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Abstract  

The C-value paradox remains incompletely resolved after over 40 years, and is exemplified by 

2,350-fold variation in genome sizes of flowering plants. The carnivorous Lentibulariaceae 

genus Genlisea, displaying a 25-fold range of genome sizes, is a promising subject to study 

mechanisms and consequences of evolutionary genome size variation. Applying genomic, 

phylogenetic and cytogenetic approaches, we uncovered bidirectional genome size evolution 

within the genus Genlisea. The Genlisea nigrocaulis genome (86 Mbp) has probably shrunk by 

retroelement silencing and deletion-biased double-strand break repair, from an ancestral size of 

400-800 Mbp to become one of the smallest among flowering plants. The G. hispidula genome 

has expanded by whole-genome duplication (WGD) and retrotransposition to 1,550 Mbp. G. 

hispidula became allotetraploid after the split from the G. nigrocaulis clade ~29 MYA. G. 

pygmaea (179 Mbp), a close relative of G. nigrocaulis, proved to be a recent (auto)tetraploid. 

Our analyses suggest a common ancestor of the genus Genlisea with an intermediate 1C value 

(400-800 Mbp) and subsequent rapid genome size evolution in opposite directions.  Many 

abundant repeats of the larger genome are absent in the smaller, casting doubt on their 

functionality for the organism, whilst recurrent WGD seems to safeguard against the loss of 

essential elements in the face of genome shrinkage.  We cannot identify any consistent 

differences in habitat or life strategy which correlate with genome size changes, raising the 

possibility that these changes may be selectively neutral.   
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Genome sizes bear little relation to the apparent complexity of the organism, in what C.A. 

Thomas (1971) termed the “C-value paradox” and later was called “C-value enigma” by Gregory 

(2001). Although much genome size variation is now accounted for by non-coding elements and 

by duplicated or repetitive sequences, questions remain over the selective advantages of larger 

or smaller genomes and the mechanisms by which genome sizes change over time. 

Genomes expand mainly via polyploidization (Soltis and Soltis 1999, Soltis et al. 2009, Paterson 

et al. 2012) and repeat amplification (Hawkins et al. 2006, Piegu et al. 2006, Fedoroff 2012). 

Polyploidisation may happen as autopolyploidy via somatic chromosome doubling, if a mitosis is 

skipped between two replication cycles, or via formation of a restitution nucleus during meiotic 

divisions (Ramsey and Schemske 1998, De Storme and Geelen 2013). Alternatively, 

allopolyploidy may occur, if diploid gametes of different species fuse, or a chromosome doubling 

happens after interspecific hybridisation by fusion of haploid gametes. Duplication of parental 

chromosome sets is required to ensure in the hybrid organism pairing of homologous 

chromosomes during meiosis. By sequence loss and other spontaneous mutations, e.g. 

chromosome rearrangements, the polyploids ‘diploidize’ in the course of evolution (Hegarty and 

Hiscock 2008, Renny-Byfield et al. 2013). Amplification and proliferation of the repetitive 

elements, based e.g. on insertion of retroelements or on unequal recombination of tandem 

repeats, contribute significantly to genome expansion (reviewed in (Tenaillon et al. 2010, 

Bennetzen and Wang 2014)). A massive accumulation of long terminal repeat (LTR) 

retrotransposons during the last few million years accounts for an at least twofold genome size 

increase in maize (SanMiguel et al. 1998) and in a wild relative of rice Oryza australiensis 

(Piegu, et al. 2006). The proliferation of lineage-specific transposable elements (TEs) 

contributed mainly to genome size variation among closely related Gossypium species 

(Hawkins, et al. 2006).  

While it is obvious that polyploidization and accumulation of repeat sequences are main players 

in genomic expansion, less is known about the mechanism(s) of genome shrinkage. The 

simplest model for genome shrinkage suggests that the DNA loss via deletion is more frequent 

than sequence amplification (Hughes and Hughes 1995, Petrov et al. 1996, Devos et al. 2002, 

Hu et al. 2011, Wang et al. 2011, Nam and Ellegren 2012). A high rate of spontaneous loss of 
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nonessential DNA was considered as causing the relatively low proportion of non-genic 

sequences in small genomes. Indeed, there is evidence for a strikingly higher rate of DNA loss 

in organisms with small genomes such as Drosophila and Arabidopsis thaliana compared to 

those with larger genome size such as mammals or Nicotiana tabacum (Kirik et al. 2000, Petrov 

2001).  

Smaller genomes usually have accumulated LTR retrotransposons in their pericentromeric 

heterochromatin, and few such elements occur within genic regions, while larger genomes 

reveal a higher number and a more even distribution of retroelements along the chromosomes. 

A comparison of the ∼400-Mbp rice genome and the ∼2,400-Mbp maize genome regarding the 

presence of LTR retrotransposon families revealed approximately the same number of 

retroelement families in both species, but at least one order of magnitude higher copy numbers 

per family in the maize genome than in the rice genome (Baucom et al. 2009a, Baucom et al. 

2009b). 

For DNA loss, several mechanisms have been suggested such as transposon-mediated 

excision, replication slippage, and ‘illegitimate recombination’ (Petrov, et al. 1996, Devos, et al. 

2002, Hu, et al. 2011). In our opinion, deletion-biased DSB repair seems to be the most likely 

cause for genome shrinkage (Kirik, et al. 2000, Puchta 2005), for several reasons: i) DSB repair 

is an ubiquitous requirement; ii) hypomorphic or hypermorphic mutants of single DSB repair 

components may result in a bias between repair pathway variants; iii) even a small bias towards 

either deletions or insertions can have an evolutionary impact; the more so because misrepair 

events in plant shoot meristems, if viable, may be transferred via germ cells to the next 

generation; iv) erroneous DSB repair encompasses phenomena such as transposon-mediated 

excision, replication slippage and illegitimate recombination, the latter for instance via the ‘single 

strand annealing’ pathway; and v) chromosome rearrangements are the result of DSB mis-

repair and even large interstitial deletions, or translocations resulting in dysploid chromosome 

number reduction, can be survived if no essential genes are lost (Schubert and Lysak 2011).  

In Arabidopsis thaliana, previously considered to possess the smallest seed plant genome (157 

Mbp, (Bennett et al. 2003)), genome evolution has been studied by comparison with the less 

than two-fold larger genome of A. lyrata. This revealed the loss of three (peri)centromeres 
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mediated by dysploid chromosome number reduction (Lysak et al. 2006b), a lower content of 

mobile elements, and an excess of deletions over insertions (Hu, et al. 2011) in A. thaliana.  

To effectively study genome evolution, comparative analysis of closely related small and larger 

genomes for whom phylogenetic relationship are well understood can provide hints as to the 

putative mechanisms of genome alteration over evolutionary timescales. Therefore we have 

chosen the carnivorous genus Genlisea (Lentibulariaceae) with a 25-fold range of genome size 

and some genomes much smaller than that of A. thaliana (Greilhuber et al. 2006), thus offering 

a unique model to address fundamental questions of genome size evolution. Here we apply 

whole genome sequencing, phylogenetic and cytogenetic approaches in order to elucidate 

potential reasons for - and consequences of - the observed genome size differences. We focus 

on G. nigrocaulis with half the genome size of A. thaliana, on G. hispidula with an 18-fold larger 

genome and on G. pygmaea, a close relative of G. nigrocaulis, for which we uncovered a recent 

WGD. 
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Results and Discussion  

Despite having little non-genic DNA, the G. nigrocaulis genome displays distinct 

heterochromatin  

We sequenced genomes and transcriptomes of G. nigrocaulis (2n = 40; 86 Mbp) and G. 

hispidula (2n = 40; 1,550 Mbp; Fig. 1). For G. nigrocaulis, we obtained 54.15 Gbp raw 

sequences (629.7x genome coverage) by whole-genome shotgun (WGS) sequencing, and 

assembled 6,968 scaffolds comprising 64.93 Mbp (Tables S2, 3, 4).  

Of the ~65 Mbp of assembled G. nigrocaulis genomic sequences, 34.02 Mbp (39.6% of the 

entire genome) is genic DNA including coding parts of mobile elements (Table 1). Dividing the 

remaining 52 Mbp of the 86 Mbp genome, that include telomeric, centromeric and rDNA 

sequences, by the chromosome number of G. nigrocaulis (n=20), suggests an average of 2.6 

Mbp of unique intergenic, and dispersed and clustered repetitive sequences per chromosome. 

In A. thaliana the centromeric and pericentromeric regions alone range from 4 to 9 Mbp per 

chromosome (Hosouchi et al. 2002). 

Besides coding and non-coding unique sequences that constitute euchromatin, even the small 

G. nigrocaulis genome with its low repeat content forms detectable heterochromatin structures 

(Fig. S1), as concluded from i) intensely DAPI-stained chromocenters, ii) DNA and histone 

H3K27 methylation patterns after immunostaining of nuclei, as well as iii) fluorescent in situ 

hybridization (FISH) with a highly repetitive sequence. The single highly abundant 161 bp 

tandem repeat of G. nigrocaulis is a candidate for centromeric DNA, based on its presence on 

each chromosome (Fig. S1).  

About 22.8 kbp with similarity to the Arabidopsis plastome (154.5 kbp), including 4 out of 88 

chloroplast genes, were found interspersed within 24 G. nigrocaulis contigs, and 4.1 kbp with 

similarity to the Arabidopsis mitochondrial genome (366.9 kbp) including fragments of 15 out of 

122 mitochondrial genes (EnsemblPlants, http://plants.ensembl.org/; TAIR10 release 18) in 9 

genomic contigs (Suppl. 5.1.). In Arabidopsis similar proportions of plastid- (11 kbp) and 

mitochondrial-derived sequences (~7 kbp, besides a large insertion into chromosome 2 of cv. 

Col) invaded the nuclear genome (The Arabidopsis Genome Initiative 2000). For G. hispidula 

39.8 kbp of mitochondrial sequences interspersed within 51 contigs with evidence for 26 
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mitochondrial genes and 50 kbp of plastid sequences within 59 WGS contigs, related to 22 

plastid genes are detected in the WGS assembly of the nuclear DNA. Thus, the differences in 

plastid and mitochondrial sequence invasion contribute insignificantly to either genome size 

variation or heterochromatin formation in the two species. 

While even nuclei of the very small genome of G. nigrocaulis revealed conspicuous 

heterochromatin, G. hispidula nuclei showed no distinct clusters of heterochromatin-specific 

marks (Fig.S1B). Dispersed heterochromatic features were previously reported for several 

medium-sized genomes with a high content of dispersed retroelements and only a moderate 

clustering of tandem repeats (Houben et al. 2003).   

 

The two Genlisea species differ as to their repetitive elements  

Repetitive elements were identified and characterized using similarity-based clustering of 

unassembled sequence reads and the REPEATEXPLORER pipeline (Novak et al. 2010, Novak et 

al. 2013). Based on clustering analysis of randomly selected WGS reads, 15.9% (13.7 Mbp) of 

the G. nigrocaulis genome and 64.1% (993.5 Mbp) of the G. hispidula genome represent 

repeats, each covering at least 0.01% of the respective genome (Table 1, Fig. S7).  

Similar results were obtained by k-mer analysis of the assembled contigs which are larger than 

300 bp in both Genlisea species, using the indexes of 21-mers (SI section 7.2). The k-mer 

analysis revealed a very high proportion of unique sequences (83.4%) and a very low proportion 

of repetitive sequences (16.6%) within the G. nigrocaulis genome. In contrast, the genome 

reference of G. hispidula reflects a much higher level of repetitive DNA (63.1%, Fig. S9). When 

applying the k-mer index of G. nigrocaulis, we identified only 1% of the highly abundant k-mer 

sequences of G. hispidula to be shared with repetitive elements of the G. nigrocaulis index (SI 

section 7.2, Fig. S10). However, the comparative k-mer analysis is only suitable to judge gain or 

reduction of identical sequences. Nucleotide variation makes sequences untraceable for this 

stringent analysis. When instead a BLASTN analysis with a reduced sequence identity of 95% 

was applied to search for abundant G. hispidula sequences in the G. nigrocaulis genome, 56% 

of the abundant sequences of G. hispidula were detected. Nevertheless, the genome of G. 

hispidula contains many repetitive sequences that are apparently not present in G. nigrocaulis. 
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These elements may have either entered (and/or proliferated in) the G. hispidula genome, or 

were removed from the G. nigrocaulis genome, after the divergence of both species. Overall, 

9.7% of G. nigrocaulis and 41.6% of G. hispidula genomes were annotated as mobile elements, 

tandem repeats or rDNA (Table 1). 

Remarkably, LTR retrotransposons, usually the most abundant repeat class, occupy only 7.3% 

of the G. nigrocaulis genome and show very low copy numbers. Many mobile elements, which 

are highly abundant, transcribed and probably still transposing in G. hispidula, are of low copy 

number, and apparently suppressed, or even undetectable in G. nigrocaulis (Fig. 2, Figs. S7, 8). 

Thus, also a decline of large-scale insertion, as assumed for pufferfish species (Neafsey and 

Palumbi 2003), might contribute to genome size reduction in G. nigrocaulis. Only a few mobile 

elements, such as a Ty1/copia retroelement of the Bianca lineage and a Ty3/gypsy element of 

the Athila lineage are relatively abundant in G. nigrocaulis and seem to be at least not 

completely silenced since transcripts are detectable. We aligned RNA-seq data to mobile 

elements that were identified by Blast2GO analysis of all gene models of G. nigrocaulis. 

Interestingly, among the 219 retroelement candidates of the HC gene models only five captured 

60% of all aligned RNA-seq reads and three of the five were assigned to the Bianca element (SI 

section 7.4. and Table S13). Long-lasting suppression puts transposable elements at risk of 

becoming truncated and eventually extinct via deletion-biased DSB repair. This might have 

happened to several elements in G. nigrocaulis. The abundant and active retroelement Bianca 

apparently spread through the G. nigrocaulis genome after branching from the G. hispidula 

lineage where it is not detectable. A loss in G. hispidula is less likely because of the generally 

high transposon abundance and activity in this species. Bianca and a few other elements 

counteract genome shrinkage in G. nigrocaulis but obviously cannot compensate for silencing of 

other elements and for progressive DNA loss.  

Furthermore, G. nigrocaulis and the G. hispidula also differ in their putative centromeric and 

telomeric repeat sequences. The most abundant 161 bp tandem repeat (2.3% of the G. 

nigrocaulis genome), a candidate for centromeric sequence in (Fig. S1), is not found among the 

genomic reads of G. hispidula. The basic telomere repeat conserved in most plants 
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(TTTAGGG)n is present in G. nigrocaulis but lacking in the G. hispidula genome, where it is 

substituted by intermingled (TTTCAGG)n and (TTCAGG)n motifs (Tran et al. 2015).  

 

Higher plant genomes may contain less than 20,000 genes 

For G. nigrocaulis the gene prediction program AUGUSTUS initially suggested 24,749 gene 

models which after stringent filtering yielded 15,550 ‘high confidence’ and 1,563 ‘low confidence’ 

genes (Table 1 and SI section 5.1.). High confidence (HC) genes harboring start and stop 

codons are present in genomic as well as in transcriptomic sequences and have homology in at 

least one other plant genome (A. thaliana, Utricularia gibba, Solanum lycopersicum and the 

other Genlisea species). Low confidence (LC) genes do not fulfill one of these criteria. The 

number of high and low confidence genes together results in less genes than found for A. 

thaliana (27,416; http://www.arabidopsis.org/; (The Arabidopsis Genome Initiative 2000)). For 

Utricularia gibba, from the sister genus of Genlisea with an estimated genome size of 82 Mbp, 

28,494 genes were predicted utilizing solely AUGUSTUS (Ibarra-Laclette et al. 2013). For G. 

aurea a minimal number of 17,755 complete and partial protein encoding genes were estimated 

from 43.4 Mbp assembled sequences out of the presumed 63.6 Mbp genome (Leushkin et al. 

2013). Comprehensive studies revealed also for the neotenous monocot Spirodela polyrhiza 

(158 Mbp, (Wang et al. 2014)) less than 20,000 genes. The minimum eudicot gene set, based 

on sequenced genomes of 17 species, was estimated to comprise 7,165 genes which were 

inferred to descend from 4,585 genes of a common ancestral genome, and the estimated 

number of ancestral angiosperm genes amounts to about 11,000 to 14,000 (for review see (Li et 

al. 2014)). Thus, gene numbers below 20,000 may occur in small genomes of extant higher 

plants.  

 

G. hispidula is allotetraploid  

In order to compare the minute genome of G. nigrocaulis with a large genome of the same 

genus, we also sequenced genome and transcriptome of G. hispidula (2n = 40; 1,550 Mbp; Fig. 

1). The genome assembly for G. hispidula is based on 24.65 Gbp WGS sequences, and we 

predicted 42,120 ‘high confidence’ and 21,361 ‘low confidence’ genes (Table 1, SI section 5.1). 
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The higher fragmentation of the genome assembly of G. hispidula led to an increase of partial 

gene models. To show this we analyzed the 248 core eukaryotic genes (CEG) from A. thaliana 

(Parra et al. 2007). In total 98.4% of the CEGs are observed in G. nigrocaulis and 96.9% in G. 

hispidula. In contrast to G. nigrocaulis where 80% of the HC genes are estimated to be 

complete in G. hispidula with 39% complete genes a higher fragmentation is observed. The 

majority of the remaining CEGs represents partial genes classified as low confidence genes (SI 

section 5.1). The total gene number is more than double of that of G. nigrocaulis, suggesting a 

possible WGD in G. hispidula. Genome-wide k-mer statistics (Table S12) was performed using 

full length coding sequences of homologous ‘high confidence’ gene pairs to further address this 

hypothesis.  

The cleaned WGS reads finally represent a 350-fold genome coverage for G. nigrocaulis and 

14-fold coverage for G. hispidula and were used to build the respective k-mer indexes using 

Tallymer. The indexes were applied to the respective data sets of orthologous high confidence 

genes to compute their corresponding k-mer frequencies. The k-mer frequencies of homologous 

gene pairs were compared. The complete set of analyzed genes revealed an average gene 

copy number of 0.95 for G. nigrocaulis and 1.7 for G. hispidula (SI section 6.1), indicating that 

most of the single copy genes in G. nigrocaulis occur twice in G. hispidula, and supporting a 

WGD after these lineages separated.  

Furthermore, for both species an intra-species variant detection was performed for high 

confidence genes to detect heterozygous positions (SI section 6.2). The total number of SNPs 

was 19,391 for G. nigrocaulis and 140,556 for G. hispidula. Of the G. nigrocaulis SNPs 6,084 

(31.38%) and of G. hispidula SNPs 91,420 (65.06%) displayed an allele ratio (AR) of 0.4 to 0.6 

(Fig. 3A). Assuming an equal heterozygosity level in both self-compatible species, 65.06% of 

alleles at heterozygous loci in G. hispidula with a read frequency of about 1:1 (AR of 0.4-0.6, (Lu 

et al. 2013)) suggest a WGD as a consequence of an interspecific hybridisation. 

Additionally, genotype calling and haplotype phasing of individual plants showed that most 

(11/15) tested homologous genes, present as single copies in G. nigrocaulis, have two or more 

copies in G. hispidula (Fig. S6, SI dataset S3). Thus, we assume that the G. hispidula lineage 

underwent allotetraploidisation after its split from the G. nigrocaulis lineage (Fig. 1). The same 
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chromosome number in both species indicates dysploid chromosome number reduction in G. 

hispidula or its diploid ancestors. A similar situation was described for Brassicaceae (Lysak, et 

al. 2006b, Mandakova et al. 2010).  

The lack of fossils, and possibly elevated DNA mutation rates in the G. nigrocaulis clade (Ibarra-

Laclette, et al. 2013), do not allow precise dating of the split of the G. nigrocaulis and G. 

hispidula lineages. Based on Ks values of 50 nuclear genes and assuming Brassicaceae-like 

mutation rates, we date the split between G. nigrocaulis and G. hispidula lineages to ~29 Mya. 

This age might be overestimated presuming an elevated mutation rate for G. nigrocaulis (Ibarra-

Laclette, et al. 2013).  

Plotting genome size data on a species phylogeny (Fig. 1) suggests an intermediate ancestral 

genome size (400-800 Mbp) at the basis of the Lentibulariaceae, similar to that found in the 

oldest genus Pinguicula, and an apparently bidirectional genome size evolution within Genlisea.  

 

The G. nigrocaulis genome probably shrank via a ‘deletion bias’ during break repair  

To identify potential mechanisms of the severe genome shrinkage within the G. nigrocaulis 

lineage, we measured the length distribution of exons and introns. A correlation between the 

average intron size and genome size has been observed for many related organisms 

(Vinogradov 1999, Wendel et al. 2002). From the G. hispidula genome, 1,186 genes with 

complete intron sequences and orthologs in G. nigrocaulis were selected. These gene pairs 

revealed highly conserved exons. The mean intron size is 123 bp in G. nigrocaulis that is 25% 

less than the 164 bp in G. hispidula (Fig. 3B, Table S8). This indicates that genome size 

differences are not only due to loss of repetitive elements but that a mechanism is acting that 

influences also the gene space. 

Genomes are constantly exposed to DNA breakage due to endogenous and exogenous 

mutagenic impacts. DSBs, when unrepaired, are lethal for dividing cells. If DSB repair does not 

restore the pre-break structure, resection of break ends may cause deletions. 

Alternatively, insertions may happen e.g. via ‘synthesis-dependent strand annealing’ (gene 

conversion) and subsequent non-homologous end-joining (Vu et al. 2014). The outcome of 

various erroneous repair pathways may become fixed when passed to the next generation via 
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germ cells. Even minor modifications of components involved in DSB repair, manifested as 

hypo- or hypermorphic mutants, may cause an imbalance between deletions and insertions and 

thus, progressive shrinkage or expansion of genomes (Fig. 4B; (Puchta 2005)). Repetitive 

elements indicative of insertions were rarely found within the introns of both species (13 in G. 

hispidula and 6 in G. nigrocaulis, mostly MITEs or SINEs). Therefore, intron size differences are 

apparently caused by deletions in G. nigrocaulis rather than by insertions in G. hispidula. A 

deletion-bias during somatic DSB repair as a presumed reason for genome shrinkage may also 

influence other genome components which are under no or only weak selection, and could 

explain a considerable proportion of the genome size difference between the two species by 

genome shrinkage in the G. nigrocaulis clade. Also, for several other groups of organisms with 

small genomes, a preference of large deletions over insertions was observed, that apparently 

does not depend on selection for genome size (for review see (Petrov 2001)).  

The lower number of genes for DNA metabolic processes in G. nigrocaulis, as the most 

deviating ontology distribution compared to that of G. hispidula (Fig. 5, Tables S9, 10), could be 

one possible reason for the deletion bias in G. nigrocaulis. However, this category includes also 

terms as transposon integration and DNA-templated viral transcription, and thus could also 

reflect difference in the content of mobile elements. 

 

Whole genome duplication counteracts and facilitates genome shrinkage 

Another phenomenon besides retrotransposition that could work against genome shrinkage is 

WGD. Compared to its close relative G. nigrocaulis, G. pygmaea has twice the genome size 

and chromosome number (179 Mbp, 2n = 80) of G. nigrocaulis, and both species share the 

most abundant tandem repeat and the Ty1/copia retroelement Bianca. Furthermore, FISH with 

six unique probes, which labeled two chromosomes in G. nigrocaulis, revealed hybridization 

signals on four chromosomes of G. pygmaea each. Thus, our results suggest that a recent 

WGD occurred in G. pygmaea after separation from the G. nigrocaulis lineage (Figs. 1, 4A) and 

mediates tolerance against further even large-scale deletions. Recurrent WGDs (Fig. 4B), might 

have occurred also in populations of G. aurea and G. repens (Fig. 1) and possibly in other 

Lentibulariaceae species with very small genomes. The risk of lethality among the progeny of 
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individuals with very small genomes under progressive deletion-mediated genome shrinkage 

can be reduced when WGD creates back-up copies of essential genome components as in G. 

pygmaea. 

 

Genome size evolution is divergent within the genus Genlisea 

Our comparative studies of one of the smallest known plant genomes (G. nigrocaulis) and its 

congeneric relative with an 18-fold larger genome (G. hispidula) reveal an unprecedented case 

of divergent genome evolution: short introns and a low repeat content indicate genome 

shrinkage via suppression of mobile elements and a presumed preference for deletions during 

DSB repair in G. nigrocaulis, while WGD and possibly retrotransposition led to genome 

expansion in G. hispidula. The relative contribution of these factors to the genome size 

difference is difficult to estimate, because the actual genome size of the ancestors of G. 

hispidula is unknown. If for both ancestors of G. hispidula similar genome sizes (400-800 Mbp) 

are assumed, WGD-independent genome expansion might have occurred (in case the ancestral 

genome size was closer to 400 Mbp) or not (in case it was closer to 800 Mbp). In any case 

however, shrinkage did not occur or was (over)compensated by genome expansion. Assuming 

a genome size of ~800 Mbp in the last common ancestor and a split between both lineages ~29 

Mya (Fig. 1), a DNA loss of on an average 50 bp/1C genome/generation in G. nigrocaulis is 

estimated (SI section 8). If in small genomes DSB repair generates more or larger deletions 

than in large genomes (Kirik, et al. 2000, Vu, et al. 2014), deletion transmission to the next 

generation could rapidly reduce genome size, provided the deletions do not include essential 

genes, or a backup was created before, by recent WGD(s).  

 

Genome size evolution might be neutral in a wide range and many repeats are 

dispensable 

Both investigated species are perennials of similar morphology and live under similar ecological 

conditions (in nutritient-poor, acidic, waterlogged swampy seepages of tropic regions). Similarly, 

genome size variation showed no correlation to life strategy diversification within the genus 

Allium (Ohri and Pistrick 2001, Gurushidze et al. 2012). Among polyploid Nicotiana species 
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Leitch et al (2008) observed in five species an increase and in four species a decrease genome 

size independent of the age of the WGD, and even descendants of the same donor genomes 

responded differently. Thus, even after WGD no obvious selection pressure regarding the trend 

of further genome size alteration was detected. The observed large-scale genome shrinkage as 

well as genome expansion within the genus Genlisea, might have been for millions of years a 

selection-neutral feature (Figs. 1, 4). This assumption gains support from phylogenetic data. 

The phylogenetic groups of Genlisea species with either small or large-genomes harbor annual 

and perennial species. Geographic distribution and/or habitat preferences vary similarly in both 

groups (Fig. 1). Also Fleischmann et al. (2014) could not find any consistent correlation in favor 

of a plausible selection for genome size alteration within the genus Genlisea. Because we 

cannot see for the respective Genlisea species any obvious factors favoring larger or smaller 

genomes, we assume the null hypothesis, i.e., that there is no adaptive value for genome size 

variability within the investigated frame. However, we cannot exclude the possibility that hitherto 

unidentified factors might select for larger or smaller genomes in these species. Experiments 

with large populations varying in genome sizes under stable and well defined environmental 

conditions (habitats), or alternatively with identical genome size within habitats varying as to 

specifically defined factors might theoretically solve the question of the adaptive value of 

genome size for specific taxa. However, such experiments seem unfeasible within a reasonable 

timeframe and effort.  

Moreover, the enormous genome shrinkage within G. nigrocaulis and other species of this 

clade, as well as in U. gibba (Ibarra-Laclette, et al. 2013), indicates that large proportions of 

non-coding regions are indeed dispensable. This is not only true for non-coding repetitive 

sequences of the large genome which are absent from the small genome, but also for the 

retroelement Bianca of G. nigrocaulis which is not detectable in the large genome of G. 

hispidula. These observations challenge the current paradigm that most DNA sequences are of 

functional importance for the carrier organism (see also (Palazzo and Gregory 2014)). Based on 

our data, we suggest that stochastic WGD may increase, and biased DSB repair may decrease 

genome size during evolution. Biased DSB repair in either direction could be due to random 

mutations within one or more components involved in DSB repair. A deletion bias might be 
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caused by more and/or larger deletions (compared to the insertions) in a shrinking genome. 

Large interstitial chromosome deletions may occur simultaneously together with duplications in 

the sister chromatid (duplication-deletions), but pure large interstitial deletions occur at about 

the same frequency (~10% of inducible chromosome rearrangements; (Schubert et al. 1994)), 

yielding a rapid net increase in deletions,  Large deletions, under non-selective conditions, can 

easier explain genome shrinkage than a bias towards single base pair deletions. Together these 

assumptions offer a reasonable explanation for the C-value paradox/enigma within the 

investigated genus Genlisea. 
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Conclusions  

We addressed the “C-paradox” by comparing genomes of congeneric species with an 

unprecedented 18-fold genome size difference, including one of the smallest seed plant 

genomes. Our analyses suggest a common ancestor of intermediate genome size and genome 

size evolution in opposite directions with whole genome duplication (WGD) and 

retrotransposition in one, and retroelement loss and deletion-biased double-strand break repair 

in the other clade. Genome shrinkage and expansion apparently took place under similar 

environmental conditions, independent of geographic distribution and life strategy. Therefore we 

speculate that i) wide variation in genome size might be selectively neutral, ii) many repeats of 

the larger (but also of the smaller) genome seem to be dispensable in other Genlisea genomes, 

challenging their functionality for the organism, and iii) recurrent whole-genome duplication 

helps to preserve essential genome elements in the face of long-term genome shrinkage. 
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Experimental Procedures  

Plant material 

Plant species used in this study were obtained from the following commercial sources: 

Carnivorous Plants (http://www.bestcarnivorousplants.com/, Ostrava, Czech Republic): G. 

africana, G. aurea, G. hispidula, G. margaretae, G. nigrocaulis, G. pygmaea; Carnivors and 

more  (http://www.carnivorsandmore.de/., Merzig, Germany): G. nigrocaulis, G. subglabra, G. 

uncinata; Die Welt der Fleischfressenden Pflanzen  (http://www.falle.de/., Gartenbau Thomas 

Carow, Nüdlingen, Germany): G. glandulosissima, G. margaretae and G. nigrocaulis and. 

Herbarium vouchers of G. hispidula (Number: GAT 7858, GAT 7859), G. nigrocaulis (Number: 

GAT 7444, GAT 7445) and G. pygmaea (Number: GAT 23586) were deposited at the IPK 

Gatersleben. 

Genome size determination and cytogenetic experiments 

For flow cytometric genome size estimations, leaf tissue of Genlisea was chopped together with 

leaf material of either Arabidopsis thaliana ‘Columbia’ (2C = 0.32 pg, (Bennett, et al. 2003)) or 

Raphanus sativus ‘Voran’; IPK gene bank accession number RA 34 (2C = 1.11 pg; (Schmidt-

Lebuhn et al. 2010)) as internal reference standards in nuclei isolation buffer (Galbraith et al. 

1983) supplemented with 1 % PVP-25, 0.1 % Triton X-100, DNase-free RNase (50 µg/ml) and 

propidium iodide (50 µg/ml) according to (Dolezel et al. 2007). Measurements were performed 

using a FACStarPLUS flow sorter (BD Biosciences, New Jersey, USA) and calculations of the 

genome size were done as described previously (Dolezel, et al. 2007).  

Chromosomes were prepared from ethanol:glacial acetic acid (3:1)-fixed young flower buds (G. 

nigrocaulis; G. pygmaea) or young leaves (G. hispidula) (for details see SI section 2). For 

chromosome counting, preparations were stained with 1 µg/ml DAPI in antifade solution 

(Vectashield, Vector Laboratories). 

Immunostaining experiments were performed on flow-sorted 2C leaf nuclei as previously 

described (Lysak et al. 2006a) using the following primary antibodies; mouse anti-5-

methylcytosine (Eurogentec), rabbit anti-H3K4me2 and anti-H3K27me1 (Millipore). As 

secondary antibodies anti-mouse-Alexa 488 and anti-rabbit rhodamine were used, respectively.  
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Fluorescent in situ hybridizations (FISH) was done according to (Lysak, et al. 2006a). Probes for 

single copy sequences of G. nigrocaulis and for the 161 bp repeat (for primers see Table S1) 

were prepared by PCR and labeled by nick translation (Lysak, et al. 2006a).  

Genome sequencing and assembly 

Genlisea species used for this study were identified and their genome size was measured 

before DNA and RNA was isolated for sequencing (SI sections 1–2). Genomic sequences from 

libraries with different insert sizes (200 bp – 20 kbp), based on isolated nuclei, were generated 

on Illumina HiSeq2000 and MiSeq, Roche 454 Titanium (SI section 3.1). Sequence reads used 

for de novo assembly were assembled and scaffolded with CLC Assembly Cell 4.2 (CLC bio, 

Cambridge, MD) and SSPACE (Boetzer et al. 2011). For details see SI sections 3.1–3.5. 

Annotation 

Gene models were derived from a Genlisea-specific training of the AUGUSTUS (Stanke and 

Morgenstern 2005) pipeline using the RNA-Seq assembled transcriptome of G. hispidula and G. 

nigrocaulis. Then the trained AUGUSTUS instance was applied to the respective genome 

reference to predict gene models with Genlisea- specific parameter settings. Furthermore, an 

OrthoMCL (Li et al. 2003) analysis of all AUGUSTUS predictions (proteins of G. nigrocaulis and 

G. hispidula) was performed against the protein sequences of A. thaliana and U. gibba (Ibarra-

Laclette, et al. 2013) to look for orthologous groups that support a prediction. OrthoMCL was run 

as recommended in default settings using the blastp tool for the all to all comparison of protein 

sequences. Pairwise sequence similarities between protein sequences were calculated using 

BLASTP with an e-value cut-off 1E-5. Markov clustering was applied using an inflation value 

(OrthoMCL parameter -I) of 1.5. The set of high confidence genes comprised gene predictions 

that have RNA-Seq support and an orthology link either to A.thaliana, U.gibba or one of the 

Genlisea species. If only one criterion was fulfilled, we validated the quality of the prediction by 

searching for significant blastp hits (e-value cut-off 1E-5 and percentage of identity >40%) 

against a collection of protein sequences of reference plant species (A. thaliana, A. lyrata, U. 

gibba, S. lycopersicum and Vitis vinifera) downloaded from the Ensembl Plants (Kersey et al. 

2012). The Tophat and Cufflinks (Trapnell et al. 2010) pipelines were run as additional 

approaches to confirm the quality of gene predictions and to get better consensus gene 
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predictions. A bi-directional BLAST (blastn) using the coding sequences of G. nigroculis and G. 

hispidula was performed to select a suitable set of homologous genes for the intron and exon 

structure comparison. A set of 1,186 homologous gene pairs of both Genlisea species was 

selected (e-value < 1E-30, the alignment between the two sequences covered at least 80% of 

the longer sequence). These genes also showed homology with U. gibba sequences (BLASTP, 

e-value < 1E-20). 

'High confidence' and 'low confidence' genes were annotated using BLAST2GO (Conesa and 

Gotz 2008). The complete details are described in the SI sections 4–5. 

Polyploidy detection 

The k-mer frequencies of the coding sequences of 1,186 homologous gene pairs of G. 

nigrocaulis and G. hispidula were compared. The average copy number is 0.95 for G. 

nigrocaulis and is 1.7 for G. hispidula. These values are close to a 1:2 ratio, as expected in case 

of a WGD event (SI section 6.1). The polyploidy was then confirmed by genome-wide SNP 

calling within intra-specific transcripts. RNA-Seq reads were aligned with ‘sensitive’ parameter 

settings by bowtie2 (Langmead and Salzberg 2012) to the set of ‘high confidence’ genes in G. 

nigrocaulis and G. hispidula, respectively. The resulting alignments are affiliated into the variant 

calling process using VCFtools (Danecek et al. 2011). Potentially false positive variants were 

eliminated by discarding variants of inadequate read coverage (<10-fold) and insufficient variant 

quality (<150). 31.38% of the G. nigrocaulis SNPs and 65.06% of G. hispidula SNPs were 

detected with an allele ratio (AR) of 0.4 to 0.6 (SI section 6.2). Assuming an equal 

heterozygosity level in both self-compatible species, 65.06% of alleles at heterozygous loci with 

a read frequency of about 1:1 (AR of 0.4-0.6, (Lu, et al. 2013)) support the assumption of 

allotetraploidy in G. hispidula. Furthermore, copy numbers of fifteen randomly selected 

homologous gene pairs were determined by genotype calling and haplotype phasing. The 

amplicons of these investigated genes were amplified from three individuals of each species 

and then Sanger sequenced for identifying interhomeolog or intergenomic polymorphism. 

Amplicons of G. hispidula genes with multiple interhomeolog variants were cloned and Sanger 

sequenced for sorting variants into haplotypes (SI section 6.3). 
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Repeat analysis 

Repetitive elements were identified using similarity-based clustering of unassembled sequence 

reads (Novak, et al. 2010) and further characterized using the REPEATEXPLORER pipeline 

(Novak, et al. 2013) (SI section 7.1). In addition, the SINE-Finder tool (Wenke et al. 2011) was 

used for detection of short interspersed nuclear elements (SINE) in G. nigrocaulis and G. 

hispidula genomes. The K-mer analysis was done for genome reference sequences of both G. 

nigrocaulis and G. hispidula species. 21-mer index libraries were generated from WGS reads of 

each species and used to analyze the k-mer frequencies of the genome reference sequences 

using Tallymer (Kurtz et al. 2008). The k-mer frequencies were normalized by the respective 

sequencing depth (350-fold for G. nigrocaulis and 14-fold for G. hispidula). Furthermore, to 

detect the k-mers that became reduced or amplified in either species, the shared k-mers 

occurring with high frequency in the genomes of G. nigrocaulis and G. hispidula were 

investigated. Strikingly, only 1% of these k-mers are shared between both Genlisea species, 

indicating that the genome of G. hispidula contains many repetitive sequences that are not 

present in G. nigrocaulis. Additional details and specifications are presented in the SI sections 

7.1-7.3. 

Ks-based dating  

Fifty homologous gene pairs from both species with two homoeologous copies in G. hispidula 

were randomly selected from the high-confidence gene sets and used for age calculation for the 

split between the lineages of G. hispidula and G. nigrocaulis and between both parental 

lineages contributing to the allotetraploid G. hispidula (SI section 8). Sequences were aligned 

with MUSCLE (Edgar 2004) and manually corrected. The pairwise Ks values were calculated with 

KAKS_CALCULATOR (Zhang et al. 2006) using Model Averaging (MA). The approximate age 

estimates were calculated with a neutral mutation rate of 1.5 x 10-9 mutations per site per year 

using the formula 

Age  =  Ks / 2  x  1.5  x  10-9. 
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The NGS resource for both Genlisea species is accessible at European Nucleotide Archive 

under project numbers ‘PRJEB1866’ and ‘PRJEB1867’. 
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Figure legends 

Figure 1. Phylogeny, genome size and life style within the genus Genlisea, and 

chromosomes of G. nigrocaulis and G. hispidula. Scheme of phylogenetic relationships 

within Genlisea [modified from (Fleischmann et al. 2010) and (Fleischmann 2012)] including 1C 

genome sizes in Mbp ((Greilhuber, et al. 2006, Fleischmann, et al. 2014, Veleba et al. 2014), 

and own measurements) after taxon names. Two different genome sizes found within G. aurea 

and G. repens suggest the occurrence of di- and tetraploid cytotypes. Habitat preferences were 

compiled from (Fleischmann 2012). The distribution of habitat preferences, life form, and 

geographic areas among clades shows that none of these traits is correlated with large or small 

genome size. For 50 randomly selected nuclear genes Ks-based dating (using average 

Brassicaceae mutation rates) of the split of the lineages leading to G. hispidula and G. 

nigrocaulis results with 29 My in more than twice the age calculated by Ibarra-Laclette et al. 

(2013) for the chloroplast trnL-F region (13 My). Using homeologous copies within tetraploid G. 

hispidula for the same gene set and applying identical mutation rates, an age of 20 My is 

estimated for the split between both parental lineages of G. hispidula. This is the maximum age 

for allopolyploidisation, as, according to the phylogenetic tree, it could have happened any time 

after the split of both parental lineages and before divergence of G. hispidula (tetraploid) and G. 

subglabra (presumed to be tetraploid). G. nigrocaulis (red box) and G. hispidula (blue box) both 

with 2n=40 chromosomes.  

Figure 2. Repeat composition of G. nigrocaulis and G. hispidula. Repeat abundance (% of 

genome size) in both species (left), detail subclasses of Long Terminal Repeat retrotransposons 

(right). 

Figure 3. Allele ratio and intron/exon size comparison between G. nigrocaulis and G. 

hispidula. (A) The allele ratio distribution of SNPs in G. nigrocaulis (red) and G. hispidula 

(blue). SNPs fulfill the criteria of quality score >150 and a minor allele frequency of >0.05. In 

total there  are 19,391 SNPs in G. nigrocaulis and 140,556 in G. hispidula, while SNPs with an 

allele ratio of 0.4 to 0.6 are 6,084 (31.38%) in G. nigrocaulis and 91,420 (65.06%) in G. 

hispidula,  supporting the assumption of a WGD via allopolyploidy in G. hispidula. (B) Intron and 

exon size distribution compared between 1,186 homologous genes of G. hispidula and G. 
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nigrocaulis. Intron length comparison utilized a subset of 814 gene pairs with at least one intron 

sequence in both species. 

Figure 4. WGD is counteracting genome shrinkage in small Genlisea genomes. (A) G. 

pygmaea (179 Mbp, 2n = 80 chromosomes) reveals FISH signals on four chromosomes for a 

single copy probe (G. nigrocaulis scaffold 17, position 342935 to 353300) that label two G. 

nigrocaulis chromosomes; the same result was obtained with five other unique sequences 

(Table S1). (B) Model of bidirectional genome size evolution as observed within Genlisea. While 

large genomes evolve through WGD and retrotransposition, deletion-biased DSB repair may 

result in small genomes. Recurrent WGDs of very small genomes could maintain functionality 

and prevent reaching a threshold below which deletion-biased DSB repair would drive a species 

to extinction through loss of essential genome components. Such WGD is also likely for some 

G. aurea populations and for U. gibba (Ibarra-Laclette, et al. 2013) (Fig. 1). Alternatively, further 

shrinkage must be stopped through mutations or gain of gene(s), which reverse deletion-biased 

DSB repair. 

Figure 5. Comparative gene ontology annotation of G. nigrocaulis (inner circle) and G. 

hispidula (outer circle) for biological processes. The most severe deviation (black triangle) 

is represented by much less genes involved in DNA metabolic processes in G. nigrocaulis.  
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Table 1. Global statistics of the Genlisea genome assemblies and annotation  

Species Genlisea nigrocaulis Genlisea hispidula 

Estimated genome size (Mbp) 86 1550 

# contigs / # scaffolds 17,454 / 6,968 95,804 / - 

Sum of contig / scaffold length (Mbp)  60.59 / 64.93 203.80 / - 

L50 contig (Kbp) / L50 scaffold (Kbp) 17.4 / 173.7 2.3 / - 

N50 contig number / N50 scaffold number  938 / 113 27,310 / - 

Predicted genes 24,749 69,894 

‘High confidence’ genes† 15,550 42,120 

‘Low confidence’ genes† 1,563 21,361 

Average exon length (bp)‡ 271 278 

Average intron length (bp)‡ 123 164 

Genic sequences (exons and introns)  
(Mbp) 

34.02  54.78 

Defined repetitive sequences (%) 9.7 41.6 

Total repeats§ (%) 15.9 64.1 

† High confidence (HC) genes harboring start and stop codons are present in genomic as well 

as in transcriptomic sequences and have homology in at least one other plant genome (A. 

thaliana, U. gibba, S. lycopersicum and the other Genlisea species). Low confidence (LC) genes 

do not fulfill one of these criteria.  

‡ Because of low coverage and incomplete assembly of the G. hispidula genome, several 

introns could be fragmentary and lead to size underestimation; therefore we used for size 

comparison the values from 1,186 homeologs selected for completeness in both species. The 

>2-fold higher gene number in G. hispidula is an overestimation as a direct consequence of the 

lower sequencing depth and hence a colloidal genome assembly with fragmented gene models. 

§ Total repeats were calculated as sum of repeat clusters representing at least 0.01% of the 

genome. 
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Figure 1. Phylogeny, genome size and life style within the genus Genlisea, and chromosomes of G. 
nigrocaulis and G. hispidula. Scheme of phylogenetic relationships within Genlisea [modified from 

(Fleischmann et al. 2010) and (Fleischmann 2012)] including 1C genome sizes in Mbp ((Greilhuber, et al. 

2006, Fleischmann, et al. 2014, Veleba et al. 2014), and own measurements) after taxon names. Two 
different genome sizes found within G. aurea and G. repens suggest the occurrence of di- and tetraploid 

cytotypes. Habitat preferences were compiled from (Fleischmann 2012). The distribution of habitat 
preferences, life form, and geographic areas among clades shows that none of these traits is correlated with 

large or small genome size. For 50 randomly selected nuclear genes Ks-based dating (using average 
Brassicaceae mutation rates) of the split of the lineages leading to G. hispidula and G. nigrocaulis results 
with 29 My in more than twice the age calculated by Ibarra-Laclette et al. (2013) for the chloroplast trnL-F 
region (13 My). Using homeologous copies within tetraploid G. hispidula for the same gene set and applying 
identical mutation rates, an age of 20 My is estimated for the split between both parental lineages of G. 

hispidula. This is the maximum age for allopolyploidisation, as, according to the phylogenetic tree, it could 
have happened any time after the split of both parental lineages and before divergence of G. hispidula 

(tetraploid) and G. subglabra (presumed to be tetraploid). G. nigrocaulis (red box) and G. hispidula (blue 
box) both with 2n=40 chromosomes.  
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Figure 2. Repeat composition of G. nigrocaulis and G. hispidula. Repeat abundance (% of genome size) in 
both species (left), detail subclasses of Long Terminal Repeat retrotransposons (right).  
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Figure 3. Allele ratio and intron/exon size comparison between G. nigrocaulis and G. hispidula. (A) The allele 
ratio distribution of SNPs in G. nigrocaulis (red) and G. hispidula (blue). SNPs fulfill the criteria of quality 
score >150 and a minor allele frequency of >0.05. In total there  are 19,391 SNPs in G. nigrocaulis and 
140,556 in G. hispidula, while SNPs with an allele ratio of 0.4 to 0.6 are 6,084 (31.38%) in G. nigrocaulis 

and 91,420 (65.06%) in G. hispidula,  supporting the assumption of a WGD via allopolyploidy in G. 
hispidula. (B) Intron and exon size distribution compared between 1,186 homologous genes of G. hispidula 
and G. nigrocaulis. Intron length comparison utilized a subset of 814 gene pairs with at least one intron 

sequence in both species.  
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Figure 4. WGD is counteracting genome shrinkage in small Genlisea genomes. (A) G. pygmaea (179 Mbp, 2n 
= 80 chromosomes) reveals FISH signals on four chromosomes for a single copy probe (G. nigrocaulis 

scaffold 17, position 342935 to 353300) that label two G. nigrocaulis chromosomes; the same result was 

obtained with five other unique sequences (Table S1). (B) Model of bidirectional genome size evolution as 
observed within Genlisea. While large genomes evolve through WGD and retrotransposition, deletion-biased 

DSB repair may result in small genomes. Recurrent WGDs of very small genomes could maintain 
functionality and prevent reaching a threshold below which deletion-biased DSB repair would drive a species 

to extinction through loss of essential genome components. Such WGD is also likely for some G. aurea 
populations and for U. gibba (Ibarra-Laclette, et al. 2013) (Fig. 1). Alternatively, further shrinkage must be 

stopped through mutations or gain of gene(s), which reverse deletion-biased DSB repair.  
84x84mm (300 x 300 DPI)  

 

 

Page 34 of 83
The Plant Genome Accepted paper, posted 09/02/2015. doi:10.3835/plantgenome2015.04.0021



  

 

 

Figure 5. Comparative gene ontology annotation of G. nigrocaulis (inner circle) and G. hispidula (outer 
circle) for biological processes. The most severe deviation (black triangle) is represented by much less genes 

involved in DNA metabolic processes in G. nigrocaulis.  
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1. Plant material 

Plant species used in this study were obtained from the following commercial 

sources: Carnivorous Plants  (http://www.bestcarnivorousplants.com/, Ostrava, 

Czech Republic): Genlisea nigrocaulis, G. hispidula, G. africana, G. margaretae, G. 

pygmaea, G. aurea; Carnivors and more  (http://www.carnivorsandmore.de/., Merzig, 

Germany): G. nigrocaulis, G. subglabra, G. uncinata; Die Welt der Fleischfressenden 

Pflanzen  (Gartenbau Thomas Carow, Nüdlingen, Germany): G. nigrocaulis, G. 

margaretae, G. lobata and G. glandulosissima. Plants were grown in the greenhouse 

and determined following the monograph provided by Fleischmann (2012). Vouchers 

were deposited in the herbarium of the IPK Gatersleben (GAT) (spirit material). 

Voucher information 

GAT 7444: Genlisea nigrocaulis STEYERM.; cultivated in Gatersleben (greenhouse). 

Origin: Gartenbau Th. Carow, Nüdlingen; Germany; leg. I. Schubert et K. Pistrick 

26.08.2011; det. K. Pistrick  

GAT 7445: Genlisea nigrocaulis STEYERM.; cultivated in Gatersleben (greenhouse). 

Origin: Carnivors and more Chr. Klein, Merzig, Germany; leg. I. Schubert et K. 

Pistrick 26.08.2011; det. K. Pistrick  

GAT 7858: Genlisea hispidula STAPF; cultivated in Gatersleben (greenhouse): 6-8-

09. Origin: BestCarnivorousPlants K. Pasek, Ostrava-Poruba, CZ; leg. J. Fuchs et K. 

Pistrick 09.07.2012; det. K. Pistrick  

GAT 7859: Genlisea hispidula STAPF; cultivated in Gatersleben (greenhouse): 3; 

Origin: BestCarnivorousPlants K. Pasek, Ostrava-Poruba, CZ; leg. J. Fuchs et K. 

Pistrick 09.07.2012; det. K. Pistrick 
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GAT 23586: Genlisea pygmaea A.ST.-HIL.; cultivated in Gatersleben (greenhouse): 

8/2/11. Origin: BestCarnivorousPlants K. Pasek, Ostrava-Poruba, CZ; leg. et det. K. 

Pistrick; 30.01.2014 

2. Flow-cytometry  and cytogenetics 

For flow cytometric genome size estimations, roughly 5 mm2 of leaf tissue of 

Genlisea was chopped with a sharp razor blade together with appropriate amounts 

of leaf material of either Arabidopsis thaliana ‘Columbia’ (2C = 0.32 pg, (Bennett et 

al. 2003)) or Raphanus sativus ‘Voran’; IPK gene bank accession number RA 34 (2C 

= 1.11 pg; (Schmidt-Lebuhn et al. 2010)) as internal reference standards in a Petri 

dish containing 0.6 ml nuclei isolation buffer (Galbraith et al. 1983) supplemented 

with 1 % PVP-25, 0.1 % Triton X-100, DNase-free RNase (50 µg/ml) and propidium 

iodide (50 µg/ml). The nuclei suspensions were filtered through 35-µm mesh cell 

strainer caps and stored on ice until measurement. The relative fluorescence 

intensities of stained nuclei were measured using a FACStarPLUS (BD Biosciences, 

New Jersey, USA) flow sorter equipped with an argon ion laser INNOVA 90C 

(Coherent, Palo Alto, CA, USA). Usually, 10,000 nuclei per sample were analyzed. 

The absolute DNA amounts of samples were calculated based on the values of the 

G1 peak means. Depending on the availability of material at least two independent 

measurements per species were performed. 

For flow sorting of nuclei, formaldehyde (4%)-fixed leaf material was chopped in 

LB01 buffer (Dolezel et al. 2007) as described above. After staining the nuclei 

suspension with DAPI (1µg/ml) 2C nuclei were sorted using a FACSAria flow sorter 

(BD Biosciences, New Jersey, USA) and equivalent amounts of sorted nuclei 

suspension and sucrose-buffer (Jasencakova et al. 2003) were pipetted onto 

microscopic slides and air-dried overnight. 
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For chromosome preparation, young flower buds (G. nigrocaulis) or young leaves 

(G. hispidula) were fixed in fixative solution (ethanol:glacial acetic acid = 3:1) for 2 

days at room temperature, and stored in 70 % ethanol at 4°C until use. Fixed tissue 

was washed two times for 5 min in enzyme buffer (10 mM citric acid–sodium citrate, 

pH 4.5), digested at 37°C for 20 min in enzyme mixture containing 2 % (v/v) cellulase 

(Duchefa Biochemie), 2 % (w/v) pectolyase (Sigma) and squashed onto microscopic 

slides in 60 % acetic acid. For chromosome counting the slides were stained with 1 

µg/ml DAPI in antifade solution (Vectashield, Vector Laboratories). 

Immunostaining and fluorescent in situ hybridization (FISH) were performed as 

previously described (Lysak et al. 2006). For the immunolocalization of methylated 

DNA a mouse anti-5-methylcytosine antibody (Eurogentec) and for methylated lysine 

residues of histone H3 rabbit antibodies against H3K4me2 and H3K27me1 (all 

Millipore) were used. As secondary antibodies anti-mouse-Alexa 488 and anti-rabbit 

rhodamine were used, respectively. 

FISH probes of single copy sequences of G. nigrocaulis (Table S1) prepared by PCR 

and labeled by nick translation were as follows: The FISH probe for the single highly 

abundant 161 bp repeat was also prepared by PCR (forward: 

GCCTTATTATGCATCAAATAGCTTC; reverse: GCAATTGGATCCTTTAATAAC-

CTC) and labeled by nick translation.  
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Table S1. FISH probes of single copy sequences of G. nigrocaulis 

Probe name 

Probe location in G. nigrocaulis genome 

Forward /Reverse primers  

# Scaffold Start position 
End 
position 

Probe size 
(bp) 

v4c12_p4 72    100,238  
     

108,627  
           

8,389  

TGAGTGGTCAAAGAAGACAGGAAG 

ATTTCCGTTAGCGTAGATTCAAGC 

v4c202_p4 17    168,590  
     

177,798  
           

9,208  

TTCGATTCTGGATGATAATTGACTG 

AGTTCAAGCTTCGACGAGTATGTG 

v4.2s58_4 58    234,534  
     

243,912  
           

9,378  

AGTGATGGAAGTGACTCCAGTGAG 

TAATTTCGCTCTCTTGCTGCATAC 

v4s17_p2 17    342,935  
     

353,300  
         

10,365  

ACTCAATCCGGTTCCTGTAAGTTC 

AGTTCATCCTCTGATGGCCTTAAC 

v4s19_p2 19    335,352  
     

343,857  
           

8,505  

CCCAGATGAGAGCAATTTGTATTG 

AACGCATTTCATAGATGAGGATTG 

Gps2_p6 2    146,773  
     

157,485  
         

10,712  

GCCGAAGCGTCATTTACTCACTAC 

CAATCCTCTCCAACGCATCTCTTAC 

 

3. Genlisea genome sequencing and assembly 

3.1. Whole genome shotgun sequencing  

30 million and 50 million nuclei from leaf samples of G. nigrocaulis and G. hispidula, 

respectively, were flow-sorted to minimize cpDNA contamination. Nuclear DNA was 

extracted from sorted nuclei using the CTAB method (Clarke 2009). Pure gDNA of 

G. nigrocaulis was subjected to whole genome amplification using REPLI-g Midi kit 

(Qiagen) in order to get enough DNA for preparing a series of sequencing libraries 

with different insert size. REPLI-g amplified genomic DNA samples were purified 

using the QIAamp DNA Mini Kit and quantified by spectrophotometry and pulsed 

field gel electrophoresis.  

Illumina paired-end (PE) and mate-pair (MP) libraries with fragment length ~200 bp 

(PE), ~2000 bp (PE) and 20 kbp (MP) were prepared from genomic DNA of G. 

nigrocaulis. One additional 454 mate-paired library with 10 kbp fragment length was 

sequenced. Genomic DNA of G. hispidula was sequenced in a single paired-end 
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library with Illumina technology. Sequencing statistics are provided in Table S2. The 

NGS resource for both Genlisea species is accessible at European Nucleotide 

Archive  under project number ‘PRJEB1866’. 

Table S2. Summary of WGS sequencing raw data 

species library type   ENA 

accession 

reads sequence (bp) sequence 

(Gbp) 

est. 

genome 

coverage 

G. nig 
Illumina PE 200 bp (HiSeq) 

paired 

(2x100bp) 
ERR296825

a
 

2 x 

51,313,451 
10,262,690,200 10.26 119.3 

  
Illumina PE 200 bp (HiSeq) 

paired 

(2x100bp) 
ERR412882 2 x 3,938,923 787,784,600 0.79 9.2 

  
Illumina PE 200 bp (HiSeq) 

paired 

(2x100bp) 
ERR412881 

2 x 

191,466,983 
38,676,330,566 38.68 449.7 

  
Illumina MP  4kbp (MiSeq) 

paired 

(2x250bp) 
ERR412884 2 x 5,091,981 

1,242,185,632 
1.24 14.4 

  
Illumina MP  4kbp (HiSeq) 

paired 

(2x100bp) 
ERR412883 

2 x 

56,408,719 11,281,743,800 
11.28 131.2 

  
Illumina PE 2 kbp 

paired 

(2x100bp) 
ERR296826 2 x 6,809,762 1,361,952,400 1.36 15.8 

  
Roche 454 MP 10 kbp 

paired 

(2x200bp) 
ERR299267 2 x 95,006 38,002,400 0.04 0.4 

  
Illumina MP 20 kbp paired (2x50bp) ERR299254 

2 x 

26,635,295 
2,663,529,500 2.66 31.0 

∑ G. 

nig 
        66,314,219,098 66.31 771.1 

G. his 
Illumina PE 200bp (HiSeq) 

paired 

(2x100bp) 
ERR299255

a
 

2 x 

150,579,430 
30,115,886,000 30.12 19.4 

aReads of these runs were used for Cluster analysis 

3.2. Quality trimming and error correction of WGS reads 

To eliminate sequencing errors, we first performed a quality trimming for all 

constructed WGS data sets and subsequently applied an automatized error 

correction. All reads are filtered for sequence positions with sufficient quality. For this 

purpose we applied the quality trimming method of CLC Assembly Cell 4.2 (CLC bio, 

Cambridge, MD) on paired reads and trimmed ambiguous positions (Phred quality 

<20). Cutoffs were set on default values requiring a minimal quality of 20 and a good 

quality fraction for each reads of 0.5. Reads with rejected mates were captured as 

single reads. Read error correction was performed using Quake (Kelley et al. 2010). 

Therefore an 18-mer index was constructed using Jellyfish (Marcais and Kingsford 

2011) which is used by Quake to correct sequencing errors. For both G. nigrocaulis 
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and G. hispidula the 200 bp (PE) libraries were used for the 18-mer index 

construction which subsequently was applied to all WGS data sets. After discarding 

ambiguous positions in the WGS data we derived a 630-fold sequencing coverage of 

the G. nigrocaulis genome and a 15.9-fold coverage of the G. hispidula genome. 

Details are listed in Table S3. 

Table S3. Statistics of pre-processed WGS sequence data 

species library type reads avg. read 

length (bp) 

sequence (bp) sequence 

(Gbp) 

est. genome 

coverage 

G. nig Illumina PE 200 bp (HiSeq) 2 x 37,508,870 91.3 6,774,901,862 6.77 78.8 

    1,273,364 81.5 103,995,410 0.10 0.1 

  Illumina PE 200 bp (HiSeq) 2 x 3,647,474 98.7 719,712,016 0.72 8.4 

    222,363 88.7 19,730,109 0.02 0.2 

  Illumina PE 200 bp (HiSeq) 2 x 164,442,874 96.2 33,692,640,296 33.69 391.8 

    21,230,841 84.9 466,475,345 0.47 5.4 

  Illumina MP  4kbp (MiSeq) 2 x 3,163,801 157.7 998,098,363 1.00 11.6 

    797,828 213.0 169,978,068 0.17 2.0 

  Illumina MP  4kbp (HiSeq) 2 x 49,062,550 97.6 9,581,211,021 9.58 111.4 

    5,493,289 84.9 466,475,345 0.47 5.4 

  Illumina PE 2 kbp (HiSeq) 2 x 4,304,184 92.3 794,910,517 0.79 9.2 

    915,045 92.2 84,409,780 0.08 1.0 

  Roche 454 MP 10 kbp 2 x 90,091 161.8 28,740,568 0.03 0.3 

    76,752 206.5 15,845,742 0.02 0.2 

  Illumina MP 20 kbp (HiSeq) 2 x 862,077 47.8 82,520,079 0.08 1.0 

    3,186,059 47.6 151,708,088 0.15 1.8 

∑ G. nig   559,359,383 96.8 54,151,352,609 54.15 629.7 

G. his Illumina PE 200 bp (HiSeq) 2 x 123,056,614 97.2 23,911,470,917 23.91 15.4 

    7,552,333 95.1 736,778,420 0.74 0.5 

∑ G. his   253,665,561 97.2 24,648,249,337 24.65 15.9 

 

3.3. De novo whole-genome shotgun assembly 

Nuclear DNA PE reads have been assembled with CLC assembly cell (v4.2) to build 

a contig set with minimal contamination, since purified DNA from extracted nuclei 

has been used for sequencing. For G. nigrocaulis two other libraries of DNA isolated 

from entire plants were sequenced to gain a complete genome representation. All 
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read libraries were processed in a combined CLC assembly using standard 

parameter settings and allowing contigs with minimal length of 300 bp.  

To establish a quality reference assembly, various control mechanisms were 

implemented to sort out possible contamination. First we anchored the constructed 

contigs against contamination free data resources. For that purpose, the assembly of 

nuclear DNA of G. nigrocaulis and of G. hispidula and the genome reference 

assembly of the close related species Utricularia gibba served as control. For G. 

nigrocaulis 6,915 contigs were identified as non-contaminated, comprising in total 52 

Mbp of cumulative contig size. As an additional control we used RNA-Seq reads 

from flower tissues. PE reads from flower showed in pre-screenings almost no 

microbial contamination. RNA-Seq reads were mapped as spliced alignment with 

Tophat (Kim et al. 2013) to the genome reference contigs to capture all contigs with 

expressed RNA-Seq evidence. Furthermore, all non-anchored WGS contigs were 

blastn (Altschul et al. 1990) analyzed against the NCBI nucleotide collection and 

checked for hits to angiosperms (e-value cut-off 1E-5). Further quality in the 

assembly was gained by removing miss-assembled contigs revealed by coverage 

analysis. Since erroneous reads might form arbitrary contigs which usually are small 

and can be detected because of very poor read coverage support, we removed 

contigs with an average coverage less than 30x from our reference set. Applying the 

previously explained methods we further integrate 7.28 Mbp (8.234 contigs) to the 52 

Mbp of reference sequence. By using the program IMAGE of the PAGIT toolkit 

(Swain et al. 2012), we performed a reference error correction and gap closing. To 

correct the reference, only reads from nuclear DNA sequence were used as input. 

IMAGE was run in default parameters for 12 iterations with four gradually decreased 

k-mer sizes (91, 71, 51 and 31) modified after each third iteration step. In total, 1,288 
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gaps have been closed, decreasing the proportion of 'N' bases in the reference to 

zero and increasing the cumulative contig size from 59.28 to 60.59 Mbp (17,457 

contigs). The constructed WGS assembly reference comprised an L50 of 17,420 bp, 

and enriched the quality of subsequent scaffolding. 

The genome sequence of G. hispidula was assembled using the purified DNA from 

extracted nuclei. We build a WGS assembly using CLC assembly cell (v4.2) with 

standard parameter settings, allowing contigs with minimal length of 300 bp. The 

total length of the WGS assembly was 314.5 Mbp, comprised by 303,873 contigs.  

3.4. Scaffolding 

For scaffolding in G. nigrocaulis small and accurate short mate pair libraries (2 kbp) 

were used first, then mate pair libraries with increasing distances (4 kbp, 10 kbp and 

20 kbp) were integrated in a step-wise manner. We applied SSPACE (Boetzer et al. 

2011) as scaffolding program. Standard parameters were used and mate distances 

were calculated with CLC assembly cell. The first phase of scaffolding resulted in 

12,217 WGS scaffolds with an L50 scaffold size of 117 kbp and a cumulative 

scaffold size of 64.88 Mbp. Scaffolding integrated many 'N'-gaps that were reduced 

by a subsequent gap filling approach using GapFiller (Boetzer and Pirovano 2012). 

In a successive scaffolding run the final reference of 11,468 scaffolds was 

established, comprising a cumulative scaffold length of 66.5 Mbp for G. nigrocaulis. 

3.5. Post-processing using k-mer analysis 

We applied a k-mer analysis to the constructed genome reference to detect 

assembly artifacts which may result from sequencing errors. We used all PE reads of 

G. nigrocaulis that align to the constructed reference as basis for the construction of 

a k-mer index using Tallymer (Kurtz et al. 2008). This index was applied to the 

reference sequence of G. nigrocaulis to compute k-mer frequencies for each 
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constructed scaffold. The integrated reads represent the genome with a 350-fold 

coverage. Assembly artifacts that are caused by sequencing errors have a lower k-

mer frequency which is a consequence of insufficient representation of reads by k-

mers. Furthermore very small scaffolds also can be an artifact of the assembly 

process. Therefore we removed short scaffolds (<500bp) with a deficient k-mer 

frequency (k-mer frequency <1) and no detectable genes. Final contigs of G. 

hispidula were analyzed with the same approach using the respective data set of 

WGS sequencing for index construction and excluding artifacts of short contigs 

(<1000bp) with deficient k-mer frequencies. The final WGS assembly of G. hispidula 

with a total length of 203.8 Mbp comprised 95,804 contigs (Table S4). 

Table S4. Assembly and scaffolding statistics 

  
G. nigrocaulis G. hispidula 

  contigs all        scaffolds all scaffolds final contigs final (>1 kbp) 

# contigs/scaffolds 17,454 11,468 6,968 95,804 

# contigs/scaffolds > 10kbp 1,580 568 568 185 

# contigs/scaffolds > 50kbp 117 315 315 0 

cum. contig/scaffold size (Mbp) 60.59 66.71 64.93 203.80 

largest contig/scaffold (kbp) 122.6 628.4 628.4 25.7 

L50 (kbp) 17.4 162.7 173.7 2.3 

N50 938 118 113 27,310 

 

4. Sequencing and pre-processing of RNA-Seq reads of G. nigrocaulis and G. 

hispidula 

RNA samples from three different organs (traps, leaves and flowers) of G. 

nigrocaulis and G. hispidula were isolated using an RNeasy Kit (Qiagen). To 

annotate transcriptionally active regions in the WGS contigs of G. nigrocaulis and G. 

hispidula, deep RNA sequence data (RNA-Seq) were produced by Illumina paired-

end sequencing (2x100 bp reads, 200 bp insert size) for all three organs of both 
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Genlisea species (Table S5). The RNA-Seq resource is accessible at European 

Nucleotide Archive  under project number ‘PRJEB1867’. 

Table S5. Statistics of RNA-Seq raw data 

species library type organ ENA accession reads read 

length 

(bp) 

sequence (bp) sequence 

(Mbp) 

G. nig Illumina PE 200 bp leaf ERR299256 2 x 30,072,857 101 6,074,717,114 6,075 

  Illumina PE 200 bp trap ERR299258 2 x 27,571,185 101 5,569,379,370 5,569 

  Illumina PE 200 bp flower ERR299260 2 x 32,383,215 101 6,541,409,430 6,541 

  Illumina PE 200 bp plant ERR299261 2 x 20,791,438 101 4,158,287,600 4,158 

∑ G. nig           22,343,793,514 22,344 

G. his Illumina PE 200 bp leaf ERR299262 2 x 53,687,723 101 10,844,920,046 10,845 

  Illumina PE 200 bp trap ERR299264 2 x 59,522,012 101 12,023,446,424 12,023 

  Illumina PE 200 bp flower ERR299266 2 x 39,037,073 101 7,885,488,746 7,885 

∑ G. his           30,753,855,216 30,754 

 

All RNA-Seq data sets were trimmed for sufficient sequence quality (Phred quality 

>20) using methods of CLC Assembly Cell 4.2 (CLC bio, Cambridge, MD) on paired 

reads (Table S6). Cutoffs were set on default requiring a minimal quality of 20 and a 

good quality fraction for each reads of 0.5. Reads with rejected mates are captured 

as single reads. Read error correction was performed using Quake. For both, G. 

nigrocaulis and G. hispidula, the purified sequence datasets of nuclear DNA (WGS 

PE 200 bp nuclei) were used for the 18-mer index construction with Jellyfish. These 

constructed indices subsequently were applied for error correction to all RNA-Seq 

data sets individually using Quake. We observed high contamination rates especially 

in the data sets from trap-derived sequences. For purification we anchored all RNA-

Seq data sets to the quality filtered genome reference of each Genlisea species by 

performing a blastn comparison. 
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Table S6. Statistics of quality enriched RNA-Seq reads 

  quality trimmed   genome mapped   

species tissue reads avg. 

read 

length 

(bp) 

sequence (bp) sequence 

(Mbp) 

% reads sequence (bp) sequence 

(Mbp) 

% 

G. nig 
leaf 

2 x 

30,451,762 
91.9 5,598,458,263 5,598 92 

2 x 

24,395,136 
4,467,280,890 4,467 74 

  
trap 

2 x 

24,292,975 
92.4 4,490,884,037 4,491 81 

2 x 

11,487,196 
2,116,838,222 2,117 38 

  
flower 

2 x 

24,002,922 
84.6 4,059,795,101 4,060 62 

2 x 

23,414,812 
3,958,888,058 3,959 61 

  
plant 

2 x 

15,627,508 
87.5 2,733,429,174 2,733 66 

2 x 

14,657,417 
2,562,226,624 2,562 62 

∑ G. 

nig   
    16,882,566,575 16,883   

  
13,105,233,794 13,105   

G. his 
leaf 

2 x 

31,227,511 
93.8 5,856,490,071 5,856 54 

2 x 

26,316,455 
4,929,984,009 4,930 45 

  
trap 

2 x 

37,392,797 
92.8 6,945,792,547 6,946 58 

2 x 

31,506,822 
5,840,450,660 5,840 49 

  
flower 

2 x 

30,367,202 
86.3 5,242,371,529 5,242 66 

2 x 

25,802,728 
4,445,903,719 4,446 56 

∑ G. 

his   
    18,044,654,147 18,045   

  
15,216,338,388 15,216   

 

5. Genome annotation, gene families and comparative genome analysis 

5.1. Gene prediction 

The challenge of an accurate and complete gene prediction was directed towards 

high accuracy of the prediction approach. This might discard partial or weak 

prediction and in consequence the total number of gene models might be 

underestimated. Since we aimed to compare the two Genlisea species we focused 

on the prediction of complete gene models. To establish a gene set in both species, 

we performed a Genlisea-specific training of the AUGUSTUS (Stanke and 

Morgenstern 2005) pipeline using the RNA-Seq assembled transcriptome of G. 

hispidula and G. nigrocaulis. Then the trained AUGUSTUS instance was applied to 

the respective genome reference to predict gene models (24,749 in G. nigrocaulis 

and 69,894 G. hispidula) with Genlisea- specific parameter settings.  
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To select relevant genes and discard possible false positive models we ran several 

post-processing steps to further enrich the quality of the gene sets. For all gene 

models with predicted transcription start and end sites we performed a read mapping 

of our RNA-Seq datasets to the AUGUSTUS predictions. To exclude program biases 

for the read mapping, we used two independent approaches, the STAR (Dobin et al. 

2013) pipeline and the Tophat pipeline to select for gene models that have mapping 

support by our RNA-Seq data. Furthermore, an OrthoMCL (Li et al. 2003) analysis of 

all AUGUSTUS predictions (proteins of G. nigrocaulis and G. hispidula) was 

performed against the protein sequences of A. thaliana and U. gibba [42] to look for 

orthologous groups that support a prediction. OrthoMCL was run as recommended in 

default settings using the blastp tool for the all to all comparison of protein 

sequences. The set of high confidence genes comprised gene predictions that have 

RNA-Seq support and an orthology link either to A. thaliana, U. gibba or one of the 

Genlisea species. All other predictions are categorized as candidates for low 

confidence genes and were further analyzed by various criteria. First we selected 

predictions with start and stop codon and sequence similarity in the OrthoMCL 

analysis. These similarities might not fulfill criteria for a link to a known gene of the 

reference species, but may serve as quality control for a prediction. Gene models 

that meet both criteria were considered as low confidence genes. If only one criterion 

is fulfilled, we validated the quality of the prediction by searching for significant blastp 

hits (e-value cut-off 1E-5 and percentage of identity >40%) against a collection of 

protein sequences of reference plant species (A. thaliana, A. lyrata, U. gibba, S. 

lycopersicum and V. vinifera) downloaded from EnsemblPlants (Kersey et al. 2012).  

To confirm the quality of our gene predictions, we ran an independent approach 

based on RNA-Seq data and the Tophat and Cufflinks (Trapnell et al. 2010) pipeline. 
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The results obtained by both methods were highly concordant and the number of 

newly identified genes was very low. For G. nigrocaulis only 105 (0.6%) additional 

gene models (44 high confidence and 61 low confidence genes) were detected that 

were not overlapping with our gene set. For G. hispidula 6,120 (9.6%) additional 

gene models (3,791 high confidence and 2,329 low confidence genes) have been 

detected. These additional genes were integrated into our gene sets. To define high 

confidence we used only the most significant gene models with highest transcript 

score and FPKM (fragments per kilobase of exon per million fragments mapped) 

values >10. By protein sequence blast (minimal identity threshold of 40%) we 

selected high confidence genes corresponding to known proteins from databases of 

A.thaliana, U.gibba or S. lycopersicum. Cufflinks predictions with no significant 

protein hit but with high FPKM values >50 were integrated as low confidence genes. 

The complete gene set of G. nigrocaulis comprises 17,113 gene models. Of these, 

15,550 (90.87%) are classified as high confidence genes and 1,563 (9.13%) as low 

confidence genes. The gene set of G. hispidula is represented by 63,481 gene 

models; 42,120 (66.35%) classified as high confidence genes and 21,361 (33.65%) 

as low confidence genes. We expect that the low sequencing coverage and, as a 

direct consequence, the incompleteness of the genome assembly in G. hispidula led 

to a higher fragmentation of gene models. Thus, we conclude that the gene number 

in G. hispidula is overestimated. To estimate the completeness of predicted gene 

models we performed a comparative BLASTX analysis against 248 known core 

eukaryotic genes (CEGs) from A. thaliana (Parra et al. 2007). High stringency was 

applied with an identity threshold of >40% at amino acid level. Applying a minimal 

length threshold of 150bp we detected 244 (98.4%) CEGs in G. nigrocaulis and 238 

(96.0%) G. hispidula. To estimate the proportion of complete CEGs in high 
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confidence genes of both Genlisea species we applied the CEGMA pipeline 

parameter (at minimum 75% of the CEG length covered). With 199 (~80%) in G. 

nigrocaulis and 97 (~39%) in G. hispidula the higher fragmentation in gene models of 

G. hispidula is illustrated. Decreasing the required identity threshold to 10% (used in 

CEG pipeline) further 33 were found in the HC gene set of G. nigrocaulis and 44 in 

G. hispidula. Decreasing the parameter setting to 20% minimal length (>150bp) and 

screening the low confidence gene sets we found 11 and 97 of the remaining CEGs 

in G. nigrocaulis and G. hispidula. 

We analyzed G. nigrocaulis and G. hispidula assemblies for mitochondrial and 

plastid sequences. The A. thaliana mitochondrial and chloroplast genome and the 

genes assigned to these organellar genomes (see http://plants.ensembl.org/; 

TAIR10 release 18) were used for comparison. To prevent contamination by G. 

nigrocaulis organellar DNA, we used the WGS sequencing dataset of G. nigrocaulis 

derived from isolated nuclei and performed a WGS assembly of nuclear PE reads 

(Table S2; ERR296825). A blastn comparison (70% identity and minimal alignment 

length of HSP of 100 bp) detected 4.1 kbp with similarity to the mitochondrial 

genome interspersed within 9 WGS contigs and related to 15 (out of 122) 

mitochondrial genes and 22.8 kbp with similarity to the plastome of A. thaliana 

interspersed within 24 contigs and related to 4 (out of 88) chloroplast genes in the G. 

nigrocaulis genome. In Arabidopsis similar proportions of plastid- (11 kbp) and 

mitochondrial-derived sequences (~7 kbp, besides a large insertion into 

chromosome 2 of cv. Col) invaded the nuclear genome (The Arabidopsis Genome 

Initiative 2000). We performed a blastn comparison with identical parameter settings 

for G. hispidula and detected 39.8 kbp of mitochondrial sequences interspersed 

within 51 contigs with evidence for 26 mitochondrial genes and 50 kbp of plastid 
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sequences within 59 WGS contigs, related to 22 plastid genes in the WGS assembly 

of nuclear DNA. 

5.1.1. OrthoMCL analysis of the high confidence gene set 

To further support our gene prediction, we clustered proteins of G. nigrocaulis, G. 

hispidula, U. gibba and A. thaliana and formed 20,443 orthologous groups (Fig. S2, 

Table S7). Among these, both Genlisea species share 8,749 clusters, including 

10,072 (64.8%) G. nigrocaulis ‘high confidence’ genes. Two hundred fifty four 

clusters containing 822 (5.3%) genes of G. nigrocaulis, and 3,320 clusters containing 

13,492 genes (32%) of G. hispidula were not found in the other three species.  

We used OrthoMCL (software version 2.0.3) to define gene family clusters for G. 

nigrocaulis, G. hispidula, U. gibba, A. thaliana and S. lycopersicum gene models. 

Protein sequences of A. thaliana and S. lycopersicum were downloaded from the 

Ensembl Plants (Kersey, et al. 2012). Pairwise sequence similarities between protein 

sequences were calculated using BLASTP with an e-value cut-off 1E-5. Markov 

clustering was applied using an inflation value (OrthoMCL parameter -I) of 1.5. In 

total, we identified for G. nigrocaulis 12,874 protein sequences with an orthologous 

sequence in at least one other species (10,259 to G. hispidula, 11,424 to U. gibba, 

10,490 to A. thaliana, and 11,019 to S. lycopersicum). For G. hispidula we detected 

12,181 proteins with an orthologous sequence in other species (10,431 to G. 

nigrocaulis, 10,625 to U. gibba, 9,595 to A. thaliana and 10,137 to S. lycopersicum). 

We presume that the low number of G. hispidula sequences found in orthologous 

pairs is caused by the higher fragmentation of the G. hispidula gene set, leading to a 

high number of singletons. We found that 6,869 orthologous groups contained 

sequences from all five species and 400 were found to be specific to 

Lentibulariaceae genomes (G. nigrocaulis, G. hispidula and U. gibba). 
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Table S7. Construction of orthologous groups of protein encoding sequences 

Species Proteins Proteins  in 

ortholgous 

groups 

Proteins in  

orthologous 

groups with at 

least one other 

species  

 Species-specific 

proteins  

          

A. thaliana 35,286 30,802 23,420 7,382 

G. nigrocaulis 15,550 13,623 12,874 749 

G. hispidula 42,120 25,487 12,181 13,306 

U. gibba 28,032 18,860 16,086 2,774 

S. lycopersicum 34,675 24,963 18,545 6,418 

 

5.1.2. Expression analysis of high confidence genes 

We studied the different expression of genes in three organs (traps, leaves and 

flowers) of G. nigrocaulis and G. hispidula by analyzing the quality enriched RNA-

Seq datasets (Table S6 "genome mapped" RNA-Seq reads). We utilized Tophat to 

align RNA-Seq reads to the high confidence gene set. In addition these read 

alignments were analyzed by Cufflinks to compute differences in expression levels 

by analyzing the fragments per kilobase of transcript per million mapped reads 

(FPKM) in high confidence genes. Genes with an FPKM <5.0 were discarded. In G. 

nigrocaulis we found in total 15,176 expressed genes (97.6%), of which 498 

revealed organ-specific expression. In G. hispidula 37,480 genes (89.0%) were 

found to be expressed and 5,440 of these in an organ-specific manner (Fig. S3).  

We assume that the latter number is an overestimation because the total amounts of 

RNA-Seq used in this comparison between G. nigrocaulis (10.5 Gbp) and G. 

hispidula (15.2 Gbp) represent different levels of sequencing depth per gene. For the 

polyploid genome of G. hispidula the depth per gene was lower. This may lead to a 

general underrepresentation of genes in the G. hispidula data set and to an 

increased number of genes captured in one organ only. 
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5.1.3. Identification of intron - exon structures 

To compare the intron/exon structure of genes of both Genlisea species, we selected 

a set of 1,186 homologous gene pairs (Fig. 3B, Fig. S4). The lower sequencing 

depth for the G. hispidula genome led to a higher fragmentation in the corresponding 

assembly. Therefore, we restricted the comparison of the intron and exon structure 

to highly similar coding sequences of G. nigrocaulis and G. hispidula. To detect such 

genes, we used the coding sequences predicted by the AUGUSTUS pipeline. A bi-

directional BLAST (blastn) between the two species was done, restricting the hits by 

an e-value below 1E-30. Candidate pairs were formed by sequences which mutually 

met each other as best hit. A candidate pair was considered as homologous if the 

alignment between the two sequences covered at least 80% of the longer sequence. 

Of the resulting 1,214 homologous gene pairs, 1,186 were again detected when the 

published peptides of U. gibba were compared (BLASTP) against the presumed 

peptide sequences of the 1,214 G. nigrocaulis genes with an e-value below 1E-20. 

These 1,186 homologs were further investigated.  

Table S8. Exon and intron size statistics for 1,186 homologous gene pairs 

 G. nigrocaulis G. hispidula 

Max. intron size 1,527 2,124 

Med. intron size 83 93 

Mean intron size 123.4 163.7 

Min. intron size 51 45 

Max. exon size 7,316 7,929 

Med. exon size 146 151 

Mean exon size 270.7 277.9 

Min. exon size 41 41 
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The comparison of intron and exon size (Table S8) of the 1,186 homologous genes 

was based on the gene model structures predicted by the AUGUSTUS pipeline. The 

analysis of intron size was limited to genes (814) which in both species contained at 

least one intron. On average G. nigrocaulis genes displayed 4.8 and their G. 

hispidula homologues 4.6 introns. We utilized a custom greedy algorithm to assign 

homologous introns and exons. For each homologous gene pair corresponding 

introns and exons were assigned based on the alignment algorithm provided by the 

BioJava framework (v 3.0.8, (Prlic et al. 2012)). It uses the standard BLAST 

substitution matrix (available at ftp://ftp.ncbi.nih.gov/blast/matrices/NUC.4.4) with a 

gap opening cost of 5 and gap extension cost of 2. The algorithm starts with the 

largest sequence in G. hipidula and selects the best corresponding alignment in the 

G. nigrocaulis set as homologous pair. Subsequently the remaining set is iteratively 

processed and terminates when all sequences of one Genlisea species are 

assigned. The analysis resulted in 4,289 homologous intron and 5,395 homologous 

exon pairs. 

To see whether intron size differences were caused by insertions in G. hispidula or 

deletions in G. nigrocaulis, intron sequences were checked for the presence of 

repetitive elements by BLASTN similarity searches against databases of Illumina 

reads derived from repeat clustering analysis. BLASTN e-value cutoff was set to 

0.001 and minimal alignment length to 55 nucleotides. Such repeats (mostly MITEs 

or SINEs) were rare in both species (13 in G. hispidula and 6 in G. nigrocaulis) and 

not within homologous introns. We count this as indication that intron size 

differences were mostly caused by deletions in G. nigrocaulis instead of insertions in 

G. hispidula.  
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5.2. Functional Annotation 

'High confidence' and 'low confidence' genes were annotated using BLAST2GO 

(Conesa and Gotz 2008). To compare the annotation of the two species, we mapped 

all resulting gene ontology (GO) terms to the TAIR curated terms of Arabidopsis 

(Berardini et al. 2004). This mapping was done using a custom Scala script 

(http://www.scala-lang.org/). The set of current GO terms was downloaded from the 

Gene Ontology  (http://www.geneontology.org/ontology/obo_format_1_2/gene_onto 

logy_ ext.obo) and incorporated into a Neo4j graph database. To map a GO term to 

a related term of interest, the graph was traversed (breadth-first) starting from the 

annotation to be mapped. If the traversal resulted in a path that ended in an 

interesting GO term, the candidate was mapped to this term. If multiple paths existed 

to the same GO term, it was counted only once. This procedure was applied for all 

pre-selected terms resulting in three ontology classes 1) biological processes, 2) 

molecular function and 3) cellular components. Tables S9-11 present for each of 

these three categories the proportion of genes related to a specific GO term (full list 

of GO annotation available in Supplementary Dataset S1). This comparative analysis 

shows for the majority of ontology classes a similar representation within the gene 

sets of both Genlisea species. Ontology terms with log2-fold >2 difference between 

species are labelled blue for excess in G. hispidula. 

 

Table S9. Molecular Functionsa 

  G. hispidula G. nigrocaulis 

log2-fold 
change 

binding 18,212 20.74% 4,725 22.53% -0,12 

carbohydrate binding 147 0.17% 70 0.33% -1,00 

catalytic activity 6,569 7.48% 2,685 12.81% -0,78 

chromatin binding 436 0.50% 130 0.62% -0,32 

DNA binding 3,601 4.10% 1,113 5.31% -0,37 

enzyme regulator activity 260 0.30% 112 0.53% -0,85 
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hydrolase activity 6,271 7.14% 2,378 11.34% -0,67 

kinase binding 52 0.06% 26 0.12% -1,07 

lipid binding 262 0.30% 121 0.58% -0,95 

motor activity 107 0.12% 36 0.17% -0,49 

nuclease activity 5,324 6.06% 297 1.42% 2,10 

nucleic acid binding 13,259 15.10% 889 4.24% 1,83 

nucleotide binding 4,920 5.60% 1,973 9.41% -0,75 

oxygen binding 44 0.05% 27 0.13% -1,36 

protein binding 1,856 2.11% 1,045 4.98% -1,24 

protein binding transcription factor activity 66 0.08% 29 0.14% -0,88 

receptor activity 113 0.13% 46 0.22% -0,77 

receptor binding 16 0.02% 11 0.05% -1,53 

RNA binding 8,870 10.10% 715 3.41% 1,57 

structural molecule activity 507 0.58% 292 1.39% -1,27 

transferase activity 14,920 16.99% 3,245 15.48% 0,13 

translation regulator activity 4 0.00% 3 0.01% -1,65 

transporter activity 2,013 2.29% 1,000 4.77% -1,06 

Total 87,829   20,968     
aBecause individual genes may appear in more than one category, the total numbers 

may be higher than the actual gene counts per species  
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Table S10. Biological Processesa 

  G. hispidula G. nigrocaulis 
log2-fold 
change 

biosynthetic process 14,220 9.74% 3,882 7.33% 0,41 

carbohydrate metabolic process 2,840 1.95% 1,492 2.82% -0,53 

catabolic process 2,609 1.79% 1,384 2.61% -0,55 

cell communication 322 0.22% 186 0.35% -0,67 

cell cycle 265 0.18% 121 0.23% -0,33 

cell death 85 0.06% 76 0.14% -1,30 

cell differentiation 378 0.26% 227 0.43% -0,73 

cell growth 681 0.47% 381 0.72% -0,63 

cellular amino acid metabolic process 1,130 0.77% 643 1.21% -0,65 

cellular component organization 5,150 3.53% 2,467 4.66% -0,40 

cellular homeostasis 238 0.16% 145 0.27% -0,75 

cellular process 34,761 23.81% 13,347 25.20% -0,08 

DNA metabolic process 20,898 14.32% 1,478 2.79% 2,36 

electron transport chain 111 0.08% 59 0.11% -0,55 

embryo development 549 0.38% 307 0.58% -0,62 

flower development 87 0.06% 52 0.10% -0,72 

generation of precursor metabolites and energy 338 0.23% 192 0.36% -0,65 

growth 571 0.39% 315 0.59% -0,60 

leaf development 99 0.07% 55 0.10% -0,61 

lipid metabolic process 1,966 1.35% 1,163 2.20% -0,71 

metabolic process 30,225 20.71% 11,226 21.20% -0,03 

photosynthesis 89 0.06% 45 0.08% -0,48 

protein metabolic process 5,524 3.78% 2,047 3.87% -0,03 

protein modification process 2,794 1.91% 1,278 2.41% -0,33 

regulation of gene expression, epigenetic 641 0.44% 254 0.48% -0,13 

reproduction 40 0.03% 23 0.04% -0,66 

response to abiotic stimulus 3,236 2.22% 1,781 3.36% -0,60 

response to biotic stimulus 1,072 0.73% 586 1.11% -0,59 

response to endogenous stimulus 737 0.50% 436 0.82% -0,71 

response to external stimulus 410 0.28% 258 0.49% -0,79 

response to extracellular stimulus 244 0.17% 155 0.29% -0,81 

response to stress 5,335 3.65% 2,527 4.77% -0,38 

root development 151 0.10% 78 0.15% -0,51 

secondary metabolic process 403 0.28% 219 0.41% -0,58 

signal transduction 1,845 1.26% 999 1.89% -0,58 

translation 426 0.29% 236 0.45% -0,61 

transport 5,309 3.64% 2,752 5.20% -0,51 

tropism 199 0.14% 84 0.16% -0,22 

Total 145,978   52,956     

 

aBecause individual genes may appear in more than one category, the total numbers 

may be higher than the actual gene counts per species  
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Table S11. Cellular Componentsa 

  G. hispidula G. nigrocaulis 
 log2-fold 

change 

cell wall 381 1.45% 214 1.73% -0,26 

cytoplasm 1,329 5.05% 823 6.67% -0,40 

cytoskeleton 83 0.32% 39 0.32% 0,00 

cytosol 1,407 5.34% 785 6.36% -0,25 

endoplasmic reticulum 403 1.53% 222 1.80% -0,23 

endosome 300 1.14% 163 1.32% -0,21 

extracellular matrix 6 0.02% 3 0.02% -0,09 

extracellular region 1,017 3.86% 601 4.87% -0,33 

extracellular space 10 0.04% 9 0.07% -0,94 

Golgi apparatus 797 3.03% 471 3.82% -0,33 

intracellular 1,059 4.02% 98 0.79% 2,34 

membrane 2,932 11.13% 1,588 12.86% -0,21 

mitochondrion 3,199 12.15% 1,253 10.15% 0,26 

nuclear membrane 13 0.05% 6 0.05% 0,02 

nucleolus 232 0.88% 116 0.94% -0,09 

nucleoplasm 10 0.04% 6 0.05% -0,36 

nucleus 5,960 22.63% 2,787 22.58% 0,00 

peroxisome 163 0.62% 93 0.75% -0,28 

plasma membrane 2,014 7.65% 1,131 9.16% -0,26 

plastid 4,226 16.05% 1,473 11.93% 0,43 

ribosome 377 1.43% 193 1.56% -0,13 

thylakoid 142 0.54% 102 0.83% -0,62 

vacuole 277 1.05% 169 1.37% -0,38 

Total 26,337   12,345     
aBecause individual genes may appear in more than one category, the total numbers 

may be higher than the actual gene counts per species 

 

6. Polyploidy 

6.1. Polyploidy identified by genome-wide k-mer statistics 

The genome of G. hispidula is about 18-fold larger than that of G. nigrocaulis and 

presumably polyploid. To find out further evidence for this hypothesis, we analyzed 

the established gene sets by a k-mer index constructed with a cleaned set of WGS 

reads which were anchored to the reference genome. Regardless of the fragmented 

state of the G. hispidula genome assembly, this approach reveals multiple copies of 

a gene in polyploid genomes. We therefore analyzed the k-mer frequencies of genes 

with a detected orthologue in the other species and compared their respective 
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average k-mer frequency. In total, the coding DNA of 1,186 homologous gene pairs 

of the 'high confidence' gene set was compared. From the WGS data sets of G. 

nigrocaulis and G. hispidula we used those reads that align to the constructed 

reference to build a k-mer index using tallymer. The integrated reads represent the 

genome with a 350-fold coverage in G. nigrocaulis and 14-fold in G. hispidula. This 

index was applied to the respective data set of orthologous high confidence genes to 

compute their corresponding k-mer frequencies. The normalized k-mer frequencies 

support the assumption of mainly single copy genes in G. nigrocaulis. Only four 

genes of the analyzed set showed evidence of multiple copies. In contrast, the G. 

hispidula genome showed for the majority of analyzed genes (76.7%) multiple gene 

copies, indicated by average k-mer frequencies per gene of >1.5 (Supplementary 

Dataset S2). The complete set of analyzed genes showed an average copy number 

of 0.95 for G. nigrocaulis, and of 1.7 for G. hispidula. These values are close to a 1:2 

ratio as expected in case of a WGD event. Because usually some genes may 

become lost after polyploidisation, an average gene copy number of 1.7 is 

compatible with tetraploidy in G. hispidula. We expect that the estimated values are 

computed with a minor underestimation, since k-mer analysis relies on a 100% 

identity in frequency estimation. For heterozygous positions or miss-assemblies 

respective k-mers have no or a lower representation in the computed index and 

consequently lead to a decrease of k-mer frequency. The effect is present for both 

Genlisea approximations and therefore both analyses are comparable. 

6.2. Polyploidy identified by genome-wide SNP calling within transcripts 

For both species an intra-specific transcript variant detection was performed for high 

confidence genes to detect heterozygous positions. As the first step, RNA-Seq reads 

from all tissues were aligned with ‘sensitive’ parameter settings by bowtie2 
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(Langmead and Salzberg 2012) to the set of ‘high confidence’ genes in both 

Genlisea species. PCR duplicates within the aligned read set were removed from the 

alignment by ‘samtools rmdup’. The resulting alignments are affiliated into the variant 

calling process using VCFtools (Danecek et al. 2011). We removed putative false 

positive variants by discarding variants of inadequate read coverage (<10-fold) and 

insufficient variant quality (<150). The total number of SNPs was 19,391 for G. 

nigrocaulis and 140,556 for G. hispidula. Of the G. nigrocaulis SNPs 6,084 (31.38%) 

and of G. hispidula SNPs 91,420 (65.06%) were detected with an allele ratio (AR) of 

0.4 to 0.6 (Fig. 3A). While in G. nigrocaulis these SNPs locate in 2,960 of the high 

confidence genes (~19.0%), in G. hispidula 15,562 ‘high confidence’ genes (36.9%) 

indicate the existence of multiple gene copies.  Assuming an equal heterozygosity 

level in both self-compatible species, 65.06% of alleles at heterozygous loci with a 

read frequency of about 1:1 (AR of 0.4-0.6,(23)) support the assumption of 

allotetraploidy in G. hispidula. 

6.3. Copy number determination by genotype calling and haplotype phasing in 

a random gene set 

Fifteen homologous gene pairs belonging to different G. nigrocaulis scaffolds were 

randomly selected for detecting their copy number in individuals of G. nigrocaulis 

and G. hispidula via genotype calling and haplotype phasing (Supplementary 

Dataset S3).  In total 26 fragments (average 348 bp) of the selected genes carrying 

multiple heterozygous variant sites, as detected among transcripts, were amplified 

from three individuals of both species and analyzed by direct Sanger sequencing. 

Eleven genes (73.3%) in G. hispidula were found containing 63 heterozygous 

variants conserved between individual plants (SNPs or InDels). This variant type can 

be referred as interhomeolog or intergenomic polymorphism which is much more 

Page 60 of 83
The Plant Genome Accepted paper, posted 09/02/2015. doi:10.3835/plantgenome2015.04.0021



26 

 

frequent than intragenomic SNPs in polyploid plants (Trick et al. 2009). Two of the 

eleven genes have a single polymorphism in one fragment. Amplicons of 9 G. 

hispidula genes with multiple interhomeolog variants were cloned into the plasmid 

pJET1.2 (Thermo Scientific) and then Sanger sequenced for sorting variants into 

haplotypes (Fig. S6). For six genes two, and for three genes three different 

haplotypes of conserved heterozygous variants could be phased, confirming at least 

two copies of these genes in the G. hispidula genome.  

7. Repetitive sequences 

7.1. Clustering analysis 

Repetitive elements were identified using similarity-based clustering of unassembled 

sequence reads (Novak et al. 2010) and further characterized using the 

REPEATEXPLORER pipeline (Novak et al. 2013). Clustering was performed with 

860,000 and 7.2 million Ilumina reads for G. nigrocaulis and G. hispidula, 

respectively (Fig. S7). The classification of LTR retrotransposons into distinct 

lineages and clades was done using phylogenetic analysis of their reverse 

transcriptase (RT) sequences detected in contigs assembled for each repeat cluster 

(Novak, et al. 2013). Alignment of RT sequences was carried out with MUSCLE 

(EDGAR 2004) and the phylogenetic trees were calculated in SEAVIEW (Gouy et al. 

2010) using the Neighbor-Joining algorithm with 1,000 bootstrap resamples. The 

trees were drawn and edited using FIGTREE (http://tree.bio.ed.ac.uk/software/figtree/, 

Fig. S8).  

7.2. K-mer analysis of the Genlisea genome references 

The genome reference sequences of G. nigrocaulis (~65 Mbp WGS assembly) and 

G. hispidula (~315 Mbp complete WGS assembly including all contigs >300 bp) were 

analyzed for their k-mer frequencies. The WGS reads (according Table S3) were 
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used to construct for both species an index of 21-mers. We applied this index to the 

reference sequence to compute k-mer frequencies using Tallymer (Kurtz, et al. 

2008). The k-mer frequencies were normalized by the respective sequencing depth 

(350-fold for G. nigrocaulis and 14-fold for G. hispidula). The analysis revealed a 

very high proportion of unique k-mer sequences (83.4%) and a very low repetitive 

proportion within the G. nigrocaulis genome with an average normalized k-mer 

frequency of 7x (Table S12). Only 5.1% of all base pair positions of the genome 

assembly (~3.3 Mbp) show k-mer frequencies larger than 4x indicating few highly 

abundant sequences (Fig. S9). In comparison, the genome reference of G. hispidula 

with a 19x average k-mer frequency contains much lower unique k-mer sequences 

(36.9%) whereas the proportion of k-mers larger than 4x is much higher ( >33.6% = 

105.9 Mbp). When analyzing the genomes of different species for k-mer frequencies, 

the k-mer composition of a genome can also be compared as to the equal frequency 

of k-mer sequences. This comparative analysis of k-mer frequency between very 

closely related species could reveal which sequences multiplied, and which reduced 

abundance during evolution of the compared genomes. Therefore we looked for 

shared k-mers occurring with high frequency in the genomes of G. nigrocaulis and G. 

hispidula to detect such k-mers that became reduced or amplified in either species. 

To study this, we considered sequences as highly abundant, that have k-mer 

frequencies exceeding the average k-mer frequency by twofold. Thus, the respective 

threshold for G. nigrocaulis was set 14x and for G. hispidula 38x. In total, 183,658 

individual 21-mers of the WGS assembly of G. nigrocaulis passed this criterion. In 

addition the k-mer index of G. hispidula was applied as well to the WGS assembly of 

G. nigrocaulis. This showed that only ~36% of individual G.nigrocaulis k-mers are 

shared with G. hispidula. Accordingly, the remaining ~64% of abundant k-mers are 
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not detected in the G. hispidula index, and the corresponding sequences could have 

either entered one genome after the split of the two Genlisea species or were 

removed from the other. It should be noted however that the performed k-mer 

comparison is valid only regarding gain or reduction of sequences which are identical 

between the compared species, but not for sequences that experienced nucleotide 

variation in one or both species.  The distribution of k-mer frequency values in both 

Genlisea genomes is visualized in Fig. S10A, referring to the highly abundant k-mer 

sequences that originated from G. nigrocaulis and are shared with G. hispidula. 

From the WGS assembly of G. hispidula 1.87 million individual 21-mers passed the 

frequency threshold of 38x. When applying the k-mer index of G. nigrocaulis, we 

identified only 1% of these k-mers to be shared between both Genlisea species. This 

suggests that the genome of G. hispidula contains many repetitive sequences that 

are not present in the G. nigrocaulis index. The reason for the large proportion of k-

mer sequences not matching to the sister species is most likely the variability among 

these repetitive elements. To test this assumption, we performed a BLASTN analysis 

and reduced the ‘percent identity’ threshold to 95%. In contrast to the k-mer analysis 

that requires 100% identity, the BLAST analysis revealed ~56% of the analyzed 

highly abundant sequences of G. hispidula to be present in the G. nigrocaulis 

genome, although with much lower abundance and often affected by mutations. The 

distribution of frequencies between the shared and highly abundant k-mer 

sequences originating from the G. hispidula genome is illustrated in Fig. S10B. The 

comparison of both distributions indicates that a considerable amount of k-mers are 

abundant in G. nigrocaulis and occur with lower frequency in G. hispidula (Fig. S10A, 

hexagons above medial diagonal). In addition there is a substantial quantity of k-

mers frequent in G. nigrocaulis that has even a higher frequency in G. hispidula 
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(hexagons under medial diagonal). For k-mers classified as highly frequent in G. 

hispidula (Fig. S10B) the proportion of repeat elements which are of substantially 

lower frequency in G. nigrocaulis is very high (hexagons in light blue cluster at the 

bottom of Fig. S10B). We propose that these k-mers with highly dissimilar 

repetitiveness belong to repeat elements that are highly amplified in G. hispidula. 

7.3. SINEs in Genlisea 

To reveal the presence of short interspersed nuclear elements (SINE) in Genlisea, 

we used the SINE-Finder tool (Wenke et al. 2011) and performed a screening in the 

WGS assembly of G. nigrocaulis and G. hispidula. These short (<500bp) and 

nonautonomous retroelements usually terminate at the 3’ end with nucleotide 

stretches of poly(A) or poly(T), or other simple sequence motifs. Flanking target site 

duplications (TSDs) define the composite structure of SINEs (Wenke, et al. 2011). 

Our analysis proofed the existence of SINEs in both Genlisea species (282 elements 

in G. nigrocaulis and 1,481 elements in G. hispidula). The cumulative length covers 

81.5 kbp (<0.1%) in G. nigrocaulis and 352.7 kbp in G. hispidula, while the medium 

size of SINE is 289 bp and 238 bp, respectively. For G. hispidula this is likely an 

underestimation due to the fragmentation of the WGS assembly and coinciding 

repeat elements. 
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Table S12. K-mer statistics of Genlisea genomes 

 G. nigrocaulis G. hispidula 

k-mer 
frequency 

#position percentage of 
WGS 

assembly 

∑ WGS 
assembly 

representation 

#position percentage 
of WGS 

assembly 

∑ WGS 
assembly 

representation 

0 5,984,071 9.22 9.22 9,040,785 2.87 2.87 

1 54,162,167 83.42 92.64 116,103,720 36.92 39.79 

2 1,454,167 2.24 94.87 83,469,489 26.54 66.33 

4 1,531,525 2.36 97.23 49,150,367 15.63 81.96 

8 534,770 0.82 98.06 20,913,558 6.65 88.61 

16 352,393 0.54 98.60 13,058,398 4.15 92.76 

32 375,428 0.58 99.18 8,234,696 2.62 95.38 

64 232,803 0.36 99.54 5,356,894 1.70 97.08 

128 106,954 0.16 99.70 3,637,012 1.16 98.24 

256 31,145 0.05 99.75 2,410,706 0.77 99.01 

512 9,803 0.02 99.76 1,481,682 0.47 99.48 

1,024 30,812 0.05 99.81 805,276 0.26 99.73 

2,048 32,972 0.05 99.86 482,365 0.15 99.89 

4,096 76,308 0.12 99.98 208,145 0.07 99.95 

8,192 12,745 0.02 100.00 93,208 0.03 99.98 

>8,192 0 0.00 100.00 55,780 0.02 100.00 

 

7.4. Mobile elements in RNA-seq data 

To study the proportion of mobile elements that are transcribed in both Genlisea 

species, we screened our Blast2GO annotation (Supplementary section 5.2.) for 

‘transposase’-like features. In G. hispidula 6,204 gene models and in G. nigrocaulis 

352 gene models were filtered because of their high similarity to mobile elements. 

Among these, several elements are not categorized in more detail (‘unclassified’), 

but the majority of described elements of G. hispidula (875 and 2,724) and G. 

nigrocaulis (66 and 95) are annotated as ‘Ty1/copia’ or ‘Ty3/gypsy’ retroelements.  

Subsequently, for both species RNA-seq derived reads (all tissues) were aligned to 

all transposase gene models by bowtie2. In both Genlisea species transcripts of 

these elements were detected. With 3,349 transcribed transposase-like genes, 

mobile elements seem to be more active in G. hispidula than in G. nigrocaulis with 

207 transposase-like genes aligned to an RNA-seq read. Remarkably, only five of 
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the G. nigrocaulis genes capture 60% of the aligned RNA-seq reads. Three of the 

five represent Ty1/copia elements as revealed by the Blast2GO annotation. The 

remaining two are ‘unclassified’ mobile elements. The retroelement of the Bianca 

lineage is the most strongly transcribed element of the G. nigrocaulis genome. The 

abundance of the Bianca element in the G. nigrocaulis genome of becomes obvious 

in Fig. S11 constructed according to Darzentas (Darzentas 2010) and illustrating the 

23 scaffolds of G. nigrocaulis with the highest abundance of Bianca-related 

sequences. 

Table S13. Transposase genes of mobile elements transcribed in Genlisea 
species. 

Species G. hispidula G. nigrocaulis 

Gene models class HC LC HC LC 

# gene models annotated as 'retroelement' 2,491 3,713 219 133 

# gene models mapped by RNA-seq reads 2,321 1,028 181 26 

Total mapped RNA-seq reads 400,733 12,135 234,538 378 

# gene models with >100 mapped reads 454 10 78 1 

# gene models with >500 mapped reads 167 2 41 0 

# gene models capturing 70% of all reads 130 41 10 4 

# gene models capturing 60% of all reads 84 12 5 3 

 

8. Ks-based dating and genome size evolution within Genlisea   

Fifty homologous gene pairs from both species with two homoeologous copies in G. 

hispidula were randomly selected from the high-confidence gene sets. They were 

aligned with MUSCLE (EDGAR 2004) and alignments were checked by eye and, where 

necessary, corrected manually. Reading frames were inferred, introns removed, the 

exonic sequences of each locus degapped (Supplementary Dataset S4), and 

pairwise Ks values were calculated for the G. nigrocaulis – G. hispidula orthologs as 

well as for the two homoeologous copies of G. hispidula with KAKS_CALCULATOR 
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(Zhang et al. 2006) using Model Averaging (MA). To arrive at approximate age 

estimates, the median values for the orthologous and homoeologous Ks values (Fig. 

S12) were calculated and converted assuming a neutral mutation rate of 1.5 x 10-9 

mutations per site per year with the formula 

Age  =  Ks / 2  x  1.5  x  10-9. 

This resulted in an age estimate for the split between the lineages leading to G. 

nigrocaulis and G. hispidula of 29 My (Fig. 1). This number is much higher than the 

13 My calculated by Ibarra-Laclette et al. (Ibarra-Laclette et al. 2013) based on 

chloroplast trnL-F sequences (see their supplementary Figure 39). The lack of fossils 

in Lentibulariaceae poses severe problems for calibration of phylogenetic trees. 

Moreover, Ibarra-Laclette et al. (Ibarra-Laclette, et al. 2013) report doubled mutation 

rates at the chloroplast trnL-F locus for the lineage leading to section Genlisea 

(represented by G. aurea and G. guianensis) in comparison to the lineage of G. 

hispidula (see their supplementary Figure 40). As it cannot be said whether elevated 

mutation rates of one chloroplast site might be indicative of generally higher mutation 

rates also for the coding regions of the 50 selected genes from the nucleus, we here 

assume that the split between the lineages of G. hispidula and G. nigrocaulis might 

date back to a time between Upper Oligocene to Middle Miocene, i.e. between 29 

and 13 My ago. Age calculations for the split between both parental lineages 

contributing to allotetraploid G. hispidula based on the G. hispidula homoeologues at 

the 50 compared nuclear loci resulted in 20 My. This provides a maximum age for 

the allopolyploidisation event, as hybridization must have happened after the two 

lineages were already separated. Ibarra-Laclette et al. ((Ibarra-Laclette, et al. 2013), 

supplementary Figure 40) found no evidence for elevated mutation rates in the G. 

hispidula lineage, which means that they might be closer to the Brassicaceae rates 
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assumed here. A minimum age cannot be provided, as the homoeologous loci might 

have diversified before (i.e. within the parental lineages) as well as after 

allotetraploidisation (i.e. within the merged genomes of the G. hispidula lineage). 

When taking into account that the genome of G. hispidula is tetraploid, its diploid 

progenitors should have had genomes of ~800 Mbp (1C), similar to the value found 

in G. africana (750 Mbp; Fig. 1) that belongs to the diploid sister group of G. 

hispidula/G. subglabra. Taking also into account that the size differences between 

the G. hispidula and G. nigrocaulis lineages are, besides WGD, mostly due to DNA 

loss in the latter, we face a loss of 714 Mbp (difference between 800 Mbp in the 

diploid G. hispidula progenitor and 86 Mbp in G. nigrocaulis) within either 29 or 13 

My. Assuming a generation time of 2 years (both lineages consist of annual and 

perennial species; Fig. 1) this means that on average 50–110 bp of DNA were 

jettisoned from the 1C genome every generation within the lineage leading to G. 

nigrocaulis, which correspond to 0.02–0.03% DNA loss per generation. 
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Supplementary Data Set  

Supplementary Dataset S1: BLAST2GO tables of functional annotation of ‘high 

confidence’ and ‘low confidence’ genes (Excel) 

Supplementary Dataset S2: Average k-mer frequency of 1,186 homologous genes 

supporting polyploidy in G. hispidula (Excel) 

Supplementary Dataset S3: Genotype calling and haplotype phasing in a set of 

randomly selected gene pairs of G. nigrocaulis and G. hispidula. (Excel) 

Supplementary Dataset S4:  Alignment of coding sequences of 50 randomly selected 

genes used for Ks-based age estimations.   
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Supplemental Figures 

 

Figure S1. DNA content and heterochromatin in G. nigrocaulis. (A) Histogram of 

nuclear DNA contents with A. thaliana as reference standard. For better visualization 

of the size difference, separate histograms were superimposed. For genome size 

measurements internal reference standards were used. (B) Interphase nuclei after 

DNA methylation (left), euchromatin-specific H3K4me2 labeling (middle 1), 

heterochromatin-specific H3K27me1 labeling (middle 2), and for comparison an 

interphase nucleus of G. hispidula with a rather uniform distribution of H3K27me1 

signals (right). C, G. nigrocaulis heterochromatic chromocenters in interphase nuclei 

(left, top) are mainly composed of the single highly abundant 161 bp tandem repeat 

(left, bottom), which is present on each of the 2n=40 chromosomes (right), likely at 

centromeric position, and is a unique or low copy sequence in G. hispidula. Each bar 

represents 2.5 µm. 

Page 72 of 83
The Plant Genome Accepted paper, posted 09/02/2015. doi:10.3835/plantgenome2015.04.0021



38 

 

  

Figure S2. Venn diagram summarizing the distribution of orthologous gene 

cluster shared between G. nigrocaulis, G. hispidula, U. gibba and A. thaliana. 

The number of genes in G. nigrocaulis for the corresponding orthologous group is 

given in brackets. 

 

 

Figure S3. Expression analysis of high confidence genes in trap, leaf and 

flower of both Genlisea species. 
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Figure S4. Complete intron and exon size distribution compared between 1,186 

homologous genes of G. hispidula and G. nigrocaulis. Intron length comparison 

utilized a subset of 814 gene pairs with at least one intron sequence in both species. 
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(A) Molecular functions 

 

(B) Cellular components 

Figure S5. Gene ontology annotation of of G. nigrocaulis and G. hispidula. (A) 

Molecular functions; (B) Cellular components. Outer circle: G. hispidula, inner circle: 

G. nigrocaulis.  
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Figure S6. Examples of genotype calling and haplotype phasing in conserved 

regions of G. hispidula homoeologous loci. Conserved heterozygous variants are 

represented by differently colored rings corresponding to nucleotide variants of the 

SNPs or InDels. Interhomeolog polymorphism in polyploid species undetectable in 

consensus NGS contigs can be phased into haplotypes by cloning and Sanger 

sequencing. Numbers in clonal haplotypes indicate the number of supporting 

plasmid sequences. (*) Additional allelic variants revealed 4 haplotypes, as possible 

in tetraploid genomes.      
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Figure S7. Cluster analysis of randomly selected WGS sequence reads. 15.9% 

(13.7 Mbp/1C) of G. nigrocaulis, 64.1% (993.5 Mbp/1C) of G. hispidula, and 8.3% 

(6.4 Mbp/1C) of Utricularia gibba genomes were identified as repetitive sequences 

(each >=0.01% of the genome). *The value for U. gibba is based on published 

sequence reads (Ibarra-Laclette, et al. 2013), after subtraction of 3.9% of viral and 

bacterial contamination.  
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Figure S8. Unrooted neighbor-joining trees inferred from a comparison of 

reverse transcriptase (RT) domain sequences of LTR-retrotransposons 

identified in the read clustering analysis. The analysis demonstrates that 

Ty3/gypsy (A) and Ty1/copia (B) retrotransposons in G. hispidula are not only more 

abundant than in G. nigrocaulis (as shown in Fig. 2) but also more divergent in their 

sequences. RT sequences from G. nigrocaulis and G. hispidula are shown in red 

and blue, respectively. RT sequences from the representatives of major 

retrotransposon lineages are in black. 
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Figure S9. K-mer composition of the Genlisea genomes.  For the WGS assembly 

of G. nigrocaulis (blue) a high proportion of unique and low-copy sequences is 

detected (83.4% of WGS assembly positions are represented by unique sequences). 

In contrast, only 36.9% of the sequence position in the WGS assembly of G. 

hispidula is estimated to be unique (red). 
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Figure S10. Comparison of abundant k-mer sequences between both Genlisea 

species. (A) Abundant k-mer sequences detected in the WGS assembly of G. 

nigrocaulis and corresponding k-mer frequencies observed in both Genlisea species. 

(B) Abundant k-mer sequences detected in the WGS assembly of G. hispidula and 

corresponding k-mer frequencies observed in both Genlisea species. 
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Figure S11. Twenty three genomic scaffolds of G. nigrocaulis that harbor the 

most Bianca retroelement sequences. 
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Figure S12. Box-and-whisker plots for the distribution of pairwise Ks values of 

50 randomly selected nuclear genes of G. nigrocaulis (diploid) and G. 

hispidula (tetraploid, therefore two copies are present). Black bars indicate 

median values. 
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