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Searching for gravitational waves (GWs) from binary black holes (BBHs) with LIGO and Virgo
involves matched-filtering data against a set of representative signal waveforms — a template bank —
chosen to cover the full signal space of interest with as few template waveforms as possible. Although
the component black holes may have significant angular momenta (spin), previous searches for BBHs
have filtered LIGO and Virgo data using only waveforms where both component spins are zero. This
leads to a loss of signal-to-noise ratio for signals where this is not the case. Combining the best
available template placement techniques and waveform models, we construct a template bank of
GW signals from BBHs with component spins χ1,2 ∈ [−0.99, 0.99] aligned with the orbital angular
momentum, component masses m1,2 ∈ [2, 48] M�, and total mass Mtotal ≤ 50 M�. Using effective-
one-body waveforms with spin effects, we show that less than 3% of the maximum signal-to-noise
ratio (SNR) of these signals is lost due to the discreetness of the bank, using the early advanced
LIGO noise curve. We use simulated advanced LIGO noise to compare the sensitivity of this bank
to a non-spinning bank covering the same parameter space. In doing so, we consider the competing
effects between improved SNR and signal-based vetoes, and the increase in the rate of false alarms
of the aligned-spin bank due to covering a larger parameter space. We find that the aligned-spin
bank can be a factor of 1.3 – 5 more sensitive than a non-spinning bank to BBHs with dimensionless
spins > +0.6 and component masses & 20 M�, and even larger gains for systems with equally high
spins but smaller component masses.

I. INTRODUCTION

Advanced LIGO (aLIGO) began its first observing run
in September 2015 [1, 2]. Both the Livingston and Han-
ford gravitational-wave (GW) observatories are now col-
lecting data at unprecedented sensitivity. In the com-
ing years, these two LIGO instruments will be commis-
sioned into their final design configurations [3], while the
world-wide network of ground-based GW observatories
continues to grow, with advanced Virgo, the Japanese
KAGRA observatory, and possibly a third LIGO obser-
vatory in India coming online over the course of the next
decade [4–7].

Among the many promising and exciting search tar-
gets for these observatories are GWs produced during
the inspiral, merger and ringdown of binary black holes
(BBHs) [8]. These systems are thought to form predom-
inantly through the co-evolution of massive (& 15M�)
stars in binaries [9–12], or by the dynamical capture
of two independently formed black holes (BHs) living
in dense stellar environments, such as globular clusters
or galactic cores [13–19]. If BBHs in fact form through
one or both of these channels, in which the component
BHs are direct products of stellar collapse, then the
components are expected to have masses in the range
3M� . mBH . 80M�, simply based on our understand-
ing of stellar evolution [10, 20]. Black holes larger than
80M� could form through other mechanisms, however,
such as hierarchical mergers, or direct collapse from a
large pre-stellar cloud. These systems would be strong
GW sources due to their large masses, and could con-
tribute significantly to the overall detection rate even.

This leaves a large parameter space for BBH searches
to cover. Previous searches have cast as wide a net as pos-
sible, probing for GWs from BBHs as light as Mtotal =
0.4M� [21, 22] and as heavy as Mtotal = 400M� [23, 24],
above which the signal is entirely out of band. These
searches are based on the principle of matched filtering,
in which a collection (bank) of model signals (templates),
are used to filter noise from the data. A basic prob-
lem for these searches is how to choose these templates
such that one recovers as much signal-to-noise (SNR) as
possible while keeping the number of templates as small
as possible. Some source parameters, such as the coa-
lescence time and phase, can be analytically maximized
over, resulting in essentially no SNR loss. The remaining
parameters, however, are traditionally covered by some
gridding of the parameter space, in which a small but
non-zero amount of SNR is lost to signals from systems
not lying exactly on the grid.

Efficient coverings of the mass parameter space have
been available for quite some time [25, 26]. These consist
of two basic flavors: lattice-based [27, 28] and stochastic-
based [29–32]. Lattice-based techniques are most prof-
itably applied to low-mass systems, for which the merger
and ringdown occur out of band and only the inspiral
portion of the waveform contributes to the SNR. In this
case, one can construct a special set of coordinates in
which a regular lattice is the optimal placement strategy.
Stochastic-based techniques, by contrast, are completely
generic, but are not guaranteed to be optimal and quickly
become computationally limited as the required template
bank size increases, as with increasing parameter space
dimension or improved detector bandwidth.
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A substantially harder problem is how to cover the re-
maining six-dimensional spin parameter space for BBHs,
where lattice-based techniques don’t directly apply in
this case, and stochastic-based techniques approach com-
putational limitations. However, building a template
bank with spin effects may be crucial to optimizing the
detection rate in these searches. Electromagnetic obser-
vations of BHs in X-ray binaries [33–39], as well as popu-
lation synthesis models for BBH formation [40], indicate
the potential for a range of BH spins, possibly spanning
the entire theoretically-allowed range given by the Kerr
limit |cS/Gm2| ≤ 1, where S is the BH’s spin angular mo-
mentum and m its mass. These spin effects are apparent
in the waveform templates, and using non-spinning tem-
plates to search for spinning signals is sub-optimal, as we
quantify below.

Nonetheless, most previous compact-object binary
searches with LIGO and Virgo have used non-spinning
templates to filter the data [41–43]. Although non-
optimal, templates without spin effects still have some
overlap with spinning signals; searches with non-spinning
templates can still detect signals from spinning systems,
just at a lower rate. Furthermore, the only LIGO search
that included spin effects in the search templates [44]
found that the increase in the search background due to
the increased number of templates—required to cover the
larger spin space—offsets the gain in signal-to-noise ratio
achieved by using them over non-spin templates [45]. In
order for spinning templates to be effective in a search,
further methods for distinguishing between noise and sig-
nal, such as data-based consistency tests [46–48], would
have to be developed for spinning templates.

Here, we revisit the question of searching for BBHs
using spinning templates. Indeed, recent studies [32,
49] have demonstrated methods for searching with
(aligned) spinning templates that outperform the best
non-spinning template search in most regions of param-
eter space. In Ref. [32], they considered a search for
BBHs in the mass range Mtotal ∈ [10, 35]M� and mass
ratio 1 ≤ m1/m2 ≤ 4. The spin effects were mod-
eled with an inspiral-merger-ringdown phenomenological
template family [50] that uses a single effective-spin pa-
rameter χeff = (m1χ1 +m2χ2)/(m1 +m2) where χ1,2 =
cS1,2/Gm

2
1,2 are the dimensionless spin parameters of the

BHs. Due to limitations in the regime of validity of the
waveform model, the study in Ref. [32] restricted the tem-
plates to span only χeff ∈ [−0.5, 0.85]. Analysing real
initial LIGO detector noise with simulated spinning sig-
nals added, the authors found that the spinning template
search improved the non-spinning one by 45% for sys-
tems with Mtotal ∈ [15, 25]M� and χeff ∈ [0.2, 0.85]. The
study in Ref. [49] considered spin effects in searches for
neutron-star–black-hole binaries, which we do not con-
sider here.

We extend the work in Ref. [32] in several significant
ways. Firstly, we describe inspiral-merger-ringdown sig-
nals using effective-one-body (EOB) waveforms tuned to
numerical-relativity simulations [51]. Those waveforms

describe double-spin BBHs and cover mass ratios 1 ≤
m1/m2 ≤ 100 and spins χ1,2 ∈ [−0.99, 0.99]. Thus, we
can explore a larger BBH mass-parameter space, span-
ning Mtotal ∈ [4, 50]M�. Secondly, we demonstrate the
applicability of these methods to realistic aLIGO noise,
filtering from flow = 30Hz, making the conclusions im-
mediately applicable to ongoing searches. We system-
atically and quantitatively map out the regions of this
extended parameter space in which including spin effects
in templates improve the search sensitivity. We continue
to consider only aligned spin templates here, as a search
using spin mis-aligned (precessing) templates is signifi-
cantly more challenging. We explore the question of pre-
cessing templates in a companion work [52].

In arriving at our results, we combine and improve
upon two recent implementations of the two template
placement strategies mentioned above; these implemen-
tations are described in Refs. [27, 28, 31, 32]. In Sec. II,
we review these two template placement methods. Ap-
plying these methods along with some additional compu-
tational enhancements, we demonstrate a procedure for
template bank placement that efficiently covers the four-
dimensional mass and (aligned) spin parameter space. In
Sec. III, we demonstrate the application of this aligned-
spin template bank in an end-to-end search pipeline on
simulated aLIGO noise, and quantify the gains of us-
ing the aligned-spin bank in this pipeline relative to a
template bank without spin as function of the source pa-
rameters. In doing so, we address directly the interplay
between the offsetting effects of increased SNR recovery
and increased false alarm rates, both of which contribute
to the overall sensitivity of a search. We demonstrate
the pipeline both on Gaussian noise and initial LIGO
noise recolored to the early aLIGO spectrum. We find
that the search with the aligned-spin bank is significantly
more sensitive than the non-spinning bank to BBHs with
component masses . 20M� and spins > +0.6, and we
consider the implications of these results in Sec. IV.

II. TEMPLATE BANK GENERATION

In this section we describe a method to place an effec-
tual template bank of aligned-spin template waveforms
to search for BBH signals with component masses be-
tween 2 and 48 M�, a maximum total mass of 50 M�,
both component spins ∈ [−0.99, 0.99] and using the pre-
dicted 2015-16 advanced LIGO noise curve [3]. Our bank
generation process relies on combining two existing al-
gorithms, a geometric-based aligned-spin algorithm, as
described in Refs. [27, 28] and a “stochastic” algorithm,
as described in Refs. [31, 32]. We begin by briefly re-
viewing the criteria that a template bank should fulfill to
be useful for gravitational-wave astronomy. We then de-
scribe the methods used to place banks of non-spinning
waveform filters in previous LIGO and Virgo searches
and demonstrate that these non-spinning banks are sub-
optimal for our aligned-spin parameter space. We then
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describe both the stochastic and geometric methods for
placing banks of aligned-spin waveforms and demonstrate
the performance of template banks using each of these
methods. Finally, we introduce our new method of com-
bining these approaches and demonstrate that this com-
bined approach generates a suitable, efficient template
bank of aligned-spin BBH template waveforms.

A. Background

Binary black hole mergers are described by 17 param-
eters; the component masses (m1, m2), the component
spin vectors (S1i, S2i), the eccentricity e and phase of
perihelion γ, the right ascension and declination of the
source (α, δ), the distance D, the inclination angle ι, the
polarization phase ψ, the orbital phase at coalescence ϕc
and the time at coalescence tc. If the parameters of the
system are known a-priori the optimal likelihood ratio be-
tween the signal in noise hypothesis and the noise alone
hypothesis in Gaussian noise is

L(h(Λi)) =
p(s|h(Λi))

p(s|0)
= exp

[
〈h, s〉 − 〈h, s〉

2

]
, (1)

where h denotes the putative signal with parameters Λi

and s denotes the data. The matched-filter between two
waveforms 〈a, b〉 is defined as

〈a, b〉 = 4

∫ ∞
0

ã∗(f)b̃(f)

Sn(f)
df, (2)

where s̃ is used to represent the Fourier transform of
s and Sn(f) denotes the one-sided noise power-spectral
density of the data.

In reality, the parameters of astrophysical systems will
not be known a-priori, and searches must therefore be
sensitive to signals at any location in the 17-dimensional
parameter space. Performing the matched-filter calcu-
lation at every point in the full parameter space would
be extremely computationally prohibitive, and therefore
a number of analytic approximations are used to reduce
the size of the parameter space.

As in previous searches [43, 53, 54], we restrict our-
selves to only considering non-precessing binaries on
circular orbits, and consider only the dominant spin-
weighted spherical-harmonic mode, the (2,±2) mode.
Making these assumptions will reduce detection efficiency
to systems with precession, in eccentric orbits, or in
which sub-dominant waveform harmonics are important.
These effects have been investigated in [28, 31, 55, 56],
and may be important for a small number of astrophys-
ical systems. However, the first searches of Advanced
LIGO and Advanced Virgo data will make these as-
sumptions and consider only dominant-mode, aligned-
spin non-eccentric waveform templates [49], and we re-
strict ourselves similarly here.

With these assumptions we have restricted to an 11-
dimensional parameter space. The remaining extrinsic

parameters—inclination, polarization, sky location, dis-
tance, coalescence phase and coalescence time; collec-
tively denoted Ξ—now enter the gravitational waveform
only as a constant time, phase or amplitude shift [54]. It
is then possible to maximize the matched-filter statistic
over these parameters by differentiating Eq. (1) with re-
spect to the constant phase and amplitude parameters.
The maximized likelihood is then

max
Ξ
L(h(Υ; Ξ)) = exp

{
[O(h(Υ), s)]

2 〈s, s〉
}
, (3)

where Υ = {m1,m2, χ1, χ2} represents the remaining in-
trinsic parameters and the overlap O is defined as

O(h(Υ), s) = max
Ξ
〈h(Υ; Ξ), s〉 = max

tc

‖〈h, s〉‖√
〈h, h〉 〈s, s〉

.

(4)
We can express the dependence on coalescence time
as [57]

〈a, b〉 (tc − t0) =

∫ ∞
0

ã∗(f)b̃(f, t0)

Sn(f)
e−2πiftcdf, (5)

where t0 is an arbitrary epoch. This can then be eval-
uated for all tc using a fast Fourier transform rou-
tine [57, 58] and numerically maximized over quickly.
The remaining parameters, (m1,m2, s

1
z, s

2
z), cannot be

analytically maximized over. Instead, one creates a set
of waveforms, with varying values of these parameters–a
template bank—and filters all waveforms in the template
bank against the data. This template bank should be
constructed to have sensitivity over all of the parameter
space of interest.

When creating a template bank to use in searches for
compact binary coalescences we require some quantity
that is a measure of the “completeness” of the bank. This
is used to judge if a bank adequately covers the param-
eter space of interest. For a single template this can be
expressed in terms of the overlap between the template
(λ), and a putative point somewhere in the parameter
space of interest (h). This overlap, O(λ, h), which can
take values ∈ [0, 1], represents the fraction of the opti-
mal signal to noise ratio that would be recovered when
searching for a signal h with a template λ. We refer to
1−O(λ, h) as the mismatch between h and λ. We define
the effectualness for a putative signal h as the largest
match between that signal and all templates in the tem-
plate bank:

E = max
i
O(λi, h). (6)

There are a few possibilities for assessing the com-
pleteness of a template bank. Traditionally the minimal
match criterion has been used [59]. The minimal match
simply requires that a template bank is constructed such
that no putative signal anywhere in the parameter space
has an effectualness less than the minimal match. When
a bank fulfills this minimal match criterion we refer to
it as effectual. The minimal match has traditionally
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been set to a value of 0.97 for previous LIGO and Virgo
searches [43, 53, 54] and we follow that approach here.
This number is chosen such that the signal loss due to
the discreteness of the template bank is not more than
∼10%. This 10% is obtained by assuming every signal
is recovered with a effectualness equal to the minimal
match and translating that into a loss of detection vol-
ume. In reality, signals will be linearly distributed in
effectualness [60], and in fact will tend to cluster towards
higher values of E when the templates have some overlap,
as is inevitable in lattices in more than 1 dimension [61].
Therefore the loss in signal rate for an effectualness of
0.97 is smaller even than 5%. We note though that other
errors, for example waveform modeling uncertainties and
data calibration uncertainty can also reduce the effectu-
alness beyond the minimal match criterion [62].

Before constructing template banks to cover the re-
gion of parameter space we are interested in, we first
define exactly how we will compute the completeness of
the banks. We will compute the effectualness between
a large set of signal points, drawn from all areas of the
parameter space. This tests that the bank is effectual
for all mass and spin values being considered. We use
500 000 points drawn from a distribution that is uniform
in the spin magnitudes and log in the component masses.
We use a log distribution in mass because the mismatch
between waveforms changes more rapidly at low masses
than at high masses.1

We plot the distribution of the effectualness over the
set of simulated signals in Fig. 2. While the effectual-
ness E of each simulated signal is useful for identifying
areas of parameters space where a bank is not perform-
ing well, we wish to have a single value that describes
the performance of the entire bank. For that, we do two
additional comparisons. First, we find the percentage of
signals that have E < 0.97, which is reported in Table I.
Second, we compute a weighted mean effectualness. Pre-
vious studies have used an “effective fitting factor” to
assess the relative sensitivity of a bank, defined as [63]〈
E3σ3

〉
/
〈
σ3
〉
. Here, the mean is taken over the simu-

lated signals, E is the effectualness of each signal and
σ is the optimal SNR of each signal, which is equal to√
〈h, h〉. The effective fitting factor gives an approxi-

mate estimate of the fraction of signals that are detected
by a bank assuming that signals are distributed uniform
in volume. However, we have found that when consid-
ering a large range in masses, as we do in this study, a
few high-mass signals can dominate the effective fitting
factor, even when using a simulated signal that is log
distributed in the component masses. This is because
the amplitude of a signal scales approximately byM5/6,
whereM = Mtotal(m1m2/M

2
total)

3/5 is the chirp mass of

1 As we do not expect real signals to be distributed this way, we
weight the signals to mimic a distribution uniform in component
mass when computing sensitive volume; see Sec. III for more
details.

Template bank Size % of signals
with E < 0.97

〈Ew〉

Non-spinning geometric 7 734 50 0.738
Non-spinning combined 8 935 51 0.737
Aligned-spin geometric 57 177 8.5 0.954
Aligned-spin stochastic 64 318 0.01 0.970
Aligned-spin combined 60 766 0.01 0.970

TABLE I: The sizes of the various template banks
constructed in Sec. II. The non-spinning and

aligned-spin combined banks refer to banks constructed
using both the geometric and stochastic algorithms, as

discussed in Sec. II E.

the signal. Thus, the larger the chirp mass of a signal,
the larger its optimal SNR. To give equal weight to lower-
mass signals, we define the weighted mean effectualness
〈Ew〉 as:

〈Ew〉 =

〈
(EM−5/6σ)3

〉〈
(M−5/6σ)3

〉 . (7)

These values are also reported in Table I.
We use waveform models from double-spin BBH merg-

ers built within the effective-one-body formalism, notably
the non-precessing (or “aligned”) spin templates devel-
oped in Ref. [51]. The waveforms describe the full coa-
lescence process, i.e., inspiral, merger and ringdown, but
include only the main spin-weighted spherical-harmonic
mode, i.e., the (2, 2) mode. Henceforth, we shall refer to
those waveforms as SEOBNRv2 templates.

B. Non-spinning template banks

The template placement algorithms that were used
for creating banks of non-spinning signals for previous
compact-object binary searches in LIGO and Virgo data
are described in Refs. [25, 26, 59, 64–67]. This method re-
quires an analytical prediction of the mismatch between
two nearby waveforms to create a parameter-space met-
ric describing how far apart two points must be in the
parameter space of the two masses before their overlap
drops to a specified value. This approximation is only
valid for overlaps close to 1, but has been found to be a
very useful tool when creating banks with a minimal-
match of 0.97. For bank construction the parameter
space metric must be constant—or almost constant—
over the whole parameter space. Currently such a met-
ric only exists for the inspiral-only “TaylorF2” waveform
approximant and requires the assumption that the termi-
nation frequency of the waveform will be constant over
the parameter space [27, 59, 68]. With this TaylorF2
parameter space metric it is possible to place a regular
hexagonal lattice in the two-dimensional, non-spinning
parameter space that covers the entire space at a desired
minimal match [26].

Using this traditional non-spinning template bank con-
struction algorithm with the TaylorF2 parameter space
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metric, we generate a template bank of waveforms within
the mass range described above and neglecting spin ef-
fects. Then, modelling all of the templates with the
SEOBNRv2 waveform model, we compute the effectual-
ness of this non-spinning template bank to SEOBNRv2
aligned-spin signals. The result of this is plotted in
Figs. 1 and 2. The number of templates in this bank—
7 734—and all other banks described in this section are
listed in Tab. I. It can clearly be seen from Fig. 2 that
a large number of signals were recovered with the non-
spinning bank with effectualness less than 0.97. Indeed,
roughly 30% of signals have E < 0.9. We translate this
into detection volume, compare this with our aligned-spin
banks and assess performance in different regions of the
mass-spin parameter space later in the work. However,
this plot indicates that an aligned-spin bank could offer
a significant improvement in detection rate.

C. Geometric algorithm

In Refs. [27, 28] the authors extended the non-spinning
geometric approach to include aligned-spin signals for bi-
nary neutron star and neutron-star black-hole template
bank placement, allowing for the higher dimensionality
of the aligned-spin parameter space. However, geomet-
ric placement requires a parameter space that is glob-
ally flat. Efficient lattice algorithms are not known for
general, intrinsically curved, parameter spaces [61]. To
obtain a parameter space metric that is constant over
the whole parameter space, we must use the inspiral-
only TaylorF2 parameter space metric, and assume that
all waveforms terminate at the same fixed frequency [27].
For binary neutron-star signals this is a valid approach as
the merger occurs at a frequency outside of the range of
sensitivity for ground-based interferometers [27]. How-
ever, for BBH signals, the parameter space is large and
these assumptions are not valid for template bank place-
ment, as we will demonstrate. For non-spinning bank
placement this approach is equally invalid, but generally
it produces template over-coverage in the high-mass pa-
rameter space. As the template density is low anyway in
the high-mass parameter space, this results in effectual
template banks with only a small amount more template
waveforms than are needed. However, when consider-
ing aligned-spin systems there is a strong degeneracy be-
tween mass ratio and the spins, which can be broken
when waveforms terminate at different frequencies. As
the geometric approach cannot take this into account it
can create template banks that are not effectual, as we
will show below.

We construct a geometric aligned-spin bank to cover
the parameter space using the TaylorF2 aligned-spin met-
ric and choosing a fixed value for the waveform cut-off
frequency of 1100Hz. We then test effectualness using
the same set of points as for the non-spinning bank and
again modelling the aligned spin templates and signal
waveforms using the SEOBNRv2 waveform model. The

results of this are also shown in Figs. 1 and 2. This bank
contains 57 177 templates. We can see that the effec-
tualness for this aligned-spin bank is much closer to the
desired minimal-match criterion of > 0.97, however there
are regions of parameter space where the minimal match
can be as low as 0.9. The geometric approach offers us an
efficient way of covering the low-mass parameter space,
but is not effectual everywhere when considering broad
parameter spaces.

D. Stochastic algorithm

An alternative method for placing banks of aligned-
spin systems is the stochastic algorithm. In this method
one randomly places a large set of points in the parameter
space and then iterates over these points accepting each
point into the template bank only if its overlap with all
points already accepted to the template bank is less than
the minimal match. This method was first proposed in
the context of the LISA space-based detector [29, 30], and
has been adapted to the problem of aligned-spin template
placement for LIGO and Virgo searches in Refs. [31, 32].
This method can only guarantee that all points of the
parameter space are covered to the minimal-match crite-
rion if an infinite number of seed points are used. There-
fore some approximation to the minimal-match criterion
must be used, such as limiting the total number of seed
points, or terminating the iterative process after a spe-
cific number of points have been rejected in succession.
The stochastic algorithm uses more templates to cover a
parameter space than the geometric approach, and can
be computationally expensive when the overlaps are com-
puted explicitly. However, this method offers a general
approach that can be used to place a template bank for
any parameter space.

Applying the stochastic method directly to our
aligned-spin parameter space is computationally expen-
sive. In order to optimize this process and speed up the
generation of an aligned-spin template bank in this pa-
rameter space we make use of two new optimizations, in
addition to the methods described in Refs. [31, 32].

The value of the frequency spacing used in the
matched-filter integral (df) is normally chosen to be 1/L,
where L is the closest power-of-2 that is greater than the
length of the waveform (in seconds). This is sufficient
to measure the overlap between two waveforms in a time
window of L seconds. However, for bank generation we
are only interested in the maximum overlap between two
waveforms. If the two waveforms are aligned so that their
peak amplitudes occur at the same time, the maximum
overlap is near to the time point corresponding to 0 dis-
placement between the two waveforms. Therefore, we
can increase the value of df , which reduces the cost of
the inverse Fourier transform used to obtain the overlap
as a function of time. To be sure that the value of df is
not set so large that an incorrect overlap is obtained we
compute the overlap using some initial value of the fre-
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(a) Non-spinning: geometric-only (b) Aligned-spin: geometric-only (c) Aligned-spin: combined

FIG. 1: Effectualness (E) as a function of m1,m2 (top) and χ1, χ2 (bottom) of the non-spinning bank, the
aligned-spin geometric-only bank, and the aligned-spin with geometric and stochastic placement bank. Each point

represents a simulated signal.

quency spacing (df0) and also compute a second overlap
using df0/2. If both overlaps agree to within 1%, or if ei-
ther overlap is less than four times the difference between
the minimal match and unity—0.88 in this case—we use
that value. Otherwise the overlap is computed again at
df0/4 and compared to the value obtained at df0/2. This
process continues iteratively until the value of the overlap
converges. In our testing we found that df0 = 4Hz was a
suitable choice and that is used in the numbers and re-
sults quoted below. In this manner, we reduce the cost of
computing overlaps, and can quickly assess cases where
the overlap between two waveforms is small. This signif-
icantly reduces the computational cost of the stochastic
bank.

In the approach described in Refs. [31, 32] the stochas-
tic step must be parallelized due to computational cost.
This is done by splitting the parameter space into a
number of non-overlapping chirp-mass bins and running
the stochastic bank generator individually on each chirp-
mass region. Each individual job places points until a
specified number of points, 100 000 in our case, were
rejected while accepting the last 10 templates into the
bank. This parallelization results in some over cover-
age along the chirp-mass boundaries and so the num-

ber of chirp-mass bins must be chosen to balance this
over coverage against the computational cost of gener-
ating the bank. We investigated using varying numbers
of non-overlapping chirp-mass regions and found that in
this case 25 regions provided the best balance between
these two factors. However, we note that the majority
of the computational cost associated with the stochas-
tic algorithm is spent accepting the final small number
of templates [30]. We therefore organize the stochastic
placement in two steps. First, we run a single instance
of the stochastic generator, covering the full parameter
space, but have it terminate when only 2500 points have
been rejected in accepting the last 10 templates. Then
this semi-complete stochastic bank can be used as a seed
to the parallel generation to ensure completeness while
minimizing double coverage along the boundaries of the
chirp-mass bins.

We construct an aligned-spin stochastic template bank
using these methods and again test the effectualness of
this bank using the same set of test points as before. This
bank contains 64 318 templates, which can be compared
with the 57 177 templates that the geometric algorithm
placed. However, in Fig. 2 we can see that the stochastic
bank more completely covers the parameter space, with
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FIG. 2: Cumulative histogram of the effectualness (E)
of each bank. The y-axis shows the percentage of
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only 0.01% of points in the parameter space having an
effectualness less than 0.97.

E. A combined geometric-stochastic approach

The geometric and stochastic placement methods both
offer their own advantages and disadvantages when ap-
plied to bank placement for BBH signals for aLIGO and
advanced Virgo. Previous works have always focused on
using one method or the other [28, 32]. Here we propose
that the best results are found if we combine the two
methods together. Specifically we propose that template
banks for BBH searches in aLIGO and advanced Virgo
take the following approach. First, generate a bank using
the aligned-spin geometrical lattice up to some total mass
for which the placement is valid. For the early aLIGO
noise curve that we consider here, we have empirically de-
termined that a boundary on the total mass of 6 M� pro-
vides a suitable boundary at which to stop the geometric
approach. Second, we use the stochastic algorithm, ex-
cept, instead of starting with an empty template bank,
we start with the aligned-spin geometric bank and test
points in parameter space against this “seed” bank. No
mass limits are given to the stochastic algorithm and it
ensures that the full parameter space is covered, includ-
ing any “holes” that might have been left in the original
geometric template bank.

As with the other banks in this section we compute
effectualness using the set of test points described at the
top of this section. This bank contains 60 766 points and
the distribution of effectualness can be seen in Figs. 1

and 2. We can see that in this case only 0.01% of the
test points have a E < 0.97; the lowest value in our set
of 500 000 points is at a minimal match of 0.964. As
mentioned above this is consistent with the stochastic al-
gorithm, which cannot guarantee that 100% of points has
minimal match greater than some threshold. As a bal-
ance between template number and signal recovery we
recommend that this combined method be used for pro-
ducing banks of aligned-spin BBH template waveforms.

Finally, for completeness, we also generate a non-
spinning bank combining both geometric and stochastic
placement as described above. This allows us to make di-
rect comparisons between the non-spinning and aligned-
spin banks, generated using the same combination of the
geometric and stochastic algorithms in the remainder of
the paper. This bank contains 8 935 templates and is
also plotted in Fig. 2. The performance of this bank
when searching for aligned-spin signals is largely indis-
tinguishable from the non-spinning bank generated using
the traditional, geometric, method.

III. RELATIVE GAIN OVER NON-SPINNING
BANK

Having arrived at an effectual aligned-spin template
bank, we can now investigate the gain in sensitivity by
using this bank in place of a non-spinning bank. To do
this we estimate the sensitive volume, V, for a search
using each bank. The sensitive volume can be thought of
as the mass-averaged volume in which a signal would be
detected above a specific value of some ranking statistic
ρ̂. This can be written explicitly as

V(ρ̂) =

∫
ε(ρ̂; Υ,Ξ,x)q(Υ,Ξ,x)dxdΥdΞ. (8)

Here, Υ are the intrinsic parameters of signals (in this
study, the component masses and dimensional spins
{m1,m2, χ1, χ2}), Ξ are the extrinsic parameters of sig-
nals (polarization and inclination), and x is the three-
volume of space. For compactness, we let Λ = (Υ,Ξ).
The function q(Λ,x) is the distribution of signals in the
universe; i.e., it is the number of signals that exist in
the universe per unit time. The efficiency ε(ρ̂; Λ,x) is
the fraction of those signals that can be detected by the
search at the given ρ̂. For comparing pipelines, we will
find it convenient to normalize q such that if we integrate
it over some fiducial spatial volume Vmax, we have:

∫∫  ∫
Vmax

q(Λ,x)dx

dΛ = Vmax.

We choose Vmax such that the efficiency of the search is
0 to any signal outside of Vmax.

The sensitive volume is dependent on the distribution
of signals in the universe, q. For BBHs with total masses
≤ 50 M�, the detectors are sensitive out to a maximum
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distance of ∼ 1 Gpc assuming the early advanced LIGO
PSD. Over these distances we can assume an isotropic
distribution of signals [8]; i.e., we assume that signals
are distributed uniformly in inclination, sky-location and
orientation.

With these assumptions of the distribution of signals,
we show in the appendix that the sensitive volume is
approximately [see Eq. (A9)]:

V(ρ̂) ≈
〈

4π

3
αm1m2

(
r3
min + 3Θ(ρ̂)[rmax − rmin]r2

)〉
,

(9)
where the average is taken over the same simulated sig-
nals we used in Sec. II to assess the effectualness of each
bank. The function Θ(ρ̂) equals one if a simulated signal
has a ranking statistic ≥ ρ̂ and zero otherwise; α is a
normalization constant needed to convert from the sim-
ulated signals’ mass distribution (log in the component
masses) to our assumed astrophysical distribution. Each
signal’s distance r is drawn uniformly between distance
bounds rmin and rmax.2

The ranking statistic ρ̂ is used to determine the like-
lihood that candidate events are GWs. We choose a
threshold ρ̂† such that the probability of mis-identifying
noise as a detection—the false alarm probability—is
small. For larger template banks, searching larger re-
gions of parameter space, the rate of background trig-
gers above a given value of detection threshold increases.
Therefore a template bank covering the aligned-spin pa-
rameter space has a larger false alarm probability F at
fixed value of detection threshold than a non-spinning
template bank. To keep the false alarm probability fixed,
the threshold at which a detection could be claimed must
therefore increase for the aligned-spin bank.

If the detector data were stationary Gaussian noise, the
optimal (in the Neyman-Pearson sense) ranking statistic
would be SNR. Real gravitational-wave detector data is
not Gaussian. Due to the presence of non-Gaussian tran-
sients (glitches), signal-based vetoes are needed to sep-
arate glitches from real signal candidates [69, 70]. Sev-
eral signal-based vetoes have been proposed [46–48]. The
signal-based veto used in the most recent searches for
compact-object binary mergers [42, 43], and the one we
adopt here, is the χ2 test first proposed in Ref. [46]. This
test first computes a set of p non-overlapping frequency
bins which would all contribute equally to the SNR if the
data exactly matches the template waveform. The SNR
is then computed in each bin, ρi, and compared against
the expected contribution. The statistic is written for-
mally as

χ2 = p

p∑
i=1

∣∣∣∣ρi − ρ

p

∣∣∣∣2 . (10)

2 These bounds are different for each signal; see the Appendix for
details.

In Gaussian noise, this statistic is χ2 distributed with
2p− 2 degrees of freedom. The greater the mismatch be-
tween the data and the template the larger the χ2. This
χ2 statistic as well as the SNR is then used to compute
a detection statistic [43]

ρ̃ =

{
ρ for χ2

r ≤ 1,

ρ
[

1
2

(
1 +

(
χ2
r

)3)]−1/6

for χ2
r > 1,

(11)

where χ2
r = χ2/(2p − 2). In this study we use p = 16,

as used in the search for compact-object binary merg-
ers with total mass less than 25 M� in initial LIGO and
initial Virgo’s last observing runs [43]. We note that an-
other choice for the number of χ2 bins may produce bet-
ter sensitivity. In the search over the same initial LIGO
and Virgo data for binaries with total mass greater than
25 M� p = 10 was used [42]. However, further tuning of
this parameter is outside the scope of this paper.

It has been shown [54] that re-weighting the SNR via
Eq. (11) down-weights glitches sufficiently such that the
distribution of ρ̃ in noise is close to that of SNR in Gaus-
sian noise. Conversely, ρ̃ ≈ ρ for signals, as long as the
mismatch between signals and templates is small. There-
fore, the re-weighted SNR allows searches for compact-
object mergers to reach comparable sensitivities to the
ideal case where the detectors’ data is Gaussian. How-
ever, if templates do not match signals well, as in the
case of the non-spinning bank searching for spinning sig-
nals, then the ρ̃ of those signals will be less than the raw
SNR ρ. This reduces the sensitive volume of the non-
spinning bank compared to what would be obtained if
only ρ was considered, as has been done in many other
studies [27, 28, 32].

Searches for BBHs also require that candidate gravita-
tional wave triggers occur in multiple detectors with the
same mass and spins within the light-travel time between
the detectors. In that case, the network re-weighted SNR
for the search is computed from the quadrature sum of
the single-detector ρ̃. The network re-weighted SNR is
the ranking statistic ρ̂ we use to compute the sensitive
volume.

In the following section we compare the sensitive vol-
umes of the aligned-spin bank to the non-spinning banks.
In Sec. III A we use simulated Gaussian noise for each
detector. In Sec. III B we run the full modern search
pipeline described in Ref. [49] on a subset of the simu-
lated signals using data from initial LIGO’s sixth science
run (S6) recolored to resemble the predicted sensitivity
of aLIGO’s first observing run.

A. Gaussian noise

As we will show below, the sensitive volume is strongly
dependent on our choice of astrophysical prior. Higher-
mass systems tend to dominate the sensitive volume es-
timate because they emit more power in gravitational
waves. This is particularly true when assuming a prior



9

that is uniform in component mass, as we have done here.
We will obtain misleading results if our prior is wrong,
which is likely given the large uncertainty in the mass
and spin distribution of BBHs.

To mitigate the effect of our choice of prior, we wish to
explore how the sensitive volume changes across masses
and spins. Doing so requires a large number of simulated
signals, as the variance in the volume estimate increases
the more we sub-divide the parameter space. However,
adding more than a few thousand simulated signals to
real detector data and analyzing with the full search
pipeline is computationally expensive, as it requires find-
ing the overlap between every template and every sim-
ulated signal to find the best matching template in a
particular realization of noise.

Instead, in this section we use Gaussian noise to ap-
proximate the average sensitive volume. By definition,
the most effectual template to a signal will be the tem-
plate that has the largest SNR when averaged over sev-
eral realizations of Gaussian noise. We therefore do the
following: we only filter each simulated signal with its
most effectual template in 16 realizations of simulated
Gaussian noise in each LIGO detector. We find the net-
work re-weighted SNR ρ̂ in each realization, then average
over the realizations to get a measurement of the expec-
tation value of ρ̂, 〈ρ̂〉. We use this to compute the sensi-
tive volume. This allows us to use all 500 000 simulated
signals from the previous section for computing sensitive
volume.

Another advantage of using Gaussian noise is we can
analytically estimate the increase in false alarm proba-
bility at fixed ρ̂ of the aligned-spin bank as compared to
the non-spinning bank. In real data the distribution of
re-weighted SNR is not the same for all templates. The
shorter the bandwidth of a template in the frequency do-
main, the larger its overlap with non-Gaussian transients.
This causes shorter-bandwidth templates to produce trig-
gers with large values of ρ̂ at a higher rate than larger-
bandwidth templates [54]. To account for this, searches
have binned results by various parameters when estimat-
ing false alarm rate, then combined results over the bins
[42, 43]. The choice of parameter to use and the size
of bins adds an additional complication when comparing
sensitivity, and is dependent on the noise.

However, in Gaussian noise, the SNR of every tem-
plate is χ distributed with two degrees of freedom. We
therefore do not need to worry about binning results by
parameters. Furthermore, in Gaussian noise we can ana-
lytically estimate the increase in false alarm probability
due to the larger parameter space covered by the aligned-
spin bank. Let us assume that every template is indepen-
dent of each other. With this assumption, if we have Nt
templates in a bank, the probability of getting one or
more single-detector triggers with an SNR ≥ ρ is:

P (ρ|Nt) = 1− Cχ(ρ)Nt , (12)

where Cχ(ρ) = 1− e−ρ2/2 is the cumulative distribution
function of the χ distribution with two degrees of free-

dom. In Gaussian noise with no signals, ρ̃ ≈ ρ; with two
detectors, ρ̂ ≈

√
2ρ̃. We therefore model the false alarm

probability as F(ρ̂) ≈ P (ρ/
√

2|Nt). If we have a bank
with N0 templates in which the threshold for detection
is ρ̂0, then to keep the false alarm probability fixed in a
bank with Nt templates, ρ̂ must increase by:

ρ̂2 = −4 log

[
1−

(
1− e−ρ̂20/4

)N0/Nt
]

(13)

Since templates are not actually independent this model
does not give an accurate absolute value of F(ρ̃). How-
ever, the model is adequate for comparing the relative
false alarm probabilities of two banks that cover differ-
ent size parameter spaces.

Figure 3 shows the sensitive volume versus network
re-weighted SNR for each bank assuming an astrophysi-
cal prior that is uniform in component masses and spin-
magnitude. The re-weighted SNR of the aligned-spin
bank is offset with respect to the non-spinning bank via
Eq. (13) to account for the increase in false alarm proba-
bility. Even so, we see that the aligned-spin bank is more
sensitive than the non-spinning bank for all thresholds
considered in the plot. Also plotted is the “optimal” sen-
sitive volume, which is the sensitivity if every template
matched every signal exactly, and the detection statistic
was SNR. We see that the sensitivity of the aligned-spin
bank with re-weighted SNR as the ranking statistic is
close to optimal, as expected from the effectualness study
in the prior section.

A single-detector SNR threshold of ρ = 8 is typi-
cally assumed to be large enough to confidently claim
a detection. For two detectors, this corresponds to
ρ̂ =
√
Ndρ ≈ 11.3. We use this as the detection threshold

for the non-spinning bank. By Eq. (13), this corresponds
to a threshold of ≈ 11.7 for the aligned-spin bank. We
find that the aligned-spin bank is 1.30± 0.01 more sensi-
tive than the non-spinning bank at this threshold (dashed
line in Fig. 3).

As stated above, the relative sensitivity of the two
banks is strongly dependent on the astrophysical prior
chosen. Indeed, because we have chosen a prior that
is uniform in component masses, the average volume is
dominated by high-mass signals. This can be seen in the
top plot of Fig. 4, which shows the sensitive volume of
the aligned-spin search sub-divided into bins in compo-
nent mass. The sensitive volume of the highest mass tile
is over two-orders of magnitude larger than the lowest-
mass tile (320×106 Mpc3 versus 2.43×106 Mpc3). Taking
the ratio of the sensitive volumes of the aligned-spin bank
to the non-spinning bank in each mass bin (bottom plot
of Fig. 4), we find that the aligned-spin bank has a larger
gain as we go to lower masses.

In Fig. 5 (top) we further sub-divide each mass tile
into 25 bins in χ1 and χ2, with the color bar indicat-
ing the relative sensitivity of the two banks. We find
that for component masses . 20 M� and χ1,2 & 0.6, the
gain can be greater than a factor of 5 (dark blue tiles).
Indeed, if we zoom in on one of these low-mass tiles,
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FIG. 3: Sensitive volume versus re-weighted SNR ρ̂ of
the non-spinning (NS) and aligned-spin (AS) bank. The
bottom axis shows ρ̂ for the non-spinning bank; the top
axis shows ρ̂ scaled to account for the increase in false
alarm rate of the aligned-spin bank. The “Optimal”

volume shows the sensitive volume computed using the
overlap of each injection with itself (the “optimal

SNR”). The dashed line shows a threshold re-weighted
SNR equivalent to a single-detector SNR threshold of 8
in the non-spinning search (∼ 11.3 for NS; ∼ 11.7 for

AS).

m1,2 ∈ [3.4, 5.8) M� (highlighted box in the top plot), we
find that aligned-spin bank is up to O(105) times more
sensitive than the non-spinning bank for χ1,2 > 0.6 (high-
lighted tile in the bottom plot of Fig. 5). This is much
larger than what is expected from SNR loss alone. The
effectualness of the non-spinning bank is between ∼ 0.7
and ∼ 0.6 for this region of parameter space, indicating
an SNR loss of 30 – 40 %. That would translate to a loss
in sensitive volume of 66 – 78 %.

The reason for the large increase in sensitivity can be
seen in the top left of Fig. 6, which shows the reduced χ2

versus SNR in a single detector for this region of param-
eter space. We see that the χ2 values of the signals when
recovered by the non-spinning bank are quite large. In
fact, the χ2 values asymptote such that the re-weighted
SNR of the signals is always < 8 (solid black line in the
figure). Thus, even when the optimal SNR of a signal is
400 (and the recovered SNR by the non-spinning bank
is 200), the re-weighted SNR is still less than 8, which
is the threshold for detection. This is strongly depen-
dent on the threshold for detection: if the single-detector
threshold was 6 (top dashed-line), these high-SNR events
would be detected. This can be seen in the bottom plot
of Fig. 6, which shows the volume versus threshold net-
work re-weighted SNR for just this region of parameter
space. We see that as the threshold decreases below 11.3

FIG. 4: Top: Sensitive volume of the aligned-spin bank
as a function of component mass. The volumes in each
tile are computed assuming an astrophysical prior that

is uniform in component mass only within that tile.
Bottom: Ratio of sensitive volumes of the aligned-spin

bank (VAS) to the non-spinning bank (VNS) as a
function of component mass. The threshold ρ̂ used to

compute sensitive volumes in these plots is 11.3 for the
non-spinning bank and 11.7 for the aligned-spin bank

(dashed line, Fig. 3).

(corresponding to a single-detector SNR = 8), the sen-
sitivity of the non-spinning bank rapidly improves. For
instance, at a threshold of ρ̃ = 8 (which corresponds to
a single-detector SNR ∼ 5.6), the gain is ∼ 3, closer to
that predicted by the loss in SNR.

The non-spinning sensitivity levels off at ρ̃NS ∼ 11 in
the right plot of Fig. 6 due to the minimum distance
bound we used for the injections. If we had chosen
smaller bounds, the VNS would continue to drop, indi-
cating that the non-spinning bank has zero sensitivity to
these signals. We find similar characteristics for tiles in
which the component masses are < 17 M�, χ1 ≥ 0.6, and
χ2 ≥ −0.2.

By only filtering the most effectual template, we have
made the assumption that 〈V(ρ̂)〉 ≈ V(〈ρ̂〉). Figure 6
indicates that we are in a regime where small changes
in χ2 have large effects on the sensitive volume. We ex-
pect that the approximation breaks down in this regime.
The χ2 values of signals will fluctuate about the mean
in different realizations of noise, which will cause small
fluctuations in ρ̂. For these low-mass, high-spin areas of
parameter space, we exact these small fluctuations to be
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FIG. 5: Top: Ratio of sensitive volumes of the
aligned-spin bank (VAS) to the non-spinning bank (VNS)
as a function of component mass and spin. Each mass
tile is subdivided into 25 tiles of the dimensionless spin
of each component (χ1,2, inset axes). Dark blue tiles

indicate regions in which the gain is > 5. Bottom: The
relative gain as a function of χ1 and χ2 for the mass bin
m1,2 ∈ [3.4, 5.8) M� (highlighted mass tile in the top

plot). The threshold re-weighted SNR used to compute
sensitive volume in these plots is 11.3 for the

non-spinning bank and 11.7 for the aligned-spin bank
(dashed line, Fig. 3).

enough to make ρ̂ rise above threshold. Thus we do not
expect the sensitive volume of the non-spinning bank to
be exactly zero. In the next section we filter this subset
of signals with the full template bank and pipeline to get
a better estimate of the gain between the non-spinning
bank and the aligned-spin bank in these low-mass, high-
spin regions of parameter space.

B. Recolored noise

To get a better estimate of the gain in sensitivity we
can expect between the aligned-spin and non-spinning
banks, we add simulated signals to S6 data recolored
to resemble early advanced LIGO data. We analyze
that data using the search algorithm described in [71].
That is, we filter each signal with all templates, find
coincidence, maximize over the bank using network re-
weighted SNR, and estimate the background to find
F(ρ̂). Since this is computationally expensive to per-
form on all 500 000 simulated signals, we limit this study

to areas of parameter space where the gain in sensitive
volume was� 10 in the previous section. Namely, we re-
strict to signals with m1,2 < 17, χ1 > 0.6, and χ2 > −0.2,
of which there are ∼ 10 000.

As discussed in the last section, due to the presence
of glitches, the distribution of ρ̂ is not the same for all
templates in real noise, as it is in Gaussian noise. Results
are typically binned by some parameter [42, 43] when es-
timating false alarm probability for this reason. For ex-
ample, in Ref. [43], three bins in chirp mass were used.
We do not try to do any binning here. This means that
our results may not be as optimal, but we expect such
binning to have a small effect on the relative gain in sen-
sitivity between the non-spinning and aligned-spin bank.

Figure 7 shows the relative gain between the non-
spinning bank and the aligned-spin bank in the recolored
noise. As expected, the gain is not as large as we found in
the previous section. For example, focusing on the same
region of parameter space that we highlighted in the prior
section (m1,2 ∈ [3.4, 5.8) M� and χ1,2 ≥ 0.6) the gain is
10±6 (highlighted tile in Fig. 7). The reason for this can
be seen in Fig. 8, which shows reduced χ2 versus SNR
in a single detector for these signals when recovered by
the non-spinning bank (left) and the aligned-spin bank
(right) in the recolored noise. We find similar behavior
as in the Gaussian noise results (Fig. 6): the χ2 of the
signals when recovered by the non-spinning bank is large,
causing the signals to asymptote to lines of constant re-
weighted SNR. However, the variance of the reduced χ2

means that not all of the signals have re-weighted SNRs
greater than the threshold of 8, as they did in the pre-
vious section. The result is the non-spinning bank does
recover at least some of the signals above threshold, yield-
ing a non-zero sensitive volume. However, the sensitive
volume of the aligned-spin bank in these areas of param-
eter space can still be an order-of-magnitude or larger
than the non-spinning bank, which is larger than one
might expect from SNR loss alone.

Also shown in Fig. 8 are triggers caused by noise in
for each bank (gray dots in both plots). These triggers
form the background with which false alarm probabil-
ity is measured. To improve the sensitivity of the non-
spinning bank, one might consider changing the exact
form of the χ2 re-weighting of the SNR that was used
in Eq. (11). However, we see in this figure that this
would be difficult to do without also promoting noise
triggers to higher significance. The large mismatch be-
tween the non-spinning templates and the spinning sig-
nals makes it difficult to separate glitches from signals. In
other words, these aligned-spin signals look like glitches
to the non-spinning bank. Contrast this to the aligned-
spin bank. Although the number of noise triggers has
increased, there continues to be good separation between
the aligned-spin signals and noise. We conclude that the
aligned-spin bank can be implemented using the same
form of the re-weighted SNR given in Eq. (11).
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FIG. 6: Single-detector SNR (ρ) versus reduced χ2 (left), and sensitive volume versus threshold ρ̃ (right) for signals
with m1,2 ∈ [3.4, 5.8) M� and χ1,2 ≥ 0.6 (the highlighted tile in the bottom plot of Fig. 5). The dashed lines in the
left plot show lines of constant single-detector re-weighted SNR; the thick solid line shows a re-weighted SNR = 8,

which is the threshold we used for the non-spinning bank.

FIG. 7: Ratio of sensitive volumes of the aligned-spin
bank (VAS) to the non-spinning bank (VNS) as a

function of component mass and spin in the recolored
noise. Tiles are only shown for the injections that were

selected for this test (
χ1 > 0.6, χ2 ∈ [−0.2, 0.99),m1,2 < 16.6 M�). The
highlighted tile corresponds to the same region of

parameter space as the highlighted tile in the bottom
plot of Fig. 5.

IV. CONCLUSIONS

We have demonstrated here a complete method for
conducting a search for GWs from BBH using an aligned-
spin template bank in advanced LIGO. We have cov-
ered the parameter space combining two previously pro-
posed methods for template placement: geometric and
stochastic. We have shown that combining these meth-
ods yields a more effectual template bank than the geo-
metric method alone, while also using ∼ 5% fewer tem-
plates than the stochastic method alone. We expect that
the savings will only increase as the lower-frequency per-
formance of the LIGO detectors improves in future ob-
serving runs.

Applying the template bank to an analysis of simulated
advanced LIGO data, we have characterized the improve-
ment in sensitivity of the pipeline towards aligned-spin
signals. We have found that the aligned-spin bank is sig-
nificantly more sensitive than the non-spinning bank to
signals with χ1 & 0.6 and component masses m1,2 .
20 M�. From mismatch alone, we would expect the
aligned-spin bank to have a sensitive volume that is 20
to 30% larger than the non-spinning bank in this region
of parameter space. However, when the effects of χ2 re-
weighting of SNR are included, we find that the aligned-
spin bank can be one to two orders-of-magnitude more
sensitive to these signals. Although less pronounced, the
aligned-spin bank is also more sensitive to higher-mass
systems with non-zero spins, with gains of 30− 500%.

Due to the increase in false alarm rate, adding the
aligned spin templates does reduce the sensitivity to non-
spinning systems by ∼ 10%. However, this would only
lead to a loss in detection rate if nearly all systems in
the universe were non-spinning. Based on observations
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FIG. 8: Single-detector SNR (ρ) versus reduced χ2 for the non-spinning (left) and aligned-spin (right) banks in
recolored noise for signals with m1,2 ∈ [3.4, 5.8) M� and χ1,2 ≥ 0.6 (the highlighted tile in the bottom plot of Fig. 5)

Also shown are the false alarms from each search (gray dots).

of X-ray binaries [33–39] and population synthesis mod-
els [40] we expect many systems to have spin. The sig-
nificant gain in sensitivity to spinning systems therefore
compensates for the relatively small loss in sensitivity to
non-spinning systems.

Although we only considered BBHs with total mass
≤ 50 M� in this study, the template-placement methods
discussed here can be applied to a larger range of masses.
We expect the gain in sensitivity to become less dramatic
for signals with total masses > 50 M�, even if χ1 & 0.6.
This is because χ2 becomes less effective at higher masses,
in which the bandwidth of templates is short.

In order to arrive at these results we used the same tun-
ing as was used in the search for CBCs in the sixth science
run of initial LIGO [43]. Namely, we used 16 bins when
computing χ2, and we used Eq. (11) to re-weight SNR.
Due to the large χ2 values, we found that the sensitiv-
ity of the non-spinning bank can vary dramatically with
small changes in the threshold ρ̂ used to detect signals.
Although another choice of χ2 bins and re-weighting is
possible, it would be difficult to improve the sensitivity
of the non-spinning bank without decreasing the abil-
ity of the search to separate signals from glitches. This
is due to the large mismatches involved between non-
spinning templates and spinning signals. The simplest,
safest approach is to simply use aligned-spin templates
in the search. We therefore recommend that an aligned-
spin search be performed in the first observation run of
advanced LIGO.
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Appendix A: Derivation of sensitive volume

The integrand of Eq. (8) is a complicated function
of the integration variables; the efficiency, for example,
depends on the characteristics of the data and how well
the ranking statistic ρ̂ separates noise from signal, which
is not known a priori. We therefore find the sensitive
volume by Monte Carlo integration, as follows.

First, note that the efficiency function serves to de-
termine what fraction of the total number of signals are
detected. For example, if the universe contained N sig-
nals within the volume Vmax (i.e., q was a series of N
delta functions), n of which are detected by a pipeline
at some threshold ρ̂, then the sensitive volume would be
nVmax/N . Assume then that we have N random sim-
ulated signals drawn from the same distribution as q,
which we filter through the pipeline to acquire a ranking
stat value ρ̂i for each. We can replace ε with a step func-
tion Θ such that Θ(ρ̂) = 1 if ρ̂ ≥ ρ̂i, and 0 otherwise.
The sensitive volume is then:

V(ρ̂) ≈ Vmax
1

N

N∑
i

Θ(ρ̂) = Vmax 〈Θ(ρ̂)〉 , (A1)

The error in this estimate is given by the square root of
the variance:

δV = Vmax

√
〈Θ2〉 − 〈Θ〉2

N
. (A2)

As discussed in the main text, for BBHs with total
masses ≤ 50 M�, the LIGO detectors are sensitive out to
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a maximum distance of ∼ 1 Gpc assuming the early ad-
vanced LIGO PSD. Over these distances we assume an
isotropic distribution of signals. Thus for Eq. (A1) to
be correct, we have to draw our simulated signals from a
spatial distribution that is uniform in volume. However,
due to the antenna pattern of the detectors, we have
found that using a distribution uniform in volume causes
most of the signals to be too weak to be detected by the
pipeline. This leads to a large variance in the volume
estimate. A more efficient approach is to do importance
sampling, i.e., to draw the simulated signals from a dis-
tribution q′ such that the majority of the signals closely
straddle the boundary between being detected (found)
and not being detected (missed).

In general, any Monte Carlo integral of a function f
over some volume V can be written [72]:

I =

∫
V

f(x)q(x)dx =

∫
V

g(x)q′(x)dx, (A3)

where g(x) = f(x)q(x)/q′(x). Here, q is the distribu-
tion that is uniform in V and q′ is any other distribution
from which we would prefer to draw samples. In order
to approximate this as an average over N random points
sampled from q′ we need to transform to the coordinate
system x′ in which q′ is uniform. Let s−1 be the trans-
formation from x′ to x, such that s(x′) = x, and |J|
be the Jacobian determinant of the transformation (i.e.,
Jij = ∂x′i/∂xj). The integral is then the weighted aver-
age:

I =

∫
g (s[x′]) q (s[x′]) |J|dx′

≈
∑N
i=1 wif (s[x′i])∑N

i=1 wi
= 〈w̃f〉 (A4)

where:

wi =
q (s[x′]) |J|
q′ (s[x′])

, (A5)

and w̃i = wi/
∑N
i=1 wi. The error on the estimate is then:

δI =

√
〈(w̃f)2〉 − 〈w̃f〉2

N
. (A6)

We apply this to the spatial part of the sensitive vol-
ume integral as follows. First, we assume that within
some minimum distance rmin nearly all signals will be
detected by the pipeline at our detection threshold ρ̂†.
Likewise, due to noise, we know that all signals beyond
some maximum distance rmax will not be detected by the
pipeline. We determine these bounds based on the opti-
mal network SNR. The optimal network SNR ρopt of a
signal with some intrinsic and extrinsic parameters Λ∗ is
related to its physical distance r via:

r =

√∑
i 〈hi(Λ∗), hi(Λ∗)〉

ρopt
, (A7)

where hi is the strain caused by the signal at a fiducial
distance of 1 Mpc in the ith detector, and the sum is over
the number of detectors. If ρ̂ = ρopt, then we know that
the signal would be missed (found) at distances greater
(less) than the distance corresponding to ρopt = ρ̂†. How-
ever, due to the mismatch between signal and template,
χ2 re-weighting, and the presence of noise, ρ̂ is not ex-
actly equal to ρopt. We therefore choose a maximum and
minimum ρopt that we are confident bounds ρ̂†. We then
obtain a minimum and maximum distance bound for each
simulated signal via Eq. (A7). In this study, our detec-

tion threshold is ρ̂∗ = 8
√

2; we conservatively choose a
maximum (minimum) ρopt/

√
2 of 400 (4) to obtain the

distance bounds. Note that this means that rmin and
rmax depend on the intrinsic and extrinsic parameters of
the signal.

Given the distance bounds, we next choose a distri-
bution to draw the distances from, q′. This choice is
informed by our assumed distribution of signals q. As
discussed in the main text, for this study we assume
an isotropic distribution of signals in the universe; i.e.,
we assume that q is independent of x. Given this dis-
tribution of signals and our choice of distance bounds,
we have found that using a distribution q′ uniform in
the solid angle Ω and uniform in distance yields vol-
ume estimates with reasonably small variance. Thus for
r ∈ [rmin(Λ), rmax(Λ)),

q′(Λ, r) = [rmax(Λ)− rmin(Λ)]−1 ≡ ∆r(Λ).

Since q′ is uniform in r and Ω, the Jacobian determinant
|J| = r2. With these choices, the sensitive volume is:

V(ρ̂) =

∫
dΩ

∫
dΛq(Λ)

[∫ rmin(Λ)

0

r2dr

+

∫ rmax(Λ)

rmin(Λ)

Θ(ρ̂; r,Λ)∆r(Λ)r2dr

]

≈ 4π
1

N

N∑
i=1

[
1

3
r3
min,i + Θi(ρ̂)∆rir

2
i

]
. (A8)

The sum is over the simulated signals, the intrinsic and
extrinsic parameters of which are drawn from q(Λ), and
sky locations drawn uniform in the solid angle Ω.

Equation (A8) assumes that the distribution of signals
in the universe over Λ is the same as the distribution
of the simulated signals. We can also use Eqs. (A3) -
(A6) to weight the simulated distribution to any other
astrophysical distribution that we believe to be plausi-
ble. This allows us to test different distributions (about
which we are uncertain) while still using the same set
of simulated signals. This saves on computational costs,
though it does result in a larger variance in the sensitive
volume estimate.

The most compuationally expensive step in the Monte
Carlo simulation is filtering the simulated signals to find
the largest SNR over the bank. We already have these
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results from the effectualness studies in Sec. II. How-
ever, in those studies we use a simulation distribution
q′(Λ) that is log in the component masses, while our as-
sumed astrophysical distribution q(Λ) is uniform in the
component masses. To account for this, we reverse the
prescription we used above; i.e., we determine the weight
needed to convert from the simulated distribution q′(Λ)
to the assumed distribution q(Λ). The Jacobian deter-
minant for this transformation is m1m2. The sensitive

volume estimate is thus:

V(ρ̂) ≈ 4πα

N

N∑
i=1

m1im2i

[
1

3
r3
min,i + Θi(ρ̂)∆rir

2
i

]
, (A9)

where α is a normalization constant needed to convert
between the mass distributions. As this is a constant
over the simulation distribution, it cancels in the ratio of
volumes presented in the above figures.
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