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Abstract 

Interfacial properties of ceria (CeO2) nanoparticles and highly organized ceria crystal planes 

{111} and {100} in the aqueous electrolyte solution were studied.It was confirmedby high 

resolution electron spectroscopy that a primary ceria nanoparticle consistsmostly of two 

crystal planes {111} and {100} with different surface sites exposed to the aqueous electrolyte 

solution. Interfacial properties of ceria nanoparticles are directly related to the reactivity and 

surface densities of existing surface sites. However, surface characterization(potentiometric 

titrations and electrophoretic measurements) provides only some kind of average surface 

properties i.e. average surface charge densities and surface potentials. The point of zero 

charge of ceria nanoparticles was measured to be between pHpzc = 7.5 and 9.0, and the 

isoelectric point at pHiep = 6.5. With the purpose of understanding ceria nanoparticles surface 

charging the inner surface potentials ofceria macro crystal planes{111} and {100} were 

measured, by means of single crystal electrodes, as a function of pH and ionic strength. The 

inner surface potential directly affects the state of ionic species bound to a certain surface 

plane and is thus an essential parameter governing interfacial equilibrium. From the measured 

0(pH) data and applying the MultiSite Complexation Model the thermodynamic equilibrium 

constants of doubly-coordinated Ce2-OH (at the {100} ceria crystal plane) as well assingly-

coordinated Ce1-OH and triply-coordinated Ce3-OH (at the {111} ceria crystal plane) were 

evaluated. The 0(pH) function differs for two examined ceria planes, however the inner 

surface potentials of both planes depend on ionic strength having a broad electroneutrality 

region between pH =6 and pH = 9. 
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1. Introduction 

Ceria, cerium(IV) oxide, plays an important role in industrial processes, the bio-

medical applications (Karakoti et al. 2008), the production of renewable energy (Melchionna 

and Fornasiero 2014, Reed et al. 2014) and catalysis(Si and Flytzani-Stephanopoulos 2008). 

Additionally, the toxicity of ceria nanoparticles has been reported(Ould-Moussa et al. 2014). 

Depending upon the synthesis condition, ceria could be obtained as nanocrystals, colloidal 

aggregates, or even macro crystals (Reed et al. 2014). The reactivity of ceria nanoparticles is 

influenced by their size (Reed et al. 2014), while the behavior of the aqueous ceria 

suspension depends on the ceria surface structure and the structure of the electrical interfacial 

layer (Nabavi et al. 1993, Gulicovski et al. 2014). 

In the contact of solid metal oxide surfaces with the aqueous electrolyte solutions 

several processes occur. Metal atoms at the surface (M) react with water molecules 

(hydrolysis) forming amphoteric surface sites (MOHz) which can be protonated (MOH2
z+1) 

or deprotonated (MOz–1) (Schindler and Stumm 1987, Lützenkirchen 2006). The distribution 

and accumulation of ions (hydroxide ions, hydronium ions, cations and anions) result in the 

formation of an electrical interfacial layer. Theelectrical charge at the solid liquid interface 

determines the behavior of the system, such as colloid stability, adhesion, adsorption and 

electrokinetic phenomena (Lyklema 1995).  

In order to analyze the processes within the interfacial layer a certain model with 

several layers at the interface divided by characteristic planes should be assumed. For that 

purpose, in this article, the General Model of EIL (GM-EIL) of a metal oxide in aqueous 

electrolyte solution (Kallay et al. 2006) has been used. According to GM-EIL, within the 

solid phase, the electrical potential is assumed to be constant and equal to the inner surface 

potential Ψ0 corresponding to the 0-plane that divides the solid from the liquid phase. The 

surface charge density of this plane, σ0, is determined by the interaction of potential 

determining ions with active surface sites (H+ and OH– ions). The charge at the 0-plane is 

partially compensated by the association of charged surface groups with counterions of 

opposite signs. These associated counterions are located at the β-plane characterized by the 

potential Ψβ. The onset of the diffuse layer which extends to the bulk of the solution is at the 

d-plane with the potential Ψd. Within the diffuse layer the electrokinetic slip plane (e-plane) is 

located dividing the mobile from the stagnant liquid at the interface and is characterized by 



 
 

4 
 

the electrokinetic ζ-potential (Hunter 1981, Delgado 2007). In the absence of specific 

adsorption, and in the symmetric case (same affinities of anions and cations for association 

with oppositely charged groups) and at low ionic strength, the point of zero potential pHpzp 

(0 = 0) coincides with the electroneutrality point pHeln determined by thermodynamic 

interfacial equilibrium constants, the electrokinetic isoelectric point pHiep ( = 0) and with the 

point of zero charge pHpzc (0 = 0), as obtained by mass titration or potentiometric acid-base 

titrations of the suspensions (Kallay et al. 2010). 

According to the Surface Complexation Model (Lützenkirchen 2006) several 

reactions may take place at the interface. Charging reactions could be represented by the 

binding of potential determining ions to active surface sites. The surface concentration 

densities and types of the specific surface sites are determined by the surface structure. A 

crystalline colloidalor nanoparticle exposes different crystal planes to the solution, different 

planes are characterized by different values of thermodynamic equilibrium parameters, as 

predicted by the MUltiSIte Complexation(MUSIC) model (van Riemsdijk et al. 1986, 

Hiemstra et al. 1989, Hiemstra and van Riemsdijk 2006). Consequently, the overall 

interfacial characteristics, as well as evaluated equilibrium parameters (e.g. equilibrium 

constants), of colloidal and nanoparticles are averaged, depending on the features of 

individual planes and on their abundance. Additionally, the individual crystal planes at 

colloidal and nanoparticles are connected through the bulk of the crystal which may result in 

mutual interactions of connected planes (Kallay et al. 2014).In this work the ceria surface has 

been chosen due tothe relativelysimple preparation of ceria nanoparticles(Antonova et al. 

2001, Xu et al. 2008, Morris et al. 2013) as well as to the availability of the macro single 

crystal with a defined crystal plane. 

The aim of this article is to determine the properties of ceria nanoparticles (size, 

shape, structure, colloid stability, surface charge density as well as the electrokinetic 

potential) and the surface properties of individual ceria surface planes {111} and {100} (the 

inner surface potential). Results were interpreted by the MUSIC model (van Riemsdijk et al. 

1986, Hiemstra et al. 1989, Hiemstra and van Riemsdijk 2006) andthe thermodynamic 

equilibrium constants of surface sites protonation were evaluated. The measured surface 

properties of flat well-defined ceria crystal planes and evaluated thermodynamic parameters 

were analyzed and correlated with the measured surface properties of ceria nanoparticles. 
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2. Materials and methods 

2.1. Preparation of ceria nanoparticles 

Cerium (IV) oxide nanoparticles used in this study were prepared by hydrolysis of 

Ce(NO3)3(Ce(NO3)3×6H2O Sigma Aldrich) at room temperatureaccording to the procedure 

described in literature (Xu et al. 2008). Sodium hydroxide solution (125 mL, c = 1 mol dm–3) 

was added to the cerium(III) nitrate aqueous solution (5 L, γ = 2.5 g dm–3) under constant 

stirring. Immediately after mixing, the reaction took place and formation of a purple 

precipitate was observed. Suspensions was stirred continuously for twenty hours at room 

temperature, the precipitate turned yellow andpH of suspension was measured to be around 

11. The precipitate was purified by intensive washingwith deionized water until the 

conductivity of the supernatant reached the conductivity of deionized water. After 

purification, the precipitate was evaporated under reduced pressure. Dry ceria powder was 

stored in a glass bottle at room temperature. 

 

2.2. Structural and morphological characterization of ceria nanoparticles 

The X-ray powder diffraction was carried out with the Bruker X-ray powder 

diffractometer (Billerica, MA, USA) employing the Cu Kα radiation ( = 1.54185 Å), 

operated at 40 kV and 30 mA.  

The high-resolution transmission electron microscopy (HR-TEM) of ceria samples 

was performed using Philips CM200 FEG transmission electron microscope operated at 200 

kV. For the TEM measurements, the samples were first suspended in chloroform by 

sonication, then a small drop of the suspension was transferred onto the carbon-coated copper 

grid and dried. 

The specific surface area of prepared cerium(IV) oxide nanoparticles of 169 m2 g-1 

was determined by the multiple Brunauer, Emmett and Teller (BET) method (Micromeritics, 

Gemini) using liquid nitrogen. 

The hydrodynamicdiameter of ceria nanoparticles was measured,immediately after 

preparation and again after sonification,by the Dynamic Light Scattering (DLS) method using 

a 90Plus Brookhaven instrument. 
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2.3. Surface characterization of Ceria nanoparticles 

Potentiometric mass titration was used to determinethe effects of ionic strength on the 

surface charge densityand on the point of zero charge. The mass titration method was initially 

developed for metal (hydr)oxides and was limited to pure samples(Noh and Schwartz 1989), 

but lately was extended for contaminated samples (Žalac and Kallay 1992). The method is 

based on the fact that pH approaches the limiting value (pH∞) by addition of solid powder to 

an aqueous medium. The limiting pH∞ value, at a high solid content is equal to pHpzc. The 

advantage of the potentiometric mass titration method is that one does not need to perform 

blank titration, which is the case in the potentiometric acid-base titration of colloid and 

nanoparticles suspension. The mass titration method was developed (Preočanin and Kallay 

1998, Preočanin and Kallay 2006) for the determination of surface charge density in the 0-

plane (0) using the following equation: 

 w in win pH p pH ppHpH
0 10 10 10 10K KF

sy



            (1) 

where  is a mass concentration of metal oxide, pH is measured in the bulk of the suspension, 

pHin is initial pH of the aqueous electrolyte solution (without solid particles), F is a Faraday 

constant, s is a specific surface area, y is an activity coefficient and Kwa thermodynamic 

equilibrium constant of H+ and OH– neutralization in the bulk of the solution. 

Weighed amounts of cerium(IV) oxide nanoparticles were added subsequently to 

aqueous electrolyte solutions. Ionic strength was controlled by sodium chloride10–3 mol dm–3 

and 10–2 mol dm–3, and initial pHin was adjusted by HCl or NaOH. For each ionic strength, 

mass titrations were performed from the initial acidic (pHin ≈ 3), neutral (pHin ≈ 6.2) and 

basic (pHin ≈ 11). The maximum ceria mass concentration was 80 g dm–3, the more 

concentrated dispersions were too dense for homogenous stirring and a reproducible pH 

measuring. After each addition the suspension was treated with ultrasound for one minute and 

stirred for three minutes.After equilibration the pH value was measured by a glass electrode 

(Metrohm 6.0123.100) connected to a Metrohm 713 pH-meter. All measurements were 

performed at 25°C and under argon atmosphere to avoid a dissolution of carbon dioxide. 

The electrophoretic mobilities of cerium(IV) oxide nanoparticles were measured 

using a 90Plus Brookhaven Zeta potential analyzer. The electrokinetic measurementsof 0.1 

mg ml–1 ceria nanoparticles dispersed in 10–2 mol dm–3 and 10–3 mol dm–3 hydrochloric acid 

solution wereperformed. Ionic strength was controlled by the addition of sodium chloride. 
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Solutions were titrated with 10–1 mol dm–3 sodium hydroxide solution, covering a range from 

a pH ≈ 3 to pH ≈ 11.Measurements were performed at room temperature. Electrophoretic 

mobilities were converted to -potential using the Smoluchowski equation (Hunter 1981). 

 

2.4. Inner surface potential at the ceria/aqueous electrolyte interface 

Two ceria single crystals exposing {111} and {100} faces were purchased from 

SurfaceNet GmbH. The crystals dimensions were 4 × 4 × 0.5 mm, one side polished.Ceria 

single crystal electrodes (SCrE) were constructedin the way that the ceria crystal plane, 

{111} and {100} respectively, was exposed to the aqueous electrolyte solution, as shown on 

Figure 1.The nonporous ceria single crystal electrode consisted of a Plexiglas body with a 

single crystal mounted at its end and sealed with epoxy resign. Internal electric contact was 

ensured by mercury into which a graphite electrode rod was immersed. A copper wire was 

connected to the graphite rod. The details are given elsewhere (Kallay et al. 2005; Preočanin 

and Kallay 2008; Zarzycki et al. 2010; Preočanin and Kallay 2013). The electric resistance 

(impedance) of ceria single crystal was measured directly and found to be xx M, so that the 

impedance of the pH-meter was sufficiently high (Z ~ 1012Ω) to ensure reversible condition, 

i.e. the absence of a potential drop due to the passage of current through electrode. 

Accordingly, the measured electrode potential (ESCr) was result of the ionic adsorption 

equilibrium within the ceria/aqueous electrolyte solution electrical interfacial layer only. 

 

 

Figure 1Ceria single crystal electrode 
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The potentials of each electrode were measured simultaneously asthe function of pH. 

pH was measured by a combined pH electrode (Metrohm 6.0234.100 with Ag|AgCl|KCl; 3 

mol dm–3) a reference electrode, which was used as reference electrode for all three 

measuring electrodes).Thesolutions of KOH (Sigma-Aldrich Laborchemikalien GmbH;c = 

0.1 mol dm–3, diluted to c = 0.01 mol dm–3)and HCl (VWR International S.A.S.c = 0.01 mol 

dm–3) were used for the acid base titrations. 

Each single crystal electrode was connected to a separate Metrohm 713 pH meter, 

while the pH electrode was connected to the Metrohm 827 pH meter. The solution was 

thermostated at 25 °C, and instead of measuring pH, the pH meters were set to measure 

electrode potentials in 2 s periods. The titration was performed by Metrohm 665 dosimats, 

controlled and programmed by a computer. The data from pH meters werecontinuously 

collected by the computer. 

The experimentswere designed as follows:The initial solution of HCl (deionized 

boiled water, degassed with argon, pH = 3) was titrated with KOH until pH = 11 was 

reached. The titration was repeated three times under the same conditions.The measurements 

of SCr electrode potential were taken with stirring off, after each addition of KOH followed 

by 15 min of stabilization period.The measured single crystal electrode potentials were 

plotted as ESCr(pH)vs. pH and the point of zero potential was determined from the inflexion 

point of the curve (Preočanin and Kallay 2013). 

Surface equilibrium parameters were calculated by comparing numerical simulations 

to experimental datausing the MUSIC model. 

 
3. Results and discussion 
 
3.1. Morphological and structural properties of the prepared ceria nanoparticles 

The X-ray diffractogram of the prepared ceria sample is shown in Figure 2. All 

observed diffraction maxima can be indexed to the cubic fluorite CeO2 structure (JCPDS 81-

0792), confirming that the prepared sample was pure cerium(IV) oxide. The diffraction peaks 

are broad due to a small particle size, which was estimated to be XX nm by the Scherrer 

equation (Langford and Wilson 1978, Monshi et al. 2012). 
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Figure 2The XRD pattern of the prepared ceria sample 

TEM images of the samples (Figure 3) revealed that the ceria nanoparticles were of a 

fairly uniform size distribution between 3.5 and 5 nm. High-resolution TEM of ceria 

nanoparticles showed that individual nanoparticles are single-crystaline and preferentially 

oriented along [110], with a dominant lattice fringes corresponding to the {111} and {002} 

lattice planes (Figure 2.b). Therefore, it follows that the preferred shape of prepared ceria 

nanoparticles is truncated octahedron bounded with the {111} and {100} planes. The {111} 

lattice fringes were observed to spread over the area occupied by several ceria nanoparticles 

(Figure 2.c), indicating that the nanoparticles form aggregates in which the individual 

nanocrystals were stacked by sharing the faces of the same type (viz. {111} to {111}, or 

{100} to {100}). The bulk structure of ceria is made of Ce(IV), each coordinated to eight 

oxygen atoms, while each oxygen is coordinated to four cerium atoms (Reed et al. 2014). The 

surface of a single nanoparticle is made of different crystallographic planes. 
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Figure 3 TEM micrographs of the prepared ceria nanoparticles. Lattice planes that correspond to the facets of 

the ceria nanocrystals are indicated by arrows in the high-resolution TEM image (fig. b). Encircled area in fig. c 

indicates the {111} lattice fringes in a nanoparticle agglomerate. 

The hydrodynamic diameter of ceria particles, immediately after preparation, in the 

basic solution (pH  11) was found to be 165 nm. After sonification for 10 minutes, the 

measured hydrodynamic diameter was 25 nm, indicating that primary particles form weakly 

connected aggregates. 

 
3.2. Ceria nanoparticles 

 

The surface properties of synthesized ceria were determined. The effect of electrolyte 

concentration (10–2 mol dm–3 and 10–3 mol dm–3) on the mass titration curve, surface charge 

densities, and the point of zero charge of ceria nanodispersion was examined by 

potentiometric mass titration. For each ionic strength the mass titrations was performed from 

initial acidic (pHin ≈ 3), neutral (pHin ≈ 6.2) and basic pH (pHin ≈ 11) of aqueous solutions. 

The results were presented on Figure 4. By increasing the mass concentration of solid 

particles the pH of the suspension reached the constant value. Whereas the mass titration 

curves,starting from acidic and basic pH region, did not coincide at the same pH value, the 

mass concentration being still insufficiently high, mass titration curves starting from the 

neutral pH region reached the plateau at a lower mass concentration (i.e. 10 g dm–3). The 

point of zero charge for the ionic strengths of 10–2 mol dm–3 was found to beat pHpzc = 

7.80.5 and for ionic strength 10–3 mol dm–3atpHpzc= 8.70.3. 
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Figure 4Mass titrationsof ceria nanoparticles atdifferent ionic strength adjusted with NaCl:(●) Ic = 10–2  mol 

dm–3 and (○) Ic = 10–3 mol dm–3 at 25 °C 

 

Table 1Points of zero charge (pHpzc) and isoelectric points (pHiep)for various cerium(IV) oxide samples 

pHpzc pHiep Method Electrolyte Reference 

8.1  
Potentiometric acid-

base titration 
0.005 – 0.3 mol dm-3 KNO3 de Faria andTrasatti 1994 

8.6-10.0  
Potentiometric acid-

base titration 
0.1 – 0.5 mol dm–3 NaClO4 Nabavi et al. 1993 

7.6  Electrophoresis 0.001 – 0.1 mol dm-3 NaNO3 Ray et al. 1979 
7.1  Mass titration 0.1 mol dm-3 NaNO3 Park and Regalbuto 1995 

 5.9 Electrophoresis 0.001 mol dm-3 NaNO3 Hsu et al. 1988 
 8.5 Microelectrophoresis  Oh et al. 2010 
 6.2 Electrophoresis n/a Antonova et al. 2001 
 6.5 Electrophoresis HCl + NaOH Song et al. 2008 

 6 Electrophoresis 0.01 mol dm-3 NaNO3 
Suphantharida and Osseo-

Asare 2004 
 6 Electroacoustics None Hsu and Nacu 2004 
 7.3 Electrophoresis 0.01 mol dm-3 NaCl Ocana 2002 

 

Surface charge densities as a function of pH were calculated from the slope of the 

mass titration curves by means of Eq. (1) and shown on Figure 5. As expected, surface charge 

densities increase with ionic strength. The broad point of zero charge regions, i. e. flat surface 

charge densities curves, was found for both examined ionic strengths, indicating low surface 

charge densities of ceria particles. Additionally the broad electroneutrality region could be 

the reason for a wide range of determined pHpzc values. These results are in accordance with 
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literature, Table 1. The shift of point of zero charge, by increase of ionic strength, indicates 

the preferential association of chloride toward ceria surfaces. 

 

 

Figure5Surface charge densities of cerium(IV) oxide nanoparticles with the specific surface area 169 m2/g 

dispersed in the  aqueous solution calculated using eq (1) for ionic strength (●) Ic = 10–2 mol dm–3 and (○) Ic = 

10–3 mol dm–3 at 25 °C.  

 

The electrokinetic potentials of ceria nanoparticles at two concentrations of sodium 

chloride were measured, the results were presentedin Figure 6. The negligible influence of 

ionic strength on the isoelectric point was found. However the effect of electrolyte 

concentration is more apparent on positively charged ceria nanoparticles indicating slightly 

pronounced affinity of chloride ions toward ceria nanoparticles surface. Isoelectric points for 

both examined ionic strength (Ic = 10–2 mol dm–3 and Ic = 10–3 mol dm–3) were found to be at 

pHiep= 6.5, whichoverlapped with the region of the observed points of zero charge. 
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Figure 6. Electrokinetic ζ-potential of cerium(IV) oxide nanoparticles dispersed in the aqueous NaCl solution 

measured for two ionic strength Ic = 10–2 mol dm–3 (●) and Ic = 10–3 mol dm–3 (○) at 25 °C. 

 

As is verified by HR-TEM, the ceria nanocrystals are bounded mainly by the {111} 

and {100} planes. All present planes are exposed to the aqueous electrolyte solution 

contributing to the overall surface charge. Additionally, mutual effects of different crystal 

planes at the same nanoparticle, connected through the bulk of the crystal, could not be 

ignored. Assuming a simple 2-pK model (Yates et al. 1974,Rudziński et al. 1998),for the 

reactions at ceria nanoparticle surfaces, the thermodynamic parameters of surface protonation 

equilibrium reactions were estimated by fitting the experimentally obtained surface charge 

densities (Figure 5) and electro kinetic potential data (Figure 6). The difference in the 

thermodynamic equilibrium constants of the surface protonation of negative ceria surface 

sites and the surface protonation of neutral ceria surface sites was found to be ΔpK = 8.4. 

According to the 2-pK model, the higher the difference in thermodynamic equilibrium 

constants the broader the electro neutrality region is. 

1CeO H CeOH p  = 3.0    K        (2) 

2 2CeOH H CeOH p  = 11.4    K        (3) 

It should be noticed that 2-pK model is a rough approximation which assumes one kind of 

amphotheric surface sites at the ceria surface. This approximation is meaningful in the sense 

of applied experiments in which average surface properties are measured. 
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3.3. Macroscopic ceria crystal planes  
 

Inner surface potentials of ceria {100} and ceria {111} crystallographic planes were 

obtained by means of a single crystal electrode. The response and reproducibility of ceria 

electrodes were tested prior to measurements. It was found that the measured signal was 

stable and that the electrode potential didn’t change during a long period. The reversibility of 

the electrode potential was also tested and hysteresis was not found. The acid base 

potentiometric titration with glass electrode and two ceria single crystal electrode {111} and 

{100} were performed. During titrations, the electrode potential (ESCr) of Single Crystal 

Electrodes were measured. From the inflection point of the ESCr(pH) function the point of 

zero potential (pHpzp) was determined. Knowing the value of pHpzp electrode potentials were 

converted to inner surface potentials Ψ0 (Preočanin and Kallay 2013). Results for the{100} 

and {111} ceria crystal planes at two concentration of potassium chloride were shown on 

Figures 7 and 8. Measured 0(pH) functions differ for two examined ceria planes. However 

the inner surface potentials of both planes depend on the ionic strength having a broad 

electroneutrality region, between pH =6 and pH = 9 (for lower ionic strength Ic = 10–3 mol 

dm–3) and even broader between pH =4 and pH = 9 (for higher ionic strength Ic = 10–2 mol 

dm–3) making determination of point of zero potential inaccurate. The points of zero potential 

evaluated from the inflection point are: pHpzp(111) = 7.4  0.6, and pHpzp(100) = 7.3  0.2. It 

was assumed that point of zero potential do not depend on ionic strength being near the 

electroneutrality condition (0 = 0 =  = 0). At sufficiently low electrolyte concentrations, 

the isoelectric point and the point of zero charge are equal and coincide with the pristine point 

of zero charge (electroneutrality point) and also with the point of zero potential, making 

evaluation of the surface potentials from the measured single crystal electrode potentials 

simple. Whereas at higher electrolyte concentrations the situation in no more simple and 

pHiep, pHpzc and pHpzp are shifted from pHeln. From the shifts of pHiep and pHpzc values it 

might be concluded that the surface association affinities of anions and cations are not same 

(Kallay et al. 2007). 

The difference of measured 0(pH) curves of two examined ceria surfaces is more 

evident in the acidic region. The slopes of both0(pH) functions in the acidic region 

(between pH = 3 and pH = 4) are lover then Nernstian, being (for Ic = 10–3 mol dm–3)  

–33.1 mV and –22.2 mV, for the {111} and the {100} ceria crystal planes respectively. 
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Figure 7The inner surface potential ofthe{100}, □, and the{111}, ⋄, cerium(IV) oxide surface planes in the 

aqueous KCl solution for ionic strengthIc = 10–3 mol dm–3at 25 °C. Lines present the best fit for the MUSIC 

model.{100}: Γtot (Ce2O) = 2.28× 10–5 mol m–2; {111}:Γtot (Ce1O) = Γtot (Ce3O) = 1.31×10–5 mol m–2; 

thermodynamic equilibrium constants are listed in Table 2. 

 

 

Figure 8The inner surface potential of (100), □, and (111), ⋄, cerium(IV) oxide surface planes in aqueous the 

KCl solution for ionic strength Ic = 10–2 mol dm–3 at 25 °C. Lines present the best fit for the MUSIC 

model.{100}: Γtot (Ce2O) = 2.28×10–5 mol m–2; {111}:Γtot (Ce1O) = Γtot (Ce3O) = 1.31×10–5 mol m–2; 

thermodynamic equilibrium constants are listed in Table 2. 

 

The CeO2 crystal structure is cubic (fluorite) with the crystal cell parameter a = 

5.4110 Å (Wyckoff 1963).The atomic structure of CeO2 surfaces, especially regarding the 

positions and coordination of oxygen atoms has only recently been successfully imaged using 
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chromatic (Cc) and spherical (Cs) aberrations corrected high-resolution electron microscopy 

(Lin et al. 2014). This study resolved the structure of active sites for catalysis which is of 

essential importance in research and application of ceria nanoparticles. Apart from 

nanoparticles, the same findings can be scaled to macroscopic levels, i.e. single crystals. It 

has been found (Lin et al. 2014) that the {111} surface has an O termination and the {100} 

surface has a mixture of Ce, O, and reduced CeO terminations. 

 

 

Figure 9 The stoichiometric composition of the {111}, (a) and the{100},(b) ceria surfacedrawn byDiamond 

software for visualization of crystal structures (Diamond). 

 

The thermodynamic of surface equilibrium reactionsof the CeO2 specific surface sites 

was investigated by means of the Multi Site Complexation Model (van Riemsdijk and 1986, 

Hiemstra et al. 1989, Hiemstra and van Riemsdijk 1996). The MUSIC model relies greatly on 

crystallographic parameters and information calculated from them. The surface oxygen atoms 

position and coordination are important in estimating the active hydroxyl surface sites 

concentration (Γtot). The surface concentration of hydroxyl groups and surface cerium atoms 

is calculated from cell dimensions and by an observation of crystal surfaces composition. The 

coordination of different terminal active sites atoms was explored using Diamond software 

for visualization of crystal structures (Diamond). All previous investigations of ceria surfaces 

(Namaiet al.2003,Zhanget al. 2011) showed that various high energy surface defect structures 
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are very common. It is therefore reasonable to expect certain discrepancy between model 

calculations and experimental values. 

 

3.3.1.Ceria {111}crystal plane 
 

The stoichiometric composition of the{111} surface, with one kind of O-terminal 

active site (triple-coordinated oxygen atoms, Ce3–O) and one kind of Ce-terminal active site 

(Ce),was shown on Figure 9a. Surface oxygen and cerium atoms react with water 

moleculeforming triple coordinated hydroxyl sites (Ce3–OH) and single-coordinated 

hydroxyl sites (Ce1–OH): 

Reakcija          (4) 

Since there are multiple sites present on that surface, the MUSIC model was chosen 

for the calculation of thermodynamic parameters of surface reactions. The two-step 

protonation mechanism of amphoteric Ce1-terminal active sites assumes the following surface 

reactions and corresponding thermodynamic equilibrium constants: 
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where a curly brace denotes surface concentration (the amount or number of moles per 

surface area) and Ψ0is the inner surface potential affecting the state of ionic species being 

directly bound to the surface, and aH+ is arelative activity of the H+ ions in the bulk of the 

solution. Other symbols have their usual meanings. 

The two-step protonation mechanism of amphoteric O-terminal active sites (triple-

coordinated oxygen atoms, Ce3–O) assumes the following surface reactions and 

thermodynamic equilibrium constants: 
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From crystal geometrythe total surface concentration,Γtot, for each site was calculated 

and used in modeling (Γtot(Ce1–O) = Γtot(Ce3–O) = 1.31 × 10–5 mol m–2; 7.9 sites/nm2). At 

Figures7 and 8 the evaluated0(pH) curves for the {111} ceria crystal plane were overlapped 

over experimental data, and the values of the obtained thermodynamic equilibrium constant 

were listed in Table 2. 

The thermodynamic equilibrium constants of the first protonation, i.e. the protonation 

of negative surface sites,are higher than values of the second protonation, i.e. the protonation 

of the surface sites with charge z = +1/2, for both triple and single coordinated hydroxide 

surface sites, indicating that surface species with charge z = +3/2 are not present.The values 

of the thermodynamic equilibrium constants of reactions 6 and 8 aresignificantly lower than 1 

(pKn,2  0), moreover they exhibit negligible impact on the calculated inner surface potential 

curve. This finding is inaccordance with the prediction of Hiemstra et al. 1989, which had 

stressedthat nature generally allowed only those surface species to be present in aqueous 

solutions which had a charge (absolute value) equal to or lower than one. 

 

Table 2Thermodynamic parameters of the surface sites at ceria {111} and {100}planes, 
obtained by means of the MUSIC model by fitting the measured innersurface potential data 
presented on Figures 7and 8 
 

surface 
Ic 

mol dm–3 
n  Eq. 

105Γtot 

mol m–2 
pKn,1 pKn,2 pHpzc 

{111} 
10–3 

3 Ce3–OH 7,8 1.31 –12.9 0 
7.3 

1 Ce1–OH 5,6 1.31 –1.7 0 

{100} 2 Ce2–OH 9,10 2.27 –13.4 –0.4 6.9 

{111} 
10–2 

3 Ce3–OH 7,8 1.31 –12.7 0 
6.0 

1 Ce1–OH 5,6 1.31 0.7 0 

{100} 2 Ce2–OH 9,10 2.27 –14.7 1.1 6.8 

* n is a coordination number of surface oxygen atoms 

 
  



 
 

19 
 

3.3.2.Ceria {100} crystal plane 
 

Figure 9b shows the stoichiometric composition of the{100} surface. At the {100} 

planethe only one kind of site is visible (double-coordinated oxygen atoms, Ce2–O). Ce 

atoms are too far from the surface to be considered active. It can also be noted that oxygen 

atoms are much closer to each other, and more exposed (also closer to the surface in 

comparison to {111} oxygen atoms). The calculatedtotal double-coordinated surface sites 

concentration(Γtot(Ce2–O) = 2,27 × 10–5 mol m–2; 13.7 sites/nm2) is higher in comparison 

with individual surface sites concentrations of  singly- and triply-coordinated surface sites 

present at the{111} plane. This value was used in the calculations. Regarding the difference 

in sites’ densities, it has to be mentioned that the {111} ceria surface has two active sites 

which summarized give slightly higher values of Γtot. 

The two-step protonation mechanism of amphoteric double-coordinated oxygen atoms 

(Ce2O) assumes the following surface reactions and thermodynamic equilibrium constants: 
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At Figures 7 and 8, the calculated curves for the {100} ceria crystal plane were 

overlapped over experimental data, and the values of the evaluated thermodynamic 

equilibrium constant were listed in Table 2. 

The ceria crystal plane {100} contains only one type of active surface sites (Ce2–O), 

again with the first protonation much pronounced compared with second protonation 

indicating an absence of surface sites with a charge equal to z = +3/2. Surface complexation 

modelling for plane with only one type of active surface site is a special case of MUSIC 

model identical to the 1-pK model (Hiemstra et al. 1989). 

The value of the thermodynamic equilibrium constant of the protonation of negatively 

charged double coordinated surface sites at the {100} ceria crystal plane pK2,1are higher 

compared to the values of equilibrium constants obtained for single (pK1,1) and triple (pK3,1) 

coordinated surface sites at the {111} plane. The higher value of the thermodynamic 



 
 

20 
 

equilibrium constant of the {100} plane results inthe lower slope of the 0(pH) function in 

the acidic region. However, for the doubly-coordinated surface sites the difference in ΔpK2 = 

pK2,1 – pK2,2 = –13.0 (for Ic = 10–3 mol dm–3) and ΔpK2 = pK2,1 – pK2,2 = –15.8 (for Ic = 10–2 

mol dm–3) are found to be higher than difference of thermodynamic equilibrium constants 

obtained for surface sites present at the {111} ceria crystal plane, resulting in a wider 

electroneutrality region of the ceria/aqueous electrolyte interface.  

Using the evaluated thermodynamic equilibrium constants surface charge densities 

and electrokinetic potentials for both ceria crystal planes were calculated. The calculated 

values of surface charge densities and electrokinetic potentials are significantly lower than 

measured values for ceria nanoparticles. The discrepancy of results may lay in the fact that 

model didn’t assume the influence of interfacial water molecules and the association of the 

counterions within electrical interfacial layer (Lützenkirchen et al. 2015). However, as in the 

case of ceria nanoparticles, the broad electroneutrality region was observed also for the ceria 

flat surface. At low or zero surface potential the electrostatic repulsion is diminished and 

aggregation of ceria nanoparticles along uncharged crystal planes occurs which was 

confirmed by HR-TEM (Figure 3). Aggregation of ceria nanoparticles along {100} and{111} 

crystal planes leads to the decreasing of effective surface area, and may be the reason of 

discrepancy of the data collected by different experimental technique. 

The further research will be focused on the mutual effect of the surface planes at the 

same nanoparticle, therefore it is necessary to know exact surface structure and the surface 

densities of the particular surface sites. 

 

4. Conclusions 
 

As it is confirmed by the high resolution transmission electron microscopy the ceria 

nanoparticle is a single crystal and that its surface is made mostly of simple crystallographic 

planes {111} and {100}. The point of zero charge and the isoelectric point of the synthesized 

ceria nanoparticles were found to be between pHpzc = 7.5 and 9.0(increases with increasing 

electrolyte concentration) and pHiep = 6.5 (slightly decreases with increasing electrolyte 

concentration). The shift of the point of zero charge slightly to the basic region by increasing 

ionic strength indicates a preferential association of anions towards the ceria nanoparticles 

surface.The surface characterization of colloid and nanoparticles, exhibiting different crystal 

planes to the aqueous electrolyte solution, provides some kind of average surface properties 
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i.e.surface charge densities and electrokinetic potentials. Moreover due to aggregation of 

ceria nanoparticles the effective surface area exposed to the aqueous electrolyte solution has 

been reduced. 

The inner surface potentials of ceria {111} and {100} crystal planes were measured 

by means of single crystal electrodes at different pH and ionic strength. The measured 

0(pH) function differ for two examined ceria planes, however the inner surface potentials of 

both planes depend on ionic strength having a broad electroneutrality region between pH =6 

and pH = 9. From measured 0(pH) data and applying the MUSIC model the thermodynamic 

equilibrium constants of double coordinated Ce2-OH (at the {100} ceria crystal plane) and 

singleCe1-OH and triple Ce3-OH coordinated (at the {111} ceria crystal plane) were 

evaluated. The shape of the calculated surface charge densities of flat ceria surface planes is 

the same as obtained for ceria nanoparticles. Analyzing well-defined monocrystal surfaces, 

which form the colloid and nanoparticle, as well as the mutual effects of different crystal 

surfaces, leads to a better understanding of surface reactions and mutual interactions of 

adjacent crystal planes on average surface properties. 

   



 
 

22 
 

REFERENCES 

Antonova, A. A., Zhilina, O. V., Kagramanov, G. G., Kienskaya, K. I., Nazarov, V. V., 
Petropavlovskii, I. A., Fanasyutkina, I. E.: Synthesis and Some Properties of Cerium Dioxide 
Hydrosols. Colloid Journal  63, 662–667 (2001) 

Delgado, A.V., Gonzalez-Caballero, F., Hunter, R.J., Koopal, L.K., Lyklema, J.: 
Measurement and interpretation of electrokinetic phenomena. J. Colloid Interface Sci. 309, 
194–224 (2007) 

Diamond - Crystal and Molecular Structure Visualization, Crystal Impact, v.4.0.5, 
http://www.crystalimpact.com/diamond(Sep 1 2015) 

de Faria, L. A., Trasatti, S.: The point of zero charge of CeO2. J. Colloid Interface Sci. 167, 
352-357 (1994) 

Gulicovski, J. J., Bračko, I., Milonjić, S. K., Morphology and the isoelectric point of 
nanosized aqueous ceria sols. Mater. Chem. Phys. 148, 868-873 (2014) 

Hiemstra, T., van Riemsdijk, W.H., Bolt, G.H.: Multisite proton adsorption modeling at the 
solid/solution interface and (hydr)oxides: a new approach, I. Model description and 
evaluation of intrinstic reaction constants. J. Colloid Interface Sci. 133, 91–104 (1989) 

Hiemstra, T., van Riemsdijk, W. H.: A Surface Structural Approach to Ion Adsorption: The 
Charge Distribution (CD) Model. J. Colloid Interface Sci. 179, 488–508 (1996) 

Hiemstra, T., van Riemsdijk,W.H.: On the relationship between charge distribution, surface 
hydration, and the structure of the interface of metal hydroxides. J. Colloid Interface Sci. 301, 
1–18 (2006) 

Hsu, W. P., Ronnquist, L., Matijevic, E.: Preparation and properties of monodispersed 
colloidal particles of lanthanide compounds. 2. Cerium(IV). Langmuir 4, 31-37 (1988) 

Hsu, J.-P., Nacu, A: An experimental study on the rheological properties of aqueous ceria 
dispersions. J. Colloid Interface Sci. 274, 277-284 (2004) 

Hunter, R.J.: Zeta Potentials in Colloid Science. Academic Press, London (1981) 

Kallay, N., Dojnović, Z., Čop, A.: Surface potential at the hematite–water interface, J. 
Colloid Interface Sci. 286, 610-614 (2005) 

Kallay, N., Žalac, S., Kovačević, D.: Thermodynamics of the solid/liquid interface. Its 
application to adsorption and colloid stability. In: Lützenkirchen, J. (ed.) Surface 
Complexation Modelling. Interface Science and Technology Series. Elsevier, Amsterdam 
(2006) 



 
 

23 
 

Kallay, N., Preočanin, T., Ivšić, T.: Determination of Surface Potential from the Electrode 
Potential of a Single-Crystal Electrode. J. Colloid Interface Sci. 309, 21-27 (2007) 

Kallay, N., Preočanin, T., Sapunar, M., Namjesnik, D.: Common surface potential of 
different crystal planes in electrical contact, Surface Innovations 2, 142-150 (2014) 

Karakoti, A. S., Monteiro-Riviere, N. A., Aggarwal, R., Davis, J. P., Narayan, R. J., Self, W. 
T., McGinnis, J., Seal, S.: Nanoceria as Antioxidant: Synthesis and Biomedical Applications. 
JOM(1989) 60, 33–37 (2008) 

Langford, J., Wilson, A.: Scherrer after sixty years: A survey and some new results in the 
determination of crystallite size. J. Appl. Crystallogr. 11, 102-103 (1978) 

Lin Y., Wu, Z., Wen, J., Poeppelmeier, K. R., Marks, L. D.; Imaging the atomic surface 
structures of CeO2 nanoparticles. Nano Lett., 14, 191–196 (2014)  

Lützenkirchen, J. (ed.): Surface Complexation Modelling. Interface Science and Technology 
Series. Elsevier, Amsterdam (2006) 

Lützenkirchen, J., Heberling, F., Šupljika, F., Preočanin, T., Kallay, N., Johann, F., Weisser, 
L., Eng, P. J.: Structure-charge relationship – the case of hematite (001). Faraday Discussion 
180, 55-79 (2015) 

Lyklema, J.: Fundamentals of Interface and Colloid Science, Vol. II: Solid-Liquid Interface. 
Academic Press, London (1995) 

Melchionna M, Fornasiero, P.: The role of ceria-based nanostructured materials in energy 
applications. Materials Today 17, 369-357 (2014) 

Monshi, A., Foroughi, M.R., Monshi, M.R.: Modified Scherrer Equation to Estimate More 
Accurately Nano-Crystallite Size Using XRD. World J. Nano Sci. Eng. 2, 154-160 (2012) 

Morris, V., Fleming, P. G., Holmes, J. D., Morris, M. A.: Comparison of the preparation of 
cerium oxide nanocrystallites by forward (base to acid) and reverse (acid to base) 
precipitation. Chem. Eng. Sci 91, 102-110 (2013) 

Nabavi, M., Spalla, O., Cabanet, B.: Surface chemistry of Nanometric Ceria Particles in 
Agueous Dispersions. J. Colloid Interface Sci. 160, 459-471 (1993) 

Namai, Y., Fukui, K., Iwasawa, Y.: Atom-Resolved Noncontact Atomic Force Microscopic 
Observations of CeO2 (111) Surfaces with Different Oxidation States:  Surface Structure and 
Behavior of Surface Oxygen Atoms J. Phys. Chem. B107, 11666-11673 (2003) 

Noh, J. S., Schwarz, J. A.: Estimation of the point of zero charge of simple oxides by mass 
titration. J. Colloid Interface Sci. 130, 157-164 (1989) 



 
 

24 
 

Ocana, M.: Preparation and properties of uniform praseodymium-doped ceria colloidal 
particles. Colloid Polym. Sci. 280, 274-281 (2002) 

Oh, M.-H., Lee, J.-S., Gupta, S., Chang, F.-C., Singh, R. K.: Preparation of monodispersed 
silica particles coated with ceria and control of coating thickness using sol-type precursor. 
Colloids Surf. A 355, 1-6 (2010) 

Ould-Moussa, N., Safi, M., Guedeau-Boudeville, M.-A., Montero, D., Conjeaud, H., Berret, 
J.-F.: In vitro toxicity of nanoceria: effect of coating and stability in biofluids. 
Nanotoxicology 8, 799-811 (2014) 

Park, J., Regalbuto, J. R.: A simple, Accurate Determination of Oxide PZC and the Strong 
Buffering Effect of Oxide Surfaces at Incipient Wetness. J. Colloid Interface Sci. 175, 239-
252 (1995) 

Preočanin, T., Kallay, N.: Application of «Mass titration» to Determination of Surface 
Charge of Metal Oxides. Croat. Chem. Acta 71, 1117-1125 (1998) 

Preočanin, T., Kallay, N.: Point of Zero Charge and Surface Charge Density of TiO2 in 
Aqueous Electrolyte Solution as Obtained by Potentiometric Mass Titration. Croat. Chem. 
Acta 79, 95-106 (2006) 

Preočanin, T., Kallay, N.: Effect of Electrolyte on the Surface Potential of Hematite in 
Aqueous Electrolyte Solutions, Surf. Eng. 24, 253–258 (2008) 

Preočanin, T., Kallay, N.: Evaluation of surface potential from single crystal electrode 
potential. Adsorption 19, 259-267 (2013) 

Ray, K. C., Sengupta, P. K., Roy, S. K.: Electrokinetic and adsorption studies on ceric oxide-
aqueous interface. Indian J. Chem., Sect. A: Inorg., Bio-inorg., Phys., Theor. Anal. 
Chem.17A, 348-351 (1979) 

Reed, K., Cormak, A., Kulkarni, A., Mayton, M., Sayle, D., Kleassig, F., Stadler, B.: 
Expolring the properties and applications of nanoceria: is there still pleanty of room at the 
bottom? Environ. Sci.: Nano 1, 390-405 (2014) 

van Riemsdijk, W.H., Bolt, G.H., Koopal, L.K., Blaakmeer, J.: Electrolyte adsorption on 
heterogenous surfaces: adsorption models. J. Colloid Interface Sci. 109, 219–228 (1986) 

Rudzinski, W., Charmas, R., Piasecki, W., Cases, J.M., Francois, M., Villieras, F., Michot, L. 
J.: Calorimetric studies of simple ion adsorption at oxide/electrolyte interface titration 
experiments and their theoretical analysis based on 2-pK charging mechanism and on the 
triple layer model. Colloid Surf. A 137, 57-68 (1998) 



 
 

25 
 

Schindler, R., Stumm, W.: The surface chemistry of oxides, hydroxides, and oxide minerals. 
In: Stumm, W. (ed.) Aquatic Surface Chemistry, pp. 83–110. Wiley-Interscience, New York 
(1987) 

Si, R., Flytzani-Stephanopoulos, M.: Shape and Crystal-Plane Effects of Nanoscale Ceria on 
the Activity of Au-CeO2 Catalysts for the Water–Gas Shift Reaction. Angew. Chem. Int. Ed. 
47, 2884-2887 (2008) 

Song, X. et al: Synthesis of CeO2-coated SiO2 nanoparticle and dispersion stability of its 
suspension. Mater. Chem. Phys. 110, 128-135 (2008) 

Suphantharida, P., Osseo-Asare, K.: Cerium Oxide Slurries in CMP. Electrophoretic Mobility 
and Adsorption Investigations of Ceria/Silicate Interaction. Journal of The Electrochemical 
Society 151, G658-G662 (2004) 

Wyckoff R. W. G., Crystal Structures, 1 (1963) p.239-444, Second edition. Interscience 
Publishers, New York, New York 

Xu, J., Li, G., Li, L., CeO2 nanocrystals: Seed-mediated synthesis and size control. Mater 
Res. Bul. 43, 990–995 (2008) 

Yates, D.E., Levine, S., Healy, T.W: Site-binding model of the electrical double layer at the 
oxide/water interface. J. Chem. Soc. Faraday Trans. I 70, 1807-1818 (1974) 

Zarzycki, P., Rosso, K. M., Chatman, S., Preočanin, T., Kallay, N., Piasecki, W.: Theory, 
experiment and computer simulation of the electrostatic potential at crystal/electrolyte 
interfaces, Croat. Chem. Acta 83, 457-474 (2010). 

Zhang, C., Michaelidesa, A., Jenkins, S. J.: Theory of gold on ceria. Phys. Chem. Chem. 
Phys.13, 22–33 (2011) 

Žalac S., Kallay, N.; Application of mass titration to the point of zero charge determination. 
J. Colloid Interface Sci. 149, 233-240(1992) 


