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Mass spectrometry imaging (MSI) is a mass spectrometry based molecular ion imaging

technique. It provides the means for ascertaining the spatial distribution of a large

variety of analytes directly on tissue sample surfaces without any labeling or staining

agents. These advantages make it an attractive molecular histology tool in medical,

pharmaceutical, and biological research. Likewise, MSI has started gaining popularity in

plant sciences; yet, information regarding sample preparation methods for plant tissues is

still limited. Sample preparation is a crucial step that is directly associated with the quality

and authenticity of the imaging results, it therefore demands in-depth studies based

on the characteristics of plant samples. In this review, a sample preparation pipeline

is discussed in detail and illustrated through selected practical examples. In particular,

special concerns regarding sample preparation for plant imaging are critically evaluated.

Finally, the applications of MSI techniques in plants are reviewed according to different

classes of plant metabolites.
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INTRODUCTION

Mass spectrometric imaging (MSI) enables label-free detection and mapping of a wide range
of molecules at complex surfaces, and it has become an attractive molecular histology tool in
pharmaceutical and medical research. Since 2005 MSI has been gradually applied in plant research
(Imai et al., 2005; Mullen et al., 2005). The information on the spatial organization of proteins
and metabolites will greatly improve our understanding of plant metabolism and the biochemical
functions of specific plant tissues (Lee et al., 2012; Matros and Mock, 2013).

The core of MSI experiment is the mass spectrometer, which consists of three major parts: ion
source, mass analyzer and detector. In the ion source, analytes are desorbed and ionized; in the
analyzer, they are separated on the basis of their mass to charge ratios (m/z); and, finally, the
separated ions are detected in the detector. As a final output a mass spectrum is generated by
displaying the intensity of the detected ions over a fullm/z scale. The basic principle of microprobe
MSI is straightforward: the instrument collects a series of mass spectra by rastering a certain area
of a tissue sample. The distribution maps of the analytes over the sample surface are subsequently
generated by plotting the intensity of their individual m/z peak in the mass spectra against the
x-y coordinate (Goodwin et al., 2008; Svatos, 2010). The typical workflow of a MALDI imaging
experiment is shown in Figure 1.
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FIGURE 1 | Typical workflow of a MALDI imaging experiment.

Several ion sources are available for MSI, among which
secondary ion mass spectrometry (SIMS), matrix-assisted laser
desorption ionization (MALDI) and desorption electrospray
ionization (DESI) are the most popular (Amstalden van Hove
et al., 2010; Svatos, 2010). Many other MSI sources are still
emerging, and they are usually derivatives or modifications of
the above mentioned approaches. Among them it is worth
mentioning laser ablation electrospray ionization (LAESI), laser
ablation inductively coupled plasma (LA-ICP), liquid extraction
surface analysis (LESA), direct analysis in real time (DART),
and nano-desorption electrospray ionization (Nano-DESI). The
different ion sources differ greatly in the method of ion
generation (and hence on the nature of the produced ions),
pressure regime, spatial resolution, probing depth, and speed.
Each of them has its own advantages and disadvantages; for
a comprehensive overview on this topic the reader is kindly
referred to the following papers (Bhardwaj and Hanley, 2014;
Boughton et al., 2015; Li et al., 2015; Sumner et al., 2015).

Sample handling is the most crucial step in MSI, as only
an appropriate sample preparation can maintain the origin,
distribution and abundance of the molecules, ensuring high-
quality signals and sufficient spatial resolution (Grassl et al., 2011;
Kaspar et al., 2011; Peukert et al., 2012; Spengler, 2014). Although
Sample preparation for proteins and peptides has been somewhat
standardized (Goodwin et al., 2008), there are very few examples
of protein or peptide imaging in plant-based research (see
Section Proteins and Peptides). Conversely, a large percentage
of publications have dealt with plant secondary metabolites. The
challenges are not only relevant to secondary, but also primary
metabolites which can be oxidized, can diffuse through tissues
during preparation, or be degraded through enzymatic processes
or through exposure to light, heat or atmosphere (Lee et al.,
2012).

MSI sample preparation methods for plant tissues are more
challenging than those for mammalian tissues (Boughton et al.,
2015; Heyman and Dubery, 2015). Cuticles in higher plant bodies
represent the first barrier for direct MS imaging of internal
metabolites, since it is difficult for most soft ionization techniques
such as MALDI and DESI to penetrate through them (Thunig
et al., 2011). Plant cell walls form the second barrier for MS
imaging of molecules within the cell. For instance, when a
matrix solution is sprayed onto the surface of a plant body,
the cell wall prevents the solution diffusing across the cell
wall, leading to the reduced “analyte extraction” efficiency in
MALDI imaging (Takahashi et al., 2015). The high water content
in plant tissues poses another challenge during cryosectioning.
Plant tissues are more fragile upon freezing, and additionally,
it is more difficult to get thin and intact sections for water-
rich plant samples. Sample shrinkage or partial flaking is often
observed upon dehydration, and this phenomenon usually results
in an uneven surface which further affects MSI analysis. It
should be noted that the sample shrinkage could also lead to
mismatch between the MS image and the optical image (Cha
et al., 2008), making biological interpretation difficult. This
review therefore discusses the sample preparation strategies for
plant tissues, aiming at providing guidelines for researchers who
are planning to image different plant tissues and metabolites.
In the first part, all the essential steps of sample preparation
as well as specific considerations for plant tissues are discussed
in detail. In the second part, the application of MSI to the
analysis of different classes of metabolites in plant samples
is summarized and discussed referring to a selected list of
publications.

SAMPLE PREPARATION FOR PLANT
TISSUES

In this section we discuss each sample preparation step,
including tissue storage (2.1), sectioning (2.2), mounting (2.3)
and ionization supporting treatments (2.4) (Pol et al., 2010;
Goodwin, 2012). In addition, other considerations for plant
sample handling (2.5) such as the use of fresh sample or dry
sample (2.5.1), removal of plant cuticle (2.5.2), matrix effects
(2.5.3), and morphological effect (2.5.4) are also covered here.
It is worth noting that sample preparation steps vary depending
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on the MSI instrument, on the nature of the tissues and on the
analytes to be imaged.

Sample Storage
Samples are typically flash frozen in liquid nitrogen to prevent
enzymatic degradation or analyte migration, and then stored
at −80◦C for up to 1 year with no reported significant
degradation (Schwartz et al., 2003). However, water-rich plant
samples may shrink upon long-term storage due to the gradual
sublimation of water. When samples are too large and the storage
space is limited, plant samples can be stored as section slides
(Dill et al., 2011). For example, in our laboratory, several apple
sections are mounted onto the glass slide, vacuum dried (∼50
Torr, 4 h), vertically placed in a back-to-back manner into a
50ml falcon/centrifuge tube with several small holes (∼2mm)
drilled on its cap (i.e., corning R© 50mL PP centrifuge tubes,
Sigma Aldrich). The tubes are subsequently vacuum sealed in
a vacuum bag, and stored at −80◦C. Vacuum sealing prevents
the sample from contacting with air and water, and placing the
section slide into the tube prevents the damaging of the section as
it avoids direct contact with the bag during storage. When ready
for use, sections can be recovered for 2 h under vacuum (∼50
Torr). Our recent MALDI imaging study on the distribution
of flavonoids in apple suggests that there are no significant
quantitative differences in detection between long-term-stored
(9 months) and fresh-prepared apple sections (Franceschi and
Wehrens, 2014). A possible alternative is to preserve the tissue
section as imprints on flat surfaces like PTFE sheet (Cabral et al.,
2013) (details about imprinting are discussed in Section Removal
of the Plant Cuticle). Imprinting is a method which can be useful
for samples that could readily wither and fade even when stored
under low temperature, as, for example, leaves and flowers, but
the effect of storage on the quality of the imprints has to be still
evaluated.

Sectioning
Plant cells have rigid cell walls, large intercellular spaces and
they are often rich in water, thereby embedding materials are
often used in conventional plant histology practice to maintain
the tissue morphology and ensure precise sample sectioning.
Unfortunately, many of the commonly used embedding media
are incompatible with MSI. For example, optimum temperature
cutting (OCT) compound, which is a mixture of polyethylene
glycols, is strongly discouraged since its use has been associated
with diffusion into tissue and smearing across the surface during
sectioning (Zaima et al., 2010b). Carboxymethyl cellulose (CMC)
(Goto-Inoue et al., 2012), gelatin (Chen et al., 2009; Gemperline
et al., 2015), ice (Khatib-Shahidi et al., 2006; Gorzolka et al.,
2014) or their combinations (Nelson et al., 2013) have been
successfully employed as MSI-compatible embedding mediums.
Zaima and coworkers found that with the assistance of adhesive
film, CMC embedding offers good sectioning performance
(Zaima et al., 2010a; Yoshimura et al., 2012b). The use of
adhesive film reduced the distortion of the sections and the
dislocation of the analytes, additionally facilitating the transfer
and attachment of sections to the slides. This method is described
in Figure 2 (Kawamoto, 2003). It is important to mention that

this method is initially proposed for histology and tissue staining
so steps such as fixation, washing and staining should be avoided
in MSI.

Cryosectioning is the most commonly used method to
prepare plant tissue slices as freezing well quenches metabolic
processes. Before sectioning, samples are generally snap frozen in
various low temperature conditions such as inside an ultra-low
temperature freezer, or in powdered dry ice, liquid nitrogen or
liquid nitrogen-chilled isopentane (Zaima et al., 2010b). Liquid
nitrogen freezing usually makes plant sections brittle, and it
results in ice crystal formation, thus rapid plunging of the tissue
into liquid nitrogen is not recommended. Floating tissues in
aluminum foil in liquid nitrogen (Schwartz et al., 2003; Nimesh
et al., 2013) or freezing tissues on dry ice-chilled steel plate is
more favored. Dry tissues like plant stems, can be also sectioned
at room temperature (RT) using a microtome (Imai et al., 2005;
Saito et al., 2008, 2012; Lunsford et al., 2011; Zhou et al., 2011)
or vibratome (Lunsford et al., 2011). Sectioning at RT is only
limited to some dry/dead plant tissues such as wood with dense
and relatively hard structure. This is not suitable for most fresh
tissues due to the dispersing of plant juice. Additionally, the
enzyme-substrate reaction may still be active when tissues are
sectioned at RT.

Section thickness is another important parameter to take into
account because it affects the number and the intensity of the ion
signals in MSI instruments. For example, poor ion intensity due
to inefficient ionization can be expected in MALDI instruments
where the “z” direction of the sample holder is not easy to adjust
or the laser cannot be focused to the top of the thick tissue section.
In addition, electrical non-conductivity (i.e., in non-orthogonal
TOF-MS), high impurities, matrix absorption (in porous tissues)
and tissue distortion (i.e., in linear/reflectron MALDI-TOF) in
thick sections could also lead to the reduced signal intensity
(Sugiura et al., 2006).

For mammalian tissues, section thickness between 5 and
20µm is recommended for analysis of low molecular weight
molecules, and <5µm thickness for high molecular weight
proteins (m/z>9000) (Sugiura et al., 2006). In contrast, the
relationship between tissue thickness and the quality of MS
spectrum has been seldom studied in the MSI of plant sections.
Generally it is difficult to cut thin slices of water rich plant
tissues due to crumbling and fracturing of the tissues. The
thickness of most plant sections in current MSI studies is about
50µm, providing a good compromise between optimum MSI
performance and practicality, especially when a large number of
samples have to be prepared (Peukert et al., 2012).

Mounting
Sample tissues can be either mounted onto a glass slide or on a
MS-compatible plate (Schwartz et al., 2003). Different mounting
surfaces are required depending on the ionization technique. For
non-orthogonal MALDI TOF, conductive surfaces such as steel
and metal-coated glass slides are required, while, for orthogonal
MALDI TOF normal glass slides are sufficient. In contrast, in
ambient ionization techniques like DESI, non-conductive surface
is used in order to avoid the neutralization of charged spray
solvent (Takats et al., 2005; Costa and Cooks, 2007, 2008).
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FIGURE 2 | Adhesive film assisted CMC embedding method. (i) Freeze

embedding can be achieved by either (1) freezing before embedding or (2)

freezing after embedding. In freezing before embedding method: (a,b) Freezing

of the sample in the coolant; (c) freeze-embedding of the frozen sample with

4–5% CMC gel; (d) completely freezing the CMC gel in coolant (i.e., hexane);

(e) removing the CMC block from container;. In freezing after embedding

method: (a) placing the sample into 4–5% CMC gel; (b) completely freezing

the CMC gel in coolant (i.e., hexane); (c) removing the CMC block from

container; (ii) After freeze embedding, the CMC block is subjected to freeze

sectioning: (f) fixing the embedded sample to the sample holder with CMC gel

and then attaching it to the cryomicrotome; (g) adhering the film to the

exposed cutting surface; (h) cutting the sample; (i) placing sample section on

the glass slide. Figure is adapted with permission from Kawamoto (2003).

Three mounting approaches are commonly used to attach
plant sections onto the glass slide: the sample can be either
secured by using double sided tape/epoxy glue or it can be

thaw-mounted. The use of double sided tape is fast and easy, but
care should be taken not to contaminate the sample. Epoxy glue is
suitable for delicate samples and it does not produce extra mass
signals (Kaftan et al., 2014). Thaw-mounting is usually used to
attach tissue sections acquired by cryosectioning. This approach
minimizes the risk of sample contamination, but relocation of
water soluble analytes resulting from water condensation during
thaw mounting is a major concern (Cha et al., 2008). In the
case of water rich plant tissues, it is necessary to consider not
only the condensation of atmospheric water, but also water
originating from the sample itself. With this specific method,
downstream sample processing steps should be minimized to
avoid washing sample off the glass slide by any vigorous solution-
based treatments (i.e., the washing steps inMSI of proteins for the
purpose of removing, e.g., salts and lipids) (Goodwin et al., 2008).
To alleviate this problem, thaw mounted samples are usually
dried within a desiccator at a reduced pressure (Lee et al., 2012;
Boughton et al., 2015).

Ionization Aiding Treatments
As already discussed, molecules have to be ionized before MSI
analysis, and in some case the ionization efficiency and its
selectivity can be increased by using specific ionization aiding
treatments. In SIMS, the ionization is direct: a focused high
energy primary ion beam (e.g., Ar+, Ga+, In+) is used to strike
the sample surface. The analyte molecules are then released from
the surface and ionized upon collision with the primary ions
(Amstalden van Hove et al., 2010). The high energy used in SIMS
usually causes extensive secondary ion fragmentation, limiting
its practical mass range to ∼ m/z 1000 (Heeren et al., 2006).
Recently, several strategies aiming at extending the potential
of SIMS and at increasing the ionization efficiency of large
intact biomolecule have been proposed, one of them is to coat
the sample surface with common MALDI matrices, possible
alternatives are metallization of samples with silver and gold
(Delcorte et al., 2003; Altelaar et al., 2006).

In MALDI, the deposition of a matrix over the sample
surface serves several functions, in particular: (i) extraction
of analytes from the sample surface, (ii) co-crystallization of
analytes and matrix, and (iii) absorption of the laser energy
aiding desorption of the molecules from the surface into the gas
phase, where ionization eventually occurs (Lewis et al., 2006).
Earlier on, MALDI imaging was almost exclusively performed
using conventional matrices such as α-cyano-4-hydroxycinnamic
acid (CHCA) and 2,5-dihydroxybenzoic acid (DHB). However,
the imaging of small molecules, especially those with molecular
weights similar to the one of the matrix, is problematic due
to the high degree of ion suppression caused by the presence
of the dominant matrix ion signals. A variety of alternative
matrices have been proposed to obviate this problem. The first
possibility is to use ionlessmatrices which do not producematrix-
related interfering ions, i.e., 1,8-bis(dimethylamino) naphthalene
(DMAN) (Shroff et al., 2009). However, it is important to
point out that DMAN is instable in the high-vacuum MALDI
(Thomas et al., 2012), which limits its application only in
atmospheric pressure (AP)-MALDI. Alternatively, it is possible
to choose high-molecule-weight matrices which do not generate
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ions in the low mass region [i.e., porphyrins (MW: 974.57) (van
Kampen et al., 2009)]. Another possibility is to use inorganic
matrices which show relatively clean background. This can be
deposited over the sample surface (i.e., colloidal graphite, Zhang
et al., 2007; Cha et al., 2008) or they can constitute the target
plate, like in the case of electrochemically etched porous silicon
(desorption/ionization on silicon MS, DIOS-MS) (Wei et al.,
1999; Ronci et al., 2012). At the same time, it is also possible to use
nanostructures coated with liquid-phase perfluorinated initiator
molecules. This type of solution has been already used in LDI
MS and NIMS (nanostructure initiator MS, NIMS) (Yanes et al.,
2009).

MALDI matrix can be deposited on tissue sections in
several ways. The most common methods include spraying,
spotting, sublimation and dry coating. Spraying can be
performed manually, i.e., with an airbrush, or automatically,
using commercial devices like ImagePrep (Bruker) (Figure 3i)
or TM-Sprayer™ (HTXImaging). Manual spraying requires
skill because inhomogeneous matrix application and analyte
delocalization can easily occur, while automatic solutions are
more reproducible. In spotting, the matrix can also be delivered
by micro-spotting to a specific sample surface location with
robots like the CHIP-1000 chemical printer (Shimadzu). This
method allows accurate deposition of matrix onto a tissue
section, and this is good to attain a good quantitative MS
signal generation in MSI (Vegvari et al., 2010). Sublimation
allows fast and uniform matrix deposition (Figure 3ii). During
sublimation, the matrix is placed inside a sublimation chamber,
and the sample plate with the tissue is placed inverted over
the top of the matrix and attached to a cold-finger (Norris and
Caprioli, 2013). The matrix is heated at elevated temperature
and under reduced pressure, while the sample itself remains
cooled as heat could degrade the analytes. Sublimation is
solvent free, therefore diffusion of most analyte molecules during
matrix application is almost eliminated, even though it has
been reported that lipids from very fatty tissues can to some
degree diffuse by capillarity through dry matrix during storage
(Berry et al., 2011). It is important to point out that, owing
to the absence of solvent, the extraction efficiency can be poor
for some compounds like peptides and proteins. Additional
re-hydration has been demonstrated to improve the detection
sensitivity (Bouschen et al., 2010; Yang and Caprioli, 2011).
Other advantages of sublimation include high reproducibility,
increased matrix purity, formation of fine matrix crystals and
relatively low cost (Hankin et al., 2007). Finely ground matrices
and nanomaterials can be also spread over the sample surface by
using a fine mesh sieve (i.e., 20–50µm) (Puolitaival et al., 2008;
Chaurand et al., 2011). Thismethod is simple, fast andmeanwhile
it avoids analyte delocalization, but also in this case the analyte
extraction efficiency is reduced.

As far as DESI is concerned, the first element determining
the ionization efficiency is the composition of the spray solvent,
which should be optimized taking into account the metabolites
under investigation and the specific characteristics of the samples
(Badu-Tawiah et al., 2010; Green et al., 2010). In general, a
higher fraction of water is used to have long lasting signals,
while a higher proportion of methanol is used when higher

FIGURE 3 | Comparison between (i) spray based (Bruker ImagePrep

system) and (ii) vacuum sublimated DHB matrix in MALDI imaging. (a1)

30 gL−1 DHB (in 70% ACN solution) was used. Typical instrumental

parameters include: 0.8 s spray, 10 s incubation, 70 s drying, and 60 spray

cycles. (a2) 300mg DHB was used. Major parameters include: ∼120◦C

heating temperature, 0.05 Torr vacuum pressure, 10–11min sublimation,

matrix density 0.05 mgcm−2. (b1,b2): DHB crystal sizes resulting from Bruker

ImagePrep (b1) and sublimation (b2), scale bar: 10µm. Figures were adapted

with the permission from Ref. (Hankin et al., 2007; Franceschi et al., 2012).

spatial resolution is required (Manicke et al., 2008). When
necessary, a reactive reagent can also be added to the spray
solvent to selectively improve the ionization efficiency of analytes
which are difficult to ionize under normal DESI conditions
(Zhang and Chen, 2010; Muller et al., 2011; Lostun et al.,
2015).

Other Considerations for Plant Samples
Preparation
Fresh Sample vs. Dry sample
Fresh plant tissues would be ideal for MSI studies since they are
chemically unmodified and treatment-free. In these conditions,
the spatial arrangement of the molecules is preserved and the risk
of chemical contamination during sample handling is minimized.
Fresh tissues, however, can be directly analyzed only by using
ambient ionization techniques, while they are likely to shrink
during MSI analyses performed under vacuum (e.g., MALDI
or SIMS). Sample shrinkage could result in mismatch between
the MS image and the optical image (Cha et al., 2008), making
biological interpretation difficult. Moreover, shrinkage during
MSI analysis may cause unwanted mass shift during MSI analysis
in non-orthogonal TOF-MS analyzer (as the flying time can be
different for the same analyte located on an uneven surface),
hampering molecule identification and reproducibility (Kulkarni
et al., 2015). Another concern is that inside fresh samples
the biological processes are still active and they may cause
degradation and/or chemical modification during the analysis
(Cha et al., 2009). In the case of infrared (IR)-MALDI and LAESI,
since native water from the sample is employed as a matrix, the
sample tissues have to be fresh or at least not totally dried out (Li
et al., 2007a,b; Shrestha et al., 2011).
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Most plant samples are vacuum- or freeze- dried prior to MSI.
Vacuum desiccation can be applied for thin plant organs, such
as leaves and flowers (Cha et al., 2008, 2009; Li et al., 2011;
Korte et al., 2012), or for microtome or razor blade-sectioned
samples, such as apple section (Franceschi et al., 2012). Vacuum
pressure and drying time should be carefully optimized according
to the nature of the sample and analytes of interest. It is likely,
for example, that some compound (i.e., volatile essential oils,
terpenes, alcohols and other small molecules) will be lost during
vacuumdesiccation, but themajority ofmolecules are expected to
be unaffected due to their low vapor pressure (Franceschi et al.,
2012). This has been confirmed by comparing MS profiles of
target metabolites between fresh and dried Arabidopsis samples
(Cha et al., 2008).

Removal of the Plant Cuticle
Land plant organs, such as leaves and flowers are covered with a
lyophilic cuticular layer (0.1–10µm in thickness) (Riederer and
Schreiber, 2001). The cuticle serves for a variety of important
biological functions, and MS imaging of plant cuticles is
specifically discussed in Section Lipids and Fatty Acids. On the
other hand, the cuticle poses a barrier for the MS imaging of
the internal metabolites since soft ionization techniques such as
MALDI and DESI cannot easily penetrate through it. LAESI-
MSI is capable of depth profiling and it can be applied for
imaging the internal metabolites, but its spatial resolution is still
limited (typically 300µm) (Nemes et al., 2009). Sample cuticle
can be either physically removed or chemically washed off. For
example, kaempferol and kaempferol rhamnoside were mostly
detected in Arabidopsis leaf areas pre-treated with chloroform
for 60 s (Figure 4ia,d,e) (Cha et al., 2008). However, those
“aggressive methods” may delocalize and/or wash away the
target compounds, as shown in the cases for C26 and C30 fatty
acids (Figure 4ic,f). In addition, not all plant epidermis can
be physically removed with ease as the in the case of barley
leaf (Figure 4iia; Li et al., 2011), and scratching or grasping of
the leaf cuticle will deter either the detection (Figure 4ie) or
spatial resolution (Figure 4ia,c,d,f) of the analytes (Cha et al.,
2008).

Imprinting is a promising way to circumvent this problem.
With this approach, plant tissues are pressed onto porous
Teflon (Li et al., 2011, 2013; Thunig et al., 2011), porous
polytetrafluoroethylene (PTFE) (Muller et al., 2011), TLC plate
(Cabral et al., 2013; Hemalatha and Pradeep, 2013), print paper
(Ifa et al., 2011), or tape (Tata et al., 2014) by applying a moderate
pressure over the plant tissues, thereby transferring the plant
metabolites onto a flat hard surface while keeping their spatial
distribution. Li et al. successfully imaged the distribution of
hydroxynitrile glucosides in leaves of L. japonicas with both
imprinting (Li et al., 2013) and direct DESI imaging (Bjarnholt
et al., 2014). The abundance of hydroxynitrile glucosides were
rather even in imprinting DESI imaging (Figure 4iiiAb–e),
while direct DESI imaging showed a decreased abundance of
hydroxynitrile glucosides in the leaf midvein, which was possibly
due to the reduced accessibility to the solvent spray in direct DESI
imaging (Figure 4iiiBb–e). A recent publication demonstrated

that the transfer efficiency could be improved with the assistance
of solvent extraction and/or heating during TLC-imprinting
(Cabral et al., 2013). However, imprinting is only efficient for
relatively “fleshy” plant tissues and the spatial resolution is
limited since analytes can be smeared during imprinting (Lee
et al., 2012).

Matrix Effects
The chemical composition of the sample matrix can affect, in
most cases negatively, the ionization efficiencies of the analytes
of interest in MS analysis (this phenomenon is widely known
as “matrix effect”). Although the limited sample pretreatment
and the absence of separation are among the major advantages
of MSI, they also make MS imaging prone to matrix effects,
which alter the observed molecular distribution (Lanekoff et al.,
2014). Matrix effects have been reported in SIMS (Jones et al.,
2007), MALDI (Hankin et al., 2011; Janfelt et al., 2012; Wang
et al., 2012), and nano-DESI imaging (Lanekoff et al., 2014). Since
matrix effect is intrinsically associated with MS, it is also a major
challenge in MSI of plant tissues even though it has not yet been
well studied. Several strategies have been used to compensate for
matrix effects in MSI, such as desalting the tissue sections prior
to MSI analysis (Wang et al., 2012), and normalizing ion signals
to the signals of their corresponding internal standards (Lanekoff
et al., 2014).

Morphological Effects
Similarly to what happens in the case of the matrix effects,
the physical properties of the sample can also influence the
analyte ionization process. As a consequence, variations in the
physical properties of a heterogeneous tissue surface can affect
the ion yield, resulting in MS images misrepresenting the real
distribution of the metabolites. This phenomenon has been
reported in a MALDI imaging study of tobacco root, where
a notable loss of ion signals was observed in the central root
region due to the reason that the MALDI matrix was mostly
absorbed in that region (Peukert et al., 2012). It has been
proposed that spraying the sample surface with large amounts of
matrix could reduce the surface effects at least in MALDI (Lee
et al., 2012). In DESI, the sample surface effect can be more
obvious. It has been shown that both the chemical (i.e., bond
strength and polarity) (Takats et al., 2005; Ifa et al., 2008; Manicke
et al., 2008; Volny et al., 2008; Benassi et al., 2009; Douglass
et al., 2012) and the physical properties (i.e., conductivity and
roughness) (Takats et al., 2005;Manicke et al., 2008) of the surface
strongly affect the DESI results. In particular, they impact on
the lower limits of detection/quantification (LOD/LOQ) of the
analytes, on the signal stability, on the degree of carryover, but
also on the reproducibility and on the linear dynamic range.
Additionally, it has been shown that the DESI source acts as
a direct current capacitor and the surface properties play an
important role in the charge transfer (redox) process (Volny et al.,
2008; Benassi et al., 2009; Dong et al., 2015). Imprinting can
be a promising way to minimize sample surface effect in DESI
imaging, since the analytes are transferred to a homogeneous
surface.
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FIGURE 4 | MS imaging of metabolites below the cuticle. (i) MALDI imaging of Arabidopsis leaf. The left area of the leaf was grasped using forceps, the middle

part remained un-treated and the right area was chloroform-dipped (b); Kaempferol (a) and Kaempferol Rhamnoside (d) were readily detected in the forceps- grasped

and chloroform-dipped areas, while C26 (c) and C30 (f) fatty acids were washed off in the chloroform-dipped area. An un-identified analyte m/z = 210 (d) showed

high abundance in the chloroform-dipped area. (ii) DESI images of the hydroxynitrile glucosides of m/z = 276 (b), 298 (c) and 300 (d) from barley leaf epidermis. The

leaf abaxial epidermis strip was physically peeled off (a). (iii) Comparison of imprinting and direct DESI imaging of L. japonicus leaves. (A) Indirect DESI imaging of the

leaf imprint on Teflon. (B) Direct DESI imaging of the leaf, with chloroform, methanol and water (1:1:0.4, v/v/v) as spray solvent. (a) Optical image of L. japonicus

leaves. (a1) Optical image of the leaf imprints on Teflon. (b–e) DESI images of m/z 104, 286, 298, and 300, respectively. Figures were adapted with the permission

from Cha et al. (2008), Li et al. (2011, 2013), and Bjarnholt et al. (2014), respectively.

APPLICATION OF MSI IN PLANTS

Arguably, plant based MSI has historically been focused on
methodological aspects (Matros and Mock, 2013), but now the
technique has matured to a point where it has also been used
to address biologically important questions (Lee et al., 2012) in
fields like plant-environment interactions (Shroff et al., 2008,
2015; Klein et al., 2015; Ryffel et al., 2015; Soares et al., 2015; Tata
et al., 2015), new compound identification (Jaeger et al., 2013;
Debois et al., 2014), and functional genomics (Korte et al., 2012;
Li et al., 2013). In the following section, we summarize the recent
studies of MSI in plants organizing them on the bases of the class
of molecules which were the subject of each specific study. The
key characteristics of some selected applications are summarized
in Table 1. Among the different aspects, we will focus on the
choice of matrix for MALDI and of spray solvents for DESI
since these elements are crucial in determining the quality of MSI
analyses.

Carbohydrates
Carbohydrates are initially synthesized through photosynthesis
in plants, and they are well known for their essential roles.

Additionally, they could also function as signaling molecules, in
a way similar to hormones (Trouvelot et al., 2014).

Distribution of carbohydrates has been mapped by MALDI in
several plant samples (Robinson et al., 2007; Jung et al., 2010;
Yoshimura et al., 2012a; Veličković et al., 2014) and in these
applications DHB and CHCA are the most common matrices.
DHB has proved to be slightly better than CHCA in detecting
small oligosaccharides such as glucose and sucrose (Zhang et al.,
2007). Colloidal graphite (Graphite assisted laser desorption
ionization, GALDI) has been proposed as an alternative matrix
for imaging small oligosaccharides since it largely reduces the
matrix interference in the small mass region (m/z < 500)
(Zhang et al., 2007). IR-MALDI has also been used to image
carbohydrates distribution in different plants, such as strawberry
(Li et al., 2007b) and lily flower (Li et al., 2008). In MALDI
imaging, carbohydrates are mostly detected in positive ion mode.
Application of DESI imaging in localization of carbohydrates in
plants is rarely reported (Thunig et al., 2011), partially due to the
low selectivity and sensitivity of this technique toward this class
of molecules. Yet 3-nitrophenylboronic acid and N-methyl-4-
pyridineboronic have been suggested as effective reagents added
to the DESI spray solvent for in situ derivatization of sugars
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(reactive-DESI) to improve the ionization efficiency of intact
sugars in complicated biological matrices (Zhang and Chen,
2010).

Lipids and Fatty Acids
Lipids are amajor component of plant tissues. They are present in
all cells as constituents of the various cellular membranes. Other
lipids such as waxes, fulfill important protective functions both
in plant leaves and fruits. Pigmented lipids are involved in light
harvesting and energy transduction, while others are concerned
in electron transport processes. Certain plant lipids also represent
energy stores that can bemobilized and consumed for growth and
development of plants (Harwood, 1996).

The localization of various unsaturated lipids has been
mapped in rice (Zaima et al., 2010a) and cotton seeds (Horn
et al., 2012), Camelina sativa seed and avocado fruit (Horn et al.,
2013) using MALDI imaging. In these tissues, lipids are readily
detected as multiple adducted ions (primarily H+, Na+, and K+)
in positive ion mode by using DHB as a matrix. MALDI imaging
of saturated hydrocarbons (HCs) however, is more challenging
because these species do not contain any polar groups neither
susceptible to protonation nor to which cations or anions can
be easily attached (Cvacka and Svatos, 2003). When monovalent
cations of transition metals (e.g., Fe, Mn, Cu) are co-deposited
on MALDI target with HCs, they give cationized species which
can be detected in a mass spectrometer. However, due to the
high reactivity of transition metals, HCs are easily fragmented
during analysis, hampering molecular identification (Cvacka and
Svatos, 2003). The reactivity of silver with HCs is lower than
that of any other transition metals so it can be used to generate
intact silver adduct ions. MALDI imaging of epicuticular wax
in Arabidopsis has been successfully reported by using silver
colloid as matrix. In this study, 14 cuticular wax compounds were
identified in Arabidopsis wild-type (Ler) and genetic stock CS8
(which carries carried the mutant alleles cer2-2, ap2-1, and bp1)
leaves (Cha et al., 2009). The pitfall of silver matrix is that silver is
present with similar abundance for its two stable isotopes. Each
molecule, then, produces a group of silver adduct ion peaks with
two major ions [monoisotopic mass of the metabolite + 107Ag
or 109Ag]+, making compound identification and quantification
difficult (Cvacka and Svatos, 2003; Cha et al., 2009). Reports on
MALDI imaging of saturated wax esters in Arabidopsis and date
palm leaves suggested that the lithium salt of DHB (LiDHB) is
the most versatile matrix for detection of a majority of neutral
lipids and it can potentially replace the currently used silver salts
(Vrkoslav et al., 2010).

Localization of lipids is the most frequent application of DESI
imaging in mammalian tissues, while DESI imaging of lipids in
plants has not yet been reported. Since lipids are more readily
ionized by DESI, DESI would be an ideal complementary tool to
MALDI formapping lipids in plants where high spatial resolution
is not required.Mixtures of water-methanol or water-acetonitrile,
with or without an acidic modifier are the most commonly used
spray solvents for DESI imaging of lipids (Eberlin et al., 2011).

Proteins and Peptides
The fundamental component of a protein is the polypeptide
chain composed of amino acid residues. Proteins are highly

ubiquitous either as plant storage proteins (e.g., legumin, vicilin,
convicilin, albumin, and gliadin) or as functional proteins such as
enzymes, membrane components or hormones (Aluko, 2015).

MSI studies of proteins and peptides are in general particularly
challenging, and, up to now, they are well described in
mammalian tissues. Sample preparation is the first critical
point for this type of studies and it is more challenging than
for other molecules. The different protocols include several
additional washing steps to remove endogenous molecular
species, such as salts and sugars, whichmay interfere with protein
desorption/ionization efficiency, to ensure tissue dehydration
and fixation, and to prevent proteolysis (Schwartz et al., 2003).
The wash procedure varies in solvent composition, temperature
and duration depending on the tissue, and it needs to be
optimized accordingly. Even after careful optimization, proteins
larger than 25kDa are not routinely detectable by MALDI MSI,
as they are not efficiently stabilized in the matrix solution and are
not extractable from the tissue (Franck et al., 2010). On-tissue
digestion of large proteins can be used to detect and identify
larger proteins, but the treatment with proteolytic enzymes
enhances analyte diffusion thus reducing the spatial resolution
in MSI studies (Kaspar et al., 2011). In the specific case of
plants, protein identification is also challenging, due to the lack
of extensive and reliable databases (Kaspar et al., 2011).

The application of MSI of proteins in plants has, however,
been illustrated in few cases, as demonstrated by the MALDI
imaging analysis of proteins in developing barley grains (Kaspar
et al., 2011) and in soybean cotyledons (Grassl et al., 2011), where
tissue-specific protein expression patterns have been revealed.
A detailed analytical protocol is presented and discussed in the
latter example, there sinapinic acid (SA) is suggested asmatrix for
MALDI imaging of proteins (>3000 Da), and CHCA and DHB
for peptides (<3000 Da).

Terpenoids
Terpenoids are a large and diverse class of metabolites which are
built up from isoprene. Plants employ terpenoids for a variety
of functions in growth and development but use the majority of
them for more specialized chemical interactions and protection
in the abiotic and biotic environment (Tholl, 2015).

Distribution of terpenoids in Hypericum perforatum have
been studied by LDI imaging on fresh tissues (Holscher et al.,
2009) and by DESI imaging on leaves and their imprints
(Thunig et al., 2011) respectively. The results of the two
studies are in complete agreement showing that hyperforin and
adhyperforin are found in translucent glands, and hypericin,
pseudohypericin, protopseudohypericin, and protohypericin are
exclusively located in dark glands in leaves. Since they are
highly UV absorbing compounds, application of a matrix is
not necessary and thereby LDI allows 10µm spatial resolution
with a 10 × 10µm laser focus setting, removing the spatial
limitations associated with the use of a matrix. It is important
to point out that the understanding of the biological function
of natural products requires direct fine-scale evaluation in the
tissue of the producing organism (Esquenazi et al., 2009). One
example is the DESI imaging of a tropical red alga tissue surface
where bromophycolide A and B are found exclusively distributed
in association with distinct surface patches at concentrations
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sufficient to inhibit the detrimental Lindra thalassiae fungus
(Lane et al., 2009).

Alkaloids
Alkaloids contain secondary, tertiary, or quaternary nitrogen
atoms. In plants, they act as defense compounds against
pathogenic organisms and herbivores, but they can also be
used as protoxins by insects which further modify them before
incorporating them into their own defense system or secretions
(Ghosh, 2000). Alkaloids are typically found in particular
medicinal plants organs, often defined as a “medicinal part”
(Shitan and Yazaki, 2007). Knowing their localization is valuable
not only to understand their metabolic origins, but also to
optimize their isolation process from the compound containing
parts.

Rapid profiling of alkaloids has been performed in several
plant species by DESI and MALDI. Relevant examples include
DESI profiling of alkaloids in Conium maculatum, Datura
stramonium, and Atropa belladonna (Talaty et al., 2005), and
MALDI profiling of alkaloids in Rhizoma Coptidis and Strychnos
nux-vomica L. (Lu et al., 2010). This type of studies provided
the basic protocols for MS imaging of alkaloids in plants.
Distribution of alkaloids has been mapped for several purposes:
for example MALDI imaging of capsaicin in capsicum fruits
(Taira et al., 2012) and DESI imaging of malabaricone C.
in Myristica malabarica seed (Ifa et al., 2011) to study their
metabolic origin, and MALDI imaging of fruiting bodies of a
mushroom to screen for new compounds (Jaeger et al., 2013). All
the above examples were performed in positive ion mode, and
alkaloids are mostly detected as [M+H]+, and in some cases as
salt adducts, such as [M+K]+.

Phenolics
Phenolics are compounds possessing one or more aromatic
rings with one or more hydroxyl groups. Plant phenolics
include phenolics acids, flavonoids, tannins and the less common
stilbenes and lignans. They are generally involved in defense
against ultraviolet radiation or aggression by pathogens, parasites
and predators, as well as contributing to plants’ colors (Dai and
Mumper, 2010).

Distribution of phenolics has been mapped in several plants
including strawberry (Zhang et al., 2007), grapevine leaf (Becker
et al., 2014), apple (Zhang et al., 2007; Franceschi et al.,
2012), Arabidopsis (Cha et al., 2008; Holscher et al., 2009), rice
(Yoshimura et al., 2012b), licorice (Li et al., 2014a) and blueberry
(Yoshimura et al., 2012a) by MALDI, GALDI, and LDI imaging.
Flavonols are mainly detected as [M-H]− in negative ion mode,
while anthocyanins are mostly detected in positive mode as
[M]+. Both CHCA and DHB are common matrices used for
the analysis of phenolics in MALDI imaging. DESI imaging was
recently applied to localize flavonols in ginkgo leaves in negative
ionization mode, and anthocyanins in strawberry in positive
mode (Cabral et al., 2013). Information on their distribution
has been used to explain gene expression patterns in the wild-
type and mutant (transparent testa; tt7) Arabidopsis flowers.
In particular, the Arabidopsis tt7 mutant effectively blocks
the production of quercetin, isorhamnetin and their glycoside

derivatives, but leads to the accumulation of kaempferol and
its glycoside glycosides. By imaging the distribution of several
flavonoids in wild-type and the tt7 mutant flowers, the MSI
results could explain the expression of the TT7 gene localization
to the proximal part of the petal and the expression of the
other genes of the upstream pathway that are evenly expressed
throughout the petal (Korte et al., 2012).

Elements
The mapping of the biologically essential trace metals (i.e., Cu,
Zn, Fe), metalloids (i.e., Se), or non-metals (i.e., S, P, I) is of
increasing interest in modern bio-analytics (Becker et al., 2010).
LA-ICP-MS and SIMS are two major MSI ion sources of choice
for trace elements localization (Heard et al., 2002; Zhu et al., 2012;
Choi et al., 2014; Hanć et al., 2014). In particular, the absence
of charging-up effects combined with fewer matrix effects makes
LA-ICP-MS a simple quantification tool in which is possible to
apply certified standard reference materials or matrix-matched
laboratory standards (Becker et al., 2010). For example, with
the apple leaf SRM NIST 1515 as a certified standard reference
material, distribution of K, P, Mg, and Mn in Elsholtzia splendens
leaves has been quantitatively determined employing LA-ICP-
MS imaging. The results showed that the four elements were
predominantly located in the leaf veins, which highlighted the
importance of the vein in transporting macro-essential elements
(Becker et al., 2008). Other attractive feature of SIMS and LA-
ICP-MS is that they require little or no sample preparation.

CONCLUSION

The goal and philosophy of sample handling in MSI is to
preserve the integrity of the tissue samples, keeping the original
localization of the analytes within the tissues, and increasing
the amount of ions desorbed from the sample surface. The
importance of sample preparation for plants has been highlighted
in several recent excellent reviews (Fujimura and Miura, 2014;
Horn and Chapman, 2014; Spengler, 2014; Boughton et al., 2015;
Sturtevant et al., 2016). A number of factors are reported to be
critical for successful sample preparation in MSI, and they range
from tissue storage, sectioning and mounting to the selection
of the optimal ionization aiding treatment. It is worth noting
that each factor should be carefully optimized depending on the
characteristics of the MSI instrument, the nature of the sample
and the analytes of interest.

Among the different aspects, it is important to remark that
further improvement in reproducibility in sample preparation is
highly needed in order to allow reliable inter-sample comparison,
and to improve serial-section based 3D MSI. In this regard,
the setting-up of simplified and automatic sample preparation
pipelines is required.

In addition, we believe that further development of sample
preparation strategies able to account for tissue-specific ion
suppression (i.e., local chemical and morphological suppression)
is needed in order to increase molecular coverage and improve
the quantitative potential of MSI.

It is anticipated that these advances in sample preparation will
largely expand the potential of MSI in plant sciences.
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