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1. Introduction 
  

Multiple Sclerosis (MS), an autoimmune demyelinating disease affecting the central nervous 

system (CNS), causes tremendous disability in young adults and inflicts a huge economic burden 

on the society. Currently, more than 2.5 million people are affected by MS worldwide and the 

incidence is steadily increasing in most countries (Pugliatti et al., 2002). The disease progression in 

individual patients often takes different courses eventually leading to severe functional deficits 

which include inability to walk without support, cognitive decline etc. Functional deficits in MS are 

caused by focal lesions in the CNS white matter predominantly composed of immune cell infiltrates 

(Hauser and Oksenberg, 2006; Sospedra and Martin, 2005). These infiltrating immune cells recruit 

additional immune cells and also activate local resident cells to orchestrate a pathogenic cascade 

inflicting demyelination and axonal damage.  

Genetic factors clearly predispose a particular individual to the development of MS. In support of 

this, genome wide association studies identified many genes, in particular immunologically relevant 

genes, as risk factors for MS susceptibility (Sawcer et al., 2011). However, the low concordance 

rate of approximately 30% between monozygotic twins to develop MS indicates an important and 

significant role of environmental factors in disease initiation. Moreover, the striking increase in the 

incidence of MS within the last few decades cannot be entirely attributed to genetic changes. 

Although clear causative environmental factors are not known, analysis of epidemiological data 

suggests vitamin D, smoking and Epstein-Barr-Virus (EBV) infection as potential risk factors for 

triggering MS (Ascherio and Munger, 2008). The high prevalence of MS also coincides with the 

improved lifestyle and high standards of hygiene which reduce the burden of infections but can also 

limit exposure to microbes that are potentially beneficial for healthy activation of the immune 

system (Bach, 2002; Okada et al., 2010). While the importance of the immune mediated pathology 

in MS has been firmly established, how the CNS-specific autoimmune responses are initiated is 

poorly understood. Moreover, it is not clear what triggers relapses of clinical episodes in relapsing-

remitting MS patients. While the currently available animal models greatly allow us to understand 

the effector phase of the autoimmune disease, they were not useful to study the triggering phase of 

the disease.   
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1.1. Experimental autoimmune encephalomyelitis: an animal model of 
multiple sclerosis 

  

 Experimental autoimmune encephalomyelitis (EAE) induced in rodents is the common model of 

choice to study CNS autoimmune responses. Typically, two types of models have been used: 

actively induced EAE or passive transfer EAE. The active EAE induction protocols require complete 

Freund’s adjuvant (CFA) as an adjuvant which facilitates the gradual release of antigen into the 

draining lymph nodes and at the same time amplifies the immune response by activating innate 

immune system. Pertussis toxin is also combined with EAE induction in mice (Linthicum et al., 

1982). Passive EAE induction relies on the transfer of encephalitogenic T cells clones or lines 

obtained from immunized animals and stimulated in vitro by the autoantigen (Wekerle et al., 1994). 

However, these induced models have several drawbacks. These artificial models poorly reflect the 

true pathogenic mechanisms of MS and are often too simplistic, focusing mainly on T cell 

responses.  Later, many transgenic models have been developed to interrogate the pathogenic 

mechanisms of CNS autoimmunity. These include transgenic mice expressing the susceptible 

human leucocyte antigen (HLA) genes from patients, targeted expression of the cytokines and 

chemokines in the CNS and T cell receptor and B cell receptor transgenic mice (Krishnamoorthy et 

al., 2007). 

1.1.1. Spontaneous EAE models 
 

 The development of alternative class of models which overexpress myelin-specific T- or B-cell 

receptors resulted in spontaneous neurological symptoms with varied incidence and clinical 

patterns (Krishnamoorthy et al., 2007). These models are entirely murine or “humanized” for the T 

cell receptor (TCR) and associated antigen presenting molecules. The first TCR transgenic mouse 

model was generated by Goverman and colleagues which recognized the I-Au restricted myelin 

basic protein (MBP) Ac1-11 peptide (Goverman et al., 1993; Lafaille et al., 1994). The MBP-specific 

TCR transgenic mice spontaneously developed neurological symptoms (~14 - 44%) under 

conventional housing but not in specific pathogen free (SPF) conditions (Goverman et al., 1993). 

Interestingly, the spontaneous EAE incidence reached 100% in the absence of regulatory T cells 

(Treg) and B cells in mice lacking functional RAG genes. Later, proteolipid protein (PLP) 139-151 

specific TCR transgenic mice were developed which showed severe spontaneous EAE on the 

susceptible SJL/J background and remained healthy in resistant B10.S background (Waldner et al., 

2000). Following this, a myelin oligodendrocyte glycoprotein (MOG) 35-55 specific TCR transgenic 

mouse in C57BL/6 background was generated which showed signs of isolated optic neuritis (>30%) 

and low grade EAE (4%) (Bettelli et al., 2003). While these spontaneous EAE models stressed the 
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important role of T cells in CNS autoimmunity, the role of other immune cells in particular B cells 

were not addressed in these models.  

 

1.2. Triggers and pathogenic events in CNS autoimmunity 
  

 Many cellular players contribute to CNS autoimmunity. The ease with which myelin-specific 

CD4+ T lymphocytes are isolated from rodents and humans as well as their ability to transfer EAE 

to naïve recipients suggests that CD4+ T lymphocytes are the main culprits inducing CNS damage 

(Wekerle, 1993). Animal models that were used to mimic MS are predominately based on CD4+ T 

cells. Numerous efforts were undertaken to define the effector phenotype of CD4+ T cells, which 

alone can induce inflammation in the CNS. However, it became clear that all CD4+ T cell-subsets, 

be it IFN-γ-producing TH1 cells or IL-17-producing TH17 cells, are capable of mediating EAE in 

different settings (Domingues et al., 2010; Jäger et al., 2009). Nevertheless, MS lesions contain 

higher frequencies of CD8+ than CD4+ T lymphocytes (Babbe et al., 2000). Reports showed that 

myelin-specific CD8+ T cells can also induce EAE (Ford and Evavold, 2005; Sun et al., 2001) and 

cytotoxic T cells are able to contribute to CNS pathology (Na et al., 2008; Saxena et al., 2008). The 

type II histological patterns of MS lesions as well as the presence of oligoclonal bands in the 

cerebrospinal fluid (CSF) of MS patients suggests, in addition to T cells, a contribution of B 

lymphocytes to the pathogenesis of the disease (Lucchinetti et al., 2000; Owens et al., 2006). 

Moreover, rituximab, a B cell-depleting monoclonal antibody, was effective in a subset of MS 

patients (Owens et al., 2006).  

 The central question, which remains still unanswered, is how the CNS autoimmune responses 

are initiated. For long time, pathogenic infections were suspected to be the triggers of MS. Among 

viral infections, human herpes virus 6 (HHV-6) and Epstein-Barr virus (EBV) were widely studied as 

initiators of the disease (Ascherio and Munch, 2000; Challoner et al., 1995). Similarly, bacterial 

pathogens such as Chlamydia pneumonia, a Gram-negative intracellular bacterium, have been 

associated with MS, although the data is controversial (Sriram et al., 1999). However, none of the 

proposed infectious trigger has been definitively proven.  

 The overall rise in incidence of many autoimmune diseases including MS suggests a common 

causative environmental factor. The hygiene hypothesis states that the lack of childhood exposure 

to infections increases the susceptibility to autoimmune and allergic disorders (Bach, 2002; Okada 

et al., 2010). Emerging evidence from various autoimmune disease models suggests a role for 

resident gut microbiota in the pathogenesis of autoimmune diseases (Chervonsky, 2010). So far, 

there is no direct evidence implicating gut microbiota in triggering MS. The indirect evidence for a 
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role of gut microbiota stems from the fact that dietary factors (potent modulators of gut microbiota 

composition and function (David et al., 2014; Maslowski and Mackay, 2011)) like milk, animal fat 

and meat are positive influencers of MS incidence (Lauer, 1994, 1997). Interestingly, recent studies 

have linked MS incidence to lifestyle factors that have been shown to interfere with the 

establishment of healthy bacterial populations in the gastrointestinal tract, such as early-life 

antibiotics (Norgaard et al., 2011), formula feeding (Conradi et al., 2013), and caesarian sections 

(Maghzi et al., 2012). Although the role of gut microbiota was not directly investigated in these 

studies, these lifestyle factors may hurt the transmission of microbiota, likely leading to aberrations 

of the gut microbiota. Another interesting data showed that the MS disease course was milder in 

inflammatory bowel disease (IBD) patients, who are known to have an altered gut microbial profile 

(Zéphir et al., 2013).  

 The potential involvement of gut microbiota in CNS autoimmunity came from work in the animal 

models of MS. Early studies using MBP-specific TCR transgenic mice showed that SPF mice (with 

a normal gut microbiota) were less prone to develop EAE than mice housed in a conventional, 

“dirty” facility (Goverman et al., 1993). However, a specific trigger has not been identified to date. 

Later studies using antibiotic treatments to reduce the gut bacterial load also showed that EAE 

severity is reduced in mice and rats (Ochoa-Repáraz et al., 2009; Wekerle et al., 2013; Yokote et 

al., 2008). Two recent studies suggested that the hallmark of westernized life style, “high salt” diet 

consumption led to severe EAE in mice (Kleinewietfeld et al., 2013; Wu et al., 2013), indirectly 

supporting a role for gut microbiota. Attempts to relate the influence of gut microbiota to the 

susceptibility of EAE by active immunization have yielded contradictory results. One group noted no 

difference between germ free (GF) and SPF mice (Lampropoulou et al., 2008) while a very recent 

report (Lee et al., 2011) found reduced EAE susceptibility in GF C57BL/6 mice. Obviously the use 

of CFA immunization will supersede a potential role of commensal microbiota. Spontaneous 

models sparing any artificial immunization will be superior in addressing these important questions 

in natural settings.  
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2. Questions 
 

 Although we have learned a lot about the immunopathogenesis of MS using induced EAE 

models, there remains a knowledge gap regarding the disease triggering mechanisms. 

The central question of my work is:  

What are the triggers of CNS autoimmunity? 

To answer this question, the following developments were made 

- Generation of spontaneous EAE models (described in publications 1 & 2) 

- Contribution of B cells to spontaneous EAE pathogenesis (described in publications 1 & 2) 

- Cumulative autoimmunity (described in publication 3) 

- Gut microbiota as a trigger of CNS autoimmunity (described in publication 4) 
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3. Results and discussion 

3.1. Spontaneous EAE models of MS 

To investigate the triggering mechanisms of CNS autoimmunity, it is essential to use the animal 

model which develops spontaneous neuroinflammation at high frequency. We developed two new 

mouse models based on the transgenic expression of myelin antigen-specific T and B cell 

receptors. The first mouse model utilizes the TCR transgenic mice (2D2; TCRMOG) whose T cells 

recognize the MOG 35-55 peptide in the context of I-Ab and express the rearranged TCRα and β 

chain from the pathogenic T cell clone obtained from immunized animals (Bettelli et al., 2003). A 

significant proportion (>30%) of these mice develop spontaneous optic neuritis without evidence of 

clinical or histological signs of EAE and around 4% of the mice developed spontaneous EAE at 

older age. B cell receptor (BCR) knock-in mice (IgHMOG) were produced by gene targeting of the 

rearranged heavy chain VDJ sequence from the MOG specific hybridoma 8.18-C5 to its natural 

locus (Litzenburger et al., 1998). This heavy chain recognizes the conformational epitope present in 

the extracellular portion of MOG. B cells in IgHMOG mice develop normally and secrete high titers of 

pathogenic antibodies. However, these mice never show autoimmunity, but enhanced kinetics of 

EAE after immunization was observed.  

In an attempt to shed light on the involvement of myelin autoantigen specific T and B cells and 

their products in CNS autoimmunity, we crossed 2D2 mice with IgHMOG mice (Figure 1). 

Unexpectedly, we observed that a high proportion of these double-transgenic mice spontaneously 

developed severe EAE at young age. CNS inflammation in the double-transgenic mice was focused 

to spinal cord and optic nerve, leaving unaffected the brain and cerebellum, leading us to dub these 

animals as Opticospinal Encephalomyelitis (OSE) mice. The lesions presented severe 

demyelination and infiltration by inflammatory cells, predominantly macrophages and CD4+ T cells, 

but also eosinophilic leukocytes (Krishnamoorthy et al., 2006) (Publication 1). 

Spontaneous EAE in OSE mice takes a chronic-progressive course. This is not surprising, since 

it is known that C57BL/6 mice respond to active induction of EAE with chronic, not relapsing-

remitting disease. In an attempt to develop an experimental model which would present 

spontaneous relapsing remitting disease, we used the SJL/J mouse strain, which is known to 

develop relapsing-remitting EAE following active immunization or passive transfer. We raised a 

highly encephalitogenic and MOG-specific SJL/J T cell clone which uses a TCR composed of 

Vα8.3/Vβ4 chains. We generated a transgenic SJL/J mouse expressing this MOG-specific TCR by 
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pronuclear injection. These animals developed spontaneous relapsing-remitting EAE, hence 

dubbed as RR mice (Figure 1).  

 

 The large confluent demyelinating plaque-like lesions were located in the cerebellum and the 

spinal cord. Importantly, RR mouse lesions feature local immunoglobulin deposits along with 

activated complement complexes. This is remarkable, considering that the only change of these 

mice is the expression of transgenic TCR genes, resulting in an overrepresentation of MOG-

specific T cells in their CD4+ T cell repertoire. Consequently, the autoantibody-producing B cells 

must be recruited from the natural B cell repertoire. Evidence indicates that the selection, activation 

and differentiation of autoantibody-producing B cells takes place in germinal centers of the cervical 

lymph nodes, which are directly connected to the CNS via lymphatic vessels. The process of B cell 

recruitment is critically dependent on the presence of CNS-derived MOG autoantigen since the 
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MOG-specific antibodies were not present in the MOG-deficient RR mice (Pöllinger et al., 2009) 

(Publication 2). 

3.2. B cells in spontaneous EAE models 

 While the role of T cells has been extensively explored in EAE models, the role of B cells in the 

immunopathogenesis of EAE was not clear. B cells can serve as APCs, produce 

cytokines/chemokines or secrete antibodies. Especially our two spontaneous EAE mouse models, 

OSE mouse (Bettelli et al., 2006; Krishnamoorthy et al., 2006) and RR mouse (Pöllinger et al., 

2009), highlight the importance of B cell functions in disease pathogenesis.  

 To explore the role of B cells in our mouse models, we cultured spleen cells from OSE mice with 

serially diluted concentrations of recombinant MOG protein. We found that MOG-specific B cells in 

OSE mice enhanced the activation of MOG-reactive T cells even at very low concentrations of 

MOG. This was due to their specific membrane receptors through which they can specifically 

capture and concentrate MOG and hence present it more efficiently to T cells. In this co-culture, we 

observed that both T and B cells proliferated vigorously and expressed activation markers such as 

CD25 and CD86, respectively. In sharp contrast, single transgenic T cells required more than 100 

fold higher MOG protein amounts to exhibit a similar proliferation while B cells responded only 

weakly. The efficient presentation of MOG required conformational MOG since MOG-specific B 

cells were not as efficient to present the MOG 35-55 compared to MOG protein (Figure 2).  

 Since B cells can also produce autoantibodies, we measured MOG-specific antibodies in the 

serum of OSE mice. We found high titers of isotype switched MOG-specific IgG1 or IgG2a 

antibodies in the serum of both healthy and EAE affected OSE mice (Bettelli et al., 2006; 

Krishnamoorthy et al., 2006). In contrast, isotype switched antibodies were present in much lower 

concentrations in single transgenic IgHMOG mice,  suggesting a T cell driven activation and 

subsequent isotype switching of MOG-specific B cells. However, we did not find a deposition of 

antibodies in the CNS lesions of EAE-affected OSE mice. Moreover, the onset of clinical symptoms 

did not affect the level or nature of MOG-specific antibodies. Finally, MOG-deficient OSE mice also 

harbored higher amounts of MOG-specific antibodies suggesting their generation occurred 

independently of MOG antigen (Figure 2). Collectively, the OSE mouse model supports the concept 

that B cells could act as efficient antigen presenting cells to initiate autoimmunity. 
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 We performed similar antigen presentation assays in RR mice but failed to find appreciably 

higher antigen presentation capacity of B cells from RR mice compared to controls. Surprisingly, 

however, we found that RR mice spontaneously produced MOG-specific autoantibodies 

presumably due to the recruitment of MOG-reactive B cells from the endogenous B cell repertoire 

by activated T cells (Pöllinger et al., 2009).  We also found extensive deposits of MOG-binding 

antibodies in the CNS lesions of RR mice, suggesting the importance of MOG-specific antibodies in 

the pathogenesis. The B cell response in RR mice was a specific response to MOG rather than a 

broad autoreactivity since we did not find antibodies against other autoantigens. The autoantibodies 

appeared in serum from 5 weeks of age, and persisted up to 6 months of age and started declining 

thereafter (Pöllinger et al., 2009). There is evidence that conformational epitope but not linear 

epitope binding autoantibodies are involved in EAE pathogenesis (von Büdingen et al., 2002). We 

tested the serum of RR mice on cell bound MOG and found that majority of these antibodies were 

indeed recognizing conformationally intact MOG expressed on the cell surface. We next performed 

experiments to test the pathogenic potential of these antibodies by injecting them along with low 
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dose PLP peptide immunization. We noted a significant aggravation of EAE in mice that received 

RR mouse serum compared to non-transgenic littermate serum recipients. To examine the 

importance of B cells, we performed B cell depletion experiments using anti-CD20 antibodies. B cell 

depletion had contrasting impact on spontaneous EAE depending upon the time point of depletion.  

While neonatal B cell depletion suppressed spontaneous EAE (Figure 3), adult B cell depletion 

increased EAE incidence. It can be concluded that while B cells are necessary for the efficient 

priming of T cells in early life, in adulthood B cells are important for its regulatory functions.  
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Overall, our and other studies indicate a diverse role for B cells in MS. Unraveling the 

pathophysiological effects mediated by B cells and/or antibodies in patients is essential if we are to 

exploit these observations to develop new therapeutic strategies for MS, particularly in view of the 

clinical and mechanistic heterogeneity of the disease. 

3.3. Cumulative autoimmunity 

 Molecular mimicry, a cross-reaction of autoaggressive T cells to pathogen-derived molecules, 

has been suggested as a mechanism by which tolerance against autoantigens can be broken 

(Fujinami et al., 1983; Oldstone, 1987). While studying the role of the autoantigen in spontaneous 

MOG-directed EAE, we bred the MOG-specific TCR transgenic 2D2 mice on a MOG-deficient 

background. Unexpectedly, we noted spontaneous EAE in MOG-deficient 2D2 mice with incidence 

and kinetics indistinguishable from their wild type counterparts (Krishnamoorthy et al., 2009). EAE 

in MOG-deficient 2D2 mice could have been due to several possibilities: aberrant expression of 

truncated protein, recruitment of endogenous TCR specific for other myelin antigen or 2D2 TCR 

cross reacting with another myelin autoantigen. Our western blot analysis ruled out any residual 

MOG protein in MOG knock out mice. The flow cytometry analysis also did not find endogenous 

TCR expression that is reactive to other myelin antigens.  

 After excluding incomplete ablation of MOG or an autoimmune attack by T cells from the 

residual endogenous repertoire as possible explanations, we probed the possibility that other CNS 

protein(s) could serve as an alternative autoantigen in the paradoxical EAE response. Using a 

purification strategy to separate the CNS proteins from MOG-deficient mice and subsequent in vitro 

recall assay with 2D2 T cells, we identified several fractions that efficiently activated 2D2 T cells. 

We performed mass spectrometry analysis of the 2D2 T cell activating fractions and identified the 

medium sized neurofilament (NF-M) as an alternative target for 2D2 T cells. An in silico search 

identified a seven amino acid peptide of NF-M that is nearly identical to the core region of the 

antigenic peptide MOG38–50. The dominant epitopes of MOG and NF-M shared several important 

TCR contact positions that contain the amino acids Arg41, Phe44, Arg46 and Val47, which are 

known to be the crucial contact amino acids for the 2D2 TCR and other MOG-specific T cell lines 

(Ben-Nun et al., 2006; Petersen et al., 2004). We confirmed the reactivity of 2D2 T cells to NF-M by 

using synthetic peptide and the recombinant NF-M protein (Figure 4). Interestingly, the cross-

reactivity between NF-M and MOG-specific T cells is not a phenomenon unique to the transgenic 

TCR 2D2; we found this response pattern in a significant proportion of CD4+ T cells selected for 

MOG-reactivity.  
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 To determine the in vivo recognition of NF-M by 2D2 T cells, we transferred activated 2D2 T 

cells into RAG-/- and RAG-/- x MOG-/- mice. Whereas both recipient groups developed EAE, in 

MOG-deficient Rag2-/- mice the disease was delayed. Similarly, NF-M–activated 2D2-expressing T 

cells also triggered EAE in WT hosts with the same incidence and kinetics as that of MOG-

activated 2D2 T cells. Thus, we found the first example of immunological self-mimicry, i.e., the 

response of one T cell population against two target autoantigens in the same tissue, MOG and 

NF-M (Krishnamoorthy et al., 2009). We postulate that the combined response of a T cell clone 

against two independent autoantigens presented within the same target tissue initiates a 

particularly vigorous autoimmune attack. Such a cumulative autoimmune response may explain 

why the MOG epitope 35-55 elicits EAE in C57BL/6 mice, which otherwise are resistant against 

most other CNS autoantigens.  
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3.4. Gut Microbiota as a trigger of spontaneous CNS autoimmunity  
 

 While the triggering mechanisms of autoimmune diseases still remain an unanswered question, 

the overall rise in the incidence of many autoimmune diseases suggests a common causative 

environmental factor. The hygiene hypothesis states that the lack of childhood exposure to 

infections increases the susceptibility to autoimmune and allergic disorders (Bach, 2002; Okada et 

al., 2010). Emerging evidence from various autoimmune disease models suggests a role for the 

resident gut microbiota in the pathogenesis of autoimmune diseases (Chervonsky, 2010). So far, 

there is no direct evidence implicating gut microbiota in triggering MS. The indirect evidence for the 

role of gut microbiota stems from the fact that dietary factors (potent modulators of gut microbiota 

composition and function (David et al., 2014; Maslowski and Mackay, 2011)) like milk, animal fat 

and meat are positive influencers of MS incidence (Lauer, 1994, 1997).   

Having distributed our RR mice to different pathogen-free facilities, we noted incidences of 

spontaneous EAE ranging between 35–90%, a variation, which could simply not be explained by 

varying “hygienic conditions”. To test the possible contribution of non-pathogenic commensal 

microbiota to EAE triggering, we re-derived RR mice into GF, devoid of commensal flora, 

conditions. Strikingly, we noted a complete protection from spontaneous RR EAE in GF mice 

compared to our normal SPF housed mice (Berer et al., 2011). Re-colonization of GF RR mice with 

regular flora from SPF mice promptly restored spontaneous EAE suggesting a vital role for 

commensal flora in disease induction (Figure 5). 

 Protection from EAE went along with a drastic reduction in the frequency of TH17 cells in the 

lamina propria and Peyer’s patches of GF mice suggesting a possible activation of MOG-specific T 

cells in the gut associated lymphoid tissue (GALT) (Berer et al., 2011). Indeed, CFSE labeled T 

cells transferred into SPF mice proliferated predominantly in the GALT, a response abolished after 

short-term antibiotic treatment. There is increasing evidence that the gut microbiota not only 

activates the pro-inflammatory effector T cells but also induces autoimmune disease suppressing 

regulatory T cells depending upon the presence of particular species. For example, segmented 

filamentous bacteria (SFB) predominantly induce pro-inflammatory TH1 and TH17 cells (Gaboriau-

Routhiau et al., 2009; Ivanov et al., 2009) whereas clostridium species from both humans and mice 

induce regulatory T cells (Atarashi, 2011; Atarashi et al., 2013).  However, mono-association of GF 

RR mice with SFB did not restore spontaneous EAE (Berer et al., 2011). 
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Activation of MOG-specific T cells is necessary but not sufficient for full clinical EAE. MOG-

specific B cells recruited from the native immune repertoire by T cells play an additional crucial role 

in the EAE development by producing demyelinating antibodies. In GF mice, in the absence of T 

cell activation, B cell recruitment was impaired, as reflected by reduced production of MOG-binding 

serum antibodies. Spontaneous production of anti-MOG antibodies also required the expression of 

MOG antigen in the CNS. RR mice deficient in MOG (RR x MOG-/-) failed to develop anti-MOG 

autoantibody titers despite their normal microbial status. We localized the recruitment of MOG-

specific B cells to CNS draining lymph nodes by transferring GFP-labeled transgenic MOG-specific 

B cells. We found that MOG-specific B cells specifically accumulated in the germinal centers of 

cervical lymph nodes of SPF mice but not in any other peripheral lymph nodes. This migration was 

not seen in RR x MOG-/- recipients (Berer et al., 2011). Together, our work identifies a sequence of 

events triggering a spontaneous autoimmune demyelinating disease.  
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4. Summary 

 It is widely believed that autoimmune diseases arise due to the combination of several factors 

such as genetic susceptibility and environmental triggers. Epidemiological studies strongly suggest 

that allergic and autoimmune diseases are clearly on the rise in developed countries. But infectious 

agents show a complex relationship with autoimmunity. While lack of infection favours 

autoimmunity, infection can also precipitate autoimmunity (Bach, 2002);(Christensen, 2005). In the 

case of MS, there were numerous studies that show that immune cells, in particular T cells, play a 

major role in disease pathogenesis. However, there is a huge gap in understanding the triggers of 

autoimmune reactivity.  

To understand “What are the triggers of CNS autoimmunity?” new spontaneous EAE mouse 

models were developed. These models differed in their clinical characteristics, pathology and 

pathogenesis. While in OSE mice B cells primarily served as antigen presenting cells, 

autoantibodies played a crucial role in the demyelination in RR mice. Also, these models led us to 

identify a novel phenomenon of autoimmune cross reactivity, i.e., self-molecular mimicry which we 

termed as “Cumulative autoimmunity”. 

One of the most important uses of these models was to investigate the actual triggering mechanism 

of the CNS autoimmunity. Our studies identified that the commensal gut microbiota through 

modulating the immune functions triggered CNS autoimmune reactivity. Mechanistically, how the 

gut microbiota modulates autoimmune responses against the remote CNS is yet to be understood. 

The gut microbiota effects can be transmitted to remote organs through a) trafficking of adaptive 

and innate immune cells stimulated in the intestine b) transport of bacterial metabolites c) 

translocation of live bacteria due to impaired epithelial integrity. These are the potential lines of 

investigations in our future experiments.  
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