1602.08271v2 [gr-gc] 8 Mar 2016

arXiv
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We show how the large-scale cosmological dynamics can be obtained from the hydrodynamics of
isotropic group field theory condensate states in the Gross-Pitaevskii approximation. The correct
Friedmann equations are recovered in the semi-classical limit for some choices of the parameters in
the action for the group field theory, and quantum gravity corrections arise in the high-curvature
regime causing a bounce which generically resolves the big-bang and big-crunch singularities.

Introduction — A major challenge for any theory
of quantum gravity is to extract its large-scale physics at
cosmological scales in order to make predictions about
the early universe.

We will consider this problem within the scope of
loop quantum gravity (LQG) [1] and group field theory
(GFT) [2], in which the fundamental building blocks of
space-time are quanta of geometry, elementary excita-
tions above a fully degenerate ‘no-space’ vacuum. The
recovery of semi-classical gravity requires then the ma-
nipulation of states involving a large number of these
elementary quanta, whose collective behaviour will de-
termine the effective theory via coarse-graining of the
microscopic dynamics. For the case of the simplest
example, the spatially flat, homogeneous and isotropic
Friedmann-Lemaitre-Robertson-Walker (FLRW) space-
time, the calculation of the effective dynamics as deter-
mined by the particular quantum gravity model will re-
quire: the identification of a family of cosmological states,
controlling the relevant global degrees of freedom (e.g.,
Hubble rate, matter energy density), and then a coarse-
graining of the dynamics to extract the large-scale effec-
tive Friedmann equations.

Interestingly, even though loop quantum cosmology
(LQC) —where symmetry-reduced space-times are quan-
tized mimicking the procedures of LQG B]— starts from
a different perspective, it gives further insight into the
type of states that correspond to the cosmological sector
of LQG. While the exact relation between LQG and LQC
remains an open question, a heuristic relation between
the two theories has been proposed M—Iﬂ], suggesting that
the LQG states corresponding to the cosmological sector
are spin network states with a large number of nodes,
all labeled by the same quantum numbers, and where
all links are coloured by the same SU(2) representation
label (typically taken to be j = 1/2), and the connec-
tivity information of the nodes is disregarded. Due to
homogeneity, it is usually further assumed that all of the
nodes in the spin network have the same valence (here,
for simplicity we assume all nodes are four-valent). In
short, LQC suggests to consider states in which all the
(many) quanta of geometry are in the same state, i.e., a
condensate of quantum geometry.

All these features are in fact naturally encoded in a spe-
cific family of states: the GFT condensates B@] that
have been recently used to extract cosmology from the

full GFT formalism. GFTs can be seen as a second-
quantized reformulation of LQG ], embedding nicely
in a single quantum field theory formalism the tools and
results of LQG and spin foams. We refer to [12] and ref-
erences therein for a detailed presentation of the concep-
tual and technical aspects related to GFT condensates.
The key point here is that these states, belonging to the
Hilbert space of the fundamental theory, offer a unique
opportunity to tackle the problem of the emergence of
cosmological dynamics directly at the level of a candidate
quantum gravity theory, taking into account the effects
of all of the degrees of freedom.

Group Field Theory — In GFT models for geom-
etry coupled to a (massless) scalar field, the elementary
GFT field operators, in the spin representation, are

B (0) = ol s ma () (1)
and its conjugate @17 (¢) [11,[12]. They can be taken to
be bosonic ladder operators acting on a Fock space. The
creation operator ¢17v:¢(¢) creates a quanta of geometry:
a four-valent spin network node, each link coloured by
7; and m;, and with the intertwiner ¢ associated to the
usual gauge invariance of spin network nodes, for a given
value ¢ of the scalar field.

The familiar geometric operators of LQG can be im-
ported to the second-quantized language; generic oper-
ators can be constructed in terms of strings of ladder
operators. The presence of an additional argument, the
matter field ¢, also permits the definition of relational
observables, i.e., operators evaluated at a specific value
of ¢, and these are crucial for describing physical evo-
lution in a fully diffeomorphism invariant language. For
example, the number operator counting the number of
quanta above the Fock vacuum |0) when the matter field
assumes the value ¢ is given by

N(@) = D (8" (0) &l (#). 2
Jsm,L

The microscopic dynamics is controlled by equations of
motion that also determine the Feynman expansion. The
various monomials in the field operators are chosen to al-
low for a natural mapping between Feynman graphs and
four-dimensional (simplicial) complexes decorated with
geometric data, with amplitudes encoding suitably dis-
cretized gravitational actions evaluated on the given dis-
crete configurations. In particular, one can define GFT
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models where these amplitudes exactly match any de-
sired spin foam amplitudes (e.g., those directly motivated
from LQG). These are easily generated starting from sim-
ple action functionals, that we split into linear and non-
linear parts as S{p, ¢] = K|p, @] + V]p, @], with the ki-
netic term encoding the edge amplitude of the spin foam
model and having the form (with a minimally coupled
massless scalar field)

K=Y / A1, [@fﬁtfl(d) ) om, (02)

Jsm,L
X KRR (60— ¢2)2) |, (3)

while the potential V[p, @] encodes the vertex amplitude,
is of fifth order in the field variables ¢ and ¢ (for simpli-
cial GFT models) and is local in the scalar field ¢.

It is convenient to rewrite the kinetic term as a deriva-

tive expansion in ¢ in the field variable w%i;z (¢2) around

P2 = @1 = ¢, giving

K=Y 3 [avplnt

n=0j,m,.

Bt (B K P, (@)

where the notation on K7:* has been compressed, and

(K = / du A K () (5)
m = ) S gpyrtm )
In cases where the difference between ¢ and ¢- in (@) is
small compared to the Planck mass (i.e., a slowly chang-
ing scalar field), a good approximation to the full kinetic
term can be provided by a truncation of the derivative
expansion. This is the case we will consider here, keeping
only the first two non-trivial terms n =0 and n = 1.
Finally, for a GFT model with the action S[p, @], the
quantum equations of motion for a state |¥) are simply

—

05
0 W) =0, (6)

together with the conjugate of this equation.

As with any interacting field theory, it is not possible
to obtain the general solution of these equations. The
particular formulation given by GFT, however, allows us
to make use of ideas and methods that are used in analo-
gous problems in condensed matter physics. We will seek
some state that approximates a full solution state |¥), at
least for a restricted set of observables. The restriction to
the case of homogeneous cosmologies suggests that these
states should be modeled with a wave function homo-
geneity principle Bm, @], i.e., by condensate states in
which the wave functions associated to the each of the
quanta are the same.

Isotropic Condensates — The simplest way to
model such cosmological states, including an arbitrary
large number of quanta, is to use the field coherent states

o) = e 171 2 exp [ 37 e

Jiym,

(@) | 10), (7)

where 03”’ (¢) is the condensate wave function and
llo||? = quﬁ lo(¢)||?. An important point here is that
the condensate wave function is not normalized: rather
the norm of (),

lo(@)II* =D lode: (¢ (8)

Jiam,

is the expectation value of the number operator N (¢) on
the condensate state |o) at the relational time ¢.

These states have been extensively studied in the GFT
context B—IE] as approximate solutions of the quantum
equations of motion. As they neglect correlations be-
tween different quanta (and thus the connectivity of the
spin network nodes), these are approximate solutions
only in regimes in which the interaction term in (@) is
subdominant.

Since we are only interested in the homogeneous and
isotropic degrees of freedom, it is possible to choose a par-
ticularly simple form of the condensate wave function by
imposing that the condensate wave function be isotropic,
i.e., that all of the spin labels be equal, and that the other
geometric indices be uniquely defined by j. Hence, for an
isotropic condensate wave function,

o () = Clt - oi(9), 9)

where the Cfg;b are uniquely determined by the value
of j (in particular, the intertwiner is chosen so that it
is an eigenvalue of the LQG volume operator and that
its eigenvalue is the largest possible for a spin network
node with four links all coloured by j, see [12] for de-
tails). Therefore, the coarse-grained degrees of freedom
of isotropic GFT condensate states are entirely captured
by the functions o;(¢), one for each spin.

The effective dynamics are obtained by asking that the
condensate states () approximately solve the quantum
equations of motion ([@). To be specific, we assume a sim-
ple Gross—Pitaevskii form of the dynamics, obtained by
taking the expectation value of the equations of motion:

5S
(ol 5510 =0. (10)

which is clearly a weaker condition than ({@l).
For the isotropic GFT condensate states (7)), and for
a GFT model with a minimally coupled massless scalar
field whose geometric contribution is based on the Engle—
Livine Pereira-Rovelli spin foam model [13] (the most
developed one for 4D Lorentzian quantum gravity), (I0)
gives the equation of motion for the o, (¢)
A;930;(¢) — Bjoj(¢) +w;a;(9)t =0.  (11)
It is clear that the scalar field ¢ is acting as a relational
clock here and can be interpreted as ‘time’. This will
be important when extracting the coarse-grained cosmo-
logical dynamics from this condensate state. Here A;



depends on a combination of (K%t and CJ;', B; de-
pends on (K ()7t and C%¢, while w; (and the form of
the fourth order term in the condensate wave function)
depends on the specific form of Vg, | as well as CJ;t.
We refer to [12] for the exact relations.

This Gross—Pitaevskii approximation of the dynamics,
based on the ansatz (@) for the quantum state, is expected
to hold in a weakly interacting regime. Indeed, when the
last term in (1) will become important for sufficiently
large |oj(¢)|, this approximation will no longer be valid

]. In the ‘strong interaction’ regime, correlations be-
tween quanta (encoding connectivity information) will
play a prominent role, and simple coherent states will
have to be replaced by more elaborated condensate states
(perhaps of the type introduced in ﬂﬂ]) Therefore, in the
following we will only consider the mesoscopic regime in
which there are a sufficient number of quanta for a hy-
drodynamical picture to exist, but small enough for the
non-linear term in (I to be subdominant.

In this mesoscopic regime, rewriting o;(¢) = p;e'®i in
terms of its modulus and phase, and denoting derivatives
with respect to ¢ by primes, ([II) gives the two equations
of motion

Py — (mf + (9;-)2)pj ~0, (12)

pi 07 +2p0; ~ 0, (13)

with mf = B;/A;. In this approximation, the quantities

E; = (p})* + p5(0))* —m3p3, (14)

Q; = %0, (15)

are conserved with respect to the relational time ¢. Then,
using @);, (I2) becomes

2
pf —mip; — =4 ~0. (16)
Pj

Emergent Friedmann Equations — To extract
the dynamics of the large-scale coarse-grained cosmolog-
ical observables, these observables must be related to the
microscopic GFT degrees of freedom. In this case, this
procedure is straightforward since the quantities of in-
terest are the total volume and the momentum of the
massless scalar field, evaluated at a (relational) time ¢.

These operators, evaluated on the isotropic GFT con-
densate states, are respectively

V(9) =D Viri(@), (17)

where, given the definition of the isotropic condensate
states, Vj ~ j3/2€%1 is the largest eigenvalue of the LQG

volume operator for a spin network node with four links
labeled by j, and

h
70(8) = 32 > (34(0)73(8) — 55(0)'a5(0)).  (18)
J
It is easy to check that my = h)_; @; and that therefore
the momentum of the massless scalar field is a constant of
the motion in this context. This is exactly the continuity
equation: for an FLRW space-time with a massless scalar
field, the continuity equation reduces to w:b =0.
Therefore, the only other equation of motion to be re-
covered in order to determine the coarse-grained cosmo-
logical dynamics is the Friedmann equation relating the
Hubble rate to the energy density of the matter field.
This can be calculated, using V' =23, V; p;p}, to be

V2

() -
This and 7, = 0 are the emergent (generalized) Fried-
mann dynamics coming from the microscopic GFT quan-
tum equations of motion for isotropic condensate states.

In order to check that the correct semi-classical limit is
obtained, we take p; to be sufficiently large so that m? p?
is the dominant term in the square root in the numera-
tor. (Note that strictly speaking, the semi-classical limit
corresponds to the low curvature limit, not the large vol-
ume or large p; limit. However, in FLRW space-times
the terms that dominate in the Friedmann equation at
low curvatures are the same as those that dominate at
large volumes, simply because as the FLRW space-time
expands the space-time curvature decreases.) Then, in
this semi-classical limit

(V’)2 (23 Vime; ’ 20)
3V 3, Vir?

It is clear that in order to reproduce the classical Fried-
mann equation (V'/3V)? = 47G/3 (expressed in terms
of the relational time ¢), we must have m? = 37G for all
j. Therefore, we have shown that a rather large class of
GFT models (those giving the correct value of m;) have
a coarse-grained, large-scale dynamics of isotropic con-
densate states with modified Friedmann equations that
have the correct semi-classical limit, and with quantum
gravity corrections when the space-time curvature is suf-
ficiently large. This is our first main result.

Note that this result also suggests that the classical
Friedmann dynamics is a rather universal emergent fea-
ture of GFT quantum gravity (provided a discrete geo-
metric interpretation of the kinematical data is possible),
since most differences between specific microscopic mod-
els can be encoded in the interaction terms, which are
here subdominant. This is consistent with the hydrody-
namics perspective on cosmology we have adopted.

The quantum gravity corrections play an important
role when the space-time curvature becomes large and

25, Vipsy B — @3/02 +m2p?
323‘ VJP?

. (19)



give rise to a striking feature of the emergent cosmo-
logical dynamics. As is obvious from (I6), the p; can
never become zero but will instead necessarily reach a
turning point due to the repulsive and divergent ‘poten-
tial’ —Q?/p?, assuming (); # 0. Note that in an FLRW
space-time, 74 # 0 and so at least one ); must be non-
zero. Therefore, it immediately follows that at least one
pj > 0 for all ¢, and clearly the volume V' will never be
zero. As a result, the big-bang and big-crunch singulari-
ties of classical general relativity are generically resolved
here, due to quantum corrections, within a full quantum
gravity formalism. Furthermore, there will be a bounce
since there is only one turning point for each p; in (IG).
This is our second main result.

Finally, it is possible to consider the case where o;(¢)
only has support on a single j = j, — these are GFT
states that closely match the heuristic relation between
LQG and LQC. In that case, the sums in the Friedmann
equation ([[J) trivialize, and (setting m3 = 37G)

V'\?  4nG p\ . Vi.E;
) === -2 —Jo e 21
<3V> 3 ( pc)+ o o 3

where p = ﬂ'i/ 2V? is the energy density of the mass-
less scalar field and the critical energy density is p. =
67rGh?/V?2, with Vj, ~ j§/2€‘;’)1. Interestingly, this equa-
tion is almost identical to the LQC effective equations,
with the only difference being the last term. For states
with E; = 0, the resulting effective Friedmann dynamics
will then be exactly that of LQC. While the geometric
interpretation of the ‘energy’ F;  is not clear, its effect on
the dynamics is: if E;, > 0, the cosmological bounce will
occur at a higher space-time curvature, while if E; <0
then the bounce will occur at a lower space-time curva-
ture. Even the effective LQC dynamics, then, can be
obtained from a complete quantum gravity formalism.
This is our third main result.

Discussion — In this paper, we have argued that
cosmological states in GFT (for models with a direct

LQG interpretation of quantum states and dynamics)
correspond to highly-excited (with respect to the degen-
erate vacuum) condensate states. We have shown how
to extract the hydrodynamical equations for the coarse-
grained cosmological observables from the microscopic
quantum dynamics. The correct Friedmann equations
are recovered in the semi-classical limit for a large class of
GFT models (i.e., those whose action gives m? = 37G).

Strikingly, the cosmological singularity is generically
resolved, due to quantum gravity corrections, and is re-
placed by a bounce. Finally, a specific choice of con-
densate states actually reproduces very closely the effec-
tive LQC dynamics. These results open a very promis-
ing route for studying cosmology from within a complete
quantum gravity formalism, and show that the macro-
scopic cosmological consequences of the underlying mi-
croscopic quantum geometry can be analysed in detail.

These results are based on a number of necessary as-
sumptions: (i) we assumed that, in the cosmological sec-
tor of GFT and LQG, the massless scalar field does not
evolve rapidly compared to the Planck mass, keeping
only the first two terms of the derivative expansion of
the GFT kinetic term, (ii) we neglected the connectivity
of the spin networks since it is not needed in order to
extract isotropic and homogeneous observables, (iii) we
only imposed that the expectation value of the quantum
equations be zero, and (iv) we worked in the regime in
which the contribution of interactions to the equations
of motion are subdominant, this being necessary for the
approximation (ii) to be valid.

Despite the above limitations, these results provide im-
portant insights on the cosmological sector of GFT and
LQG, and are also in strong qualitative agreement with
those obtained in the (homogeneous) LQC context.
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