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Abstract. The second generation of ground-based gravitational-wave detectors

will begin taking data in September 2015. Sensitive and computationally-efficient

data analysis methods will be required to maximize what we learn from their

observations. We describe improvements made to the offline analysis pipeline searching

for gravitational waves from stellar-mass compact binary coalescences, and assess how

these improvements affect search sensitivity. Starting with the two-stage ihope pipeline

used in S5, S6 and VSR1-3 and using two weeks of S6/VSR3 data as test periods,

we first demonstrate a pipeline with a simpler workflow. This single-stage pipeline

performs matched filtering and coincidence testing only once. This simplification allows

us to reach much lower false-alarm rates for loud candidate events. We then describe an

optimized χ2 test which minimizes computational cost. Next, we compare methods of

generating template banks, demonstrating that a fixed bank may be used for extended

stretches of time. Fixing the bank reduces the cost and complexity, compared to

the previous method of regenerating a template bank every 2048 s of analyzed data.

Creating a fixed bank shared by all detectors also allows us to apply a more stringent

coincidence test, whose performance we quantify. With these improvements, we find a

10% increase in sensitive volume with a negligible change in computational cost.

PACS numbers: 04.30.-w,04.25.-g
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1. Introduction

Coalescing binaries containing compact objects [1] are likely candidates for detection by

the ground-based gravitational-wave observatories LIGO [2], VIRGO [3], and KAGRA

[4]. Searches for gravitational waves from compact object binaries containing neutron

stars and stellar-mass black holes have been performed using the first-generation LIGO

and Virgo detectors in LIGO’s six science runs (S1–S6) and three Virgo science runs

(VSR1–VSR3) [5–13]. Construction of the Advanced LIGO (aLIGO) detectors [14] is

now complete and the first aLIGO observing runs are scheduled for autumn 2015 [15].

The Advanced Virgo (AdV) detector [16] is scheduled to join this network in 2016. When

these second-generation detectors reach design sensitivity, it is predicted that they will

observe on the order of 10 coalescence events per year [17]. Binaries containing neutron

stars and stellar-mass black holes are likely to be the first sources observed by aLIGO

and AdV.

Gravitational waves from compact binary coalescence have three distinct phases:

an inspiral consisting of a wave of slowly increasing amplitude and frequency, a merger

which can be calculated using numerical simulations, and a post-merger signal as the

binary stabilizes into a final state. If the total mass of the binary is lower than

M . 12M� [18, 19] and the angular momenta of the compact objects (their spin) is

small [20,21] (as is the case for binary neutron stars), then the inspiral phase can be well

modeled using the post-Newtonian approximations (see e.g. Ref. [22] for a review). For

higher mass and higher-spin binaries, analytic models tuned to numerical relativity can

provide accurate predictions for the gravitational waves from compact binaries [23–27].

Ground-based gravitational-wave detectors produce a calibrated strain signal s(t),

which is sensitive to gravitational waves incident on the detector’s arms [28]. In addition

to possible signals, the strain data contain two classes of noise: (i) a primarily stationary,

Gaussian noise component from fundamental processes such as thermal noise, quantum

noise, and seismic noise coupling into the detector; and (ii) non-Gaussian noise transients

of instrumental and environmental origin. Since the gravitational-wave signal from

compact binaries is well-modeled and the expected amplitude of astrophysical signals is

comparable to the amplitude of the noise, matched filtering is used to search for signals

in the detector data [29]. Since we do not a priori know the parameters of the compact

binaries we may detect, a bank of template waveforms is constructed that spans the

astrophysical signal space [30–38]. These banks are designed so that the loss in event

rate caused by their discrete nature is typically no more than 10%. The exact placement

of the templates depends on the noise power spectral density of the detector data. To

mitigate the effect of the non-Gaussian noise transients in the search, we require that any

signal be seen with consistent parameters (compact objects’ spins and masses and the

signal’s time of arrival) in the detector network. Additional statistical tests are applied

to mitigate the effect of non-Gaussian noise transients [39]; these are often called signal-

based vetoes. The matched-filter signal-to-noise ratio and the additional statistical tests

are used to create a numerical detection statistic for candidate signals. To assign a
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statistical significance to these detection candidates, the network’s false-alarm rate is

computed as a function of the detection statistic for the noise background. To determine

the performance of the search, simulated signals are added to the detector data and we

record the search’s ability to identify and measure the significance of these simulated

gravitational waves.

Executing the steps described above is the task of the search pipeline. While the

basic steps remain the same, different choices can be made to create various different

workflows for a search pipeline. The search pipelines used in the last joint LIGO-

Virgo science run (S6/VSR2,3) used the ihope search pipeline to search for compact

binaries [40]. The ihope pipeline, as well as the pipelines used in previous LIGO-Virgo

searches [41, 42], are offline search pipelines. These pipelines analyze the data in a

batch mode, processing of the order of one week of data from the network. Offline

batch processing allows the pipeline to incorporate additional information about the

quality of the detector data or search tuning that is not available in real time [43, 44],

and to produces a systematic false-alarm rate estimation of candidates by using large

samples of the noise background before and after the time of a signal. Batch processing

also allows the pipeline to take advantage of the computationally efficient Fast Fourier

Transform (FFT) when implementing matched filtering [29], and allows computational

tasks to be parallelized over time and binary parameters for efficient implementation on

large computing clusters [45].

In this paper, we focus on the offline search pipeline that will be used to search for

compact binary coalescence signals in aLIGO and AdV. We describe several proposed

modifications to the ihope search pipeline to create a simpler, more sensitive search

pipeline and to reduce the computational cost of the search. These improvements

include: (i) changing the pipeline workflow from the two-stage analysis described in

Ref. [40], where two coincidence tests are applied to reduce the computational cost of

signal-based vetoes, to a single-stage pipeline with one coincidence test; (ii) a more

efficient algorithm for computing the signal-based veto used in previous LIGO-Virgo

searches; (iii) improved methods for using time-shifted detector data to estimate the

significance of candidates; (iv) use of third-and-half order post-Newtonian waveforms

to place the bank of templates used for matched filtering [46]; (v) simplifying template

placement by using a power spectral density estimate over longer periods of time, and

by using a shared template bank in all detectors [38]; (vi) improvements to the methods

use to determine if candidate events are coincident in the detector network.

In this analysis, we have configured the pipeline to search for non-spinning compact

object binaries with a total mass between 2 and 25 M� using 3.5 post-Newtonian order

TaylorF2 waveforms in the matched filter. The TaylorF2 waveform is constructed

using the stationary phase approximation and includes only the inspiral portion of

the waveform [47]. We use data from LIGO’s sixth science run to test the search

pipelines. These data are dominated by seismic noise frequencies below 40 Hz. We

therefore set the starting frequency for these template waveforms at 40 Hz, with the

templates terminating at the frequency of the innermost stable circular orbit for a test
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particle in the spacetime (ISCO). These parameters are chosen to be the same as for

the S6/VSR2,3 search described in Ref. [13]. However, since that analysis it has been

shown that searches for signals with total mass above ∼ 12 M� should use templates

that capture the full inspiral-merger-ringdown signal to obtain the maximum signal-to-

noise ratio [19]. Furthermore, since the simulated signals that are used to test search

sensitivity are generated in the time domain, they are generated using a different post-

Newtonian approximant than the frequency-domain filter templates. The maximal mass

of the injected systems is therefore restricted by the uncertainties of the post-Newtonian

waveforms. For total masses below ∼ 14 M�, it has been shown that the discrepancy

between post-Newtonian models is negligible [18]. Consequently, we set the upper limit

of the injections to ∼ 14 M�. We discard templates corresponding to chirp masses

higher than 6.1 M� in post-processing. This is equivalent to ignoring the results of the

highest mass bin in the S6/VSR2,3 search, allowing us to make a direct comparison

to the S6/VSR2,3 results in a region where post-Newtonian waveforms are known to

be valid for aLIGO and AdV. We determine the effect of the proposed changes to

the search pipeline by comparing the sensitivity of the search in two weeks of LIGO

data from the sixth LIGO science run to its performance on two weeks of stationary,

Gaussian noise. We also perform large-scale injections of simulated signals to measure

the sensitivity of the search pipeline as a function of false-alarm rate. Searches for higher

mass systems and searches using template waveforms that incorporate spin have been

also been performed [9,48–51], but they are outside the scope of this work.

We show that the new pipeline is substantially simpler than that of Ref. [40] and

that it can calculate false-alarm rates to ∼ 1/10, 000 years on one week of LIGO

data. The performance of the search pipeline in LIGO S6 data is very close to that

of stationary, Gaussian noise. The computational cost of the improved pipeline is also

comparable to the pipeline used in previous science runs. We show that together, our

proposed improvements yield approximately a 10% improvement in search sensitive

volume at a false-alarm rate of 1/1000 years. Given these advantages, we propose that

this pipeline be used as the basis for offline searches for compact binary coalescence in

future LIGO and Virgo observing runs. We note some additional improvements that

can be made to the pipeline before aLIGO and AdV’s first observing runs.

The rest of this paper is organized as follows: in Sec. 2, we describe the methods

used to search for coincident detector searches for compact binary coalescence. In

Sec. 3 we review the ihope pipeline used in S6/VSR2,3, describe the improvements

that we propose, and our methods for testing these improvements. For aLIGO and

AdV the pipeline workflow generator, template placement, and filtering engine have

been substantially re-written as part of the PyCBC package [51]. Our changes beyond

the ihope pipeline are implemented in PyCBC for use in upcoming LIGO and Virgo

observing runs. Sec. 4 describes how each of our proposed changes affects the sensitivity

of the search pipeline. Finally, Sec. 5 shows the overall improvement from each of

these changes and we suggest directions for further possible improvements to the search

pipeline.
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2. Coincident Matched-Filter Search for Compact Binaries

To search for coalescing compact binaries with LIGO and Virgo, the offline search

pipeline implements a coincident matched-filter search. If the detector noise was

stationary and Gaussian, matched filtering alone would be sufficient to determine the

statistical significance of a signal. For such stationary noise, demanding that the

signal is present in two or more detectors in the network (coincidence) would provide a

sufficiently low false-alarm rate to claim a detection at a matched-filter network signal-

to-noise ratio of 8; the signal strength used to estimate aLIGO’s event rate in Ref. [17].

However, the presence of non-stationary and non-Gaussian noise transients (glitches)

in the detector noise increases the false-alarm rate at a given signal-to-noise ratio and

additional statistical tests must be used to separate signals from noise. The output of the

matched filter is combined with these additional tests to create a new detection statistic

for coincident detection candidates. To determine the significance of these candidates,

the noise background must be estimated to create a map between the numeric value of

the detection statistic and the false-alarm rate (or, equivalently, false-alarm probability).

Background noise is estimated by performing coincidence tests on detector data which

has been time-shifted such that coincident candidates no longer represents a coincident

detection. The search pipeline consists of several stages which are applied to the data

to construct coincident detection candidates and measure their significance. Below, we

describe the different stages used in offline compact object binary search pipelines. We

then review the ihope search pipeline used in the S6/VSR2,3 LIGO-Virgo search for

low-mass compact binaries and describe our proposed improvements. For each proposed

improvement, we use the methods described in Sec. 3 to assess the impact on the search

sensitivity. The results of these tests are presented in Sec. 4.

To search for gravitational waves from compact binaries, the search pipeline first

locates the data from the detectors, which is stored on disk. Analysis of the week of data

can be parallelized over time and over detector allowing the search to execute multiple

search programs simultaneously that process small blocks of data for each detector. In

this analysis, the analysis block size is set to 2048 seconds, as in the S6/VSR2,3 search.

The data is first used to construct the template bank that will be used to matched filter

the data [30–34]. The bank is constructed by specifying the boundaries of the target

astrophysical space and the desired minimal match, the fractional loss in matched-filter

signal-to-noise ratio caused by the discrete nature of the bank. The minimal match

is chosen so that the bank is dense enough that any gravitational wave in the target

space can be recovered with a loss of signal-to-noise ratio no greater than a chosen

maximum, usually set to 3% [52]. A metric is constructed on the signal space that

locally measures the fractional loss in signal-to-noise ratio for varying mass parameters

of the templates [33]. This metric (and hence the template placement) depends on the

power spectral density of the detector noise. Since inspiral signals have more cycles

at lower frequencies, a detector with better low-frequency sensitivity relative to high

frequencies will have more discriminating power and thus require a denser bank to
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maintain the desired minimal match. Considering the noise properties of S6 data, we

chose the lower-frequency cutoff for bank generation and filtering to be 40 Hz, and the

boundaries of the template bank are specified by 1M� ≤ m1,m2 and m1 +m2 ≤ 25M�.

The pipeline then matched filters the template waveforms against the data. The

matched filter consists of a weighted inner product in the frequency domain used to

construct the (squared) signal-to-noise ratio, given by

ρ2(t) =
(s|hc)2 + (s|hs)2

(hc|hc)
, (1)

where hc and hs are the two orthogonal phases of the

(s|h)(t) = 4

∫ fhigh

flow

s̃(f)h̃∗(f)

Sn(f)
e2πift df. (2)

Here s̃ denotes the Fourier-transformed detector data and h̃ denotes the Fourier-

transformed template waveform. As in the S6/VSR2,3 search, each 2048 second block

of data is sub-divided into fifteen 256 second segments, each overlapped by 128 seconds.

The noise power spectral density Sn(f) is computed by taking the bin-by-bin median of

each of the power spectral density of each of the fifteen segments. The fifteen segments

are then each matched filtered, with the first and last 64 seconds of each segment ignored,

due to corruption of the filter by FFT wrap-around [29]

Times when the signal-to-noise ratio exceeds a pre-defined threshold are considered

gravitational-wave candidates, called triggers [29]. This threshold is set to a signal-to-

noise ratio of 5.5. Since the signal-to-noise ratio can exceed this threshold for many

sample points around the time of a signal, clustering is performed on these triggers in

time, so that one trigger can be associated with a signal. Here we use the template-

length based clustering of Ref. [29], as in the S6/VSR2,3 search. For a sufficiently loud

event, several nearby templates in the bank may also produce triggers associated with

the same signal and so clustering over the template bank can also be used to limit the

number of triggers produced by the search. The S6/VSR2,3 search used a 30 ms time

window to cluster over the bank; we investigate this, as well as methods that use no

template bank clustering, as described in Sec. 4.4.

Since non-Gaussian noise transients in the data can also produce excursions in

the signal-to-noise ratio, an additional signal-based veto is then constructed to ensure

that the matched filter signal-to-noise ratio is consistent with an inspiral signal. To

construct this test, the template is split into p bins of equal power, and a matched filter

ρl constructed for each of these bins. Triggers are then subject to the χ2 test, given by

χ2 = p

p∑
l=1

[(
ρc
p
− ρlc

)2

+

(
ρs
p
− ρls

)2
]
, (3)

where ρc and ρs are the two orthogonal filter phases. Real gravitational-wave signals

would return a low number for the χ2 test, while candidates caused by noise transients
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will return a high number for the χ2 test [39]. As in the S6/VSR2,3 analysis, we set

p = 16. The value of the χ2 test is used to calculate a new detection statistic, called the

reweighted signal-to-noise ratio, given by

ρ̂ =

{
ρ for χ2 ≤ ndof

ρ[1
2
(1 + ( χ2

ndof
)3)]−

1
6 for χ2 > ndof ,

(4)

where ndof = 2p − 2 is the number of degrees of freedom in the χ2 test [40]. Since

candidates caused by noise transients generally return a high χ2 statistic, the new

detection statistic down weights the signal-to-noise ratio of candidates by dividing with

the χ2 statistic [13].

The quality of the data generated by the LIGO and Virgo detectors is scrutinized

to mitigate noise and to improve the reach of the detectors [43, 44]. Data quality

investigations characterize times of poor detector performance according to three broad

classifications: (i) the data quality is sufficiently poor that the data should be discarded;

(ii) an instrumental artifact with a known physical coupling to the recorded strain is

observed by monitoring environmental or auxillary control channels; (iii) a statistical

correlation is observed between a high trigger rate from the search and excess noise

power in environmental or auxillary control channels. The first class of data is removed

before searching for signals. For the second two classes, a data quality veto is created.

Vetoes are time intervals during which the pipeline removes all candidate events from

the search. Improved methods for tuning and applying vetoes in compact object

binary searches have been investigated [53], however these methods were not used in

S6/VSR2,3. Investigation of these new approaches is outside the scope of this work and

we apply the same data-quality vetoes as they were tuned for the S6 search.

A true gravitational-wave signal would be incident on all detectors in the network

at approximately the same time. The maximum time-of-arrival difference between

detectors is given by the light-travel time between observatories. Noise, however, will

be independent between detectors since the interferometers are far apart. For this

reason, we require the candidates to be coincident between detectors: they must arrive

within the light-travel time between detectors, approximately 11 milliseconds for the

two LIGO detectors, with a few milliseconds of padding to account for timing errors.

The pipeline also requires that the mass parameters of the signal are consistent between

all detectors, as would be expected for a true gravitational wave. It is possible to

construct several different types of tests for signal coincidence: early LIGO analyses

used a simple, independent check on the consistency of the time of arrival and mass.

Ref. [54] introduced a new method, applied to later analyses, including searches using

S5, S6, and Virgo data, that uses the template bank metric to construct an ellipse of a

given size around a trigger. Overlap of these ellipses is then used to determine if triggers

are coincident. In this paper, we compare the ellipsoidal coincidence method, as used in

the S6/VSR2,3 search, with a new coincidence method that used the ellipsoidal method

for the time of the trigger, but demands that the two mass parameters of the trigger

match exactly.
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To claim a detection of gravitational waves, it is necessary to calculate the false-

alarm rate of the candidate and demonstrate that it is very unlikely to occur due to

noise in the detectors. To measure the noise background in the search, the pipeline shifts

the triggers generated by filtering each detector’s strain data by an amount greater

than the light-travel time between detectors, and applies the coincidence test again.

Coincident triggers that occur in the shifted data cannot be due to gravitational waves

and thus represent background noise. By repeating this test with many different time

lags, we can obtain a good estimate of the rate of background triggers as a function of

the combined reweighted signal-to-noise ratio detection statistic. For the two-detector

network considered here, the combined statistic is given by

ρ̂c =
√
ρ̂2L1 + ρ̂2H1, (5)

where H1 is the LIGO Hanford detector and L1 is the LIGO Livingston detector.

The map between ρ̂c and false-alarm rate allows us to estimate the significance of

gravitational-wave candidates in the search. Since the rate of background triggers

can depend strongly on the mass of the template, the search computes different maps

between ρ̂c and false-alarm rate for different regions of the mass parameter space

independently. Here, we compute the false-alarm rate independently for triggers with

chirp masses less than 3.48M� and for triggers with chirp masses between 3.48M� and

6.1M�. Triggers with larger chirp masses are ignored in our analysis.

While these basic steps remain the same, different choices can be made to create

various different workflows for the search pipeline. In this paper, we propose and

test several changes to the search pipeline used in the S6/VSR2,3 search for low-mass

compact binaries. Fig. 1 summarizes these modifications, and contrasts the workflow of

the ihope pipeline used in S6/VSR2,3 with our proposed new pipeline. Each color in

the figure represents a modification to the pipeline, as described below.

We first change the workflow of the pipeline from a two-stage pipeline to a single-

stage pipeline, shown by the yellow section of Fig. 1 and described in Sec. 4.1. In

the ihope pipeline, a coincidence stage was applied after computing the matched filter

signal-to-noise ratio, but before computing the χ2 statistic. The two-stage pipeline

was created in order to avoid performing the computationally expensive χ2 test on

gravitational-wave candidates that were caused by noise and would be removed by

the computationally cheaper time coincidence test. However, this lead to difficulty

when estimating the significance of loud gravitational-wave candidates: only candidates

surviving the second round of coincidence testing had the χ2 test performed and thus the

reweighted signal-to-noise ratio detection statistic calculated. The single-stage pipeline

computes χ2 before coincidence, so that the reweighted signal-to-noise ratio is available

for all single-detector triggers, allowing the pipeline to estimate the false-alarm rate of

loud candidates.

We then propose two changes to the placement of the template bank, shown by the

blue section of Fig. 1. We change the bank construction from using a metric accurate to

1.5 post-Newtonian order [33] and the placement technique of Ref. [34] to using a metric
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Figure 1. These flowcharts describe the workflows for the pipeline used in the S6

search (left) and the final configuration described here (right). Each color represents

a distinct modification made to the pipeline described in the different sections in the

paper. The yellow is described in section 4.1, the blue in section 4.3 and the red in

section 4.4.

accurate to 3.5 post-Newtonian order [46] (the same order as the template waveforms)

and the placement methods described in Ref. [36]. We also investigate several different

methods of generating the average power spectral density of the detectors used to

construct the placement metric, including fixing the power spectral density for bank

construction for a week of data, and averaging the noise spectrum between the two

LIGO detectors, so that a shared bank is used in all detectors. Finally, in Sec. 4.4,

we investigate a new type of coincidence test, shown by the red boxes in Fig 1. This

test uses the method of Ref. [54] to determine if the triggers are consistent in time, but

requires that the mass parameters of the signal are exactly the same in the detectors.

This test naturally requires using a shared template bank between detectors, which we

construct using the best proposed power spectral density averaging method.

We test these improvements using two metrics for the performance of the search

pipeline: (i) the ability of the different search pipelines to detect a distribution of

simulated signals injected into the data, called software injections, and (ii) comparing
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the distribution of coincident triggers from real LIGO data to that of Gaussian noise.

The next section describes how these tests are performed.

3. Testing Improvements to the Search

To test the proposed pipeline improvements, we use data from the S6 LIGO science

run [13]. Since it is planned that the first aLIGO offline search will analyze one-week

intervals of data, we test the search pipeline on one-week time intervals. To obtain two

representative times, we examined the sensitivity of the detector, as measured by the

detector’s range to a binary neutron star system which would produce a signal-to-noise

ratio of 8 in a single detector. The BNS inspiral horizon distance, shown in Fig. 2,

is calculated from the detector’s power spectral density [13]. Therefore, a variation

in the power spectral density leads to a change in the inspiral horizon distance. For

our analysis, we chose the time interval, July 08 to July 15, 2010 (blue rectangle in

Fig. 2), as a week when the sensitivity of the detectors changed considerably. We also

investigate a second time interval of L1 and H1 data, the week from August 14-21, 2010

(black rectangle in Fig. 2) with a more stable range to verify our results. We also re-

analyzed these two weeks replacing the LIGO data with simulated stationary Gaussian

noise, colored with the design spectrum of the initial LIGO detectors. To compare the

performance of the pipeline in real data to its performance in Gaussian noise, we show

histograms of the combined reweighted signal-to-noise ratio for coincidence background

candidates obtained from analyzing Gaussian noise and from analyzing LIGO data.

These histograms allow us to determine the search pipelines’ ability to eliminate non-

Gaussian noise transients in the LIGO data.

As the primary metric of search sensitivity, we measure the sensitivity of a pipeline

by finding the sensitive volume, which is proportional to the number of detections a

pipeline will make per unit time at a given false-alarm rate. This is given by:

V (F ) =

∫
ε(F ; r,Ω,Λ)p(r,Ω,Λ)r2drdΩdΛ. (6)

Here, Λ are the physical parameters of a signal (in this study, {m1,m2}), p(r,Ω,Λ)

is the distribution of signals in the universe, and ε is the efficiency of the pipeline at

detecting signals at a distance r, sky location Ω, and false-alarm rate F .

We estimate the sensitive volume by adding to the data a large number of

simulated signals (injections) that are randomly drawn from a distribution q(r,Ω,Λ).

We assume an isotropic random distribution of sky positions and orientations. Masses

are distributed uniformly in component mass, with the bounds dependent on the type

of compact object: m ∈ [1, 3] M� for neutron stars (NS); m ∈ [1, 13] M� for black holes

(BH). We also restrict the total masses of binaries to be ≤ 14 M�. We allow template

banks to extend to a total mass of 25 M�, as shown in Fig 3. We assume approximately

equal rates of BNS, NSBH, and BBH systems. Injections are generated at 3.5 PN order

in the time domain using the TaylorT4 approximant.
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Figure 2. Sensitivity of the gravitational-wave detectors for the last part of the sixth

science run for LIGO (S6D) and the third VIRGO science run (VSR3). The plot shows

the volume-weighted average distance at which a 1.4, 1.4 BNS would be observed with

an signal-to-noise ratio of 8 for each detector. The two rectangles indicate time intervals

used for this study.

We re-analyze the data with these simulated signals added and, for each injection,

determine if a coincident trigger is present within 1 second of the time of the injection.

If a trigger is present, we use the combined reweighted signal-to-noise ratio to compute

its false-alarm rate. If no trigger is present, the injection is missed, i.e., the signal cannot

be distinguished from noise at any false-alarm rate threshold. At some distance rmax we

expect that any signal with r > rmax will be missed. Likewise, within some distance rmin

we expect that nearly every signal will be found, even at an extremely small (. 10−4/yr)

false-alarm rate threshold. These bounds depend on the physical parameters of a signal.

Gravitational waves from more massive systems have larger amplitudes, and thus can

be detected at greater distances than less massive systems. To first order, if a binary

with a reference chirp mass M0 = (m1m2)
3/5/(m1 + m2)

1/5 is detected at a distance

r0, then a binary with arbitrary chirp massM will be detected with approximately the

same reweighted signal-to-noise ratio at a distance:

r = r0(M/M0)
5/6. (7)

We find that rmin = 0.5 Mpc and rmax = 30 Mpc are reasonable bounds for a binary in

which both component masses are 1.4 M�. Then, for each injection having chirp mass

Mi, we scale these reference distances via Eq. 7, with M0 = 1.4 · 2−1/5, then draw

the distance uniformly between the resulting bounds rmin,i, rmax,i. Since the injection

distribution is known, the sensitive volume may be obtained by a Monte Carlo integral

with importance sampling, which may be written as an average over the N injections
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performed:

V (F ) ≈ 1

N

N∑
i=1

gi(F ) ≡ 〈g(F )〉 , (8)

where the sampling weight for injection i is given by

gi(F ) =
4π

3

[
r3min,i + 3r2i (rmax,i − rmin,i)ε̂(F ;Fi, ri,Ωi,Λi)

]
. (9)

Here, ε̂ = 1 if Fi ≤ F , and 0 otherwise. The error in the estimate is:

δV =

√
〈g2〉 − 〈g〉2

N
. (10)

Figure 3. Mass-ranges for software injection, shown in the m1 − m2 mass-plane.

As customary, we restrict to m1 ≥ m2. The template bank used to search for these

injections is indicated by hatched regions and the injection set by the red shaded region.

The black dashed line shows a chirp mass of 3.48 M�, the boundary between the two

mass bins used. Triggers from templates with chirp masses larger than 6.1 M� are

discarded in post-processing.

4. Search Sensitive Volume Comparison

We have performed a total of eight different analyses to test our proposed changes.

These are summarized in Table 1. The first analysis used the two-stage ihope search

pipeline in the same configuration originally used in the S6/VSR2,3 search for low-mass

compact binaries. Each successive analysis represents a single modification from the

previous search. Thus, the effect each change has on the search pipeline’s sensitivity can

be individually noted. For each analysis, we compute the sensitive volume as a function

of false-alarm rate, and for analyses 1, 2, and 7 we also compare the distribution of

background triggers in LIGO data to that of Gaussian noise.
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Analysis Pipeline Bank Bank PSD Detector Bank PSD Coincidence

Metric estimation banks Averaging

1
Two-stage

ihope
1.5 pN Regenerated

every

2048 s

Separate
N/A

Ellipsoid

2
Single-stage

ihope

3

Single-stage

PyCBC

4

3.5 pN

5
Harmonic

6 Fixed

for

week

Shared7 Smallest-Value

8 Harmonic Exact-match

Table 1. Overview of the eight different analysis performed to test improvements

to the search pipeline in this paper. Each successive analysis incorporates a change

from the previous search pipeline. The pipeline column indicates the pipeline workflow

and the software used to run the search. The bank metric column indicates whether

templates are placed using a metric accurate to 1.5 pN or 3.5 pN order. The bank

power spectral density (PSD) estimation column indicates whether the template bank

was placed using a power spectral density re-computed every 2048 seconds, or if the

search used one fixed template bank for the entire week. The detector banks column

indicates whether a seperate template bank was generated for each detector, or if the

template bank was shared by both detectors. For fixed template banks, the bank

power spectral density averaging column gives the type of power spectral density

averaging used over the week to generate place the bank. The coincidence column

indicates whether the analysis used the ellipsoidal coincidence method or the exact-

match coincidence method.

4.1. Single-Stage Pipeline Workflow

Our analysis begins with pipeline used in LIGO’s sixth science run. This pipeline,

shown on the left in Fig. 1, was a two-stage pipeline, so called because there are two

times that the coincidence test is applied. The two-stage process was created in order to

avoid performing the computationally expensive χ2 test on gravitational wave candidates

that were caused by noise and would be removed by the computationally cheaper time

coincidence test. For this reason, the coincidence test was performed before the χ2 test.

The two-stage ihope pipeline was very effective at downweighting the significance

of triggers due to noise. Fig. 4 shows two histograms of gravitational-wave candidates

as a function of reweighted signal-to-noise ratio that survived time-lagged coincidence

tests. The red lines in the figure are from an analysis of Gaussian noise, while the black

lines denote an analysis of real LIGO data. The plots demonstrate that the two-stage

pipeline downweights significant noise-generated triggers to the point that the LIGO

data is very close to the analysis of Gaussian noise.

However, the two-stage workflow led to difficulty when estimating the significance

of surviving gravitational-wave candidates: only candidates surviving the second round

of coincidence testing had the χ2 test performed and thus the new detection statistic
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calculated. In the S6/VSR2,3 search the pipeline used 100 time shifts, each with a 5

second offset, limiting the significance that can be measured. For loud gravitational-wave

candidates, further background estimation must be performed to calculate false-alarm

rates at less than one in a thousand years. To calculate this extended background, the

data is offset by multiples of 0.2 seconds to perform a coincdence test. This is done

as many times as possible, and the resulting coincident triggers are used to estimate

a false-alarm rate. computing as many time shifts as possible, while coincident data

remains.

In the S6/VSR2,3 analysis, applying this extended background estimation required

re-analysis of the data with the χ2 test turned on at the first stage, eliminating any

computational savings of the two-stage pipeline. Furthermore, although the output of

the two-stage pipeline should be identical to a single-stage pipeline, in practice the two-

stage pipeline does not produce the same triggers. This is primarily due to the fact

that the single-detector triggers are clustered in a 30 ms window over the template bank

after the first matched-filtering jobs, and then fed back into the search as a new bank

after coincidence [40]. This non-linearity adds additional complication when testing and

tuning the pipeline.

For both of these reasons, although primarily for the false alarm-rate considerations,

it is desirable to abandon the two-stage pipeline and switch to a simpler single-stage

workflow, as shown on the right in Fig. 1. The single-stage pipeline essentially rearranges

the previous pipeline computing the χ2 test before the coincidence test and removing the

triggered template bank generation and the second match-filter process. Fig. 5 shows

the background triggers as a function of reweighted signal-to-noise ratio of the single-

stage analysis of S6 data compared to a those of a single-stage analysis of Gaussian

data. Like the two-stage pipeline’s performance shown in Fig. 4, we see the single-stage

pipeline is also successful in removing candidates with high significance. The single-stage

pipeline is expected to perform identically to the two-stage pipeline. Fig. 6 compares

the sensitive volumes of these search pipelines. The sensitive volume measurement for

the two-stage pipeline terminates at a false-alarm rate of order one per year, limited by

the 100 time-slides performed by the two-stage pipeline. However, with the single-stage

pipeline, many more time-slides can be performed and the false-alarm rate of injections

can be computed down to of order 1/10, 000 years using one week of data. We can

see that in the region where both can compute the false-alarm rate of triggers, the

sensitivities of the two pipelines agree as expected.

As described above, the primary motivation for the two-stage pipeline was to

mitigate the computational cost of the signal-based vetoes. If triggers are found above

threshold, the χ2 time-frequency signal consistency test is applied. The test consists of

breaking the waveform into p frequency bins of equal power. Each bin is filtered against

the data to obtain the partial signal-to-noise ratio contribution ρl and then compared

to the expected signal-to-noise ratio contribution ρ/p. In the ihope pipeline, the value

of the χ2 statistic was computed as a function of time for a template if there were

any signal-to-noise threshold crossings in the 2048 second block of analysis time. The
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Figure 4. This histogram shows the number of background triggers that survived

coincidence testing from the two-stage analyses. They are categorized in bins of

combined reweighted signal-to-noise ratio. The left plot represents an analysis of a

week of data from July 2010 while the right plot represents an analysis of a week

of data from August 2010. The red line denotes the background triggers from the

Gaussian analysis. The black line denotes the background triggers from the first S6

data analysis.
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Figure 5. This histogram shows the number of background triggers that survived

coincidence testing from the single stage analyses in different bins of combined

reweighted signal-to-noise ratio. The left plot represents a week analysis of data from

July 2010 while the right plot represents an analysis of a week of data from August

2010. The red line denotes the background triggers from the Gaussian analysis. The

black line denotes the background triggers from the first S6 data analysis.

calculation of the p filters for each bin requires a single inverse complex Fast Fourier

Transform, and neglecting lower-order terms, we find a cost of pN log(N). However, as

we know the location of peaks, we can also directly calculate this test only for those

points. We illustrate the method by considering a single-phase of the signal-based veto

given in Eq. 3. We can express the quantity that needs to calculated in terms of existing

information as
χ2 + ρ2

p
[j] =

p∑
l=1

ρ2l , (11)
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Figure 6. This plot gives the relative sensitive volume of the two-stage analysis to

the single-stage analysis as a function of the false-alarm rate In the region above a

false-alarm rate of ∼ 2 per year, where both pipelines can measure the false-alarm rate

of candidates, the sensitivity of the two pipelines is the same. By performing many

more time shifts to estimate the background, the single-stage pipeline can estimate

the significance of triggers to a false-alarm rate of ∼ 10−4 per year using one week of

data. We also include an analysis with the same pipeline workflow as the single-stage

pipeline, but that uses the new PyCBC search code, instead of the previously-used ihope

code. The error bars on the PyCBC search are smaller, as the increased computational

efficiency of this pipeline allows us to perform an order of magnitude more injections.

However, the results otherwise agree. The left plot represents an analysis of a week

of data from July 2010 while the right plot represents a week analysis of data from

August 2010.

which can be written as

χ2 + ρ2

p
[j] =

p∑
l=1

 kmax
l∑

k=kmin
l

q̃ke
−2πijk/N

2

, (12)

where [j] is the set of indices of the Np peak values. Näıvely, this expression involves

the explicit calculation of kmax root-of-unity complex multiplicative constants. However,

the computational cost can be reduced to a single complex multiply by pre-calculating

a single root-of-unity complex multiplicative constant and iteratively finding the next.

To do this, we write the expression in the following form:

χ2 + ρ2

p
[j] =

p∑
l=1

 kmax
l∑

k=kmin
l

q̃k(e
−2πij/N)(e−2πijk/N)k−1

2

. (13)

This reduces the computational cost to two complex multiplies, one for the root-of-unity

complex multiplicative constant and one for the multiplication by q̃; which combined

with the summing of two complex numbers gives a total cost of 14kmax ∗Np. For small

values of Np we note that this can be vastly more efficient than the full FFT based

calculation of the veto. The crossover point can be estimated as

Np =
p× 5N log(N)

14kmax

. (14)
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This equation is approximate because the computational cost of an FFT is highly

influenced by its memory access pattern. For our configuration where N = 220, it

predicts that the new algorithm is more efficient when the number of points at which

the χ2 statistic must be evaluated is Np . 100. For S6 data, the number of times

that the χ2 statistic must be evaluated is found to be much less than this threshold

on average, and so the cost savings of this method are significant. This method has

been implemented in the new PyCBC search pipeline and is used in the second single-

stage analysis presented here. We have configured PyCBC to produce a search pipeline

that is identical to the single-stage ihope pipeline, with the exception of adding the

more computationally efficient implementation of the χ2 test described above. The

performance of this search is shown as the third curve in the sensitive volume plot in

Fig 6. As expected, the performance of this search is essentially identical to the single-

stage ihope pipeline. Table 2 compares the computational cost of the two-stage ihope

pipeline to the single-stage PyCBC pipeline. We see that the reduction in cost of the χ2

veto results in a pipeline that can compute the reweighted signal-to-noise ratio for all

single detector triggers, at the same computational cost of the two-stage pipeline.

Job Type Two-Stage ihope Single-Stage PyCBC

Computing Injection Parameters 0.0 0.0

Template Bank Generation 13.3 4.7

Match-filtering and χ2 515.4 515.5

Second Template Bank 0.1 -

Coincidence Test 0.3 9.9

Total 529.1 530.0

Table 2. This table details the computational costs of different parts of the single-

stage and two-stage search pipelines. The costs are given in CPU days.

Finally, Fig. 5 shows the background triggers as a function of reweighted signal-

to-noise ratio for the single-stage PyCBC analysis of S6 data compared to analysis of

Gaussian data. Like the two-stage pipeline’s performance shown in figure 4, we see

the single-stage pipeline is also successful in removing candidates with high significance

and results in a trigger distribution that is close to Gaussian. Given the success of this

analysis, all subsequent analyses here use the single-stage PyCBC pipeline.

4.2. Post-Newtonian Order of the Bank Metric

The next analysis used a bank of waveforms placed at 3.5 PN order, while the previous

analysis placed templates at 1.5 PN order. While a new placement algorithm was used,

the same minimum match between template waveforms was required. As with the single-

stage and two-stage volume plot, the higher line indicates a larger sensitive volume and

a more efficient pipeline. The 1.5 and 3.5 PN template placement produces similar

sensitivities for signals at low false-alarm rate, while the 3.5 PN placement is slightly
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Figure 7. This volume plot compares the analysis with a 3.5 PN bank to our previous

analyses with a 1.5 PN bank week of S6 data. The red line shows that of the single-

stage analysis with a 1.5 PN bank and the blue line shows the single-stage analysis

with a 3.5 PN bank. The left plot represents a week analysis of data from July 2010

while the right plot represents an analysis of a week of data from August 2010.

better for signals at high false-alarm rate. We can see this from the volume plot in Fig. 7

This suggests that the PN order of template placement does not have a significant effect

on the sensitivity of the pipeline. For symmetry with the templates used (which are 3.5

PN order), we configure the pipeline to use 3.5 PN template placement in our subsequent

analyses.

4.3. Power Spectra Used for Bank Placement

Since the shape of the detector’s power spectral density changes over time, the

S6/VSR2,3 analysis recomputed the noise power spectral density used in the matched

filter every 2048 seconds. Furthermore, the template banks used in the search were also

regenerated on the same cadence. Since the power spectral densities of the detectors

in the network are not the same, the template bank was computed independently for

both detectors. Since the placement of templates is not identical between detectors,

the pipeline must use a coincidence test that allows for mismatch between the mass

parameters of a signal. We investigate an alternative method for generating and placing

the template bank. Rather than re-generating the bank every 2048 seconds, we explore

the creation of a single, fixed bank for the entire duration of the (one week) analysis

by averaging the detector’s noise power spectral density over the full analysis time and

using this globally averaged power spectral density to place the template bank.

We initially try independently averaging the power spectral density from each

detector, creating separate banks for each detector. We then test the use of a single, fixed

bank for both detectors by further averaging the power spectral density between the two

detectors. Using a bank shared between detectors allows us to use a new coincidence

testing code, described in Sec. 4.4 which requries the mass parameters to be identical

in a coincident trigger. To compare the different power spectral density estimations, we
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tested several different averaging methods and compared their relative sensitive volumes.

We begin by considering several methods to average the power spectral density over a

week of gravitational-wave data. The methods used are:

(i) Separate Harmonic Mean. We first create a single bank for each detector for

the duration of the search. We measure the power spectral density of the noise

every 2048 seconds to construct N power spectra Sn, as in the existing template

placement. We then construct the harmonic mean power spectral density defined

by averaging each of the separate fk frequency bins according to

Sharmonic
n (fk) = N

/
N∑
i=1

1

Sin(fk)
. (15)

The use of the harmonic mean was motivated by Ref. [38] which shows that the

harmonic sum of the individual detector power spectral densities in a network

yields the same combined signal-to-noise ratio as a coherent analysis of the detector

data. The harmonic mean Sharmonic
n (fk) is then used to place a single template

bank that is used for the entire search using one week of data. Our first test

generated an independent harmonic mean power spectral density for each detector,

and so separate template banks were generated for each detectors. These banks are

used for match-filtering in their respective detectors and the resulting gravitational-

wave candidates undergo a coincidence test between detectors using the ellipsoidal

coincidence test.

(ii) Shared Harmonic Mean. We next average the power spectral density between the

two detectors to create a single template bank that is shared by both detectors (i.e.

each detector shares exactly the same templates from a single bank). This fixed

bank was averaged over the week-long data set and was used for the entire analysis.

After being match-filtered against the data and the gravitational-wave candidates

identified, the ellipsoidal coincidence test is applied.

(iii) Shared Smallest-value Estimation. Our last configuration created a single bank

between the two detectors while choosing the smallest value for the power spectral

density. The smallest value in each frequency bin represents the best performance

of the detector. The template banks generated by the smallest value power spectral

density give typically a higher number of templates than the other averaging

methods. Thus by using the smallest value for each bin of the power spectral

density, we can create the most densely packed bank of templates possible.

Fig. 8 shows the power spectral density computed for a week of data using these different

averaging methods and the difference of these methods to the arithmetic mean of the

power spectral density.

To test how each of these banks affect the search sensitivity, we performed several

analyses with these different averaging methods. The results of these investigations

are shown in Fig. 9 which compares the sensitive volume as a function of false-alarm

rate. For the first week of data from July 2010, which has large fluctualtions in the
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inspiral range, the fixed template banks have approximately the same sensitivity as the

regenerated template banks for high estimated false alarms rates. For false-alarm rates

of ∼ 10−3 per year, the bank generated using the fixed harmonic-mean power spectral

density gives the best sensitive volume. For the second week of data from August 2010,

which has a more stable inspiral range, all of the bank placement methods have the same

sensitivity, within measurement error. In the case when fixed banks provide increased

sensitivity, the harmonic mean gives the best sensitiviy, so we recommend this averaging

method for the search.

We also note that using a fixed template bank reduces the overall computational

cost of the search. Table 2 shows that the cost of generating the template banks used

here is a small fraction of the overall run time of the search. Fixing the template

bank essentially eliminates this cost, but since the cost of the bank generation is less

than 1% of the overall computational cost, this is not a significant saving. However, for

searches that incorporate compact-object spin in the waveform templates, template bank

generation can be significantly more expensive [36,51,55]. For example, for searches for

binary neutron stars between 1–3 M� and dimensionless spins up to χ ≤ 0.4, or for

neutron star–black hole binaries with black holes masses between 3 and 15 M� and

spins up to χ = 1, the cost of generating the template bank is three to four orders

of magnitude more expensive than the cost of the bank used here (depending on the

low-frequency sensitivity of the detector). However, the number of templates in the

bank, and hence the cost of matched filtering, only increases by a factor of 2–5. If the

template bank is re-generated every 2048 seconds for searches for binaries with spin,

bank placement can become a significant fraction of the overall search cost. The power

spectral density averaging methods proposed here to generate a fixed template bank can

be applied to those searches, significantly reducing the computational cost [51].

4.4. Trigger Coincidence Test

Since the S6/VSR2,3 search used separate regenerated template banks for each detector,

a coincidence test that allows triggers to have slightly different mass parameters must be

used in the search. The template placement metric was used to construct the ellipsoidal

coincidence test which determines if two waveforms are coincident in time and mass

between detectors [54]. Tuning the size of the ellipsoidal coincidence test is performed

empirically by calculating the distribution of the ellipsoidal coincidence window for

simulated signals and for noise events from the background time shifts, and choosing a

value of the parameter controlling the size of the ellipse that provides the best separation

of signals and background.

Using a shared, fixed bank for both detectors allows us to investigate a new, simpler

type of coincidence test. In this exact-match coincidence test, we use the ellipsoidal

window to determine if triggers are coincident in time, since there is still a time-of-

flight difference between triggers in the detectors, however we require that the mass

parameters m1 and m2 of the template are exactly the same in both detectors. This
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Figure 9. This volume plot describes the sensitive volumes of the searches in different

configurations. The red line is an analysis using template banks regenerated every

2048 s. The blue, yellow and cyan lines show different analyses with fixed banks. The

blue and yellow used a harmonic mean to estimate the power spectral density, while

the cyan simply chose the lowest power spectral density measured at each frequency.

The regenerated-bank and the independent-harmonic analyses used separate banks for

the different detectors, while the smallest-value and harmonic analyses used a common

bank for both detectors. The left plot represents an analysis of a week of data from

July 2010 while the right plot represents a week analysis of data from August 2010.
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requirement decreases the chance that triggers generated by noise transients will be

found in coincidence between detectors, as it is a stricter test than the ellipsoidal test.

The exact-match method of testing for coincidence is useful in situations where there

is no simple metric to compare gravitational waveforms, as is the case with template

waveforms for binaries with spinning neutron stars or black holes [51].

In Fig. 10, we compare the performance of the search on two weeks of S6 data

using the same, fixed harmonic bank in both detectors, but using either the ellipsoidal

coincidence test or the exact-match coincidence test. The ellipsoidal coincidence test

tends to recover injections with higher combined reweighted signal-to-noise ratio than

exact-match test: the less stringent ellipsoidal coincidence test allows more templates

in each detector to contribute to coincidence, thus there is more chance of an upwards

fluctuation in the detection statistic. The gain in sensitivity from the exact-match test is

a tradeoff between the (on average) smaller signal-to-noise ratio of signals and the lower

background level, giving an increase in detection significance at a given signal-to-noise

ratio. For the week from July 2010, the performance of the exact-match coincidence

test is slightly better than that of the ellipsoidal test, although the difference is within

the error bars at a false-alarm rate of 10−3 per year. However, for the week from August

2010, the sensitivity of the search using the exact-match test is clearly higher at a

false-alarm rate of 10−3 per year.

We can understand this increase using Figs. 11 and 12, which compare histograms

of the combined reweighted signal-to-noise ratio of background triggers obtained in S6

data to Gaussian noise. For the first week of data, the distribution of background

triggers using the ellipsoidal coincidence test, shown in Fig. 11, is very close to that

of Gaussian noise. However, for the second week, the S6 data contain more triggers

at higher combined reweighted signal-to-noise ratio. This difference can still be seen

in Fig. 12, which shows the distribution of background triggers from the exact-match

coincidence test. Note, also, that in the exact-match analysis, the overall rate of triggers

is significantly lower for both weeks, resulting in lower false-alarm rate at a given value

of combined reweighted signal-to-noise ratio. Our results show that the lowering of

the noise background with exact-match coincidence is the dominant effect: signals are

recovered with greater significance, raising the search sensitivity.

5. Conclusion

We have demonstrated the use of a new pipeline to search for gravitational waves from

compact object binaries in LIGO data. The results of our study are summarized in

Fig. 13 which compares the sensitivity of the search pipeline used in S6/VSR2,3 (analysis

1 of Table 1) with the most sensitive pipeline proposed here (analysis 8 of Table 1) which

uses a shared fixed 3.5pN template bank in both detectors generated using a harmonic

mean power spectral density, and the exact-match coincidence test. We see that these

improvements result in a gain of ∼ 10% in the sensitive volume of the search at a false-

alarm rate of 10−3 per year. The new pipeline uses a simpler, single-stage workflow
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Figure 10. This volume plot describes the relative sensitive volumes of the different

search pipelines as a function of false-alarm rate. The red curve describes the sensitivity

of a search pipeline using the ellipsoidal coincidence test. The blue curve demonstrates

the sensitivity of the search pipeline using a fixed bank and the new exact-match

coincidence test. The left plot represents a week analysis of data from July 2010 while

the right plot represents an analysis of a week of data from August 2010.
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Figure 11. This histogram shows the number of background triggers that survived

coincidence testing from the analysis using a shared, fixed harmonic bank using

ellipsoidal coincidence testing in different bins of combined reweighted signal-to-noise

ratio. The red line denotes the background triggers from the Gaussian analysis. The

black line denotes the background triggers from the S6 data analysis. The left plot

represents an analysis of a week of data from July 2010 while the right plot represents

a week analysis of data from August 2010.

that allows us to estimate false-alarm rates to ∼ 10−4 per year using one week of data.

With our improved implementation of the χ2 signal-based veto, we demonstrate that

the new pipeline has the same computational cost as the two-stage workflow used in

the S6/VSR2,3 analysis. We propose that this workflow be used as a basis for offline

searches for gravitational waves from compact-object binary sources in aLIGO and AdV.

We note that a new class of search pipeline was prototyped in S6/VSR2,3 [52] that

produces triggers in low-latency for rapid follow-up by electromagnetic observatories.

These pipelines are under active development for aLIGO and AdV [56,57]. Low-latency
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Figure 12. This histogram shows the number of background triggers that survived

coincidence testing from the analysis using a shared, fixed harmonic bank using

exact-match coincidence testing in different bins of combined reweighted signal-to-

noise ratio. The red line denotes the background triggers from the Gaussian analysis.

The black line denotes the background triggers from the S6 data analysis. The left plot

represents an analysis of a week of data from July 2010 while the right plot represents

an analysis of a week of data from August 2010.
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Figure 13. This volume plot describes the relative sensitive volumes of the different

search pipelines as a function of false-alarm rate. The red curve describes the sensitivity

of the search pipeline used in LIGO’s sixth science run, reformatted to have a single

coincidence test. The blue curve demonstrates the sensitivity of the search pipeline

using a fixed bank and the new exact-match coincidence test. The left plot represents

an analysis of a week of data from July 2010 while the right plot represents an analysis

of a week of data from August 2010.

searches differ from the pipeline presented here as they are constrained to only use

information available in the past and trade computational cost for speed of producing

detection candidates. However, since they are based on coincident matched filtering, our

results can also be used to inform the development of low-latency searches. For example,

we would expect that the harmonic mean (using recent past detector data) would provide

the best power spectral density estimation for the construction of template banks used

in the singular value decomposition proposed in Ref. [57]. Similarly, we expect that
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exact-match coincidence would provide the best coincidence method for the low-latency

pipelines.

Finally, we note that Figs. 11 and 12 show that, although the distribution of triggers

in the S6 search using the ellipsoidal test is very close to that of Gaussian noise this is

not the case for exact-match. This suggests that additional tuning is possible to increase

the sensitivity of the search. Investigation of improved tuning could explore the optimal

length of time for a single bank, further tuning of the coincidence test, improvements

to power spectral density estimation used in the matched filter, improved signal-based

vetoes and optimization of the combined detection statistic. Further tuning beyond

what is presented here will be the subject of future studies.
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