant

metric on all six dimensional solvable real Lie algebras, arXiv:1009.0816.

[45] B. Gough, GNU Scientific Library Reference Manual, third edition, Network Theory Ltd

(2009).

[46] A. Arbey, G. Cacciapaglia, A. Deandrea and B. Kubik, Dark Matter in a twisted bottle,

JHEP 01 (2013) 147 [arXiv:1210.0384] [INSPIRE].

[47] K. Agashe, A. Falkowski, I. Low and G. Servant, KK Parity in Warped Extra Dimension,

JHEP 04 (2008) 027 [arXiv:0712.2455] [INSPIRE].

[48] A. Ahmed, B. Grzadkowski, J.F. Gunion and Y. Jiang, Higgs dark matter from a warped

extra dimension — the truncated-inert-doublet model, JHEP 10 (2015) 033

[arXiv:1504.03706] [INSPIRE].

[49] A.I. Malcev, On a class of homogeneous spaces, Trans. Am. Math. Soc. 39 (1951) 1.

[50] A.D. Poularikas, Transforms and Applications Handbook, third edition, CRC Press (2010).

– 30 –

http://hdl.handle.net/2440/19024
http://hdl.handle.net/2440/19024
http://dx.doi.org/10.1088/1126-6708/2003/03/061
http://arxiv.org/abs/hep-th/0211182
http://inspirehep.net/search?p=find+EPRINT+hep-th/0211182
http://dx.doi.org/10.1007/JHEP02(2016)112
http://arxiv.org/abs/1507.00014
http://inspirehep.net/search?p=find+EPRINT+arXiv:1507.00014
http://dx.doi.org/10.1103/PhysRevD.78.106003
http://arxiv.org/abs/0803.3085
http://inspirehep.net/search?p=find+EPRINT+arXiv:0803.3085
http://dx.doi.org/10.1007/JHEP01(2014)179
http://arxiv.org/abs/1310.6787
http://inspirehep.net/search?p=find+EPRINT+arXiv:1310.6787
http://dx.doi.org/10.1088/1475-7516/2016/03/025
http://arxiv.org/abs/1510.02005
http://inspirehep.net/search?p=find+EPRINT+arXiv:1510.02005
http://dx.doi.org/10.1007/JHEP06(2013)021
http://arxiv.org/abs/1211.6437
http://inspirehep.net/search?p=find+EPRINT+arXiv:1211.6437
http://dx.doi.org/10.1088/1126-6708/2006/01/008
http://dx.doi.org/10.1088/1126-6708/2006/01/008
http://arxiv.org/abs/hep-th/0505264
http://inspirehep.net/search?p=find+EPRINT+hep-th/0505264
http://dx.doi.org/10.1088/0264-9381/26/2/025014
http://dx.doi.org/10.1088/0264-9381/26/2/025014
http://arxiv.org/abs/0806.3458
http://inspirehep.net/search?p=find+EPRINT+arXiv:0806.3458
http://dx.doi.org/10.1016/S0550-3213(02)01012-X
http://arxiv.org/abs/hep-ph/0206071
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0206071
http://dx.doi.org/10.1007/JHEP03(2010)083
http://arxiv.org/abs/0907.4993
http://inspirehep.net/search?p=find+EPRINT+arXiv:0907.4993
http://arxiv.org/abs/1009.0816
http://dx.doi.org/10.1007/JHEP01(2013)147
http://arxiv.org/abs/1210.0384
http://inspirehep.net/search?p=find+EPRINT+arXiv:1210.0384
http://dx.doi.org/10.1088/1126-6708/2008/04/027
http://arxiv.org/abs/0712.2455
http://inspirehep.net/search?p=find+EPRINT+arXiv:0712.2455
http://dx.doi.org/10.1007/JHEP10(2015)033
http://arxiv.org/abs/1504.03706
http://inspirehep.net/search?p=find+EPRINT+arXiv:1504.03706

	Introduction
	The three-dimensional nilmanifold
	From algebras to compact manifolds
	General left-invariant metric on M(3)

	Kaluza-Klein spectrum for a scalar field
	Simplest case: a=b=0
	Most general case

	Numerical study of the spectrum
	Isometries, orbifolding, and Dark Matter
	Orbifolding and fixed points
	A simple Dark Matter model

	Conclusions and outlook
	On the integrality of N
	Orthonormal modes
	On the completeness of the set of modes

