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Abstract

Background: ChIP-seq has become a routine method for interrogating the genome-wide distribution of various
histone modifications. An important experimental goal is to compare the ChIP-seq profiles between an experimental
sample and a reference sample, and to identify regions that show differential enrichment. However, comparative
analysis of samples remains challenging for histone modifications with broad domains, such as
heterochromatin-associated H3K27me3, as most ChIP-seq algorithms are designed to detect well defined peak-like
features.

Results: To address this limitation we introduce histoneHMM, a powerful bivariate Hidden Markov Model for the
differential analysis of histone modifications with broad genomic footprints. histoneHMM aggregates short-reads over
larger regions and takes the resulting bivariate read counts as inputs for an unsupervised classification procedure,
requiring no further tuning parameters. histoneHMM outputs probabilistic classifications of genomic regions as being
either modified in both samples, unmodified in both samples or differentially modified between samples. We
extensively tested histoneHMM in the context of two broad repressive marks, H3K27me3 and H3K9me3, and
evaluated region calls with follow up qPCR as well as RNA-seq data. Our results show that histoneHMM outperforms
competing methods in detecting functionally relevant differentially modified regions.

Conclusion: histoneHMM is a fast algorithm written in C++ and compiled as an R package. It runs in the popular R
computing environment and thus seamlessly integrates with the extensive bioinformatic tool sets available through
Bioconductor. This makes histoneHMM an attractive choice for the differential analysis of ChIP-seq data. Software is
available from http://histonehmm.molgen.mpg.de.
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Background
Post-translational modifications of histones, such as
methylation, acetylation, phosphorylation or ubiquitina-
tion have central roles in genome function [1] and in
the preservation of genome integrity [2]. These epige-
netic marks participate in the silencing of transposable
elements [3] as well as in the regulation of specific genes
during development [4]. Improper placement of histone
modifications can lead to abnormal cellular phenotypes
such as those observed in cancers [5], during aging [6],
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or in response to certain environmental/nutritional chal-
lenges [7].
Genome-wide measurements of various histonemodifi-

cations can be readily obtained using ChIP-seq technolo-
gies, which combine immmunoprecipation techniques
with next generation sequencing [8]. Although the appli-
cation of this technology has become routine in most
laboratories, downstream computational analyses con-
tinue to be a major bottleneck for many experimentalists.
A common experimental goal is to compare the ChIP-
seq profiles between an experimental sample (e.g. cancer
sample) and a reference sample (e.g. normal controls),
and to identify regions that show differential modifica-
tion patterns. These regions can be used to identify genes
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and regulatory mechanisms involved in diverse biological
processes such as development or disease.
Several methods have been developed to facilitate com-

parisons of ChIP-seq samples for peak-like features [9,10].
However, many important histone modifications do not
occur in narrow well-defined peaks, but show broad dif-
fuse patterns (Figure 1). H3K27me3, for example, is a
histone modification that is deposited by the polycomb
group of proteins [1]. Together with H3K9 methylation,
it forms large heterochromatic domains [11] which can
span several thousands of basepairs [12,13]. Even with
deeply sequenced ChIP-seq libraries, histone modifica-
tions of this type can yield relatively low read coverage
in effectively modified regions, thus producing low sig-
nal to noise ratios. Application of methods that search
for peak-like features in such data can generate many
false positive or false negative calls. These miscalls com-
promise downstream biological interpretations and affect
decisions regarding experimental follow-up studies.
To address these issues we developed histoneHMM,

a novel bivariate Hidden Markov Model for the dif-
ferential analysis of histone modifications with broad
genomic footprints. histoneHMM aggregates short-reads
over larger regions and takes the resulting bivariate
read counts as inputs for an unsupervised classifica-
tion procedure, requiring no further tuning parame-
ters. histoneHMM outputs probabilistic classifications of
genomic regions as being either modified in both samples,
unmodified in both samples or differentially modified
between samples.
We extensively evaluate the performance of his-

toneHMM in the context of ChIP-seq data of two broad
repressive histonemarks, H3K27me3 and H3K9me3 from
rat, mouse and human cell lines. Using several biological
criteria and follow-up experimental validation, we show
that histoneHMM outperforms competing methods in
calling differentially modified regions between samples.

histoneHMM is a fast algorithm written in C++ and
compiled as an R package. It runs in the popular R com-
puting environment and thus seamlessly integrates with
the extensive bioinformatic tool sets available through
Bioconductor. This makes histoneHMM an attractive
choice for the differential analysis of ChIP-seq data.

Results and discussion
Genome-wide detection of differentially modified regions
We analyzed ChIP-seq data collected from the left ven-
tricle of the heart of two different inbred rat strains,
Spontaneously Hypertensive Rat (SHR/Ola) and Brown
Norway (BN-Lx/Cub). SHR is a classical animal model
for hypertension which is extensively used in studies of
cardiovascular disease[14]. The biological motivation was
to compare the heart epigenomes of these two strains
in order to identify candidate regions that contribute to
the hypertensive phenotype in SHR. Here we focused on
data for the repressive mark H3K27me3, which was gen-
erated as part of a larger study to characterize the impact
of sequence variation on histone marks in the rat [15].
Further, we extended our analysis to H3K9me3, another
repressive histone mark. This second data set was pre-
viously used to study sex specific histone marks in the
liver of CD-1 mice [16]. Finally, we analyzed the differen-
tial enrichment of H3K27me3, H3K9me3, H3K36me3 and
H3K79me2 between the human embryonic stem cell line
H1-hESC (H1) and the K562 cell line, using data provided
by the ENCODE project [17].
All of the analyzed histone marks and especially

H3K27me3 and H3K9m3 are known to have large
genomic footprints that can extend up to several thou-
sands basepairs in length [12,13]. To evaluate the per-
formance of histoneHMM, we applied four competing
algorithms to these data, Diffreps [18], Chipdiff [19],
Pepr [20] and Rseg [21]. Similar to histoneHMM, these
algorithms are designed for the differential analysis of

Figure 1 Example genome browser screen-shot. ChIP-seq read coverage of H3K27me3 (upper coverage track) occurs in broad domains across
the genome compared to other histone marks like H3K4me3 (lower coverage track), which occur in precisely defined peaks. Data from [15].



Heinig et al. BMC Bioinformatics  (2015) 16:60 Page 3 of 15

ChIP-seq experiments, and are not restricted to narrow
peak-like data, thus providing a suitable reference. Biolog-
ical replicates were available for all of the modifications
(Table 1). The reads from all strain replicates were merged
and used for analysis. Following othermethods [18,19], we
binned the genome into 1000 bp windows, and aggregated
read counts within each window.
Genome-wide, histoneHMM detected 24.96 Mb (0.9%

of the rat genome) as being differentially modified
between the two strains for H3K27me3, and 121.89 Mb
as differentially modified between male and female mice
for H3K9me3 (4.6% of the mouse genome) (Table 2).
The analysis of ENCODE cell lines generally identified
larger parts of the genome as differentially modified (9%-
26% of the human genome) compared to the analysis
of the same tissue between strains or sexes (Table 2).
When comparing differential H3K27me3 and H3K9me3
regions, the number of regions reported by histoneHMM
are greater than those reported by Diffreps and Chipdiff,
however Rseg consistently detected an even larger num-
ber of modified regions. While a substantial part of the
detected regions did overlap between methods (Figure 2),
also a considerable proportion of regions were algorithm-
specific. To explore the biological implications of this
discrepancy we performed exemplary follow-up analyses
for H3K27me3 and H3K9me3. For H3K27me3 we per-
formed targeted qPCR on a selected number of regions
for the SHR and BN strains, as well as RNA-seq expres-
sion experiments and functional annotation analysis. In
addition we also explored the relation between differen-
tial H3K27me3 regions and differential binding of the
polycomb complex in ENCODE cell lines. For H3K9me3
we studied X-inactivated genes as well as expression
experiments. For the remaining ENCODE data sets, we
evaluated the differential calls using gene expression
data.

Evaluation of differentiallymodified H3K27me3 regions
qPCR validation of selected regions
qPCR analysis was carried out on 11 regions that were
called differentially modified by histoneHMM between
SHR and BN, and had a read count fold-change of larger
than two (Table 3). For 4 of these regions we detected
no amplification signal in the SHR strain. Further analy-
sis showed that these regions overlapped genomic dele-
tions in SHR and are therefore not genuine differentially
modified regions. Nonetheless, since these deletions pro-
duce differential ChIP-seq signals, we consider these his-
toneHMM calls as true positives. Of the remaining 7
regions all but 2 were confirmed by qPCR (Figure 3a).
For comparison, Chipdiff and Rseg were only able to
detect 5 and 6 of the validated differential regions,
respectively, suggesting a higher false negative rate rel-
ative to histoneHMM, at least for the limited number

of regions surveyed here. Diffreps performed similar to
histoneHMM. It detected all qPCR validated differential
regions, but also predicted the same two regions that
could not be validated using qPCR.

RNA-seq analysis of differentiallymodifiedH3K27me3
regions
Because the number of regions used for qPCR valida-
tion was small and biased towards our method (only
regions called by histoneHMM were selected), we per-
formed additional functional validation of differential calls
using RNA-seq data from age-matched animals (Table 1).
We employed DESeq [9] to identify genes that are dif-

ferentially expressed between SHR and BN, and assessed
the overlap between these genes and the set of differen-
tially modified regions detected by each of the methods.
Our results show that histoneHMM yielded the most
significant overlap (P = 3.36 × 10−6, Fisher’s exact test,
Figure 3b).
The genes that were concordantly differentially

expressed and differentially modified are plausible causal
candidates for hypertension in SHR. Gene ontology
analysis revealed enrichment for the GO term “anti-
gen processing and presentation” (GO:0019882, P =
4.79 · 10−7). These were mainly genes from the MHC
class I complex which is a key part of the innate immune
response. Interestingly, all of the differential MHC genes
are located in blood pressure quantitative trait loci
(QTL) that were previously identified using either crosses
derived from these two strains or from closely related
strains [22]. Integration of our ChIP-seq results with
these QTL mapping data can thus help prioritize targets
within the QTL intervals for experimental follow-up.

Comparison of differential H3K27me3 regions and
differential polycomb binding
H3K27me3 is a hallmark of repression by the polycomb
complex [1,11]. The genome wide binding patterns of
EZH2, a major component of the polycomb complex, has
been characterized in the human embryonic stem cell
line H1-hESC (H1) as well as in the K562 cell line by
the ENCODE project. EZH2 is characterized by a sim-
ilarly broad pattern as H3K27me3. Since H3K27me3 is
deposited by the polycomb complex it is expected that
differential H3K27me3 occupancy between cell lines is
related to differential EZH2 binding. In order to be able
to compare the two differential signals without having
to rely on a segmentation algorithm for the EZH2 data,
we quantified EZH2 occupancy on gene bodies. Subse-
quently we identified genes with differential EZH2 read
counts using DESeq (FDR < 0.01). In analogy to the com-
parison with differential gene expression, we assessed the
significance of the overlap of differential EZH2 genes with
differential H3K27me3 region calls. Figure 3g shows that
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Table 1 Overview of ChIP-seq and RNA-seq sequencing
data for the rat (BN and SHR), for themouse (male and
female), for themyoblast (MB) dataset from [36], and for
the ENCODE cell lines

Data Replicate Total number Mapped
of reads reads

H3K27me3 BN 1 69,047,384 54,415,680

H3K27me3 BN 2 82,631,022 70,349,074

H3K27me3 BN 3 70,920,377 60,263,098

H3K27me3 SHR 1 62,894,736 49,966,171

H3K27me3 SHR 2 68,439,111 58,495,532

H3K27me3 SHR 3 68,419,655 58,433,557

Input BN 1 14,104,386 12,833,263

Input BN 2 15,381,807 14,172,254

Input BN 3 61,276,324 58,969,661

Input SHR 1 16,049,419 14,700,053

Input SHR 2 18,586,414 16,910,655

Input SHR 3 74,035,329 70,234,582

RNA-seq BN 1 168,796,774 121,417,255

RNA-seq BN 2 162,380,800 123,606,276

RNA-seq BN 3 170,100,328 129,078,242

RNA-seq BN 4 161,444,260 117,512,826

RNA-seq BN 5 144,182,176 105,095,363

RNA-seq SHR 1 164,552,150 118,500,162

RNA-seq SHR 2 166,005,952 126,920,455

RNA-seq SHR 3 149,525,162 108,870,073

RNA-seq SHR 4 120,844,554 85,337,460

RNA-seq SHR 5 138,124,004 99,015,155

H3K9me3 female 1 13,306,841 8,708,647

H3K9me3 female 2 7,860,660 3,942,578

H3K9me3 female 3 7,092,019 3,553,617

H3K9me3male 1 12,091,621 6,274,126

H3K9me3male 2 7,195,641 3,514,546

H3K9me3male 3 5,703,768 2,786,109

Input 1 10,458,196 6,714,959

Input 2 4,304,875 1,940,625

Input 3 3,586,754 1,559,414

Input 4 4,482,286 1,947,833

Input 5 3,680,479 1,535,794

Input 6 14,922,773 11,291,654

RNA-seq female 1 6,245,431 4,367,593

RNA-seq female 2 13,093,629 9,257,763

RNA-seq male 1 14,086,627 11,311,584

RNA-seq male 2 8,098,083 6,476,421

MB H3K27me3 1 9,453,468 9,421,380

MB H3K27me3 2 9,924,308 9,875,240

MB H3K27me3 3 10,316,946 10,262,585

Table 1 Overview of ChIP-seq and RNA-seq sequencing
data for the rat (BN and SHR), for themouse (male and
female), for themyoblast (MB) dataset from [36], and for
the ENCODE cell lines (Continued)

MB input 1 9,798,009 9,780,084

MB input 2 9,807,040 9,789,125

MB input 3 7,351,896 7,340,980

MB input 4 12,350,738 12,324,079

H1 H3K09me3 1 32,382,686 22,900,208

H1 H3K09me3 2 41,645,083 27,715,874

H1 H3K27me3 1 8,342,672 6,434,801

H1 H3K27me3 2 15,963,714 12,146,581

H1 H3K27me3 3 19,825,041 10,943,029

H1 H3K27me3 4 17,600,144 5,009,090

H1 H3K27me3 5 11,715,209 7,194,836

H1 H3K27me3 6 14,948,211 8,705,091

H1 H3K27me3 7 13,277,331 5,472,352

H1 H3K36me3 1 24,086,746 13,669,344

H1 H3K36me3 2 16,739,261 13,164,807

H1 H3K79me2 1 29,740,715 24,616,670

H1 H3K79me2 2 45,788,899 35,599,680

H1 input 1 13,876,810 10,813,095

H1 input 2 16,581,567 7,681,001

H1 RNA-seq 1 250,790,392 140,719,829

H1 RNA-seq 2 214,202,680 114,403,031

K562 H3K27me3 1 19,297,190 12,210,065

K562 H3K27me3 2 22,830,589 12,119,288

K562 H3K36me3 1 26,973,698 14,803,144

K562 H3K36me3 2 17,501,267 10,393,298

K562 H3K79me2 1 31,690,813 22,740,997

K562 H3K79me2 2 21,245,046 13,669,674

K562 H3K9me3 1 21,099,652 15,816,227

K562 H3K9me3 2 46,226,003 33,939,687

K562 input 1 27,579,809 19,570,350

K562 RNA-seq 1 227,177,516 134,666,953

K562 RNA-seq 2 238,106,630 158,075,847

Mapped reads refers to the number of uniquely mapped reads after removal of
likely PCR duplicates.

histoneHMM yielded the most significant overlap, indi-
cating that differential H3K27me3 calls are biologically
relevant.

Evaluation of differentially modified H3K9me3 regions
Validation using known X-chromosome inactivated genes
Inactivation of one copy of the X chromosome in
female mammals is a well characterized mechanism of
dosage compensation [23]. Early cytogenetic observations
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Table 2 Detection of differentiallymodified regions
(inMb) between SHR and BN in the left ventricle of the
heart for H3K27me3, between female andmale mice for
H3K9me3 and betweenH1-hESC and K562 ENCODE cell
lines for H3K9me3, H3K79me2, H3K36me3 andH3K27me3

histoneHMM Diffreps Chipdiff Pepr Rseg

H3K27me3 24.96 18.09 6.08 11.05 42.97

H3K9me3 121.89 11.34 19.56 0.00 2651.86

ENCODE
H3K9me3

843.03 89.26 37.43 0.27 2424.99

ENCODE
H3K79me2

284.58 278.12 83.27 111.49 1788.00

ENCODE
H3K36me3

324.85 110.74 0.00 0.00 1520.48

ENCODE
H3K27me3

591.27 108.88 120.90 0.00 1876.47

showed that one copy is in a heterochromatic state [24]
while the other copy remains accessible. H3K9me3 is
one of the hallmarks of heterochromatin [11], there-
fore inactivated regions are expected to be called dif-
ferentially modified between female and male mice. We
obtained a high confidence list of 250 X inactivated pro-
tein coding genes [25] and determined the percentage
of basepairs of these genes that was called differentially
modified by each of the methods studied here. Table 4
shows that histoneHMM correctly identifies 62% of inac-
tivated basepairs as differentially modified correspond-
ing to 99% of inactivated genes, which is substantially
more than what is reported by Diffreps, Chipdiff and
Pepr.
Interestingly, Rseg appears to call 100% of the inac-

tivated basepairs in these data. However, the very
large number of basepairs predicted exclusively by Rseg
(Figure 2) and the poor overlap with differential gene
expression (Figure 3) suggests that this is likely a conse-
quence of Rseg overpredicting large parts of the genome
as differentially modified.

RNA-seq analysis of differentiallymodifiedH3K9me3 regions
We further explored the relationship between differential
enrichment for H3K9me3 and genome-wide gene expres-
sion differences between male and female mice. Similar
to the RNA-seq analysis discussed above, we obtained
differentially expressed genes provided in [16], and then
assessed the overlap between these genes and the set of
differentially modified H3K9me3 regions detected by each
of themethods. Again, histoneHMMyielded the most sig-
nificant overlap (P = 1.39 × 10−6, Fisher’s exact test,
Figure 3c).
The expression differences between sexes in liver is of

particular interest for toxicology because many cyto-
chrome P450 (Cyp) genes involved in drugmetabolism are

affected [26]. It has been shown that liver gene expres-
sion ofCyp2b9 and Cyp2a4 in females can permanently be
changed from a female to amale program by a single appli-
cation of testosterone early in life, however for Cyp2d9
this is not the case [27]. Using histoneHMM, we found
that Cyp2d9 is fully contained in a H3K9me3 domain
specifically in females but partly unmodified in males,
while the other two genes are partly unmodified in both
sexes and do not show sex specific modifications. Thus
the differences of hormone activation between Cyp2d9 on
the one side and Cyp2b9 and Cyp2a4 on the other, could
be due to the female specific heterochromatic state of
Cyp2d9.

Evaluation of differential H3K36me3, H3K79me2 and
H3K9me3 calls in ENCODE cell lines
We evaluated the performance of differential peak call-
ing tools on additional histone modifications from the
ENCODE cell lines H1-hESC (H1) and K562. We investi-
gated H3K36me and H3K79me2 that are related to active
transcription and occur preferentially in gene bodies. We
also included the H3K9me3 data set in order to corrobo-
rate the results obtained on the mouse data, which had a
relatively low read coverage (see Table 1). We were mainly
interested to assess how versatile the compared methods
are and to identify potential biases of any method towards
certain histone modifications.
For the evaluation we again compared the differen-

tially called regions to differential gene expression, that
was obtained from ENCODE RNA-seq data. Figure 3d
shows that histoneHMM outperforms the other tools for
H3K9me3 also in the ENCODE cell lines and thereby con-
firms the results based on the mouse data set. Figure 3e-f
shows the performance for H3K36me3 and H3K79me2.
It is worth noting that the relation between differential
gene expression and differential histone modifications is
much more pronounced for H3K36me and H3K79me2
than for H3K27me3 or H3K9me3 since the former are
directly related to the transcriptional process.
The results show that histoneHMM is an efficient algo-

rithm for detecting functionally relevant differentially
modified regions. This is likely due to an overall lower
false positive and false negative rate. Indeed, extensive
simulation studies support this conclusion (Additional
file 1).

Runtime evaluation
We evaluated the runtime of each algorithmon each of the
data sets presented above. We measured the user time on
a 1150 MHz Quad-Core AMD Opteron Processor 2356.
Figure 4 shows that Chipdiff is the fastest algorithm on
all data sets, followed by histoneHMM. Note that the
figure has a log scale, so other algorithms are orders of
magnitude slower.
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Figure 2 Venn diagram. The Venn diagrams show the overlap in Mb between the regions that were called differentially modified by each of the
methods for the analysis of a) strain differences of H3K27me3, b) sex differences of H3K9me3 and differences between ENCODE cell lines H1-hESC
and K562 for c) H3K9me3, d) H3K36me3 (Chipdiff and Pepr did not identify any differential regions), e) H3K79me2 and f) H3K27me3 (Pepr did not
identify any differential regions).

Application of histoneHMM to single ChIP-seq samples
Although histoneHMM was primarily designed for the
detection of differentially modified regions between two

ChIP-seq samples, it can also be easily applied to the anal-
ysis of a single ChIP-seq sample. In this case histoneHMM
classifies the genome into regions that are modified or
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Table 3 Detection of qPCR validatedH3K27me3 regions in the rat

Region Chrom Start End qPCR validation deletion histoneHMM Diffreps Chipdiff Rseg

1 chr5 108,178,675 108,178,725 diff Y Y Y FN Y

2 chr20 3,578,026 3,578,076 diff N Y Y Y Y

3 chr20 4,476,835 4,476,885 non-diff N FP FP FP Y

4 chr20 4,677,234 4,677,284 diff Y Y Y Y Y

5 chr15 29,555,868 29,555,918 diff N Y Y FN Y

6 chr11 76,487,730 76,487,780 non-diff N FP FP FP FP

7 chr15 19,393,444 19,393,494 diff N Y Y Y FN

8 chr1 2,026,376 2,026,436 diff Y Y Y FN FN

9 chr1 2,123,750 2,123,800 diff N Y Y FN FN

10 chr13 86,915,949 86,916,000 diff N Y Y Y Y

11 chr15 30,003,020 30,003,070 diff Y Y Y Y Y

“diff” stands for validated differential enrichment, and “non-diff” for validated non differential enrichment. “deletion” indicated whether the region overlaps with a
genomic deletion in the SHR strain. FP = False Positives; FN = False Negatives; Y = correctly detected.

unmodified. Analysis of single ChIP-seq samples is com-
mon practice and many algorithms have been developed
for this purpose [28-32]. However, analyzing ChIP-seq
data with broader genomic footprints is still challenging.
We compared the performance of histoneHMM to several
popular peak callers that were specifically developed for
that task: Macs2 with the broad option [28], Zinba [33],
Sicer [34], Broadpeak [35] and Rseg [21].
For this comparative analysis, we used a publicly avail-

able data set of qPCR validated H3K27me3 regions, which
was previously used by Micsinai et al. [36] for a simi-
lar purpose. It consists of a ChIP-seq and a input control
data set for normalization (GEO accessions GSM721294,
GSM721306) and a set of 197 regions with positive or
negative qPCR validation status. This data set is ideal as
it allows for the calculation of the sensitivity and speci-
ficity of each method. Following Micsinai et al. [36] we
considered each basepair in the qPCR validated regions
as a data point and labeled it zero if it was not enriched
and one if it was enriched. The corresponding ChIP-seq
data was then analyzed using the standard settings of each
peak caller, and each base pair in the genome was assigned
a score (e.g. latent state probability or P-value) by the
algorithm. Since most peak callers do not return base-
pair resolution results, predictions for each basepair were
obtained by taking the peak caller’s result in the inter-
val overlapping the basepair position. It is worth noting
that our evaluation differs from the one of Micsinai et
al. because their score depends on the full set of all pre-
dictions that are to be compared. Since we have used a
different set of predictions including those of our own
tool the results are not directly comparable. In addition,
the authors computed the AUCROC by setting a fixed
threshold for each method, and therefore did not use
the full potential of ROC analysis which measures the

performance across the full range of possible threshold
values. With this in mind, our sensitivity-specificity anal-
ysis revealed that histoneHMM outperforms the other
algorithms in the detection of modified versus unmodified
regions (Figure 5a).
In addition we used gene expression data to evaluate

calls of modified and unmodified regions functionally. In
particular this allowed us to evaluate the performance of
the univariate HMM for both the rat H3K27me3 (BN)
and mouse H3K9me3 (female) data set, as for the lat-
ter no qPCR data was available. Regions that were called
modified with H3K27me3 or H3K9me3 had repressed
gene expression compared to regions that were called
unmodified. The differences in gene expressionweremore
pronounced for histoneHMM compared to the other
methods (Figure 5b-c). As argued above, this results is
likely the outcome of lower false positive and false nega-
tive rates.

Conclusions
The comparison of two ChIP-seq samples is an important
tool to identify genes and regulatorymechanisms involved
in diverse biological processes. While several algorithms
exist for peak-like modifications (e.g. [9,10]), they are
known to perform poorly for broad marks such as the
heterochromatin-associated H3K27me3 and H3K9me3.
Here we introduced histoneHMM, a powerful Hidden
Markov Model for the comparison of ChIP-seq profiles
between two samples. Using real and synthetic data, we
demonstrated that histoneHMM outperforms compet-
ing methods in the detection of differentially modified
regions.
histoneHMM is not limited to this bivariate setting but

can, in principle, be extended to an arbitrary number of
dimensions. This feature makes it possible to compare
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Figure 3 Evaluation of differentially modified regions. a) qPCR validation of differential H3K27me3 regions in rat heart tissue. The boxplots show
the level of histone modifications for the five true positive regions that were not overlapping genomic deletions. Modification levels are measured
as δCT values for the two rat strains BN and SHR. All differences are significant (t-test P < 0.05). b-f) Barplots of −log10(P) of Fisher’s exact test for
overlap of differentially modified genes with differentially expressed genes for each of the methods. b) shows results for H3K27me3 in the rat strain
comparison. c) shows results for H3K9me3 in the comparison of female and male mice. d-f) show results of the comparison of ENCODE cell lines
H1-hESC and K562. Differential H3K9me3, H3K36me3 and H3K79me2 regions are compared to differential gene expression. g) shows results of the
comparison of ENCODE cell lines H1-hESC and K562. Differential H3K27me3 regions are compared to genes with differential EZH2 levels.
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Table 4 Percentageof base pairs (% bp) from X inactivated
genes that are called differentially enriched for H3K9me3
betweenmale and femalemice and percentage of X
inactivatedgenes that overlapwith at least 1bp of
differentially enriched regions (% genes)

histoneHMM Diffreps Chipdiff Pepr Rseg

% bp 67% 06% 10% 0.0 100%

% genes 99% 84% 78% 0.0 100%

a large number of samples for the same histone mark,
or alternatively, many different histone marks in a single
sample (e.g. in a single cell line). This latter applica-
tion provides a formal method to detect and characterize
combinatorial histone states in a genome-wide manner.
Extension to histoneHMM to perform such a combina-
torial analysis promises to provide a powerful alternative
to chromHMM or Segway, two algorithms that have been
employed in the ENCODE project.
histoneHMM runs in the popular R computing envi-

ronment and integrates with the extensive bioinformatic

tool sets available through Bioconductor. This makes his-
toneHMM an attractive choice for the differential analysis
of ChIP-seq data.

Methods
ChIP-seq data
Histone modification H3K27me3 was analyzed using
ChIP-seq in the left ventricle of the heart from 3 bio-
logical replicates of each rat strain BN and SHR (Array-
Express [37] accession number E-MTAB-1102). All ChIP-
seq reads were aligned to the rat genome rn4 using Eland
v2 (Illumina CASAVA 1.7). In order to avoid differen-
tial read counts that may arise due to increased number
of mismatches when aligning to positions with known
sequence variation in the non-reference strain SHR, we
aligned SHR samples against the BN reference genome
with known SNP positions [38] substituted by the SHR
alleles.
The ChIP-seq data from mouse myoblast cells that

constitutes the H3K27me3 benchmark data set [36] was
downloaded from gene expression omnibus (GEO acces-
sions GSM721294, GSM721306).

Figure 4 Runtime evaluation. Runtimes are given in seconds user time on a 1500 MHz AMD processor. Note that the scale is logarithmic.
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Figure 5 Single ChIP-seq sample analysis. a) Receiver operator characteristics curves show the sensitivity and specificity of different methods for
H3K27me3 peak calls evaluated using qPCR validated regions. b-c) The association of region calls with gene expression is quantified using the
t-statistic of gene expression values when comparing expression levels of genes with at least 50% overlap with modified regions to genes with less
overlap. The barplots show the results for b) H3K27me3 and c) H3K9me3. Macs and Rseg have missing values because macs did not yield any gene
with at least 50% overlap for H3K9me3, while Rseg did not yield any gene with less than 50% overlap for both modifications.
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H3K9me3 data from livers of male and female mice
from [16] was downloaded from the European nucleotide
archive (ENA accession SRP018808).
ChIP-seq data from ENCODE was downloaded from

the UCSC ENCODE data center (GEO sample acces-
sion numbers: GSM1003585, GSM1003585, GSM733748,
GSM733748, GSM733725, GSM733725, GSM1003547,
GSM1003547, GSM733658, GSM733658, GSM733714,
GSM733714, GSM733653, GSM733653, GSM733776,
GSM733776, GSM1003524, GSM1003576). We used the
aligned reads (genome assembly hg19) resulting from the
uniform processing pipeline of ENCODE and removed
duplicated reads using samtools. Since the coverage of
H3K27me3 was very low for H1-hESC (Table 1, H1
H3K27me3 replicates 1-2) we obtained additional data for
H1-hESC H3K27ne3 from the roadmap epigenomics [39]
project (SRA accession numbers: SRR019561, SRR029343,
SRR029345, SRR029347, SRR029349).
All histone marks analyzed here are characterized by

broad genomic footprints. Therefore, coverage is relatively
low and we used binning to aggregate data from larger
regions. As input for our HMMwe counted start positions
of all uniquely mapping reads, after removal of dupli-
cated reads. In order to avoid artifacts from regions with
extreme read counts [40] and to avoid numerical problems
with very small emission probabilities we truncated read
counts at the upper 0.1 percentile. All read counts greater
than the upper 0.1 percentile were set to the value of the
upper 0.1 percentile.

Gene expression data
Gene expression levels were measured using RNA-seq in
the left ventricle of the heart from 5 animals per strain,
which were matched to the animals used for ChIP-seq for
age and sex (Array-Express accession number E-MTAB-
1102). Reads were mapped to the BN reference genome
rn4 using TopHat v 1.2.0. [41]. Gene expression levels
were estimated by counting reads corresponding to exons
of protein coding genes from Ensembl release 59. For the
comparison of gene expression within a sample, expres-
sion levels were normalized to the length of the gene. Dif-
ferential expression between strains was determined from
the unnormalized read counts using the DESeq method
[9] with FDR < 0.01.
Liver gene expression data for the comparison of

female and male mice was obtained from gene expression
omnibus (GEO accession GSE48109). This data also com-
prises differential gene expression results obtained by the
authors using edgeR [42].
ENCODE RNA-seq data for H1-hESC and K562 cell

lines (GEO accession: GSM758566, GSM765405) was
obtained from the UCSC ENCODE data center. Here we
also used the aligned reads (hg19) as proccessed by the
ENCODE pipeline. We obtained read counts as measure

of gene expression using gene annotation from ENSEMBL
release 63. Differential gene expression was determined
using the DESeq method [9] with FDR < 0.01.

Model specifications
Univariate HiddenMarkovModel
For a single ChIP-seq sample, we partition the genome
intom equally sized bins (1000 bp by default). Let xi be the
read counts for the ith bin. We model the density of xi as
a two-component finite mixture. The mixture is charac-
terized by a heavy tail, indicating a modified component,
as well as by a concentration of probability mass at low
counts, especially at zero, corresponding to non-enriched
regions. We write the density as

P(x|θ) = αf (x, θ0) + (1 − α)f (x, θ1), (1)

where α is the mixing weight and θ0 and θ1 are the compo-
nent density parameters. Following others [33], we assume
that each mixing component is given by a zero-inflated
negative binomial distribution (zinb), hence, for the jth
component the density is

f (x, θj = (r, p, β)) = βIx=0+(1−β)
�(r + x)
�(r)x! pr(1−p)x ,

(2)

where � denotes the gamma function, Ix=0 is an indicator
function and β is the inflation parameter for zero counts.
p and r are the probability and the dispersion parameter
of the negative binomial distribution, respectively. With-
out loss of generality we assume that state 0 represents the
low occupancy values (μ0 < μ1). Parameter estimates are
obtained via the EM algorithm [43]. We obtained starting
values for the EM by partitioning the data into two groups
at themedian. The groupwith counts less than themedian
was assigned probability 0.9 to be from the first mixture
component and 0.1 to be from the second and vice versa
for the second group. Then the parameters of the mixture
components were updated just as in the maximization
step of the EM algorithm. For improved runtime effi-
ciency we used only data from one chromosome (chr18)
for the parameter estimation.
To analyze single ChIP-seq samples we use the unmod-

ified and the modified component of this mixture as fixed
emission densities in a univariate HMM with two states,
unmodified and modified respectively. We use the Baum-
Welch algorithm [44] to determine the transition prob-
abilities between states, and calculate the probability of
enrichment for each bin in the genome using the forward-
backward algorithm [45]. Chromosomes were processed
one by one using the same fixed emission probabilities.
We called bin j modified when the latent state probabil-
ity of being enriched in this bin is greater than a certain
threshold λ. If not otherwise stated we used λ = 0.5,
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which corresponds to the latent state with maximal prob-
ability in the two state model. Simulation studies showed
that this parameter setting yields good sensitivity and
specificity (Additional file 1).
Alternatively, the parameter estimates for this two-

component mixture can be trained using gene-expression
data (Additional file 1). Since H3K27me3 and H3K9me3
modifications are associated with gene silencing, the
heavy tail with high occupancy values can be asso-
ciated with lowly expressed genes and the low occu-
pancy counts with highly expressed genes. Using gene
expression increased the performance of the algorithm
(Additional file 1), both for the single sample analysis and
for the sample comparison.

Bivariate hiddenMarkovmodel
histoneHMM is primarily designed to compare two ChIP-
seq samples, say A and B. For each individual ChIP-seq
sample, we partition the genome intom equally sized bins
(1000 bp by default). Let xi and yi be the read counts for
the ith bin for sample A and B, respectively. Further we
define the indicator variable a = 0 if sample A is unmod-
ified and a = 1 if it is modified. Similarly the indicator
variable b is defined for sample B. We denote the parame-
ters of the univariate mixture of sample A as θA and that of
sample B as θB. The probability of the random pair (xi, yi)
is given by a bivariate count distribution with four mixing
components, corresponding to the situations where both
samples are unmodified (a = 0, b = 0), both samples
are modified (a = 1, b = 1), only sample A is modified
(a = 1, b = 0) or only sample B is modified (a = 0, b = 1).
We write this four component mixture as

P((x, y)|θ) =
1∑

a=0

1∑
b=0

γa,bf ((x, y), θa,b), (3)

where γa,b are the mixing weights and θa,b are the com-
ponent density parameters for each component j, corre-
sponding to a pair a, b.
Calculating the bivariate components f ((x, y), θa,b) is

challenging as bivariate (or multivariate) count distribu-
tions are difficult to work with and often do not exist
in closed form. Copula theory offers an elegant way to
obtain multivariate distributions once the marginals are
known [46]. A copula C = C(u1, u2, . . . , up) = P(U1 ≤
u1,U2 ≤ u2, . . . ,Up ≤ up) is a multivariate cumulative
density function (CDF) defined over the p-dimensional
unit cube C :[ 0, 1]p →[ 0, 1], where each Ui ∼ Unif(0, 1).
For two random variables Zx,Zy with joint CDF G and
marginal CDFs Gx,Gy the probability integral transfor-
mation can be used to obtain a copula C(ux, uy) =
G(G−1

x (ux),G−1
y (uy)). Here we used a Gaussian copula,

such that G is the CDF of the multivariate Normal dis-
tribution and Gx,Gy are the corresponding univariate

Normal marginal CDFs. To obtain a CDF for the origi-
nal random variables X and Y with marginal CDFs Fa

x and
Fb
y we use again the probability integral transformation to

obtain the uniform variables ux = Fa
x (x) and uy = Fb

y (y).
For a more detailed introduction to copula theory we
refer the reader to [47]. Now putting it all together, we
used a Gaussian copula to define the bivariate cumulative
distribution function of each component F((x, y), θa,b) as

Ca,b
(
Fa
x (x), Fa

y (y)
)

= P (X ≤ x,Y ≤ y)

= 	
a,b

(
	−1 (Fa

x (x)
)
,	−1

(
Fb
y (y)

))
,

where

	
a,b
(
zx, zy

) =
∫ zx

−∞

∫ zy

−∞
φ
a,b

(
zx, zy

)
dzxdzy,

φ
a,b
(
zx, zy

) = 1
2πσxσy

√
1 − ρ2

× exp

(
−1

2(1 − ρ2)

[
z2x
σ 2x

+ z2y
σ 2y

− 2ρzxzy
σxσy

])

is the bivariate Gaussian CDF with zero mean and covari-
ance matrix corresponding to ρ, σx, σy. 	−1 is the inverse
of the univariate standard normal CDF and Fa

x = P(X ≤
x) = ∑x

0f (x, θA,a) is the CDF for the marginal distribu-
tion of component a of sample A, and Fb

y = P(Y ≤ y) =∑y
0f (y, θB,b) for the component b of B, respectively (Eq. 1,

Eq. 2).
The covariance matrix 
a,b between the transformed

variables 	−1(Fa
x (x)) and 	−1(Fb

y (y)) is computed as fol-
lows: first we called each region modified or unmodified
in samples A and B separately using the univariate HMM
approach outlined above. We used regions that had high
confidence calls (with latent state probability > 0.9) in
both samples and created four subsets of regions for all
possible combinations of univariate states (a, b). Then
for every given subset the read data (x, y) was trans-
formed to (zx, zy) =

(
	−1 (Fa

x (x)
)
,	−1

(
Fb
y (y)

))
using

the marginal distributions f (x, θA,a) and f (y, θB,b). Finally

a,b was estimated by the sample covariance of the trans-
formed data in each subset.
Since we are working with discrete count data we are

interested in the probabilities

P(X = x,Y = y)= F((x, y))−F((x − 1, y)) − F((x, y − 1))

+ F((x − 1, y− 1))

=
∫ 	−1(Fx(x))

	−1(Fx(x−1))

∫ 	−1(Fy(y))

	−1(Fy(y−1))
φ
(zx, zy)dzxdzy.

(4)

We evaluate this integral using numerical integration
techniques [48].
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Having defined this bivariate count distribution we pro-
ceed to construct a HMM for the identification of dif-
ferentially modified regions between samples A and B.
This HMM has four states, corresponding to the situa-
tions where both samples are unmodified, both samples
are modified, only sample A is modified or only sample
B is modified. The four fixed emission densities are given
by the four components of the bivariate mixture (Eq. 3),
respectively and are evaluated according to Eq. 4. Tran-
sitions from all states to all other states as well as self
transitions are allowed. We use the Baum-Welch algo-
rithm to estimate the transition probabilities and we clas-
sify each bin into one of the four states using the maximal
latent state probability obtained by the forward-backward
algorithm.

Region calling with othermethods
In this section we describe how the other tools in the
comparison were run. When possible we always set the
bin size to 1000 bp. We mostly used the default parame-
ters and thresholds as recommended by the authors since
these results are likely those that an end user would also
obtain. In order to rule out that the results of our compar-
isons are biased by the choice of threshold described here,
we also performed a systematic evaluation of thresholds
to optimize the performance of each individual method
(Additional file 1).

Differential region calling
Chipdiff We ran Chipdiff with a maximum of 500 itera-
tions and 10000 training sequences. As recommended by
the authors we used a minimal fold change of 2, but we
also tried other thresholds in our simulation study (see
Additional file 1). We used the threshold of latent state
probability P > 0.95 to call differential regions.

Rseg We used the ‘rseg-diff ’ software with ‘-mode 3’.
Since rseg is also based on a HMM we obtained latent
state probabilities for differential regions for all bins in the
genome. Finally we used the same threshold P > 0.5 that
we used for histoneHMM to call differential regions.

Diffreps We used Diffreps without replicates using the
chi squared test (‘-meth cs’). As recommended by the
authors we used a threshold of P < 0.0001 on the P-value
to call differential regions. We did not use DNA input or
IgG controls.

Pepr Pepr is the only tool in the comparison that works
only when replicates are provided, so we used all available
replicates before merging them. The authors recommend
a threshold of P < 10−5 on the P-value.

Region calling in single samples
In this comparison we always used input control data
when possible.

Macs We used macs version 2 with the broad option. The
recommended threshold for peak calling was FDR < 0.01.

Zinba We used the mappability files for human, mouse
and rat that were provided on the Zinba website. We used
the generalized linear model with just the input count as
predictor. For the ROC analysis we used the latent state
probability of modification. For the comparison to gene
expression we used the threshold P > 0.5 on the latent
state probability to call regions.

Sicer Sicer was run with a window size of 200 bp and a
gap size of 600 bp as recommended for H3K27me3 by the
authors. Significant regions were identified using FDR <

0.01.

Broadpeak Broadpeak does not output scores and also
does not require the specification of a threshold, therefore
we just ran Broadpeak with default options and used all
predictions that were returned.

Rseg We used the ‘rseg-diff ’ software with ‘-mode 2’
to provide the input control data. We obtained latent
state probabilities for modified regions for all bins in the
genome. Finally we used the same latent state probability
threshold P > 0.5 that we used for histoneHMM to call
regions.

Software
The software was implemented in the R package his-
toneHMM and is freely available from http://histonehmm.
molgen.mpg.de.

Additional file

Additional file 1: Supplemental information.
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