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An MS/MS based analytical strategy was followed to solve the complete sequence of two new peptides
from frog (Odorrana schmackeri) skin secretion. This involved reduction and alkylation with two different
alkylating agents followed by high resolution tandem mass spectrometry. De novo sequencing was
achieved by complementary CID and ETD fragmentations of full-length peptides and of selected tryptic
fragments. Heavy and light isotope dimethyl labeling assisted with annotation of sequence ion series. The
identified primary structures are GCD[I/L]STCATHN[I/L]VNE[I/L]NKFDKSKPSSGGVGPESP-NH;, and
SCNLSTCATHNLVNELNKFDKSKPSSGGVGPESF-NH,, i.e. two carboxyamidated 34 residue peptides with
an aminoterminal intramolecular ring structure formed by a disulfide bridge between Cys, and Cyss.
Edman degradation analysis of the second peptide positively confirmed the exact sequence, resolving I/L
discrimi5nations. Both peptide sequences are novel and share homology with calcitonin, calcitonin gene
related peptide (CGRP) and adrenomedullin from other vertebrates. Detailed sequence analysis as well as
the 34 residue length of both O. schmackeri peptides, suggest they do not fully qualify as either calcitonins
(32 residues) or CGRPs (37 amino acids) and may justify their classification in a novel peptide family
within the calcitonin gene related peptide superfamily. Smooth muscle contractility assays with
synthetic replicas of the S-S linked peptides on rat tail artery, uterus, bladder and ileum did not reveal
myotropic activity.
© 2015 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Amongst the skin secretory peptides, broad-spectrum antimicro-
bial peptides are predominantly present [2-4]. Besides, several

Many anuran amphibians have developed a defensive mecha-
nism in which specialized dorsal granular skin glands secrete
biologically active compounds. Part of these bioactive compounds
are peptides that have a wide variety in bioactivity and they are
considered interesting for their pharmacological activity [1].
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frog skin secretions contain peptides that show remarkable
similarity with regulatory peptides found in the vertebrate system
[1,5]. Already 30 years ago, Vittorio Erspamer, one of the pioneers
in amphibian skin peptides, introduced the ‘brain-gut-skin’
triangle, postulating that every peptide present in frog skin has
its equivalent in the mammalian brain or gut [6,7]. Since then, the
discovery of many frog skin peptides strengthened this statement.
Therefore, studying frog skin peptides may not only provide useful
information on the biochemistry in frog defense system, but it may
also provide leads for the discovery of new regulatory peptides in
higher vertebrates, including man. Amphibian skin secretory
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peptides are often post-translationally modified and due to the
lack of complete genome information, this makes them difficult to
sequence using the proteomics/peptidomics mass spectrometry
based approaches [8,9]. Previously, we reported a method to
selectively screen animal venoms for disulfide bond containing
peptides using two dimensional peptide mass displays [10]. This
type of post-translational modification is found in many bioactive
peptides, such as, among others, vasopressin, oxytocin, insulin, to
which it renders a typical tertiary ring structure to maintain
biological activity and conformational stability. Skin secretory
peptides from Odorrana species often have a single disulfide bond
located in the C-terminal 5-8 amino acids, the so called ‘Rana-box’.
The global analysis showed that the skin secretion of Odorrana
schmackeri contains a multitude of single disulfide bond containing
peptides. From this initial screening of disulfide bonds containing
peptides secreted by O. schmackeri defense glands we discovered
two yet unknown peptides. Their characteristic shift in mass and
chromatographic retention time after reduction and alkylation,
was indicative of an intramolecular disulfide bridge. The location of
the disulfide bond on the two novel peptides however was found to
be N-terminal, which is rather unusual for Odorrana peptides, and
this prompted us to do full structure elucidation of these two
peptides as presented in this work.

2. Materials and methods
2.1. Skin secretion sample

Lyophilized sample of O. schmackeri defensive skin secretion
(frog ‘venom’) was used in this study. The material was non-
invasively collected by gentle electrical stimulation, essentially as
described before [11].

2.2. Initial LC MS/MS analysis: ETD and CID fragmentation

Three equivalent batches (0.5mg) of crude ‘venom’ of O.
schmackeri were prepared for LC MS/MS analysis (ThermoFisher
Scientific LTQ-Orbitrap XL™). All were reduced with 5mM
dithiothreitol (DTT). One batch was alkylated with 10 mM
iodoacetamide (IAM) and the second with 10 mM bromoethyl-
amine (BrEA). The third aliquot was not alkylated.

Prior to chromatography the resolubilized material was centri-
fuged at 13,000 rpm to remove insoluble material. The 3 samples
were separated by nano HPLC using an Agilent 1200 series HPLC
system (Agilent Technologies, CA, USA). Of each sample the
equivalentof 100 nglyophilized skin secretionwas injected. Peptides
were trapped and desalted on a trapping column (100 wm ID x 2 cm
length), packed with C4 particles (Reprosil C4, 5 wm particles, Dr.
Maisch, Ammerbuch-Entringen, Germany) for 10 min at 5 pl/min in
100% Solvent A (MilliQ water with 0.6% acetic acid). Peptide
separation on an analytical column (50wm ID x 25cm length,
packed with Reprosil C4, 5 um particles) was achieved in a 100 min
gradient from 0% to 80% solvent B (80% ACN, 20% MilliQ water and
0.6% acetic acid). During LC MS/MS analysis, the two most intense
ions from the survey scan were automatically selected for
fragmentation by CID and ETD. FT MS and FT MS/MS spectra were
recorded respectively at 60K and 30K resolution, in positive
ionization mode and as profile data. For ETD and CID, a normalized
collision energy of 35 eV was applied, with an activation Q of 0.25 ms
each and activation time of 30ms for CID and 50ms for ETD;
supplementary activation was enabled for ETD.

2.3. Semi-preparative HPLC peptide enrichment/purification

A 4mg aliquot of O. schmackeri skin secretion was fractionated
by reverse phase HPLC (Waters 2695 Alliance™, Manchester, UK)

on a C8 column (Zorbax-XD, 5 wm particles, 4.6 mm ID x 15cm
length, Agilent Technologies) employing a 40 min linear gradient
(at 1 mL/min flow rate) from 10% to 80% methanol with 0.05%
trifluoroacetic acid (TFA). Of the column effluent 10% was directed
to the ESI-source of a Q-TOF MS/MS system (Waters QTof
Premier™, Manchester, UK) to acquire an m/z based chromato-
gram, while the 90% portion of the effluent was collected in 2 min
fractions. The peptides targeted in this study (designated OsCTLPs,
see below) eluted at 30 and 32 min (resp. fractions #15, OsCTLP-1
and #16, OsCTLP-2). These were used in the follow-up experiments
for sequence analysis.

2.4. Trypsin digestion

Of each fraction (#15 and #16) 100 L (5%) were vacuum dried
and reconstituted in 50 pL of 25mM ammonium bicarbonate
(ABC) buffer, pH 8.0. Disulfide bonds were reduced with 2 mM DTT
and free thiol groups were alkylated with 4 mM IAM. Half of each
fraction was digested by adding 1pwg/mL trypsin in solution
(overnight at room temperature). Tryptic digests were separated
by nanoflow HPLC on a 50 wm ID x 20cm length C18 column
(Reprosil C18-AQ, Dr. Maisch, 5um particles), using a gradient
from O to 50% ACN in 45 min (Solvent A: MilliQ water with 0.6%
acetic acid, Solvent B: 80% ACN, 20% MilliQ water and 0.6% acetic
acid). NanoLC analysis of both treated fractions was by online
linear ion trap-orbitrap MS/MS (ThermoFisher Scientific LTQ-
Orbitrap Velos™, Bremen, Germany). FT MS and MS/MS spectra
were acquired at 7.5 K and 100K resolution, respectively. The m/z
corresponding to the targeted OsCTLPs (with modified cysteines)
and their tryptic fragments were selected for collision induced
dissociation, using an isolation window of 3Da, a normalized
collision energy of 35, activation Q of 0.25 and an activation time of
30 ms. The mass spectrometer was operated in positive ion mode,
data were acquired in the mass range between 400 and 2000 m/z,
and recorded as profile data.

2.5. Carboxypeptidase assay

As one of the peptides (OsCTLP-2) did not yield unequivocal
tandem MS sequence data, particularly at the C-terminal half of the
peptide, 5% (100 L) of the respective fraction #16 was vacuum
dried and reconstituted in 5mM tri-sodium citrate (TSC) pH 6.0.
Cystines were reduced by 5mM tris(2-carboxyethyl) phosphine
(TCEP) prior to the enzyme assay.

Carboxypeptidase Y (CPY, Sigma-Aldrich) was added at a
concentration of 0.26 mg/mL and incubated at 37 °C (water bath).
Aliquots of 1 pL were taken at 0, 2, 5, 15, 30, 60, 100, 125, 155, 180
and 200min after the reaction started and the exoprotease
reaction was quenched immediately by mixing with an equal
volume of a-cyano-4-hydrocinnamic acid (matrix) dissolved in
49.5% acetonitrile in water containing 1% TFA. The resulting sample
was directly spotted onto a MALDI target plate. MS analysis was
carried out on a MALDI-QTOF-MS (Waters Q-TOF Premier™).

2.6. Dimethyl labeling

Dimethyl labeling with formaldehyde and deuterated formal-
dehyde was performed essentially as described by Boersema et al.
[12]. Part of the trypsinized fraction #16 was vacuum dried and
reconstituted in triethylammonium bicarbonate buffer and split in
two. Either 4 pL conventional or 4 L deuterated formaldehyde
(4% solution) were added to the peptide solution together with
4 L of 0.6 M cyanoborohydrate solution. This mixture was left to
react for 1h at room temperature, after which the labeling was
stopped by addition of 16 L 1% ammonia solution. Heavy and light
labeled peptides were mixed and analyzed by nanoLC MS/MS on
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our linear ion trap-orbitrap hybrid instrument (LTQ-Orbitrap
Velos™, ThermoFisher). Dimethyl labelled peptides were separat-
ed by nanoflow HPLC on a C18 column (Reprosil C18 AQ, 5 wm
particles, Dr. Maisch; 50 wm ID x 20 cm length) using a gradient
from 0 to 50% ACN in 45 min (solvent A: MilliQ water with 0.6%
acetic acid, Solvent B: 80% ACN, 20% MilliQ water and 0.6% acetic
acid). CID peptide fragmentation was achieved using a normalized
collision energy of 45, resolution 30K, activation Q of 0.25,
activation time 30 ms and 2.5 Da isolation width.

2.7. De novo sequence analysis and homology searches

The obtained mass spectra were deconvoluted (Thermo
Xcalibur™ Xtract) and protein de novo sequencing was done
manually. The complete sequence was submitted for a BLAST
search against the NCBI non-redundant and SwissProt/UniProt
databases.

2.8. Edman degradation of OsCTLP-2

OsCTLP-2 was purified from 10% of the respective HPLC fraction
#16 (200 pL dried). The dried material was resuspended in 50 L
50 mM ABC buffer, pH 8.0, reduced with 5 mM DTT for 30 min at RT
and subsequently alkylated with 10 mM IAM for 45 min in the dark
at RT. Next, the modified peptides were fractionated by HPLC
(Waters 2695 Alliance, Manchester, UK) using a C4 column
(Reprosil C4, Dr. Maisch; 5um particles; 2.0mm ID x 15cm
length) at a flow rate of 0.25 mL/min. Solvent A was 0.005% TFA
in milliQ water and solvent B was 80% acetronitrile, 0.004% TFA.
The first 5 min of the separation were run isocratically at 100% A,
followed by a linear increase of 1% B/min for 50 min. Elution was

monitored at 215nm, one minute fractions were collected. The
peptide presence was confirmed by direct infusion of 10% of the
fraction into the source of an LTQ-Orbitrap Velos™. Under these
conditions, OsCTLP-2 was found to elute in subfraction #33
(32 min). Following, purified OsCTLP-2 was cleaved with 1pg
trypsin in 100 mM TEAB buffer for 1.5 h at room temperature, and
rechromatographed under identical conditions (same C4 column,
gradient and solvents). The N-terminal tryptic fragment of OsCTLP-
2 eluted at 31 min and its C-terminal part at 16 min. The respective
fractions OS#16-#33#32 and OS#16-#33#17, were dried and
analyzed by automated Edman degradation on a pulsed liquid-
phase sequencer, (Procise 492 cLC, Life Technologies, Grand Island,
N.Y., USA), as previously described [13].

2.9. Peptide Synthesis

For precise bioactivity studies, both peptides were synthesized
by Fmoc chemistry on an automated multiple peptide synthesizer
(AMS 422, ABIMED Analysen-Technik GmbH, Langenfeld,
Germany). The peptide integrity was verified by high resolution
(orbitrap) MS analysis. The disulfide bond formation was promoted
by addition of 10% of DMSO according to the method of Tam et al.
[14], and the resulting oxidized peptides were purified by HPLC.
Comparison of analytical LC MS/MS characteristics with the native
peptides authenticated the identity of the synthetic and native
peptides.

2.10. Bioactivity screening

As a first test for bioactivity, we selected various (rat) smooth
muscle preparations, on which many frog myoactive peptides have
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Fig. 1. (A) Base peak chromatogram of LC-MS analysis of untreated crude Odorrana schmackeri skin secretion. Elution position of both OsCTLP-1 and -2 are indicated with
arrows. (B) Expanded part of spectrum of [M + 5H]** of unreduced form of OsCTLP-2. (C) Expanded part of spectrum of [M + 5H]>* of DTT reduced form of OsCTLP-2. Full range
spectrum showing charge state distribution of OsCTLP-1 and 2 in (D) DTT reduced form, (E) IAM alkylated form and (F) BrEA alkylated form.
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shown pronounced effects. For this, smooth muscle preparations of
rat tail artery, uterus, urinary bladder as well as ileum were done
according to UK animal experimentation guidelines and ethics as
described [15]. Both synthetic peptides (with their disulfide bridge
properly formed) were tested at concentrations up to 107 M.

3. Results

Skin secretion peptides of O. schmackeri were separated by nano
RP-HPLC and analyzed by high resolution orbitrap MS analysis.
Fig. 1A shows the base peak intensity chromatogram, in which two
peptides eluted at 34.3min and 36.5min with monoisotopic
masses of 3484.639 and 3563.684 Da, respectively. CID fragmen-
tation analysis of both native peptides showed a relatively poor
degree of fragmentation (data not shown) and upon reduction with
dithiothreitol, the mass of both peptides increased with 2.014 Da,
as shown for one of the peptides in Fig. 1B. This mass increase is
indicative for the presence of a single internal disulfide bond.
Analysis of the fragmentation spectra of the reduced peptides
showed that the location of this intermolecular disulfide bond is N-
terminal (data not shown), which is unusual for skin peptides of
Odorrana species. The partially elucidated primary structure
showed a high degree of homology with calcitonin and this
prompted us to do an in-depth analysis to obtain the full amino
acid sequence. Here, we report the strategy that was used to de
novo sequence both peptides using a combination of analytics
involving different mass spectrometrical and biochemical tools.
Because of the partial structural homology with members of the
Calcitonin/CGRP/adrenomedullin superfamily of peptides, we
designated the new peptides OsCTLP, for “Odorrana schmackeri
calcitonin-like peptide”. We numbered them OsCTLP-1 and
OsCTLP-2, reflecting their RP-HPLC elution order. Cysteine residues
were reduced and alkylated with bromoethylamine (BrEA) or
iodoacetamide (IAM) to avoid re-oxidation of the S-S bridges. It
was observed that this treatment resulted in a shift of the

DTT reduced form of OsCTLP-2. Full range spectrum showing charge state
form and (F) BrEA alkylated form.
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respective peptide ion distributions to higher charge states. This
effect was most pronounced with BrEA as shown in Fig. 1C, and this
made both peptides very suitable for ETD fragmentation analysis.
Both peptides were subjected to targeted CID and ETD fragmenta-
tion analysis and by manual interpretation of spectra of various
charge state precursor ions, both peptides could be sequenced
almost completely. Both peptides are 34 residues in length and for
OsCTLP-1 nearly 100% and for OsCTLP-2 ~75% of the amino acids
could be proposed from this initial CID/ETD analysis.

The near complete sequence of OsCTLP-1 reads: GCD[L/I]
STCATHNJL/I]VNE[L/IINKFDKSKPSSGGVG[PE/EP|SP-NH, (Fig. 2),
with only the Leu and Ile residues at positions 4, 12 and 16
remaining ambiguous, as well as the exact order of residues 3 and 4
from the C-terminus (ProGlu or GluPro). De novo sequencing
OsCTLP-2 was more arduous, with more ambiguities to be
elucidated due to interruptions of sequence ion series, particularly
at the N-terminus and in the C-terminal half of the peptide: [SC/CS]
N[L/I]STCATHN[L/I]VNE[L/I]NKFDKSK[PS/SP]SG[GV/VG]|GPESF
[-NH;]. CID and ETD spectra of the peptide modified with IAM
(Fig. 3) and BrEA (Fig. 4), besides the unidentified Leu and Ile
residues, could not distinguish the exact order of several couples of
residues, including aminoterminal residues 1 and 2, residues 24
and 25, residues 28 and 29.

As both OsCTLPs contained Lys residues halfway along the
sequence, we decided to use trypsin to yield smaller peptides for
more efficient CID fragmentation. Eventually, this confirmed the N-
terminus of OsCTLP-1 (GCD[L/I]STCATHN[L/IJVNE[L/I|NK) and of
OsCTLP-2 ([SC/CS]N[L/I]STCATHNIL/IJVNE[L/IINK) as initially se-
quenced (Fig. 4). More importantly it enabled to fully de novo
sequence the C-terminus of OsCTLP-1 (SKPSSGGVGPESP-NH,) with
the PE/EP ambiguity in OsCTLP-1 solved. By selecting the exact
masses of the peptides to be fragmented, it was confirmed that
both peptides were carboxyamidated. OsCTLP-1 was only detected
in the amidated form (Fig. 5A), whereas a small proportion of
OsCTLP-2 was detectable as not amidated (Fig. 5B).

distribution of OsCTLP-1 and 2 in (D) DTT reduced form, (E) IAM alkylated
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Fig. 3. Deconvoluted ETD (top) and CID (bottom) spectra of OsCTLP-2 with cysteines modified with IAM (A) and BrEA (B). Ions de novo sequenced are assigned in spectra and
labeled on peptide sequence. lons detected below 1 % are not annotated in spectra, but are shown on sequence.
*lons from specific side chain loss of modified cysteines (—90.001 form carbamidomethyl cysteines (IAM) and —76.022 from ethylamine cysteines (BrEA)).

Still some sequence uncertainties remained in OsCTLP-2, even
after tryptic fragment MS/MS: the exact order of the first two N-
terminal residues as well as the amino acids between the 5th and
11th residue of the OsCTLP-2C-terminal tryptic fragment. MS
analysis after carboxypeptidase Y treatment (see Materials and
Methods, section 5) was attempted to resolve these issues.
Exoprotease hydrolysis for 100 min showed OsCTLP-2 in most of
its truncated forms (Fig. 6), allowing confirmation of the sequence

until the 10th position from the C-terminus as X,SSGGVGPESF-
NH,). Still, the 11th residue from the carboxyl end of the peptide
remained obscure (Fig. 6). Additional clues to clarify the amino acid
order in the C-terminal fragment of OsCTLP-2 came from labeling
with heavy (deuterated) and light dimethyl. This treatment yields a
peptide mass increase of 32 or 28 Da, respectively, per free amine
present in the sequence (amino-terminus and g-amine of Lys side
chain). In the non-amidated OsCTLP-2, y-ion peaks of both heavy
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Fig. 4. Deconvoluted CID spectra of N-terminal tryptic fragment of OsCTLP-1 (A) and -2 (B), containing IAM alkylated cysteines. Selected precursor m/z values of doubly

charged ions were 1037.97 and 1111.52, respectively.

and light labeled peptides were the same until y12 (Lys;), where a
shift in mass of 4Da was observed in the heavy labeled peptide
(Fig. 7) due to incorporation of deuterated dimethyl. The first b-
ions sequenced on heavy and light labeled peptide, however,
included the Lys besides the aminoterminal residue, showing,
therefore, a shift of 8 Da in all b-ion peaks. This labeling experiment
combined with high mass accuracy orbitrap analysis affirmed the
assignment of the C-terminal sequence as SKPSSGGVGPESF.

Ultimate onfirmation of the primary structure of OsCTLP-2,
especially residues 1 and 2, and also differentiation between Leu
and Ile residues were achieved by Edman degradation.

Finally the high sequence homology between OsCTLP-1 and -2
prompts us to speculate that the final sequence of OsCTLP-1 also
has all Leu rather than Ile residues: GCDLSTCATHNLV-
NELNKFDKSKPSSGGVGPESP-NHs.

NCBI BLAST analysis of OsCTLP-1 and -2 reveals more than 50%
identity with adrenomedullin (ADM)-like peptides from Ornitho-
dorus ticks. BLAST with anura restriction yielded 27 to 40% identity
with calcitonin (CT) and calcitonin gene related peptide (CGRP)

from Rana catesbeiana, Rana ridibunda and Phyllomedusa bicolor.
Comparisons of OsCTLP-1 and -2 with other (mainly) vertebrate CT,
CGRP and ADM peptides are listed in Tables 1-3.

4. Discussion

We elucidated the primary structures of two related peptides
from the skin secretion of the Chinese odorous frog O. schmackeri,
which are both characterized by a single intramolecular disulfide
bridge. Both peptides could be fully de novo sequenced employing a
combination of different analytical tools. The successful strategy
included comparative CID and ETD tandem MS fragmentation
analyses of the native peptides and of their reduced forms
alkylated with two different alkylation chemicals. In addition high
resolution MS/MS analysis after trypsin digestion, partial carboxy-
peptidase Y treatment, dimethyl labeling, and finally also Edman
degradation contributed to the full sequence assignment.

CID and ETD spectra are known to be complementary
particularly for de novo sequencing of larger peptides [16], and
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Fig. 5. Deconvoluted CID spectra of C-terminal tryptic fragment of OsCTLP-1 (A) and OsCTLP-2 (B). B shows both
[618.2974]?* variant.
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Fig. 6. MALDI-TOF of fraction 16 containing OsCTLP-2 after 100 min. incubation with CPY. C-terminal sequence can be read until 10th residue. Digestion after 2661 Da was no
longer informative.

IAM treatment (illustrated in Fig. 1E and F), which is beneficial for
improved ETD fragmentation [ 17-20]. Higher intensity of b-/y-ions
(CID) aminoterminally from Pro-residues, and the absence of this

this is nicely illustrated for both peptides sequenced in this paper
(Figs. 2-3). Cysteine alkylation with BrEA in particular, was found
to promote higher charge state peptide precursors compared to
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Fig. 7. Deconvoluted CID spectra of OsCTLP-2C-terminal tryptic fragment labeled with light ([645.8420 + 2H]?**, top) and heavy ([649.8661 +2D]** bottom) dimethyl. Both
Ser! and Lys? are labeled, as evident from mass increase of b4 ion of 56 Da (top, light label), and 64 Da (bottom, deuterated label). Hence difference of 8 Da observed in all
further b-ion peaks. lons of y-series yield identical values for heavy and light labeled peptide until y11.lon y12 carries a dimethylated Lys, with concommitant mass increase to
156.13 Da (light version) and 160.15Da (heavy version). Non-annotated y3 (381.1776) and y10 (922.4301 and 922.4270) ions were present in native spectra (non-

deconvoluted) and helped to confirm peptide sequence.

Table 1
Vertebrate calcitonin (CT) sequence homologies with OsCTLP-1 and -2.

Species Calcitonin sequences Similarity with OsCTLP-1 (%) and -2 (%)
0. schmackeriCTLP-1 GC-DLSTCATHNLVNELNKFDKSKPSSGGVGPESP 100 91
0. schmackeriCTLP-2 SC-NLSTCATHNLVNELNKFDKSKPSSGGVGPESF 91 100
Sardinops melanostictus CSNLSTCALGKLSQELHKLQS-YPRTN-VGAGTP 43 41
Sus scrofa CSNLSTCVLSAYWRNLNNFHR-FSGMG-FGPETP 40 38
Rana catesbeiana CSGLSTCALMKLSQDLHRENS-YPRTN-VGAGTP 40 35
Bos taurus CSNLSTCVLSAYWKDLNNYHR-FSGMG-FGPETP 37 35
Canis lupus familiaris CSNLSTCVLGTYSKDLNNFHT-FSGIG-FGAETP 37 35
Carassius auratus CSSLSTCVLGKLSQELHKLQT-YPRTN-VGAGTP 37 31
Gallus gallus CASLSTCVLGKLSQELHKLQT-YPRTD-VGAGTP 37 29
Oryctolagus cuniculus CGNLSTCMLGTYTQDLNKFHT-FPQTA-IGVVAP 34 36
Homo sapiens CGNLSTCMLGTYTQDFNKFHT-FPQTA-IGVGAP 34 34

cleavage in ETD were additional mass spectral features that
assisted with sequence assignment (Figs. 2-5, 7).

The identification of 2 Lys-residues in the middle of the long
sequence, prompted us to attempt additional CID fragmentations
on the smaller tryptic peptides. Ambiguities at the C-terminal end
(the exact order of the 3rd and 4th C-terminal residues: PE rather
than EP) were resolved by exoprotease carboxypeptidase Y
treatment. High resolution MS helped to accurately calculate the

correct sequence possibility to fill ‘gaps’ of 2 and 3 residues in
incomplete b/y-ion series. Labeling with heavy and light dimethyl
also yielded informative data. By comparing heavy and light
labeled spectra, y and b-ions were easily distinguished and
consequently assigned (Fig. 7).

Sequence homology analysis (BLAST) of the OsCTLP primary
structures reveals shared conserved motifs with calcitonin (CT),
calcitonin gene-related peptide (CGRP), and adrenomedullin
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Table 2

Calcitonin gene-related peptide (CGRP) sequence homologies with OsCTLP-1 and -2.

Species CGRP sequences Similarity with OsCTLP-1 (%) and -2 (%)
0. schmackeriCTLP-1 GCDLSTCATHNLVNELNKFD-KSKPSSGGVGPESP 100 91
0. schmackeriCTLP-2 SCNLSTCATHNLVNELNKFD-KSKPSSGGVGPESF 91 100
Ornithodoros coriaceus TVCNAATCATGNLAAQLSGGG-KSKSPANSTGTEGF 37 43
Oryctolagus cuniculus GCNTATCVTHRLAGLLSRSGGMVKSNEFVPTNVGSEAF 35 38
Phyllomedusa bicolor SCDTSTCATQRLADFLSRSGGIGSPDFVPTDVSANSE 32 35
Homo sapiens- ACNTATCVTHRLAGLLSRSGGMVKSNFVPTNVGSKAF 30 35
Homo sapiens- ACDTATCVTHRLAGLLSRSGGVVKNNEFVPTNVGSKAF 30 30
Rana ridibunda ACNTATCVTHRLADFLSRSGGMAKNNEVPTNVGSKAF 27 32
Gallus gallus ACNTATCVTHRLADFLSRSGGVGKNNFVPTNVGSKAF 27 32
Table 3

Adrenomedullin (ADM) sequence homologies with OsCTLP-1 and -2.

Species Adrenomedullin sequences Similarity with OsCTLP-1 (%) and -2 (%)
0. schmackeriCTLP-1 GCDLSTCATHNLVNELNKF-DKSKPSSG-GVGPESP 100 91

0. schmackeriCTLP-2 SCNLSTCATHNLVNELNKF-DKSKPSSG-GVGPESF 91 100
Ornithodoros parkeri GCSLSTCVLQOKLSDKLNHFTDDSKNKSG-GTGPDSY 54 51

O .cuniculus YRQSMKNFQGSRSFGCRFGTCTVQNLAHQIYQFTDKDKDDTAPRNKISPQGY 21 19

H. sapiens YRQSMNNFQGLRSFGCRFGTCTVQKLAHQIYQFTDKDKDNVAPRSKISPQGY 19 17

Bioassays on rat smooth muscle preparations containing bradykinin B1 and B2-type receptors did not reveal any myotropic activity of either of the two synthetic peptides. Up
to micromolar concentration none of the peptides elicited marked effects on the contraction of rat ileum, bladder, uterus or tail artery. The same preparations did show the

expected response to bradykinin as a positive control.

(ADM), from different animal species (Tables 1-3). Both novel
peptides share an aminoterminal Cys,_; disulfide bridge with
CGRP. It is interesting to note that OsCTLP-2 also shares its
carboxyterminal end (a carboxyamidated Phe) with CGRP, whereas
this residue is an amidated Pro in OsCTLP-1, which is a feature
typical of all CTs.

All these features make that the BLAST algorithm classifies the
novel peptides as members of the calcitonin gene-related peptide
superfamily, which promted us to call the peptides OsCTLPs. The
calcitonin gene-related peptide superfamily comprises CTs, CGRPs,
and ADMs (as well as the mammalian calcitonin receptor-
stimulating peptides (CRSP), and amylins (AMY)). CTs and CGRPs
typically have 32 and 37 residues each and are characterized by a
conserved intramolecular disulfide bridge (between Cys;_; in CT
and Cys,_; in CGRP), a carboxyterminal amide and a consensus
primary structure, particularly at the N-/C-termini [21,22]. Their
sequence homology originate from their related genes. In
vertebrates, CT and CGRP are known to be both products of the
same calcitonin (CALC) gene, which is expressed in specific tissues
by alternative exon splicing into specific mRNAs. In the amphibian
ultimobranchial glands and in the mammalian thyroid gland the
mature mRNA is transcribed from the CT exon [23], whereas in the
vertebrate central and peripheral nervous system, the expressed
mRNA consists of the CGRP exon[24,25].

Within this family, the frog CGRPs as identified in Rana
catesbiana (from ultimobranchial gland [26]), Rana ridibunda
(brain and intestine [21]) and in Phyllomedusa bicolor [27] show
considerable sequence variety. It is intriguing that the OsCTLPs
occur in the skin secretion of O. schmackeri. So far only in
Phyllomedusa bicolor, a CGRP has been identified in the skin. Its
sequence is identical to that of the brain and intestine [27]. CGRP,
therefore, fits in the brain-gut-skin triangle concept of Erspamer,
that every peptide found in the skin secretion of frogs has its
counterpart in the brain and gut of mammals [6,7].

The O. schmackeri peptides described here, however, are not
typical CGRPs (see Table 2). The homology is less than between
typical vertebrate CGRPs, and they are 3 residues shorter (34 i.s.o.
37). For similar reasons the OCTLPs do not qualify as ‘true’ CTs (see
Table 1), which are typically 2 residues shorter.

The third family of peptides the BLAST algorithm identifies as
homologous to OsCTLPs include those originating from the ADM
gene. These peptides are typically considerably longer (52
residues), but have critical residues at ‘conserved’ positions, such
as Cys,, Cysy, Phel9, three Lys and a Pro at position 4 from the
amidated C-terminus. In this respect it is interesting to note that
ADM immunoreactivity has been detected in the skin of Xenopus
laevis (similar to the situation in human skin) [28].

About the function of the novel peptides in the skin of O.
schmackeri, we can only speculate. Biological effects of members of
the calcitonin gene related peptide superfamily are plentiful. CT
typically plays a role in bone calcification. It lowers blood calcium
levels [29] by stimulating CaZ* absorption by the intestine and
renal calcium excretion [30,31]. CGRP exhibits a wide array of
bioactivities including pain perception (high blood levels are
correlated with migraine, arthritis, temporomandibular-joint
disorders and many postmenopausal symptoms and diseases
[32-34]), neurogenic inflammation. ADM bioactivity includes
antimicrobial activity, renal homeostasis, hormone regulation,
neurotransmission, growth modulation and vasodilation. As also
CGRPs have dramatic potent effects on vasodilation and heart beat
regulation [32,33,35], and as vasodilatory peptides comprise part
of the defense strategy of frogs against predators (e.g. bradykinins,
bradykinin potentiating peptides [15] we considered it worthwhile
testing the OsCTLPs on mammalian (rat) smooth muscle prepa-
rations. However the tissues we selected did not prove suitable to
demonstrate any myotropic activity by the novel OsCTLPs. To
determine the pharmacology of these peptides, additional
alternative bioassays are required. These may include preparations
of muscles of non-mammalian origin, but also various cellular tests
assaying, e.g. for bone calcification, as well as for antimicrobial
activity.

Follow-up research will thus be necessary to establish the role
of OsCTLPs in frog skin biology. To more extensively study the
genetic relationship between OsCTLPs and CTs, CGRPs and ADMs,
the nucleic acid sequences from an O. schmackeri skin secretion
will be analyzed from a cDNA library constructed from reverse
transcribed poly-adenylated mRNAs, using primers derived from
the sequences established.
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5. Conclusion

We report a tandem MS based analytical strategy to fully de
novo sequence two >30 amino acid residue peptides directly from
LC separation of skin secretion of the Chinese frog, O. schmackeri.
Because of the sequence homology with peptides of the calcitonin/
CGRP superfamily of peptides, we designated the peptides OsCTLP-
1 and OsCTLP-2, the number reflecting their elution order in
reverse phase HPLC.

Of OsCTLP-2, a sufficient amount could be purified for
automated Edman degradation. The full Edman analysis required
prior tryptic cleavage of the pure peptide in two halfs: the N-
terminal octadecapeptide, and the C-terminal hexadecapeptide.
Both peptide halfs were in turn purified by HPLC after which their
primary structure could be fully called until their carboxyterminal
residue by Edman sequencing. The latter analysis unequivocally
solved the I/L ambiguities which remained after MS analysis at
positions 4, 12 and 16 of the N-terminal half of the OsCTLP-2.

In view of the high sequence homology between both peptides,
it is likely that also in OsCTLP-1, residues 4, 12 and 16 are all L.

We, thence, report two novel peptide sequences, which may be
prototypes of a new family within the calcitonin/CGRP superfamily
of peptides:

OsCTLP-1: GCDLSTCATHNLVNELNKFDKSKPSSGGVGPESP-NH,
and OsCTLP-2: SCNLSTCATHNLVNELNKFDKSKPSSGGVGPESF-NH,.

Peptide sequence deposition details

The protein sequence data reported in this paper will appear in
the UniProt Knowledgebase under the accession numbers COHJVO
and COHJV1 for OsCTLP-1 and OsCTLP-2 respectively.
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