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Abstract. The Northern Eurasian regions and Arctic Ocean will very likely undergo substantial 83 

changes during the next decades. The arctic-boreal natural environments play a crucial role in the global 84 

climate via the albedo change, carbon sources and sinks, as well as atmospheric aerosol production via 85 

biogenic volatile organic compounds. Furthermore, it is expected that the global trade activities, 86 

demographic movement and use of natural resources will be increasing in the Arctic regions. There is 87 

a need for a novel research approach, which not only identifies and tackles the relevant multi-88 

disciplinary research questions, but is also able to make a holistic system analysis of the expected 89 

feedbacks. In this paper, we introduce the research agenda of the Pan-Eurasian Experiment (PEEX), a 90 

multi-scale, multi-disciplinary and international program started in 2012 91 
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(https://www.atm.helsinki.fi/peex/). PEEX is setting a research approach where large-scale research 92 

topics are investigated from a system perspective and which aims to fill the key gaps in our 93 

understanding of the feedbacks and interactions between the land-atmosphere-aquatic-society 94 

continuum in the Northern Eurasian region. We introduce here the state of the art of the key topics in 95 

the PEEX research agenda and give the future prospects of the research which we see relevant in this 96 

context. 97 

1. Introduction 98 

The global environment is changing rapidly due to anthropogenic influences. As a result, 99 

mankind will be faced with several “Grand Challenges” in the 21st century (e.g. Smith 2010; Bony et 100 

al. 2015, IPCC; Randers 2012). Two of these challenges, climate change and air quality, are strongly 101 

influenced by human activities and their impacts on changing atmospheric composition, more 102 

specifically on the concentrations of greenhouse gases, reactive trace gases and aerosol particles. These 103 

changes are also reflected from and linked with the natural environments at large spatial scales. In the 104 

future, the arctic-boreal natural environment will play a crucial role in the global climate via the albedo 105 

changes, carbon sources and sinks as well as aerosol production via biogenic volatile organic 106 

compounds (Arneth et al. 2010; 2014; Ballantyne et al., 2012; Carslaw et al. 2010; Kulmala et al. 2014). 107 

In order to advance our understanding on interlinked grand challenges further, we need a 108 

research approach that helps us to construct a holistic scientific understanding of the feedbacks and 109 

interactions within the continuum of land-atmosphere-aquatic-systems and society across different 110 

spatial and temporal scales. Therefore we have established the Pan-Eurasian Experiment (PEEX) 111 

program (https://www.atm.helsinki.fi/peex/), which is a multi-disciplinary, multi-scale research 112 

initiative focusing on understanding biosphere-ocean-cryosphere-climate-society interactions and 113 

feedbacks (Lappalainen et al., 2014, Kulmala et al., 2015). PEEX fills some of the most critical 114 

scientific gaps needed for a holistic understanding of the feedback mechanisms typical for the Northern 115 

Eurasian geographical domain. Boreal forests and peat lands characterize the vast land areas of 116 

Northern Eurasia, major part of them situated in the Russian territory. In addition to natural 117 

environments, the PEEX research program is also interested in different environments: from urban to 118 
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countryside, from megacities to non-populated remote areas, from areas of dispersed settlements and 119 

sparsely-built environments to heavily-industrialized regions. Thus, the research approach covers the 120 

Arctic and boreal regions situated in Northern Eurasia, and also the marine environments of the Arctic 121 

Ocean. PEEX operates in an integrative way using tools from natural and social sciences such as in-122 

situ and satellite observations, laboratory experiments, multi-scale models and statistical data analyses 123 

together with socio-economic analyses. The PEEX research agenda covers spatial scales from regional 124 

to global and temporal scales from seconds to decades (Kulmala et al. 2011b). The scientific results 125 

will be used for developing new climate scenarios on global and regional scales, for constructing 126 

reliable early-warning systems, and for the mitigation and adaptation planning of the Northern societies 127 

in the most efficient way. PEEX aims to contribute to climate policy concerning topics important to 128 

the Northern Eurasian environment helping societies in building a sustainable future.  129 

2. System perspective approach  130 

 131 

Earth (System) Sciences (ESS) has emerged as one of the most rapidly developing scientific 132 

fields. The recent growth of ESS has been facilitated by the importance to understand the fundamental 133 

scientific processes of climate change and air quality, as well as the increasing impact of this research 134 

area. The development has mainly taken place among natural sciences, while the collaboration between 135 

natural and social sciences to tackle climate change issues has started to emerge relatively slowly. A 136 

multi- and cross-disciplinary approach is needed to advance the solution-oriented understanding of 137 

grand challenges and to apply new knowledge for reliable climate scenario development, mitigation 138 

and adaptation, as well as early warning system development. In addition to enhanced collaboration 139 

between different branches of science, there is a need for a next generation of multidisciplinary 140 

scientists able to connect the scientific issues together with an understanding of societal dimensions 141 

related to the grand challenges.  142 

Climate change can be considered as the main driving force for system changes and their 143 

feedback dynamics, especially in the Arctic-boreal regions. It has already been estimated that the future 144 

warming in Northern high latitudes regions will be, on average, larger than that to be experienced at 145 
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lower latitudes (IPCC, 2013, 2014). The climate change driven processes taking place in the Arctic 146 

provide a good example on how important it is to quantify feedback dynamics and at the same time 147 

study the specific research topics from the land-atmosphere-hydrosphere-cryosphere-societal system 148 

perspective. E.g. the surface radiation balance regulates the melting and freezing of the pack ice, which 149 

in turn is a key climate regulator. Model simulations of Arctic clouds are particularly deficient, 150 

impeding correctly simulated radiative fluxes, which are vital for estimation of the snow/ice-albedo 151 

feedback (Vavrus et al., 2009). Important, yet poorly-quantified players in the Arctic atmospheric 152 

system and climate change are short-lived climate forcers (SLCF), such as black carbon and ozone. 153 

The climatic impacts of SLCFs are tightly connected with cryospheric changes of the land system, and 154 

associated with the human activities. Models display diverse and often poor skill in simulating SLCF 155 

abundances both at the surface and vertically through the troposphere at high latitudes (Eckhardt et al., 156 

2015; Emmons et al., 2015; Monks et al., 2015).  157 

PEEX is setting a research approach where the large-scale research questions are studied from a 158 

system perspective and which are also filling the key gaps in understanding of the feedbacks and 159 

interactions between the land, atmosphere, aquatic and societal systems in the Northern Eurasian region 160 

(Kulmala et al., 2015). We have structured the research agenda so that we have highlighted 3 thematic 161 

research areas per system  (Fig.1). The identification of these key thematic research areas has been 162 

based on bottom-up approach by researchers coming from Europe, Russia and China and participating 163 

PEEX meetings and conferences starting from 2012. The researchers first introduced a wide spectrum 164 

of specific research topics relevant to Northern Eurasian region, which were then evaluated and 165 

classified. This bottom up process led to the so-called “system-based” structure with altogether twelve 166 

thematic research areas. This approach will piece by piece lead into a holistic system understanding 167 

and quantifying the most dominant feedbacks and interactions between the systems and in 168 

understanding the dynamics of Arctic-boreal biogeochemical cycles (e.g. water, carbon, nitrogen, 169 

phosphorus, sulfur).  In our approach, climate change is key driver in the dynamics of the land, 170 

atmosphere, aquatic and societal systems (Kulmala et al. 2015). The large-scale thematic areas of each 171 

system and many of the research highlight topics introduced by the PEEX research agenda are 172 

fundamentally related to climate change driven shifting GHG and SLCF formation processes and their 173 
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primary and secondary feedbacks between systems and bio-chemical systems. When styding the 174 

Arctic-boreal feedback loops in a wider context PEEX agenda addresses China as the most crucial 175 

source areas of atmospheric pollution having a significant impact  on  the chemical composition of the 176 

atmosphere over Northern Eurasia (Monks et al, 2015), keeping in mind that solving air quality – 177 

climate interactions is also the key to practical solutions on local air quality problems in China. 178 

In this paper we introduce the state of the art of the selected thematic research areas and 179 

summarize the future research needs at large scale. This introduction serves a White Paper of the PEEX 180 

research community. The thematic research areas relevant to the Land System are related to “changing 181 

ecosystem processes” (2.1.1), “ecosystem structural changes and resilence” (2.1.2) and “risk areas of 182 

permafrost thawing” (2.3.1). In the Land System research agenda we address the following key issues: 183 

changing boreal forests biosmass, Arctic greening and permafrost processes. The main research areas 184 

of the Atmospheric System research are “the specific characterization of the atmospheric composition 185 

and chemistry” (2.2.1), “urban air quality” (2.3.2.)  “the atmospheric circulation and weather” (2.2.3). 186 

In terms of atmospheric system we address oxidants, trace gases, greenhouse gases and aerosols as 187 

atmospheric key components. We highlight that the future advances in predictidicting the urban air 188 

quality and improving the weather forecasting are strongly based the the atmosphery boundary layer 189 

dynamics research (Holtslag et al. 2013).   190 

The thematic research areas relevant to the Aquatic System are “the Arctic Ocean in the climate 191 

system” (2.3.1), “the Arctic maritime ecosystems” (2.3.2) and “the lakes, wetland and rivers systems” 192 

(2.3.3). Under these research areas, the topics like Arctic sea ice changes, marine gross primary 193 

production and Arctic pelac foodwebs under enviromental changes are focused. Lakes and large-scale 194 

riversystem have multiple roles and aspects of  the physical environements starting from water 195 

chemisty and alge booming, and ending up to carbon and methane dynamics. 196 

The thematic areas of the Societal System have a number of dimensions, but in the first phase 197 

the primary interest lies on studying the consequences of “the increasing use of natural resources” 198 

(2.4.1), on the growing number of  “natural hazards” (2.4.2), and on “the social transformations” (2.4.3) 199 

in the Northern Eurasian region. We see the topics like future Siberian forest area together with fuel 200 

balance, forest fires effecting the carbon and nitrogen balance and sociental dimentions related to 201 
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infrastructure degration as the most important future research areas.  In Chapter 3 we investigate the 202 

connections and interlinks between those 4 systems. 203 

 204 

2.1. Land system – state of the art and future research needs  205 

2.1.1 Changing land ecosystem processes  206 

In the future, many Arctic-boreal processes are sensitively responding to climate change, and 207 

affecting ecosystem productivity and functions. These changes may lead to unprecedented 208 

consequences e.g. in the magnitude of the ecosystem carbon sinks, production of aerosol precursor 209 

gases and surface albedo. We need to first develop methods for indentifying the land regions and 210 

processes that are especially sensitive to climate change. Only after that are we able to analyze their 211 

responses. 212 

Boreal forests are one of the largest terrestrial biomes, and account for around one third of the 213 

Earth’s forested area (Global Forest Watch, 2002 http://www.globalforestwatch.org/). Nearly 70 % of 214 

all boreal forests are located in the Siberian region. The forest biomass, soils and peatlands in the boreal 215 

forest zone together constitute one of the world’s largest carbon reservoirs (Bolin et al., 2000; 216 

Kasischke, 2000; Schepaschenko et al., 2013). Due to their large forest surface areas and huge stocks 217 

of carbon (~320 gigatonnes of carbon; GtC), the boreal and Arctic ecosystems are significant players 218 

in the global carbon budget. Furthermore, permafrost, a dominant feature of Siberian landscapes, stores 219 

around 1672 GtC (Tarnocai et al., 2009). Boreal forests form the main vegetation zone in the catchment 220 

areas of large river systems, so they are an important part of the global water-energy-carbon feedbacks. 221 

The forest biomass forms a climate feedback via the anticipated changes in nutrient availability 222 

and temperatures, impacting carbon sequestered both into the aboveground biomass and soil 223 

compartment. The Siberian forests are currently assumed to be a carbon sink, although with a large 224 

uncertainty range of 0-1 PgC yr-1 (Gurney et al., 2002). However, these ecosystems are vulnerable to 225 

global climate change in many ways, and the effects on ecosystem properties and functioning are 226 

complicated. While higher ambient CO2 concentrations and longer growing seasons may increase plant 227 

growth and productivity, as well as the storage of carbon to soil organic matter (e.g. Ciais et al. 2005, 228 
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Menzel et al., 2006), warming affects respiration and ecosystem water relations in the opposite way 229 

(Bauerle et al., 2012; Parmentier et al., 2011). Expected acceleration of fire regimes might also 230 

substantially impact the carbon balance in Arctic and boreal regions (Shvidenko and Schepaschenko, 231 

2013).  232 

One example of the potentially large feedbacks is the critical role that permafrost plays in 233 

supporting the larch forest ecotone in northern Siberia. The boreal forests in the high latitudes of Siberia 234 

are a vast, rather homogenous ecosystem dominated by larch. The total area of larch forests is around 235 

260 million ha, or almost one-third of all forests in Russia. Larch forests survive in the semi-arid 236 

climate because of the unique symbiotic relationship they have with permafrost. The permafrost 237 

provides enough water to support larch domination, and the larch in turn blocks radiation, protecting 238 

the permafrost from intensive thawing during the summer season. The anticipated thawing of 239 

permafrost could decouple this relationship, and may cause a strong positive feedback, intensifying the 240 

warming substantially. 241 

The ambient temperature, radiation intensity, vegetation type and foliar area are the main 242 

constraints for the biogenic volatile organic compounds (BVOCs) (Laothawornkitkul et al., 2009). This 243 

makes BVOC emissions sensitive to both climate and land use changes, via e.g. increased ecosystem 244 

productivity or the expansion of forests into tundra regions. Although the inhibitory effect of CO2 on 245 

the process level may be important, Arctic greening may strongly enhance the production of BVOCs 246 

in northern ecosystems (Arneth et al., 2007; Sun et al., 2013). Open tundra may also act as a significant 247 

source for BVOCs, especially if the snow cover period changes (Aaltonen et al., 2012; Faubert et al., 248 

2012). This would lead to negative climate feedbacks involving either aerosol-cloud or aerosol-carbon 249 

cycle interactions (Kulmala et al., 2013; 2014; Paasonen et al. 2013), see also Fig.2.  250 

In summary, even small proportional changes in ecosystem carbon uptake and in the turnover of 251 

soil carbon stocks can switch terrestrial ecosystems from a net carbon sink to a carbon source, with 252 

consequent impacts on atmospheric CO2 concentrations and global temperatures (e.g. Bala et al., 2013; 253 

Bodman et al., 2013, Mukhortova et al. 2015). This process has already been observed, particularly in 254 

disturbed forests of Northern Asia (Shvidenko and Schepaschenko 2014). Currently, we do not fully 255 

understand all the factors influencing carbon storage, or the links between biogeochemical cycles of 256 
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carbon, water and nutrients in a changing climate. However, the changes in these processes may be 257 

large, and their impacts may either amplify or decrease climate change, especially in the high northern 258 

latitudes. 259 

2.1.2  Ecosystem structural changes and resilience 260 

The ecosystem structural changes are tightly connected to adaptation needs, and to the 261 

development of effective mitigation and adaptation strategies. Predictions concerning the shifting of 262 

vegetation zones are important for estimating the impacts of the region on future global GHG, BVOC 263 

and aerosol budgets. Furthermore, natural and anthropogenic stresses, such as land use changes and 264 

biotic and abiotic disturbances, are shaping ecosystems in Arctic and boreal regions, and have many 265 

important feedbacks to climate (see e.g. the review by Gauthier et al., 2015). In a warmer climate, 266 

northern ecosystems may become susceptible to insect outbreaks, drought, devastating forest fires and 267 

other natural disasters. Also human impacts may cause sudden or gradual changes in ecosystem 268 

functioning. The ecosystem resilience is dependent on both the rate and magnitude of these changes. 269 

The recent studies come to a conclusion that current estimates very likely overestimate the resilience 270 

of global forests and particularly boreal forests (Allen et al., 2015). In some cases, the changes may 271 

lead to system imbalance and crossing a tipping point, after which the effects are irreversible. One of 272 

the most relevant research topics for the land system are to determine the structural changes and tipping 273 

points of the ecosystem changes in the Northern Pan Eurasian region. 274 

Part of the expected ecosystem structural changes is related to the lengthening of the growing 275 

season taking place the Arctic-boreal regions due to climate change. The phenomenon called “Arctic 276 

Greening” is due to increased plant biomass growth and advancing tree lines, turning previously open 277 

tundra into shrubland or forest (Myneni et al., 1997; Xu et al., 2013). However, browning as a proxy 278 

of decreased productivity was observed during recent decades in many boreal regions (Lloyd and Bunn 279 

2007), including vast territories of Central Siberia together with a general downward trend in basal area 280 

increment after the mid-20th century (Berner et al., 2013). Current predictions on the extent and 281 

magnitude of these processes vary significantly (Tchebakova et al., 2009; Hickler et al., 2012; 282 

Shvidenko et al., 2013). It has been estimated that the northward shift of bioclimatic zones in Siberia 283 
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will be as large as 600 km by the end of this century (Tchebakova et al., 2009). By taking into account 284 

that the natural migration rate of boreal tree species cannot exceed 200-500 m per year, such a forecast 285 

implies major vegetation changes in huge areas. This has important biophysical consequences and 286 

climatic feedbacks. Changes in vegetation cover can e.g. lead to albedo changes and therefore higher 287 

net absorption of radiation of regions covered by forests compared to open vegetation (Jeong et al., 288 

2011). This modifies the local heat and vapour fluxes, and affects boundary layer conditions as well as 289 

both local to larger-scale climate (Sellers et al., 1997).  290 

Northern peatlands contain a significant part of the global soil organic matter reservoirs (45% of 291 

the world's soil carbon; Post et al., 1982), and comprise one of the world’s largest GHG sources (in 292 

particular CH4) (IPCC 2013). The hydrological conditions are a major factor in determining the 293 

functioning of peatlands as carbon source or sink, and the carbon balance of the vast northern peatlands 294 

is extremely sensitive to human influence, be it either management or climate change. For example, 295 

thawing of permafrost peatlands in tundra regions might change tundra ecosystems from a stable state 296 

into a dynamically changing and alternating land-water mosaic, with dramatic impacts on their GHG 297 

production (Heikkinen et al., 2004; Repo et al., 2009). Today, peatland management activities range 298 

from drainage and peat harvesting to establishing crop plantations and forests.  A complete 299 

understanding of the climatic effects of peatland management remains a challenging question 300 

(Maljanen et al., 2010).  301 

Northern ecosystems are frequently suffering from increased stresses and deterioration. There is 302 

seldom a single and clear cause for forest dieback, but rather the ecosystems are suffering from multiple 303 

stresses simultaneously (e.g. Kurz et al. 2008 a,b; Allen et al., 2010). This implies that a single stress 304 

factor may not be very dramatic for the resilience of the system, but when occurring simultaneously in 305 

combination with others, the system may cross a threshold (i.e. tipping point), and this may have 306 

dramatic consequences. Such perturbations and disturbances can include long-term pollutant 307 

exposures, but also stochastic events such as fires, flooding, windstorms or insect population outbreaks, 308 

and human activities such as deforestation or the introduction of exotic plant or animal species. 309 

Disturbances of sufficient magnitude or duration can profoundly affect an ecosystem, and may force 310 

an ecosystem to reach a threshold beyond which a different regime of processes and structures 311 
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predominates. Climate warming, precipitation changes during growth periods and permafrost changes 312 

will substantially increase water stress, and consequently increase the risk of mortality for trees. This 313 

process is already clearly intensified over the entire circumpolar boreal belt (Allen et al., 2010). As a 314 

consequence, ecosystems may turn into carbon sources rather than sinks (Parmentier et al., 2011).  315 

In the future, boreal forest diebacks may occur due to mass infections of invasive pathogens or 316 

herbivores, such as the autumnal moth (Epirrita autumnata) or mountain bark beetle (Dendroctonus 317 

ponderosae), that have previously been climatically controlled by harsh winter conditions. The growth 318 

and life cycles of herbivores or their habitat conditions may change in such a way that the outbreak 319 

frequencies and intensities of previously relatively harmless herbivore populations increase (Hunter et 320 

al., 2014). At the same time as climate is changing, boreal vegetation is also exposed to increased 321 

anthropogenic influences by pollutant deposition and land use changes (Dentener et al., 2006; Bobbink 322 

et al., 2010; Savva and Berninger, 2010). Large industrial complexes may lead to local forest diebacks, 323 

as has been observed in the Kola region (e.g. Nöjd and Kauppi, 1995; Tikkanen, 1995; Kukkola et al., 324 

1997) and in some regions of Siberia (Baklanov et al., 2013). Societal transformations may lead to 325 

abandoning of agricultural land or deterioration of previously managed forests. 326 

2.1.3. Risk areas of permafrost thawing 327 

The major part of the Northern Eurasian geographical region is covered by continuous 328 

permafrost. The fate of permafrost soils in high latitudes is important for global climate with regard to 329 

all greenhouse gases. Thawing of permafrost will also substantially alter the hydrological regimes, 330 

particularly in Northern Asia that will lead to increasing water stress in forests and explosive 331 

enlargement of fire extent and severity as well as post fire successions (Shvidenko et al. 2013).  These 332 

scenarios underline the urgent need for systematic permafrost monitoring, together with GHG 333 

measurements in various ecosystems. The treatment of permafrost conditions in climate models is still 334 

not fully developed (Bala et al., 2013). The major question is, how fast will the permafrost thaw proceed 335 

and how will it affect ecosystem processes and ecosystem-atmosphere feedbacks, including hydrology 336 

and greenhouse gas cycling. 337 
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Understanding of the feedbacks between the carbon and water cycling, ecosystem functioning 338 

and atmospheric composition related to permafrost thawing is one of the important topics of the land 339 

system (Heimann and Reichstein, 2008; Schuur et al., 2009; Arneth et al., 2010). In high-latitude 340 

ecosystems with large, immobile carbon pools in peat and soil, the future net CO2 and CH4 exchange 341 

will depend on the extent of near-surface permafrost thawing, local thermal and hydrological regimes, 342 

and interactions with the nitrogen cycle (Tarnocai et al., 2009). The extra heat produced during 343 

microbial decomposition could accelerate the rate of change in active-layer depth, potentially triggering 344 

a sudden and rapid loss of carbon stored in carbon-rich Siberian pleistocene loess (yedoma) soils 345 

(Khvorostyanov et al., 2008). 346 

The connection between the climate and the thermal conditions in the subsurface layers (soil and 347 

bedrock) is an important aspect. The warming of the atmosphere will inevitably result in the warming 348 

of the permafrost layer, and is easily observed in deep borehole temperature data. However, the changes 349 

depend on the soil and rock type as well as on the pore-filling fluids. As long as the pore-fill is still ice, 350 

the climatic changes are reflected mainly in the thickness of the active layer, and in slow diffusive 351 

temperature changes of the permafrost layer itself. In areas where the ground is dominated by low 352 

ground temperatures and thick layers of porous soil types (e.g., sand, silt, peat), the latent heat of the 353 

pore filling ice will efficiently ‘buffer’ and retard the final thawing. This is one of the reasons why 354 

relatively old permafrost exists at shallow depths in high-porosity soils. On the other hand, quite 355 

different conditions prevail in low-porosity areas, e.g. in crystalline rock areas. 356 

The permafrost dynamics affects  methane fluxes in many ways. Hot spots such as mud ponds 357 

emitting large amounts of CH4 may form when permafrost mires thaw. In contrast, lakes have 358 

occasionally disappeared as a result of the intensification of soil water percolation (Smith et al., 2005). 359 

The rapid loss of summer ice, together with increasing temperature and melting ice complex deposits, 360 

results in coastal erosion, physical destruction of surface in hilly areas, activation of old carbon and 361 

elevated CO2 and CH4 emissions from sea bottom sediments (Vonk et al., 2012). High methane 362 

emissions have been observed from the East Siberian Arctic self (Shakhova et al., 2010).  363 

2.2 Atmospheric system - state of the art and future research needs 364 
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2.2.1 Atmospheric composition and chemistry 365 

Atmospheric composition plays a central role in the Northen Eurasian climate system. In 366 

addition to greenhouse gases and their biogeochemical cycling discussed in more detail in section 3.2, 367 

key compounds in this regard are ozone and other oxidants, carbon monoxide, numerous organic 368 

compounds as well as different types of aerosols and their precursors, SO2 will be discussed in chapter 369 

3. At the moment, there is a serious gap in our knowledge on tropospheric composition and chemistry 370 

over Russia and the China, with particularly few observations programs being active over Siberia 371 

(Crutzen et al., 1998; Ramonet et al., 2002; Paris et al., 2008; Kozlova et al., 2008; Uttal et al., 2015, 372 

Paris et al., 2010;  Sasakawa et al., 2010;  Saeki et al., 2013; Ding et al., 2013a, 2013b; Berchet et al., 373 

2015; Heimann et al., 2014). 374 

There is thus an urgent need for harmonized, coordinated and comprehensive greenhouse gas, 375 

trace gas and aerosol in-situ observations over Northern Eurasia and China (long-term transport aspect) 376 

comparable to European and circumpolar data observations. In Fig. 3 we illustrate the geographical 377 

coverage of the ground stations which will be part of the coordinated, coherent and hierarchic 378 

observation netwrok in the Norther Eurasian region and in China.  379 

2.2.1.1 Main pollutants 380 

Little is known about whether and how the regional ozone budget in northern Pan-Eurasia differs 381 

from that in the rest of the northern hemisphere (Ding et al., 2008; Berchet et al., 2013). Arctic 382 

tropospheric ozone is significantly influenced by long-range import of ozone and precursors from mid-383 

latitude sources, as well as by boreal wildfires (Ding et al., 2009; Wespes et al., 2012). Observations 384 

from individual plumes suggest that O3 production in boreal wildfire plumes may be weaker, or even 385 

turn into net destruction, compared to fire plumes at lower latitudes (Jaffe and Wigder, 2012). However, 386 

recent modeling work has suggested that boreal fires produce a substantial large-scale enhancement in 387 

summertime ozone at high latitudes, which appears to be highly sensitive to differences in partitioning 388 

of reactive nitrogen among models (Arnold et al., 2015). Given their importance for air quality and 389 

global greenhouse gas budget, more atmospheric measurements of O3, its precursors and other 390 
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pollutants over Siberia are needed (see Elansky, 2012). This is particularly the case in light of 391 

increasing local Arctic sources of ozone precursors (NOx, VOCs) from e.g. shipping and fossil fuel 392 

resource extraction (Roiger et al., 2015). Such datasets would be particularly useful for the evaluation 393 

of atmospheric chemistry models and satellite products.  394 

The changes in the abundance of anthropogenic aerosols and their precursors in Northern Eurasia 395 

have been extensive during the last decades (Granier et al., 2011), and this has almost certainly 396 

contributed to the very different regional warming patterns over these areas (e.g. Shindell and Faluvegi, 397 

2009). The main anthropogenic aerosols  in this context are primary carbonaceous particles, consisting 398 

of organic and black carbon, as well as secondary sulfate particles produced during the atmospheric 399 

transport of sulfur dioxide. These aerosols cause large perturbations to the regional radiation budget 400 

downwind of major source areas in the Northern Eurasian region, and the resulting changes in cloud 401 

properties and atmospheric circulation patterns may be important even far away from these sources 402 

(Koch and Del Genio, 2010; Persad et al., 2012). In the snow-covered parts of Eurasia, long-range 403 

transported aerosols containing black carbon and deposited onto snow tend to enhance the spring and 404 

early-summer melting of the snow, with concomitant warming over this region (Flanner et al., 2009; 405 

Goldenson et al., 2012; Meinander et al., 2015; Atlaskina et al., 2015). 406 

The most important natural aerosol type over large parts of Eurasia is secondary organic aerosol 407 

originating from atmospheric oxidation of biogenic volatile organic compounds (BVOC) emitted by 408 

boreal forests and possibly other ecosystems. Studies conducted in the Scandinavian part of the boreal 409 

zone indicate that new-particle formation associated with BVOC emissions is the dominant source of 410 

aerosol particles and cloud condensation nuclei during summer time (Mäkelä et al., 1997; Kulmala et 411 

al., 2001; Tunved et al., 2006; Asmi et al., 2011; Hirsikko et al., 2011). The production of secondary 412 

organic aerosols associated with BVOC emissions has been estimated to induce large direct and ndirect 413 

radiative effects over the boreal forest zone (Spracklen et al., 2008; Tunved et al., 2008; Lihavainen et 414 

al., 2009, 2015; Scott et al., 2014). The few continuous measurement data sets from Siberia suggest 415 

similarities in the frequency and seasonal pattern of new particle formation events between Siberia and 416 

Nordic stations (Dal Maso et al., 2007; Arshinov et al., 2012; Asmi et al., 2015), yet little is known 417 
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about the overall contribution of biogenic emissions to aerosol number or mass concentrations, or to 418 

the cloud condensation nuclei budget, in Pan-Eurasia.  419 

Other important natural aerosol types in Pan-Eurasia are sea spray, mineral dust and primary 420 

biogenic aerosol particles. Sea spray aerosols makes an important contribution to the atmospheric 421 

aerosol over the Arctic Ocean and its coastal areas (Zábori et al., 2012, 2013), and influences cloud 422 

properties over these regions (Tjernström et al., 2013). The climatic effects of sea spray are expected 423 

to change in the future as a result of changes in the sea ice cover and ocean temperatures (Struthers et 424 

al., 2011). Mineral dust particles affect regional climate and air quality over large regions in Asia, 425 

especially during periods of high winds and moderate precipitation. Mineral dust and primary 426 

biological aerosol particles (PBAP) particles are also effective ice nuclei (Hoose and Möhler, 2012), 427 

and have the potential to influence the radiative and other properties of mixed-phase cold clouds in the 428 

arctic-boreal regions. Over Pan-Eurasia, PBAP typically contributes more than 20% of PM2.5 organic 429 

aerosol mass concentrations (Heald and Spracklen, 2009) and 25% of supermicron aerosol number 430 

concentrations (Spracklen and Heald, 2014). Ice nucleation, in general, is one of the key microphysical 431 

processes in the atmosphere that remain ill understood. However, a novel theoretical approach 432 

(Laaksonen, 2015; Laaksonen and Malila, 2016) has been shown to be superior to older theories in the 433 

case of water nucleation on solid surfaces, and it may open a completely new avenue in the studies of 434 

atmospheric ice formation. 435 

Satellites provide information about spatial distributions of the column-integrated concentrations 436 

of aerosols (e.g., de Leeuw and Kokhanovsky, 2011) and various trace gases including ozone and its 437 

precursors (Burrows et al., 2011). These atmospheric constituents are generally retrieved using passive 438 

instruments which have a good sensitivity near the surface. However, retrieving information on the 439 

near-surface concentrations of pollutants requires assumptions on their vertical distributions. For 440 

instance, the retrieval of tropospheric ozone from satellite observations requires correction for the high 441 

concentrations in the upper troposphere and lower stratosphere. For aerosols, which can only be 442 

retrieved in clear sky conditions, the situation may be complicated when disconnect layers are present 443 

with different types of aerosols. A solution may be the retrieval of aerosol vertical variation or the 444 

height of the aerosol layer using, e.g. active instruments (lidars), or retrieval using spectrally-resolved 445 
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observations in the Oxygen-A band (e.g. Hollstein and Fisher, 2013) or, instruments providing multiple 446 

viewing algorithms such as MISR (Nelson et al., 2013) or AATSR (Virtanen et al., 2014). Another 447 

complication for aerosols may be the vertical variation of the physical and chemical properties which 448 

render it difficult to obtain closure between column and ground-based in situ measurements (Zieger et 449 

al., 2015 and references cited therein). Nevertheless, good progress has been made in aerosol retrieval 450 

and column-integrated aerosol measurements (AOD) from satellites and ground-based observations 451 

compare favorably (e.g., de Leeuw et al., 2015; Kolmonen et al., 2015). Measurements of trace gases 452 

from space using wavelengths in the thermal infrared suffer from low sensitivity in the lower 453 

troposphere (Pommier et al., 2010). All these factors may render the comparison against local ground-454 

based in-situ observations difficult, although a possible way out could be the use of chemical transport 455 

models constrained by the satellite column measurements (e.g., de Laat et al., 2009; Stavrakou, 2012; 456 

2014), possibly together with sub-orbital airborne measurements of relevant species. Satellite-457 

measured AOD has been successfully applied to obtain information on ground based aerosol mass 458 

concentrations (PM2.5) (Xu et al., 2015; van Donkelaar er al, 2015). Also the use of multiple satellite 459 

instruments, with different characteristics, is proposed to obtain more accurate information on transport 460 

of aerosols and trace gases and their vertical distribution (e.g., Naeger et al. 2015). 461 

2.2.1.2. Large-scale pollutant transport and sources 462 

Of particular interest is the pollutant transport to Arctic areas, where they can influence the 463 

radiation budget and climate by various ways (Stohl, 2006; Warneke et al., 2009; Meinander et al., 464 

2013; Eckhardt et al., 2015). Model simulations suggest that European emissions dominate Arctic 465 

pollutant burdens near the surface, with sources from North America and Asia more important in the 466 

mid and upper troposphere (Monks et al., 2015). The impact and influence of China and its polluted 467 

megacities on Arctic and boreal areas is topic of key importance, given recent and rapid Chinese 468 

industrialization. Inter-continental pollution transport has also become of increased concern due to its 469 

potential influence on regional air quality. The pollutant export from North America and Asia has been 470 

characterized by intensive field campaigns (Fehsenfeld et al., 2006; Singh et al., 2006), but long-term 471 

research approaches are lacking. 472 
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Emissions from forest fires (van der Werf et al., 2006; Sofiev et al., 2013) and from agricultural 473 

fires in southern Siberia, Kazakhstan and Ukraine (Korontzi et al., 2006) in spring and summer are 474 

large sources of trace gases such as carbon monoxide (Nédélec et al., 2005), as well as aerosol paticles. 475 

Aerosols emitted by forest fires are of particular interest, since the strength of this source type depends 476 

on both climate change and human behavior (Pechony and Shindell, 2010), and since particles emitted 477 

by these fires have potentially large radiative effects over the Eurasia (Randersson et al., 2006). We 478 

need comprehensive top-down emissions estimates, using inverse modeling constrained by satellite 479 

observations, in order to provide quantitative information on the source strength of aerosols and trace 480 

gases emitted by open fires. 481 

Air pollution in monsoon Asia has two main characteristics. First, the total pollutant emission 482 

rate from fossil fuel combustion sources is very high, leading to a high concentration of primary and 483 

secondary pollutants in Asia, especially in eastern China and northern India. Observations show that 484 

Asia is the only region where the concentrations of key pollutants, such as nitrogen oxides (Richter et 485 

al., 2005; Mijling et al., 2013) and their end-product ozone (Ding et al., 2008; Wang et al., 2009; 486 

Verstraeten et al., 2015), are still increasing. Second, in addition to the anthropogenic fossil fuel 487 

combustion pollutants, monsoon Asia is also influenced by intensive pollution from seasonal biomass 488 

burning and dust storms. For example, intensive forest burning activities often take place in south Asia 489 

during spring and in Siberia duing summer, whereas an intensive man-made burning of agricultural 490 

straw takes place in the north and east China plains. Dust storms frequently occur in the Taklimakan 491 

and Gobi deserts in northwest China, and thisdust is often transported over eastern China, southern 492 

China, the Pacific Ocean and even the entire globe (Nie et al., 2014). After mixing with other 493 

anthropogenic pollutants, biomass burning and mineral dust aerosols have been found to cause complex 494 

interactions in the climate system (Ding et al., 2013; Nie et al., 2014). 495 

2.2.2. Urban air quality  496 

The northern Eurasian urban environments are characterized by cities with strong anthropogenic 497 

emissions from local industry, traffic and housing in Russia and China, and by megacity regions with 498 

alarming air quality levels like those of Moscow and Beijing. Bad air quality has serious health effects 499 
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and it damages ecosystems. In Beijing, for example, concentrations of atmospheric fine particles have 500 

been found to be over 10 times higher than the safe level recommended by the World Health 501 

Organization (WHO) (Zheng et al., 2015).  Furthermore, atmospheric pollutants and oxidants play a 502 

central role in climate change dynamics via their direct and indirect effects on global albedo and 503 

radiative transfer. A deeper understanding of the unpredicted chemical reactions between pollutants 504 

and identification of the most relevant feedbacks between air quality and climate at northern high 505 

latitudes and in China is the most urgent task helping us to find also the practical solutions for the 506 

healthy air (Kulmala, 2015). 507 

In Siberian cities, the air quality is strongly linked to climatic conditions typical for Siberia. 508 

Stable atmospheric stratification and temperature inversions are predominant weather patterns for more 509 

than half of the year. This contributes to the accumulation of different pollutants in the lowest layers 510 

of the atmosphere, thus increasing their impact on ecosystems and humans. In addition to the severe 511 

climatic conditions, man-made impacts on the environment in industrial areas and large cities continue 512 

to increase. In winter time, shallow and stably-stratified PBLs  typical for northern Scandinavia and 513 

Siberia are especially sensitive to even weak impacts and, therefore, deserve particular attention, 514 

especially in the conditions of environmental and climate change (Zilitinkevich and Esau, 2009; Esau 515 

et al., 2012;  Davy and Esau, 2014; Wolf et al., 2014 ; Wolf and Esau, 2014). Unstably-stratified PBLs 516 

interact with the free atmosphere mainly through turbulent ventilation at the PBL upper boundary 517 

(Zilitinkevich, 2012). This mechanism, still insufficiently understood and poorly modeled, controls the 518 

development of convective clouds, as well as dispersion and deposition of aerosols and gases, which 519 

are essential features of hot waves and other extreme weather events.  520 

The worst air pollution episodes are usually associated with stagnant weather conditions with a 521 

shallow planetary boundary layer (PBL), which promotes the accumulation of intensively emitted 522 

pollutants near the surface. The lower PBL is also influenced by the heavy pollution itself through its 523 

direct or indirect effects on solar radiation and hence the surface sensible heat flux (e.g. Ding et al., 524 

2013b). The boundary layer -air pollution feedback will decrease the height of the PBL and result in 525 

an even more polluted PBL (Ding et al., 2013b; Wang et al., 2014, Petäjä et al., 2016). Therefore, 526 

considering the complex land surface types (city clusters surrounded by agriculture areas) and pollution 527 
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sources and improving our understanding of the associated feedbacks is very important for forecasting 528 

extreme air pollution episodes and for long-term policy making. In order to understand this topic, more 529 

vertical measurements using aircraft, balloons and remote sensing techniques, as well as advanced 530 

numerical models including all relevant processes and their couplings, are needed. 531 

PBLs are subject to diurnal variations, absorb surface emissions, control microclimate, air 532 

pollution, extreme colds and heat waves, and are sensitive to human impacts. Very stable stratification 533 

in the atmosphere above the PBL prevents the compounds produced by the surface fluxes or surface 534 

emissions from efficiently penetrating from the PBL into the free atmosphere. This means  that the 535 

PBL height and turbulent fluxes through the PBL upper boundary control local features of climate and 536 

extreme weather events, such as the heat waves associated with convection, or the strongly stable 537 

stratification events triggering the air pollution (Zilitinkevich et al., 2015). This concept (equally 538 

relevant to the hydrosphere) illustrates the importance of modeling and monitoring the atmospheric 539 

PBL height, which varies from dozens to thousands of meters (Zilitinkevich, 1991; Zilitinkevich et al., 540 

2007; Zilitinkevich and Esau, 2009). To carry our a comprehensive inventory of the PBL height over 541 

Northern Eurasia is urgently needed. 542 

2.2.3. Atmospheric circulation and weather 543 

The ongoing environmental change and its amplification in the Northern Eurasian pose special 544 

challenges to the prediction of weather-related hazards, and also to long-term impacts. A key question 545 

is how will the atmospheric dynamics (synoptic scale weather, boundary layer characteristics) change 546 

in Arctic and boreal regions. The recent changes in the Arctic sea-ice have been much more rapid than 547 

models and scientists anticipated about ten years ago. The role of Arctic Ocen in the climate system 548 

and sea-ice changes have impacted mid-latitude weather and climate, with central and eastern Eurasia 549 

among the regions with strongest effects (Vihma, 2014; Overland et al., 2015) (see section 2.3.1).  550 

2.2.3.1 Atmospheric dynamics  551 

The reliability of weather forecasts, and the extension of the time-range of useful forecasts is 552 

needed for minimizing economic and human losses from extreme weather and extreme weather related 553 
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natural hazards. In Europe, this range is currently on average about 8−9 days (Bauer et al., 2015), which 554 

allows reliable early warnings to be issued for weather related hazards, such as windstorms and extreme 555 

precipitation events with flash floods. The time-range of useful forecasts has typically increased by a 556 

day per decade over the past three decades (Uppala et al., 2005). In the Northern Eurasian region, 557 

improved predictions can be used, for instance, to better prediction of thermal comfort conditions in 558 

Northen cities (Konstantinov et.al, 2014). A strong urban heat island effect has already been observed 559 

in urban areas of the Arctic with complex spatial and temporal structures (Konstantinov et al., 2015).   560 

Understanding of the planetary boundary layer (PBL) processes are particularly important for  561 

improving the weather predictions. The representation of boundary layer clouds, and their further 562 

coupling to convection in stable conditions is not currently well understood. Quantification of the 563 

behavior of the PBL over the Northern Eurasian region is needed in analyses of spatial and temporal 564 

distribution of the surface fluxes, in predictions of microclimate and extreme weather events, and in 565 

modeling clouds and air quality.  566 

The development of diagnostic and modeling methods for aero-electric structures is important 567 

for a study of both convective and electric processes in the lower troposphere (Shatalina et al., 2005; 568 

2007). Convection in the PBL leads to the formation of aero-electric structures, manifested in ground-569 

based measurements as short-period electric-field pulsations with periods from several to several 570 

hundreds of seconds (Anisimov et al., 1999; 2002). The sizes of such structures are determined by the 571 

characteristic variation scales of aerodynamic and electrodynamics parameters of the atmosphere, 572 

including the PBL and surface-layer height, as well as by the inhomogeneties inthe ground (water) 573 

surface. Formed as a result of convective processes and the capture of positive and negative charged 574 

particles (both ions and aerosols) by convective elements (cells), aero-electric structures move with the 575 

air flow along the Earth's surface. The further evolution of convective cells results, in particular, in 576 

cloud formation. 577 

 578 

 579 

 580 
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2.2.3.2 Global Electri Circuit 581 

The global electric circuit (GEC) is an important factor connecting the solar activity and upper 582 

atmospheric processes with the Earth’s environment, including the biosphere and climate. 583 

Thunderstorm activity maintains this circuit, whose appearance is dependent on atmospheric 584 

conductance variations over a wide altitude range. The anthropogenic impact on the GEC through 585 

aviation, forest fires and electromagnetic pollution has been noted with great concern, and the 586 

importance of lightning activity in climate processes has been recognized. The GEC forms because of 587 

two reasons: the continuous operation of ionization sources, which provides an exponential growth of 588 

the conductivity in the lower atmosphere, and the continuous operation of thunderstorm generators, 589 

providing a high rate of electrical energy generation and dissipation in the troposphere. Therefore, the 590 

GEC is influenced by both geophysical and meteorological factors, and can serve as a convenient 591 

framework for the analysis of possible inter-connections between atmospheric electrical phenomena 592 

and climate processes. Further exploration of the GEC as a diagnostic tool for climate studies requires 593 

accurate modeling of the GEC stationary state and its dynamics. Special attention should be paid to the 594 

observations and modeling of generators (thunderstorms, electrified shower clouds, mesoscale 595 

convective systems) in the global circuit. 596 

2.3 Aquatic system - state of the art and future research needs 597 

2.3.1 The Arctic Ocean in the climate system  598 

The essential processes related to the interaction between the Arctic ocean and other components 599 

of the Earth system include the air-sea exchange of momentum, he and matter (e.g. moisture, aerosol, 600 

trace gases, CO2, and CH4), and the dynamics and thermodynamics of sea ice. The most dramatic 601 

change in the Arctic Ocean has been the rapid decline of the sea ice cover. Since the early the 1980s, 602 

the Arctic sea ice extent has decreased by roughly 50% in summer and autumn (Cavalieri and Parkinson 603 

2012), while the winter sea ice thickness in the central Arctic has decreased by approximately 50 % 604 

(Kwok and Rothrock 2009). Arctic sea ice changes have serious teleconncetions. Despite the warming 605 

climate, wintertime cold spells in East Asia have become more frequent, stronger and longer lasting in 606 
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this century compared with the 1990s (Kim et al., 2014).  It also seems that the strong decline of the 607 

Arctic sea ice has favored atmospheric pressure patterns that generate cold-air outbreaks from the 608 

Arctic to East Asia (Mori et al., 2014; Kug et al., 2015; Overland et al., 2015). The reasons for and the 609 

future evolution of the sea ice decline, as well as its effects on the ocean, atmosphere and surrounding 610 

continents are among the actual study topics of the Arctic climate system. Other major issues include 611 

the role of the ocean in the Arctic amplification of climate change, greenhouse gas exchange between 612 

the ocean, sea ice and atmosphere, and aerosol budgets in the marine Arctic (Smedsrud et al., 2013). 613 

The key question here is related to the changes of sea ice extent and thickness, and to the terrestrial 614 

snow cover change. 615 

Many of the processes considered to be responsible for the Arctic amplification of climate 616 

warming are related to the ocean and sea ice (Döscher et al., 2014). Among these, the snow/ice albedo 617 

feedback has received the most attention (e.g. Flanner et al., 2011). This  feedback is the largest when 618 

sea ice is replaced by open water, but the feedback starts to play a significant role already in spring 619 

when the snow melt on top of sea ice beging. This is because of the large albedo difference between 620 

dry snow (albedo about 0.85) and wet, melting, bare ice (albedo about 0.40). More work is needed to 621 

quantitatively understand the reduction of snow/ice albedo during the melting season, including the 622 

effects of melt ponds and pollutants in the snow. Other amplification mechanisms related to the ocean 623 

include increased heat transports from lower latitudes to the Arctic (Polyakov et al., 2010; Döscher et 624 

al., 2014) and fall-winter energy loss from the ocean (Screen and Simmonds, 2010). Furthermore, the 625 

melting of sea ice strongly affects evaporation, and hence the water vapor and cloud radiative feedbacks 626 

(Sedlar et al., 2011), and the PBL thickness which controls the sensitivity of the air temperature to heat 627 

input into the PBL (Esau et al., 2012). The relative importance of the mechanisms affecting the Arctic 628 

amplification of climate warming are not yet well known (See also Pithan and Mauritsen, 2014; Cohen 629 

et al., 2014). 630 

The rapid decline of the Arctic sea ice cover has tremendous effects on navigation and 631 

exploration of natural resources. To be able to predict the future evolution of the sea ice cover, the first 632 

priority is to better understand the reasons, including the role of black carbon (see Bond et al. 2013),  633 

behind the past and ongoing sea ice evolution. Several processes have contributed to the decline of 634 
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Arctic sea ice cover, but the role of these processes needs better quantification (Smedsrud et al., 2013; 635 

Vihma et al., 2014). Further studies are needed on the impacts of changes in cloud cover and radiative 636 

forcing (Kay et al., 2008), atmospheric heat transport (Kapsch et al., 2013) and oceanic heat transport 637 

(Döscher et al., 2014). In addition, as the ice thickness has decreased, the sea ice cover becomes 638 

increasingly sensitive to the ice-albedo feedback (Perovich et al., 2008). Other issues calling for more 639 

attention include the reasons for the earlier onset of the spring melt (Maksimovich and Vihma, 2012), 640 

changes in the phase of precipitation (Screen and Simmonds, 2011), and large-scale interaction 641 

between the sea ice extent, sea surface temperature distribution and atmospheric dynamics 642 

(cyclogenesis, cyclolysis and cyclone tracks) as discussed e.g. by Outten et al. (2013). 643 

In addition to thermodynamic processes, another factor affecting the sea ice cover in the Arctic 644 

is the drift of sea ice. The momentum flux from the atmosphere to the ice is the main driver of sea-ice 645 

drift, which is poorly represented in climate models (Rampal et al., 2011). This currently hinders a 646 

realistic representation of sea-ice drift patterns in large-scale climate models. Furthermore, the 647 

progressively thinning ice pack is becoming increasingly sensitive to wind forcing (Vihma et al., 2012). 648 

In the future, research has to address the main processes that determine the momentum transfer from 649 

the atmosphere to the sea ice, including the effects of atmospheric stratification and sea ice roughness. 650 

To better understand the links between the Arctic Ocean and terrestrial Eurasia, there is a 651 

particular need to study the effects of Arctic sea ice decline on Eurasian weather and climate (Section 652 

2.2.3) Another poorly studied problem related to the Arctic Ocean is the role of sea ice as a source of 653 

aerosol precursors, and in the gas exchange between the ocean and atmosphere (Parmentier et al., 654 

2013). Preliminary results of field studies at the drifting stations North Pole 35 and 36 (Makshtas et al., 655 

2011) showed that the shrinking sea ice cover could be the reason for increasing CO2 uptake from the 656 

atmosphere over the annual cycle, and for the growth of the seasonal amplitude of CO2 concentrations 657 

in the Arctic. 658 

Climate models project that air temperatures and precipitation will increase over the Arctic 659 

Ocean, and may have important effects on the structure of sea ice. Increased snow load on a thinner ice 660 

may in the future cause flooding of sea water on ice in the Arctic, which results in the formation of 661 

snow ice. Increased snow melt and rain, on the other hand, results in increased percolation of water to 662 
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the snow-ice interface, where it re-freezes, forming super-imposed ice (Cheng et al., 2008).  Snow ice 663 

and super-imposed ice have granular structures, and differ thermodynamically and mechanically from 664 

the sea ice that currently prevails in the Arctic. 665 

The changes in the Arctic Ocean have opened some, albeit limited, possibilities for the seasonal 666 

prediction. These are mostly related to the large heat capacity of the ocean: if there is little sea ice in 667 

the late summer and early autumn, this tends to cause large heat and moisture fluxes to the atmosphere, 668 

favoring warm, cloudy weather in late autumn and early winter (Liu et al., 2012; Stroeve et al., 2012). 669 

On the other hand, the reduction of the sea ice thickness may decrease the possibilities for seasonal 670 

forecasting of ice conditions in the most favorable navigation season in late summer - early autumn. 671 

This is because a thin ice is very sensitive to unpredictable anomalies in the atmospheric forcing. For 672 

example, in August 2012 a single storm caused a reduction of the sea ice extent by approximately 1 673 

million km2. The reduced sea ice extent in the winter months has significant impacts on convective 674 

clouds. Observations revealed gradual increasing frequency of the convective cloud fields over 675 

Norwegian and Barents Seas (Chernokulsky and Mokhov, 2012; Esau and Chernokulsky, 2015). The 676 

unusually strong atmospheric convection and weaker virtual potential temperature inversions create 677 

favorable conditions for the extreme Arctic cold outbreaks and meso-scale cyclones known as Polar 678 

Lows (Kolstad et al., 2009).   679 

It is vital to enhance routine observations, data assimilation techniques and prediction models in 680 

order to properly monitor the physical state of the environment. Longer-term impacts of the reduced 681 

ice cover are largely unknown, because the scientific community has had only little time to create new 682 

knowledge on essential climate variables across the domain (see section 2.3.1). To improve 683 

preparedness, new observational evidence is therefore needed to reduce uncertainties in the system 684 

dynamics both on short and longer time-scales. 685 

2.3.2 Arctic marine ecosystem  686 

The ice cover of the Arctic Ocean is undergoing fast changes, including a decline of summer ice 687 

extent and ice thickness (see 2.3.1). This results in a significant increase of the ice-free sea surface in 688 

the vegetation season, and an increase in the duration of the season itself.  The key topic of future 689 
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research  is the joint effect of Arctic warming, ocean freshening, pollution load and acidification on the 690 

Arctic marine ecosystem, primary production and carbon cycle. 691 

New ice-free areas of the Arctic Ocean could result in a pronounced growth of the annual gross 692 

primary production (GPP), increased  phytoplankton biomass and a loss of ice-rich algae communities 693 

associated with the low ice sheet surface (Bluhm et al., 2011).  Progressive increase of oil and natural 694 

gas drilling and transportation over the shelf areas will be escalating the environmental changes of the 695 

Arctic marine ecosystems. Furthermore, there is a risk of irreversible changes in the marine Arctic 696 

productivity and key biogeochemical cycles, and the potential for CO2 absorption by marine ecosystem. 697 

Processes involving the Arctic may also affect adjacent boreal areas.  698 

We do not know how the climatically-induced increase in GPP and phytoplankton biomass 699 

influence the productivity of higher trophic levels of the Arctic ecosystem. In typical Arctic 700 

ecosystems, the most important consumers are large-sized herbivorous copepods, which have lifecycles 701 

synchronized with the temperature as well as the seasonal algae dynamics (Kosobokova, 2012). 702 

Another important consumer community are the small-sized herbivorous copepods, which are 703 

important especially in shelf ecosystems. An increase in the phytoplankton production in fall, together 704 

with an increase in the sea temperature, may influence the populations of small-sized copepods, and 705 

increase their role in mass and energy flow in the ecosystems. Our current understanding on the role of 706 

small copepods in the Arctic ecosystems is limited (Arashkevich et al., 2010). An increase in surface 707 

water temperature may “open the Arctic doors” for new species, and change the Arctic pelagic food 708 

webs, their energy flows and biodiversity.  709 

Increases in the Artic sea temperature may lead to populations from neighboring regions 710 

penetrating the Arctic ecosystem and changing the structure and functioning of native ecosystems. For  711 

example, a 1.5 °C water temperature increase in the Bering Sea during the mid-1970s allowed the 712 

Alaskan Pollock to penetrate the Arctic ecosystem, and occupy a place as a key-stone species for 713 

several years, supporting one of the world largest regional fish harvests (Shuntov et al., 2007). The 714 

Bering Sea ecosystem is very rich compared to the Arctic ecosystems. Currently, we are not aware of 715 

food sources sufficient for supporting massive invader populations even in case of climate-induced 716 

changes in ecosystems. However, the appearance of aggressive new species even in low numbers may 717 
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dramatically impact the sensitive Arctic ecosystems and have effects on the future regulation of 718 

international fisheries in the Arctic.   719 

We have only recently begun to understand the processes that regulate freshwater-marine 720 

ecosystem interactions in estuarine zones (Flint, 2010). The mechanisms determining the impact of 721 

riverine waters over the Arctic shelves and the central deep-basin, and their dependence on specific 722 

climatic forces, are still poorly understood. In order to determine the impact of riverine waters, it is 723 

important to locate the new flagship-stations or permanent observation points in the estuaries of large 724 

Siberian rivers. The changing riverine discharge to the Arctic shelves may amplify the impact of 725 

climate warming on the Arctic marine ecosystems. Degradation of permafrost, soil erosion, changes in 726 

snow cover and summer precipitation may all lead to changes in flood timing, and also to an increase 727 

in the amount of fresh water and materials of terrestrial origin, including organic matter and nutrients, 728 

annually delivered to the artic shelves, and further to the Arctic basin (Gustafsson et al., 2011). Human 729 

driven land use changes to drainage basins, and associated river systems, have the potential to increase 730 

the speed of delivery of pollutants to Arctic sea..  731 

2.3.3 Lakes, wetlands and large-scale river systems  732 

In the last decade, the combined effects of air pollution and climate warming on fresh-water 733 

systems have received increasing attention (Skjelkvåle and Wright, 1998; Schindler et al., 2001, 734 

Alcamo et al., 2002; Sanderson et al., 2006; Feuchtmayr et al., 2009; Sereda et al., 2011). It is important 735 

to understand the future role of Arctic-boreal lakes, wetlands and large river systems, including 736 

thermokarst lakes and running waters of all size, in biogeochemical cycles, and how these changes 737 

affect livelihoods, agriculture, forestry and industry. The water chemistry of lakes without any direct 738 

pollution sources in the catchment area can be expected to reflect regional characteristics of water 739 

chemistry, as well as global anthropogenic processes, such as climate change and long-range air 740 

pollution (Müller et al., 1998; Moiseenko et al., 2001; Battarbee et al., 2005).  The current ground-741 

based stream flow-gauging network over the Norther Eurasian region does not provide adequate spatial 742 

coverage for many scientific and water management applications, including the verification of the land-743 

surface runoff contribution to the recipients of intra-continental runoff. Special field laboratories, with 744 
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joint observation and modeling capabilities in hydrometeorology, sedimentology and geochemistry, 745 

are needed to understand the spreading of tracers and pollutants as part of current and future global 746 

environmental fluxes. 747 

The gradient in water chemistry from the tundra to the steppe zones in Siberia can provide insight 748 

into the potential effects of climate change on water chemistry. In the last century, long-range trans-749 

boundary air pollution led to changes in the geochemical cycles of sulphur, nitrogen, metals and other 750 

compounds in many parts of the world (Schlesinger, 1997; Vitousek et al., 1997a,b; Kvaeven et al., 751 

2001; Skjelkvåle et al., 2001). Environmental pollution problematics includes also the waterborne 752 

spreading of nutrients and pesticides from a local agricultural areas, heavy metals often originating 753 

from mining areas, and other elements and chemicals, such as persistent organic pollutants from urban 754 

and industrial areas. Shifts in downstream loads cause changes in the river and delta dynamics.  One 755 

example of important study area is the Selenga river basin, which is located in the center of Eurasia, 756 

extends from Northern Mongolia into southern Siberia (Russia), and has its outlet at Lake Baikal. The 757 

Selenga river basin and Lake Baikal are located in the upstream part of the Yenisei River system, which 758 

discharges into the Arctic Ocean. Lake Baikal has the largest lake volume in the world at about 23000 759 

km3 (comprising 20 % of all unfrozen freshwater in the world), hosts a unique ecosystem (Granina, 760 

1997), and is an important regional water resource (Garmaev and Khristoforov, 2010; Brunello et al., 761 

2006). There are numerous industries and agricultural activities within the Selenga river basin, which 762 

affect the water quality of the lake and its tributaries. Mining is well-developed in the region (e.g. 763 

Karpoff and Roscoe, 2005; Byambaa and Todo, 2011), and heavy metals accumulate in biota and in 764 

sediments of the Selenga River delta and Lake Baikal (Boyle et al., 1998; Rudneva et al., 2005; 765 

Khazheeva et al., 2006). 766 

In addition to water chemistry, the role of aquatic systems as a net sink or source for atmospheric 767 

CO2 is presently under debate. When precipitation or other processes transport large volumes of organic 768 

matter from land into nearby lakes and streams, the carbon of this matter effectively disappears from 769 

the carbon budget of the terrestrial ecosystem (Huotari et al., 2011). The enhanced decomposition of 770 

soil organic matter may significantly affect the transport of terrestrial carbon to rivers, estuaries and 771 
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the coastal ocean. The contribution of this process to the global and regional carbon budgets is 772 

unknown. Thus, the biological processes taking place in the terrestrial ecosystem (e.g. photosynthesis, 773 

respiration and decomposition) and in the aquatic ecosystem are interlinked. The higher temperature 774 

response of aquatic ecosystems compared to terrestrial ecosystems indicates that a substantial part of 775 

the carbon respired or emitted from the aquatic system must be of terrestrial origin (Yvon-Durocher et 776 

al., 2012). Long-term measurements carried out during all seasons in the littoral zone of Lake Baikal 777 

showed that maximum CO2 sink and emission rates are observed in August and December (during the 778 

pre-ice period), respectively, and the total CO2 flux from the atmosphere into the littoral zone of Lake 779 

Baikal was estimated to be 3–5 g·CO2·m−2 (Domysheva et al., 2013). 780 

The Siberian lakes situated in tundra and forest-tundra zones are in general poorly studied. In 781 

their natural state, their productivity is low, but their ecosystems are highly sensitive to external 782 

influences. Profuse blooming of cyanobacteria is usually associated with industrial effluents and 783 

nutrient run-off. An assessment is needed of the impact of climate change in the northern Eurasian 784 

region on eutrophication, accompanied by blooms of cyanobacteria. Besides, the northern Eurasian 785 

region is characterized by thaw lakes, which comprise 90% of the lakes in the Russian permafrost zone 786 

(Romanovskii et al., 2002). These lakes, which are formed in melting permafrost, have long been 787 

known to emit CH4. The latest observations of the lakes in the permafrost zone of northern Siberia 788 

indicate that they are releasing much more CH4 into the atmosphere than previously thought. Rather 789 

than being emitted in a constant flow, 95 % of CH4 comes from random bubbling in disperse locations. 790 

In coming decades, this could become a more significant factor in global climate change (Walter et al., 791 

2006). 792 

One direct consequence of climate change is the avalanche reproduction of toxic cyanobacteria 793 

(Nodularia, Microcystis, Anabaena, Aphanizomenon, Planktothrix) and diatoms (Pseudo-nitzschia) 794 

(Moore et al., 2008; Paerl and Huisman, 2009). These blooms occur in ponds, lakes, reservoirs and 795 

bays of the sea. Cyanobacteria and diatoms excrete especially dangerous carcinogens and neurotoxins 796 

into the water. The toxicity of some cyanotoxins exceeds the toxicity of currently banned warfare 797 

agents. Antidotes to these toxins do not exist at the moment. 798 
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Water conservation has received an increasing attention in China, and multiple new projects 799 

have been initiated recently. Especially the construction of water transfer, reservoir and irrigation 800 

schemes have received much attention, because central and western regions of China are suffering from 801 

water shortages. These projects are expected to improve water usage and security, especially in 802 

agricultural activities, and to provide sufficient water resources for local societies (Mu, 2014). In China, 803 

the river systems are dominated by rivers flowing from the Tibetan plateau to the Pacific Ocean. 804 

Yangtze is the longest river in China, and flows from Tibetan plateau to Shanghai. The Yellow river is 805 

the second longest in China, and it is characterized by seasonal flooding which causes great economic 806 

and societal losses. The Amur River forms the northern border with Russia. The Haihe River flows 807 

through Beijing to Tianjin, and is under heavy stress from the highly populated and industrialized 808 

capital metropolitan region. Only one river from China flows to the Arctic Ocean: the Ertix River, 809 

which flows to the north through Kazakhstan, across Siberian Russia, finally joining the Ob River 810 

which flows to the Arctic Ocean. 811 

2.4  Social  system - – state of the art and future research needs 812 

2.4.1 Land use and natural resources  813 

The fundamental large-scale task is to estimate, how the human actions such as land use changes, 814 

energy production, the use of natural resources, changes in energy efficiency and the use of renewable 815 

energy sources will influence the environments and societies of the Northern Eurasian region. For 816 

example, the industrial development of Siberia should be considered one of most important drivers of 817 

future land use and land cover changes in Russia.  Siberia is a treasure chest of natural resources of 818 

Russia containing 85 % of its prospected gas reserves, 75 % of its coal reserves and 65 % of its oil 819 

reserves. Siberia has more than 75 % of Russia’s lignite, 95 % of its lead, approximately 90 % of its 820 

molybdenum, platinum, and platinoides, 80 % of its diamonds, 75 % of its gold and 70 % of its nickel 821 

and copper (Korynty, 2009). 822 

During the 20th century, a considerable transformation of landscapes in the tundra and taiga zones 823 

in northern Eurasia has occurred as a result of various industrial, socio-economic and demographic 824 
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processes, leading to the industrial development of previously untouched territories (Bergen et al., 825 

2013). This has led to a decrease in the rural population and, mostly after the 1990s, to decrease in 826 

agricultural activities. There has also been a significant reduction in agricultural land use, and its partial 827 

replacement by zonal forest ecosystems (Lyuri et al., 2010). According to recent estimates, the total 828 

area of abandoned agricultural land in Russia in 1990s-2010s is at about 57 million ha, of which 18 829 

million ha have been restored by forests and 6 million ha of this are located in Asian Russia 830 

(Schepaschenko et al.,2015). As a result, these areas have become active accumulators of atmospheric 831 

CO2 (Kalinina et al., 2009). These new forests (“substituting resources”) could form the basis for 832 

sustainable development in these regions, in case relevant management programs for the forests re-833 

established on abandoned lands are be implemented. 834 

The dynamics of land cover, particularly forests, have been documented since 1961 when the 835 

results of the first complete inventory of Russian forests were published. According to official statistics, 836 

the area of forests in Asian Russia increased by around 80 million ha during 1961-2009, basically 837 

before the middle of the 1990s. This large increase is explained by improved quality of forest 838 

inventories in remote territories, natural reforestation, mostly during the Soviet era as a result of forest 839 

fire suppression, and encroaching forest vegetation in previously non-forested land. Based on official 840 

statistics, the area of cultivated agricultural land in the region decreased by around 10 million ha 841 

between 1990 and 2009. After the year 2000, the forested area in Siberia decreased, mostly due to fire 842 

and the impacts of industrial transformations in high latitudes (Shvidenko and Schepaschenko, 2014). 843 

A critical decrease in the forest area has also been observed in the most populated areas with intensive 844 

forest harvesting particularly in the southern part of Siberia and the Far East. For example, in the 845 

Krasnoyarsk Krai, the total area of forests decreased by 5 %, while that of mature coniferous forests 846 

decreased by 25 %. Overall, the typical processes in these regions are a dramatic decline in the quality 847 

of forests, unsustainable use of forest resources and insufficient governance and forest management in 848 

the region including frequent occurrence of illegal logging, natural and human-induced disturbances 849 

(Shvidenko et al., 2013). 850 

Future land use and land cover changes will crucially depend on how successfully the strategy 851 

of sustainable development of northern territories is developed and implemented. An effective system 852 
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for the adaptation of boreal forests to global change needs to be developed and implemented in the 853 

region. An “ecologization” of the current practices of industrial development of previously untouched 854 

territories would allow for a substantial decrease in the physical destruction of landscapes, and halt the 855 

decline of surrounding ecosystems due to air pollution and water and soil contamination (Kotilainen et 856 

al., 2008). 857 

The expected changes in the climate and environment will have multiple and complicated 858 

impacts on ecosystems, with consequent land cover changes. The alteration of fire regimes and the 859 

thawing of permafrost will intensify the process of “green desertification” in a large area. Climate 860 

warming will have multiple effects on soil-vegetation-snow interactions. For example, in a warmer 861 

climate, mosses and other vegetation grow faster, providing a better thermal insulation of the 862 

permafrost in summer, and better feeding conditions for reindeer. However, snow can also more easily 863 

accumulate on thicker vegetation, thus protecting deeper soil from cooling during the winter (Tishkov, 864 

2012).  865 

Both Russia’s north and east possess abundant mineral resources (Korytnyi, 2009). The resource 866 

orientation of northern and eastern Russia’s economy, which has not changed for centuries, increased 867 

in the post-Soviet period, and has been influenced primarily by the product market. It is also expected 868 

that the natural resource development sector will continue to dominate the economy in the majority of 869 

these territories for the next decades.  870 

A crucial factor in greenhouse gas emission dynamics is the fuel balance. In Russia, features of 871 

the fuel balance has led to an increased pollution. On average, specific emissions in northern and 872 

eastern cities of Russia, where coal accounts for most of the power generation, are three times higher 873 

than in cities where power is generated mainly from gas or fuel oil (Bondur, 2011a). The geographical 874 

location, undeveloped infrastructure, harsh climate and coal burning are the main reasons for increased 875 

levels of anthropogenic pollution in these areas (Bondur and Vorobev, 2015; Bondur 2014). In small 876 

towns, low-capacity boiler rooms are the main source of emissions. Usually, the lack of financial 877 

resources leads to the use of low-quality coal and obsolete boilers. In the steppe zone of Asian Russia, 878 

Mongolia, Kazakhstan and Buryatia, the main source of emissions is the burning of harvest residuals. 879 
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The dynamics of GHG emissions in Russia are largely determined by the economic conditions 880 

of production. The economic crisis in 1990-1998 slowed down environmental degradation to some 881 

extent: emissions generally decreased by 40 %. However, the underlying environmental problems not 882 

only remained unresolved, but significantly deepened, and turned into systemic problems. The most 883 

polluting industries were more resistant to the decline in production. Technological degradation took 884 

place, cleaning systems were eliminated, and production shifted to part-time, leading to inefficient 885 

capacity utilization. Significant amounts of pollution continued to be emitted from the domestic sector. 886 

Emissions decreased in most regions of the country, and in 83% of the cities, but much more slowly 887 

than production. As a result, the specific emissions (per product cost at comparable prices) had grown 888 

by the end of the 1990s in all categories of cities, except cities with more than 1 million inhabitants 889 

(Bityukova et al., 2010). All this can cause negative impacts on ecosystems. For example, there are 890 

about 2 million ha of technogenic deserts around Norilsk. Norilsk is probably the biggest smelter in the 891 

world, and produces more than 2 million tons of pollutants per year (Groisman et al.  2013). 892 

2.4.2 Natural hazards  893 

2.4.2.1 Extreme weather and occuring fires 894 

The frequency and intensity of weather extremes have increased substantially during the last 895 

decades in Europe, Russia and China. Further acceleration is expected in the future (IPCC 2013. The 896 

evolving impacts, risks and costs of weather extremes on population, environment, transport and 897 

industry have so far not been properly assessed in the Northern latitudes of Eurasia. New knowledge 898 

is needed for improving the forecasting of extreme weather events, for  understanding the effect of 899 

wildfires on radiative forcing and atmospheric composition in the region, for estimating the impacts of 900 

weather extremes on major biogeochemical cycles, and for understanding the effects of disturbances 901 

in forests on the emissions of BVOC and VONs (volatile organic nitrogen)  (Bondur, 2011b, 2015; 902 

Bondur, Ginsburg, 2016). How do changes in the physical, chemical and biological state of the different 903 

ecosystems and the inland, water and coastal areas affect the economies and societies in the region, and 904 

vice versa? 905 
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The number of large hydrometeorological events in Russia that cause substantial economic and 906 

social losses has increased by more a factor of two from 2001 to 2013 (State Report, 2014). The main 907 

hazards are related to atmospheric processes on various temporal and spatial scales, including strong 908 

winds, floods and landslides caused by heavy precipitation, fires caused by drought and extreme 909 

temperatures. High temperatures and long droughts can substantially decrease the productivity and 910 

cause high die-back in dark coniferous forests. Hurricanes occur fairly often in the forest zone. For 911 

example, a hurricane destroyed about 78000 ha of forest in the Irkutsk region in July 2004 (Vaschuk 912 

and Shvidenko, 2006). However, there are no reliable statistics on many types of natural hazards. 913 

In order to build scenarios of the future frequency and properties of weather-related hazards, one 914 

should first analyze the atmospheric mechanisms behind the circulation structures responsible for these 915 

hazards: the cyclones related to strong winds and heavy precipitation and anticyclones related to 916 

drought and fires episodes. Studying the cyclone/anticyclone tracks, frequency and intensity can 917 

provide a statistical basis for understanding the geographical distribution and properties of the major 918 

atmospheric hazards and extremes (e.g. Shmakin and Popova, 2006). For future climate projections, 919 

atmospheric hazards and extremes should be interpreted from the viewpoint of cyclone/anticyclone 920 

statistics, and possible changes in the cyclone/anticyclone geography and frequency should be 921 

analyzed.  922 

Fires are the most important natural disturbances in the boreal forests. Fires strongly determine 923 

the structure, composition and functioning of the forest. Each year, about 0.5−1.5 % of the boreal forest 924 

burns. Since boreal forests cover 15 % of the Earth's land surface, this is a significant area (Kasischke, 925 

2000; Conard et al., 2002;  Bondur, 2011b, 2015). Climate change already substantially impacts fire 926 

regimes in northern Eurasia. More frequent and severe catastrophic (mega-) fires have become a typical 927 

feature of the fire regimes. Such fires envelope areas of up to a hundred thousand hectares within large 928 

geographical regions, lead to the degradation of forest ecosystems, decrease the biodiversity, may 929 

spread to usually unburned wetlands, cause large economic losses, deteriorate life conditions and health 930 

of local populations, and lead to “green desertification”, that is irreversible transformation of the forest 931 

cover for long periods (Shvidenko and Schepaschenko, 2013, Bondur, 2011b, 2015). Megafires also 932 

lead to specific weather conditions over the affected areas that are comparable in size with large-scale 933 
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pressure systems (~30 million ha and more). The annually burned area in the Russian territory was 934 

estimated to be 8.2±0.8∙106 ha during 1998-2010, and about two thirds of this area consisted of boreal 935 

forests. For this period, the fire carbon balance (total amount of carbon in the burnt fuel) wass estimated 936 

to be 121±28 Tg C year-1 (Shvidenko et al., 2011). Current model projections suggest that the number 937 

of fires will double by the end of this century. The extent of catastrophic fires escaping from the control 938 

and  fire intensity are  projected to increase. Due to increased severity of fire and deeper soil, carbon 939 

emissions from fires are predicted to increase by a factor of 2 to 4 (Gromtsev, 2002; Malevsky-940 

Malevich et al., 2008; Flanningan et al., 2009; Shvidenko et al., 2011). During and after fires, 941 

significant changes take place in the forest ecosystems, including the soil. These changes include: (i) a 942 

significant amount of biomass is combusted, and large amounts of carbon and nitrogen are released to 943 

the atmosphere in the form of carbon dioxide, other gases or particles (Harden et al., 2000; Kulmala L. 944 

et al. 2014); (ii) fire alters the microbial community structure in the soil, as well as the structure of the 945 

vegetation (Dooley and Treseder, 2012; Sun et al., 2015); (iii) fires determine the structure of the 946 

vegetation, succession dynamics and the fragmentation of forest cover, tree species composition, and 947 

the productivity of boreal forests (Gewehr et al., 2014) and (iv) fire is one of the crucial drivers 948 

controlling the dynamics of the carbon stock of boreal forests (Jonsson and Wardle, 2010; Köster et 949 

al., 2014).  950 

Disturbances resulting from fire, pest outbreaks and diseases also have substantial effects on the 951 

emissions of BVOCs and volatile organic nitrogen compounds (Isidorov, 2001), and consequently on 952 

atmospheric aerosol formation. The acceleration of fire regimes will also affect the amount of black 953 

carbon in the atmosphere, and thus has an effect on the albedo of the cryosphere.  954 

2.4.2.2 Permafrost degradation and infrastructures 955 

The degradation of permafrost will cause serious damage both to infrastructure and to 956 

ecosystems and water systems in the Northern Eurasinan region. This includes, for example, damage 957 

to pipe-lines and buildings, deformation of roads and railroads in Russia, Mongolia and China, 958 

variations in the ion distribution in soil water in young and ancient landslides, cryogenic landslides, 959 

spatial and temporal changes of grass and willow vegetation, saline water accumulation in local 960 
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depressions of the permafrost table, and formation of  highly saline lenses of ground water called ‘salt 961 

traps’. 962 

Due to the large extent of permafrost-covered areas in the northern Eurasia (for ecosystem 963 

effects, see section 2.1.1, 2.1.2), there are numerous infrastructural issues related to possible changes 964 

in the thickness and temperature of the frozen part of the subsurface, and thus in the mechanical soil 965 

properties. Climate change -induced changes in the cryosphere are probably among the most dramatic 966 

issues affecting the infrastructure in the northern Eurasia, as this infrastructure is literally standing on 967 

permafrost. Moreover, an interesting coupling may be related to the decreasing ice-cover of the Arctic 968 

Ocean, which results in increased humidity and precipitation on the continent, and thus a further 969 

thickening and longer duration of the annual snow cover. Snow is a good thermal insulator, and 970 

influences the average ground surface temperature, thus playing a potentially important role in speeding 971 

up the thawing of permafrost.  972 

The increased risk of damage to local infrastructure, such as buildings and roads, can cause 973 

significant social problems, and exerts pressure on the local economies. Thawing permafrost is 974 

structurally weak, and places a variety of infrastructure at risk. For example, the failure of buildings, 975 

roads, pipelines or railways can have dramatic environmental consequences, as seen in the 1994 976 

breakdown of the pipeline to the Vozei oilfield in northern Russia, which resulted in a spill of 160,000 977 

tons of oil - the world’s largest terrestrial oil spill (United Nations Environment Program, 2013). 978 

Maintenance and repair costs related to permafrost thaw and degradation of infrastructure in northern 979 

Eurasia have recently increased, and will most probably increase further in the future. This is an 980 

especially prominent problem in discontinuous permafrost regions, where even small changes in the 981 

permafrost temperature can cause significant damage to infrastructure. Most settlements in permafrost 982 

zones are located on the coast, where strong erosion places structures and roads at risk. After damage 983 

to the infrastructure, local residents and indigenous communities are often forced to relocate. This can 984 

cause changes in, or even disappearances of, local societies, cultures and traditions (United Nations 985 

Environment Program, 2013). 986 

2.4.2.3 Changing sea environments and the risk of accidents in coastal regions 987 
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In northern Eurasia, from the eastern part of the Barents Sea to the Bering Sea, the permafrost is 988 

located directly on the sea coast. In many of these coastal permafrost areas, the sea level rise and 989 

continuing permafrost degradation leads to  significant coastal erosion, and to the possibility of a 990 

collapse of coastal constructions such as lighthouses, ports, houses, etc. In this region, the sea level rise 991 

is coupled to the permafrost degradation in a complex way, and should be focused on in future studies. 992 

Understanding and measuring artificial radionuclides in marine ecosystems are needed for 993 

improving emergency preparedness capabilities, and for developing risk assessments of potential 994 

nuclear accidents. The awareness of the general public and associated stakeholders across the region 995 

should also be raised concerning the challenges and risks associated with nuclear technologies, 996 

environmental radioactivity and emergency preparedness. The current state of radioactive 997 

contamination in terrestrial and marine ecosystems in the European Arctic region will be studied by 998 

examining environmental samples collected from Finnish Lapland, Finnmark and Troms in Norway, 999 

the Kola Peninsula, and the Barents Sea. The results will provide updated information on the present 1000 

levels, occurrence and fate of radioactive substances in the Arctic environments and food chains. The 1001 

results will also allow us to estimate where the radioactive substances originate from, and what risks 1002 

they may pose in case of accidents.  1003 

Annual expeditions for sample collection needed for the development of models to predict the 1004 

distribution of radionuclides in the northern marine environment, and for the assessment of the current 1005 

state of radioactive contamination in marine ecosystems in the European Arctic region. In view of 1006 

recent developments and increased interests in the European Arctic region for oil and gas extraction, 1007 

special attention needs to be given to the analysis of norms (naturally occurring radioactive materials) 1008 

in order to understand current levels. The future focus should be put on atmospheric modeling, and on 1009 

the assessment of radionuclide distributions in the case of accidents leading to the release of radioactive 1010 

substances to the environment in the European Arctic region. This includes the assessment of nuclear 1011 

accident scenarios for dispersion modeling. 1012 

2.4.3 Social transformations 1013 
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Climate and weather strongly affect the living conditions of Northern Eurasian societies, 1014 

influencing people’s health, incidence of diseases and adaptive capacity. The vulnerability of societies, 1015 

including their adaptive capacity, varies greatly depending on both their physical environment, and on 1016 

their demographic structure and economic activities. There is a need to analyzes the scientific 1017 

background and robustness of the adaptation and mitigation strategies (AMS) of the region’s societies, 1018 

their resilience capacity, with special emphasis on the forest sector and agriculture. The future research 1019 

needs are in understanding which ways are populated areas vulnerable to climate change; how can their 1020 

vulnerability be reduced, and their adaptive capacities improved; what responses should be identified 1021 

to mitigate and adapt to climate changes. 1022 

Health issues are also important in multidisciplinary studies of north Eurasia, as the living 1023 

conditions of both humans and livestock are changing dramatically. Short-lived climate forcers 1024 

(SLCF), such as black carbon, ozone and aerosol particles, are important players in both air quality and 1025 

Arctic climate change and their impacts are not yet quantified. Black carbon has a special role when 1026 

designing future emission control strategies, since it is the only major aerosol component whose 1027 

reduction is likely to be beneficial to both climate and human health. These changes can be expressed 1028 

through complex parameters combining the direct effects of e.g. temperature and wind speed with 1029 

indirect effects of several climatic and non-climatic factors such as the atmospheric pressure variability, 1030 

or the frequency of unfavorable weather events, such as heat waves or strong winds. During the last 1031 

decades, living conditions in Northern Eurasia have generally improved, but with a significant regional 1032 

and seasonal variation (Zolotokrylin et al., 2012). 1033 

Both northern and eastern Eurasian have small and diminishing populations, mainly due to the 1034 

migration outflow started in the 1990s due to severe and unfavorable living conditions combined with 1035 

changing state policies with respect to the development of northern territories. This reversed the 1036 

previous long-standing pattern of migration inflow. The combination of outflow and natural population 1037 

decrease (with some regional exceptions in several ethnic republics and autonomous regions (okrugs) 1038 

with oil and gas industry) led to a steady population decline in most regions in northern and eastern 1039 

Russia from 1990s. In the post-soviet period, the population of eastern Russia decreased by 2.7 million, 1040 

while the population of Russia’s Arctic zone decreased by nearly by one third (500 000 people), in 1041 
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contrast to the majority of the world’s Arctic territories (Glezer, 2007a, 2007b). The population change 1042 

in northeastern Russia was particularly remarkable: the Chukotka autonomous okrug lost 68 % of its 1043 

population, the Magadan Oblast lost 59 % and the Kamchatka Krai lost 33 %. 1044 

Geographical and ethnic factors influence the demography and settlement pattern in the region. 1045 

Geographical factors include environmental conditions and mixture of urban and rural territories. Areas 1046 

with a large proportion of indigenous people employed in traditional nature management were exposed 1047 

to relative small post-soviet transformations in the 1990’s and 2000’s. In contrast, the largest 1048 

transformations occurred in areas with a larger proportion of Russian people and developed mining 1049 

industries. The differences in the transformations between settlements with predominantly indigenous 1050 

and predominantly Russian populations are evident. For example, in the Chukotka Autonomous Okrug, 1051 

the former remained mostly intact, with only small decreases in population, while the latter disappeared 1052 

entirely or were significantly depopulated (Litvinenko, 2012; 2013).  1053 

When assessing the impacts of climate change and other environmental changes on human 1054 

societies, it should be taken into account that the urban environments in Northern Eurasian cities and 1055 

towns situated in the less favoured regions are currently incapable of mitigating unfavorable impacts. 1056 

The impact of climate parameters, such as temperature (including seasonal, weekly and daily gradients, 1057 

and extreme values), strong winds, snowfall, snowstorms and precipitation should be investigated. 1058 

Both the frequency and the duration of weather events should be considered. These climate parameters 1059 

influence human health, tincidence of diseases, adaptation potential and economic development in 1060 

general. Furthermore, it is important to explore the interactions between the environmental change and 1061 

post-soviet transformations of natural resource utilization in northern Eurasia in order to assess the 1062 

complexity of their socio-ecological consequences at regional and local levels (Litvinenko, 2012; 1063 

Tynkkynen, 2010). The population dynamics of northern Russian regions in 1990-2012, and the 1064 

linkage between intra-regional differences in population dynamics, spatial transformations of natural 1065 

resources utilization and ethnic composition of the populations should be clarified. It would be 1066 

desirable to develop an “early warning system” for the timely mitigation of the negative socio-1067 

ecological effects of both environmental changes, and changes in the availability of natural resources 1068 
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as well as accident like leakages in gas and oil pipelines.  Such systems would be useful for federal, 1069 

regional and local authorities, as well as for local communities. 1070 

It should also be taken into account that the majority of the world’s ethnic groups are small and 1071 

engaged in culturally specialized methods of subsistence, so any change in their immediate 1072 

environment may lead to their traditional way of life becoming unsustainable. These changes may be 1073 

due to rising sea levels, warming sea water, melting ice cover, thawing permafrost, flooding rivers, 1074 

changing rain patterns or moving vegetational zones. These are direct effects of climate change and 1075 

environmental deterioration on ethnodiversity. But even more threatening are the indirect effects.  The 1076 

immediate environment of small ethnic groups is often vulnerable to the adverse impact of majority 1077 

populations representing governments and nations. The effects of climate change may lead to a rapid 1078 

and massive transfer of majority populations to areas previously inhabited by small ethnic groups.   1079 

3. From process studies towards system understanding and quantification of feedbacks  of 1080 

arctic-boreal regions  1081 

The system understanding helps us to understand the behavior of feedbacks between the land, 1082 

atmosphere, aquatic and societal/economic systems. To be able to provide a system understanding, we 1083 

need to understand the individual processes, and based on process understanding we are then able to 1084 

quantify different biogeochemical cycles. Via biogeochemical cycles, the energy and matter flows are 1085 

linked to a wider system context, which enables us to analyze the feedback phenomena. Feedbacks are 1086 

essential components of our climate system, as they either increase or decrease the changes in climate-1087 

related parameters in the presence of external forcings (IPCC, 2013).  1088 

The effects of climate change on biogeochemical cycles are still inadequately understood, and 1089 

there are many feedback mechanisms difficult to quantify (Arneth et al., 2010; Kulmala et al., 2014). 1090 

They are related to, for example, the coupling of carbon and nitrogen cycles, permafrost processes and 1091 

ozone phytotoxicity (Arneth et al., 2010), or to the emissions and atmospheric chemistry of biogenic 1092 

volatile organic compounds (Grote and Niinemets, 2008; Mauldin et al., 2012), subsequent aerosol 1093 

formation processes (Kulmala et al., 2004; Tunved et al., 2006; Kulmala et al., 2011a; Hirsikko et al., 1094 
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2011) and aerosol-cloud interactions (McComiskey and Feingold, 2012; Penner et al., 2012; Rosenfeld 1095 

et al., 2014).  1096 

The northern Eurasian Arctic-boreal geographical region covers a wide range of interactions and 1097 

feedback processes between humans and natural systems. Humans are acting both as the source of 1098 

climate and environmental changes, and as recipient of their impacts. The PEEX research agenda is 1099 

addressing the most relevant research topics related  to  the prosesses dynamics in the land, 1100 

atmospheric, aquatic and society systems  relevant to Northern regions. PEEX also aims to quantify 1101 

the range of emissions and fluxes from different types of ecosystems and environments and links to 1102 

ecosystem productivity (see also Su et al., 2011; Kulmala and Petäjä, 2011; Bäck et al., 2010). This 1103 

new knowledge helps us to combine a holistic view on the changes in biogeochemical cycles and 1104 

feedbacks in the future Arctic-boreal system (Fig 4). PEEX will also to take into consideration that 1105 

there may exist previously unknown sources and processes (Su et al., 2011; Kulmala and Petäjä, 2011; 1106 

Bäck et al., 2010). 1107 

Holistic representations of feedback loops potential relevant to Arctic-boreal systems have been 1108 

given by Charlson et al. (1987), Quinn and Bates (2011) and by Kulmala et al. (2004; 2014). The 1109 

“CLAW” hypothesis (“CLAW” acronym refers to Charlson, Lovelock, Andreae and Warren)  connects 1110 

the ocean biochemistry and climate via a negative feedback loop involving cloud condensation nuclei 1111 

production due to the dimethylsulfoniopropionate  (DMSP) and DMS biosynthesis from Cyanobacteria 1112 

and algae based photosynthesis (e.g. Quinn and Bates, 2011; Ducklow et al., 2001; O’Dowd et al., 1113 

2004; de Leeuw et al., 2011; Malin et al., 1993; O’Dowd and de Leeuw, 2007).  The COBACC 1114 

(COntinental Biosphere-Aerosol-Cloud-Climate) hypothesis suggests two partly overlapping feedback 1115 

that connect the atmospheric carbon dioxide concentration, ambient temperature, gross primary 1116 

production, biogenic secondary organic aerosol formation, clouds and radiative transfer (Kulmala et 1117 

al., 2004; 2014; also see section 2.1.1.).  The quantification of these feedback loops under changing 1118 

climate is crucial for reliable Earth system modelling and predictions.  1119 

In the context of the COBACC feedbackloop, the key large-scale research questions are the 1120 

changing cryospheric conditions and consequent changes in ecosystem feedbacks affecting the Arctic-1121 

boreal climate system and weather. Furthermore, we should estimate the net effects of various feedback 1122 
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effects (CLAW, COBACC) on land cover changes, photosynthetic activity, GHG excahnges, BVOC 1123 

emssions, aerosol and cloud formation and radiative forcing in regional and global scales. In our 1124 

analysis, we should also take in account the urbanization processes, social trasformations (see section 1125 

2.4.3), which are changing the regional climates. In this task we should also study the key gaps of the 1126 

buogeochemical cycles. 1127 

3.1 Hydrological cycle  1128 

Climate change may profoundly affect most of the component in the hydrological cycle, giving 1129 

rise to positive or negative feedbacks (Fig 5). While variations in the hydrological cycle often take 1130 

place at regional or local scales, they can also give rise to large-scale or even global changes. 1131 

Knowledge of the hydrological cycle in general and particularly related to permafrost is crucial for 1132 

predicting the resilience and transformation of forest ecosystems coupled with permafrost (Osawa et 1133 

al. 2009). 1134 

In addition to permafrost processes, other important issue in high latitudes is precipitation.  1135 

Precipitation is a critical component of the hydrological cycle, having a great spatial and temporal 1136 

variability. The lack of understanding of some precipitation-related processes, combined with the lack 1137 

of global measurements of sufficient detail and accuracy, limit the quantification of different 1138 

components of  hydrological cycle like precipitation, evapotransipiration, CCN formation etc. This is 1139 

especially true in the high-latitude regions, in which observations and measurements are particularly 1140 

sparse, and processes poorly understood. 1141 

Recent retrievals of multiple satellite products for each component of the terrestrial water cycle 1142 

provide an opportunity to estimate the water budget globally (Sahoo et al., 2011) (Fig.5). Global 1143 

precipitation is retrieved at very high spatial and temporal resolution by combining microwave and 1144 

infrared satellite measurements (Sorooshian et al., 2000; Kummerow et al., 2001; Joyce et al., 2004; 1145 

Huffman et al., 2007). Large-scale estimates of global precipitation have been derived by applying 1146 

energy balance, process and empirical models to satellite derived surface radiation, meteorology and 1147 

vegetation characteristics (e.g. Mu et al., 2007; Su et al., 2007; Fisher et al., 2008; Sheffield et al., 1148 

2010). The water storage change component can be obtained from satellite data, and the water level in 1149 
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lakes and large-scale river systems can be estimated from satellite altimetry with special algorithms 1150 

developed for terrestrial waters (Berry et al., 2005; Velicogna et al., 2012; Troitskaya et al., 2012; 1151 

2013). 1152 

3.2 Carbon cycle  1153 

It is not clear how future climate will modify incoming (NPP) and outgoing (e.g., HSR) carbon 1154 

fluxes to and from terrestrial ecosystems.  It is likely that the transformation of Russian forests is a 1155 

tipping element for the climate system by end of the century over huge areas, even though uncertainties 1156 

in such forecast are significant (Gauthier et al. 2015). The role of boreal and Arctic lakes and catchment 1157 

areas in carbon storage dynamics is poorly quantified (Fig.6). 1158 

The terrestrial biosphere is a key regulator of atmospheric chemistry and climate via its carbon 1159 

uptake capacity (Arneth et al., 2010; Heimann and Reichstein, 2008). The Eurasian area holds a large 1160 

pool of organic carbon both within the above- and belowground living biota, in the soil, and in frozen 1161 

ground, stored during the Holocene and the last ice age. The area also contains vast stores of fossil 1162 

carbon. According to estimates of carbon fluxes and stocks in Russia made as part of a full carbon 1163 

account by the land-ecosystem approach (Shvidenko et al., 2010a; Schepaschenko et al., 2011; Dolman 1164 

et al., 2012), terrestrial ecosystems in Russia served as a net carbon sink of 0.5-0.7 Pg(C) per year 1165 

during the last decade. Forests provided above 90 % of this sink. The spatial distribution of the carbon 1166 

budget shows considerable variation, and substantial areas, particularly in permafrost regions and in 1167 

disturbed forests, display both sink and source behavior. The already clearly observable greening of 1168 

the Arctic is going to have large consequences on the carbon sink in recent decades (Myneni et al., 1169 

1997; Zhou et al., 2001), while future predictions are uncertain. The Net Ecosystem Carbon Budget 1170 

(NECB) or Net Biome Production (NBP) are usually a sensitive balance between carbon uptake 1171 

through forest growth, ecosystem heterotrophic respiration, and carbon release during and after 1172 

disturbances such as fire, insect outbreaks or weather events such as exceptionally warm autumns (Piao 1173 

et al., 2008; Vesala et al., 2010). This balance is delicate, and for example in the Canadian boreal forest 1174 

the estimated net carbon balance is close to carbon neutral due to fires, insects and harvesting cancelling 1175 

the carbon uptake from forest net primary production (Kurz and Apps, 1995; Kurz et al., 2008). 1176 
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Plant growth and carbon allocation in boreal forest ecosystems depend critically on the supply 1177 

of recycled nutrients within the forest ecosystem. In the nitrogen-limited boreal and Arctic ecosystems, 1178 

the biologically available nitrogen (NH4 and NO3) is in short supply, although the flux of assimilated 1179 

carbon belowground may stimulate the decomposition of nitrogen-containing soil organic matter 1180 

(SOM), and the nitrogen uptake of trees (Drake et al., 2011; Phillips et al., 2011). The changes in easily 1181 

decomposable carbon could enhance the decomposition of old SOM (Kuzyakov, 2010; Karhu et al., 1182 

2014), and thus increase the turnover rates of nitrogen in the rhizosphere, with possible growth-1183 

enhancing feedbacks on vegetation (Phillips et al., 2011). 1184 

Arctic warming is promoting terrestrial permafrost thaw and shifting hydrologic flowpaths, 1185 

leading to fluvial mobilization of ancient carbon stores (Karthe et al., 2014). Observed permafrost thaw 1186 

acts as a significant and preferentially degradable source of bioavailable carbon in Arctic freshwaters, 1187 

which is likely to increase as permafrost thaw intensifies causing positive climate feedbacks in response 1188 

to on-going climate change (Mann et al., 2015). Significant differences in fluvial carbon input between 1189 

headwaters and downstream reaches of large Arctic catchment (Enisey and Lena) have been identified, 1190 

the problem very poorly explained yet. At the same time fluvial export by largest rivers considered to 1191 

be an order of magnitude less than coastal erosion in the Arctic – dat arpoved by (Semiletov et al, 2011) 1192 

estimated The Lena’s particulate organic carbon export two orders of magnitude less than the annual 1193 

input of eroded terrestrial carbon onto the shelf of the Laptev and East Siberian seas.  1194 

Although inland waters are especially important as lateral transporters of carbon, their direct 1195 

carbon exchange with the atmosphere, so-called outgassing, has been recognized to be a significant 1196 

component in the global carbon budget (Bastviken et al., 2011; Regnier et al., 2013). In the boreal 1197 

pristine regions, forested catchment lakes can vent ca. 10 % of the terrestrial NEE (Net Ecosystem 1198 

Exchange), thus weakening the terrestrial carbon sink (Huotari et al., 2011). There is a negative 1199 

relationship between the lake size and gas saturation, and especially small lakes are relatively large 1200 

sources of CO2 and CH4 (e.g. Kortelainen et al., 2006; Vesala, 2012). However, on a landscape level, 1201 

large lakes can still dominate the GHG fluxes. Small lakes also store relatively larger amounts of carbon 1202 

in their sediments than larger lakes. The role of lakes as long-term sinks of carbon, and simultaneously 1203 

as clear emitters of carbon-containing gases, is strongly affected by the physics of the water column. 1204 
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In lakes with very stable water columns and anoxic hypolimnion sediments, carbon storage is especially 1205 

efficient, but at the same time these types of lakes emit CH4. In general, the closure of landscape-level 1206 

carbon balances is virtually impossible without studying the lateral carbon transfer processes 1207 

(Pumpanen et al., 2014), and the role of lacustrine ecosystems as GHG sources/sinks. Besides lakes, 1208 

these studies should include rivers and streams, which could be even more important than lakes as 1209 

transport routes of terrestrial carbon, and as emitters of GHGs (Huotari et al, 2013). Also the role of 1210 

VOC emissions as a part of the carbon budget needs to be quantified. 1211 

3.3 Nitrogen cycle  1212 

Nitrogen is the most abundant element in the atmosphere. However, most of the atmospheric 1213 

nitrogen is in the form of inert N2, which is unavailable most for plants and microbes, and can only be 1214 

assimilated into terrestrial ecosystems through biological N2 fixation (Canfield et al., 2010). Only 1215 

cryptogamic covers and certain organisms living in symbiosis with plants are capable of nitrogen 1216 

fixation, making nitrogen the main growth-limiting nutrient in terrestrial ecosystems (Elbert et al. 2012; 1217 

Lenhart et al. 2015). Human perturbations to the natural nitrogen cycle have, however, significantly 1218 

increased the availability of nitrogen in the environment (Fig.7). These perturbations mainly stem from 1219 

the use of fertilizers in order to increase crop production to meet the demands of the growing population 1220 

(European Nitrogen Assessment, 2010), though atmospheric nitrogen deposition may also play a 1221 

significant role in some areas. The increased use of fertilizer nitrogen, and consequent perturbations in 1222 

nitrogen cycling, also cause severe environmental problems such as eutrophication of terrestrial and 1223 

aquatic ecosystems, atmospheric pollution and ground water deterioration (European Nitrogen 1224 

Assessment, 2010). 1225 

Emission of reactive nitrogen (NO, NO2, HONO, ammonia, amines) from soils (Su et al., 2011; 1226 

Korhonen et al., 2013), fossil fuel burning and other sources links the nitrogen cycle to atmospheric 1227 

chemistry and secondary aerosol formation in the atmosphere. There are indications that emissions of 1228 

N2O from the melting permafrost regions in the Arctic may significantly influence the global N2O 1229 

budget and hence contribute to the positive radiative forcing of greenhouse gases (Repo et al., 2009; 1230 

Elberling et al., 2011). 1231 
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In natural terrestrial ecosystems, nitrogen availability limits ecosystem productivity, linking the 1232 

carbon and nitrogen cycles closely together (Gruber and Galloway, 2008). The increasing temperatures 1233 

due to climatic warming accelerates nitrogen mineralization in soils, leading to increased nitrogen 1234 

availability and transport of reactive nitrogen from terrestrial to aquatic ecosystems. This perturbed and 1235 

accelerated nitrogen cycling may lead to large net increases in the carbon sequestration of ecosystems 1236 

(Magnani et al., 2007). The large surface area of boreal and Arctic ecosystems implies that even small 1237 

changes in nitrogen cycling or feedbacks to the carbon cycle may be important on the global scale 1238 

(Erisman et al., 2011). For instance, increased atmospheric nitrogen deposition has led to higher carbon 1239 

sequestration in boreal forests (Magnani et al., 2007). However, the feedback mechanisms from 1240 

increased perturbations of the nitrogen cycle may change the dynamics of the emissions of other 1241 

greenhouse gases hence complicating the overall effects. For instance, the stimulated carbon uptake of 1242 

forests due to increased atmospheric nitrogen deposition, can largely be offset by the simultaneously 1243 

increased soil N2O emissions (Zaehle et al., 2011). In the Arctic, the melting permafrost may lead to 1244 

high emissions of N2O (Repo et al., 2009; Elberling et al., 2010), which may significantly influence 1245 

the global N2O budget.  1246 

Understanding the processes within the nitrogen cycle, the interactions of reactive nitrogen with 1247 

the carbon and phosphorus cycles, atmospheric chemistry and aerosols, as well as their links and 1248 

feedback mechanisms, is therefore essential in order to fully understand how the biosphere affects the 1249 

atmosphere and the global climate (Kulmala and Petäjä, 2011). 1250 

3.4 Phosphorus cycle 1251 

Phosphorus (P) is, together with nitrogen (N), one of the limiting nutrients for terrestrial 1252 

ecosystem productivity and growth, while in marine ecosystems, phosphorus is the main limiting 1253 

nutrient for productivity (Whitehead and Crossmann, 2012). The role of P in nutrient limitation in 1254 

natural terrestrial ecosystems has not been recognized as widely as that of N (Vitousek et al., 2010). 1255 

In the global phosphorus biogeochemical cycle, the main reservoirs are in continental soils, 1256 

where phosphorus in mineral form is bound to soil parent material and in ocean sediments (Fig.8). 1257 
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Sedimentary phosphorus originates from riverine transported material eroded from continental soils. 1258 

The atmosphere plays a minor role in the phosphorus cycle, and the phosphorus cycle does not have a 1259 

significant atmospheric reservoir. Atmospheric phosphorus mainly originates from Aeolian dust, sea 1260 

spray and combustion (Wang et al., 2014). Gaseous forms of phosphorus are scarce, and their 1261 

importance for atmospheric processes is unknown (Glindemann et al., 2005). 1262 

Southwestern Siberian soils have lately been reported to contain high concentrations of plant-1263 

available phosphorus (Achat et al., 2013), which may enhance the carbon sequestration of the 1264 

ecosystems if they are not too limited in nitrogen. In freshwater and brackish water ecosystem, excess 1265 

phosphorus leads to eutrophication, which has ecological consequences, such as the loss of biodiversity 1266 

(Conley et al., 2009). Due to the scarcity of studies focusing on ecosystem P cycling, the effects of 1267 

climate change on physicochemical soil properties and P availability, and the interactions of P cycle 1268 

with the cycles of carbon and nitrogen, are largely unknown. 1269 

In soils, phosphorus is found mainly in mineral form and bound to the soil parent material such 1270 

asapatite minerals. The amount of phosphorus in the parent material is a defining factor for phosphorus 1271 

limitation, and the weathering rate determines the amount of phosphorus available for ecosystems. In 1272 

ecosystems, most of the available phosphorus is in organic forms (Achat et al., 2013; Vitousek et al., 1273 

2010). In ecosystems growing on phosphorus-depleted soils, the productivity is more likely to be 1274 

nitrogen-limited in early successional stages, and gradually shift towards phosphorus limitation as the 1275 

age of the site increases (Vitousek et al., 2010). Southwestern Siberian soils have lately been reported 1276 

to contain high concentrations of plant-available phosphorus (Achant et al., 2013), which may enhance 1277 

carbon sequestration of the ecosystems, if nitrogen is not too limited. In freshwater ecosystem, excess 1278 

phosphorus leads to eutrophication, which has ecological consequences, such as the loss of biodiversity 1279 

due to changes in physicochemical properties and in species composition (Conley et al., 2009). Due to 1280 

the scarcity of studies focusing on ecosystem phosphorus cycling, the effects of climate change on 1281 

physicochemical soil properties and phosphorus availability, and the interactions of the phosphorus 1282 

cycle with the cycles of carbon and nitrogen, are largely unknown.  1283 

3.5 Sulfur cycle 1284 
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Sulfur is released naturally through volcanic activity, as well as through weathering of the 1285 

Earth’s crus. The largest natural atmospheric sulfur source is the emission of dimethyl sulfide (DMS) 1286 

from oceanic phytoplankton. DMS is converted to sulfur dioxide (SO2), sulfuric acid (H2SO4) and 1287 

methyl sulfonic acid (MSA) via gas-phase oxidation. However, human activities have a major effect 1288 

on the global sulfur cycle via vast emissions of SO2 from fossil fuel burning and smelting activities. 1289 

The main sink of SO2 is oxidation to sulfuric acid in both gas and liquid phases, and subsequent removal 1290 

from the atmosphere via precipitation and dry deposition.  1291 

Global anthropogenic SO2 emissions are predicted to decrease significantly by the year 2100 1292 

(IPCC, special report on emissions scenarios, SRES, 2000). Emissions in Europe and North America 1293 

started to decrease already in the 1970s, but this decrease is still overwhelmed on a global scale by 1294 

increasing emissions in eastern Asia and other strongly developing regions of the world (Smith et al., 1295 

2011). The current global anthropogenic SO2 emissions are about 120 Tg per year, with Europe, the 1296 

former Soviet Union and China together responsible for approximately 50 % (Smith et al., 2011). 1297 

Global natural emissions of sulfur, including DMS, are significantly smaller (a few tens of Tg per year; 1298 

Smith et al. 2001). Anthropogenic emissions dominate especially over the continents. The main sources 1299 

of SO2 are coal and petroleum combustion, metal smelting and shipping, with minor contributions from 1300 

biomass burning and other activities. 1301 

SO2 emissions in Eurasia have a large spatial variability. Smelters in the Russian Arctic areas 1302 

emit vast amounts of SO2, significantly affecting the regional environment. Smelter complexes in 1303 

Norilsk, with annual emission of 2 Tg (Black Smith Institute, 2007), are alone responsible for more 1304 

than 1.5 % of global SO2 emissions. However, the emissions from the smelters in Kola Peninsula, while 1305 

still remarkably high, have decreased significantly during the past decades (Paatero et al., 2008), thus 1306 

altering the impact of human activities on the regional climate and environment. In general, existing 1307 

anthropogenic activities are slowly becoming more sulfur-effective and less polluting. However, the 1308 

emergence of new sulfur-emitting activities and infrastructures partially counteract this development.  1309 

The behavior of future changes in SO2 emissions in the PEEX research area is uncertain. In 1310 

northern Eurasia, natural resources like fossil fuels, metals, minerals and wood are vast, and their 1311 

utilization is becoming more and more attractive due increasing demand. This will most likely lead to 1312 
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an increase in human activities (e.g. mining, oil drilling, shipping) in this area (e.g. Smith, 2010, and 1313 

references therein). Sulfur emissions in China are rapidly increasing, while emissions in Europe have 1314 

significantly decreased during the last decades. 1315 

Most of the natural and anthropogenic SO2 is removed from the atmosphere by liquid-phase 1316 

oxidation to H2SO4, and subsequent precipitation. In areas with high sulfur loadings, acid rain leads to 1317 

acidification of soils and waters (Fig. 9). The main final sink of sulfur is the oceans. A fraction of SO2 1318 

is oxidized to H2SO4 in the gas phase in a reaction chain initiated by the reaction of SO2 with the 1319 

hydroxyl radical, OH. Especially in forested areas of Eurasia, reactions of SO2 with a second important 1320 

oxidant type, the stabilized Criegee intermediates originating from biogenic VOC emissions, also 1321 

produces significant amounts of H2SO4 (Mauldin et al., 2012). Gas-phase sulfuric acid plays a key role 1322 

in the Earth’s atmosphere by triggering secondary aerosol formation, thus connecting anthropogenic 1323 

SO2 emissions to global climate via aerosol-cloud interactions. Particle containing sulfuric acid, or 1324 

sulfate, are also connected with air quality problems and human health deterioration. Understanding 1325 

the spatial and temporal evolution of SO2 emissions in northern Eurasia, along with atmospheric sulfur 1326 

chemistry, is crucial for understanding and quantifying the impacts of anthropogenic activities and SO2 1327 

emissions on air quality, acidification, as well as on regional and global climate. 1328 

 1329 

4. From system understanding to mitigation and adaptation strategies and decision making 1330 

 1331 

Climate change and weather extremes are already affecting the living conditions of Northern 1332 

Eurasian societies. The vulnerability of the Northern environments and societies, including their 1333 

adaptive capacity and buffering thresholds, varies greatly depending on their current and future 1334 

physical environment as well as their demographic structure and economic activities. The PEEX 1335 

program as a whole is built on four pillars, namely (i) research, (ii) research infrastructure, (iii) impact 1336 

on society and (iv) knowledge transfer and capacity buiding. The scientific outcome of the first two 1337 

pillars will be addressing the future state of the physical environment and its interactions and feedbacks 1338 

with the demographic structure and economic activities in the Arctic boreal system.  The periodic 1339 

PEEX assessments will be delivered for constructing mitigation and adaptation strategies of the 1340 
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Northern societies and for use of regional and governmental decision making. The PEEX approach is 1341 

applicable to China, when taking into account the specific geographical, climatological and social 1342 

characteristics of that region. 1343 

The integrative approach of the PEEX first two pillars provides both analytical and operational 1344 

answers to our research questions which can be utilized in solving interlinked grand challenges using 1345 

pillars iii) and iv).  These will also contribute to the Earth System sciences (ESS) questions as a whole 1346 

(see ESS questions: Schellnhuber et al., 2004). The implementation of the PEEX research agenda starts 1347 

with process studies in the frame of three main topics determined for the land, atmosphere, aquatic and 1348 

social systems of the Northern Eurasian region. The research approach is designed to answer the 1349 

analytical questions on the major dynamical patters and feedback loops relevant to Earth system science 1350 

in the Northern context. The PEEX program has defined altogether 12 large-scale research questions 1351 

for the 12 main topics in the Northern Eurasian domain (Kulmala et al., 2016). At the same time, PEEX 1352 

sticks to several operational ESS questions, including “what level of complexity and resolution have 1353 

to be achieved in Earth System modelling?”, “what are the best techniques for analyzing and predicting 1354 

the irregular events?”, “what might be the most effective global strategy for generating, processing and 1355 

integrating relevant Earth system datasets?”, and “what are the most appropriate methodologies for 1356 

integrating natural science and social science knowledge?” (Schellnhuber et al., 2004).  1357 

In terms of the level of complexity and resolution in Earth System modelling, PEEX builds on a 1358 

multi-scale modelling and observation approach originally introduced by Kulmala et al. (2009). PEEX 1359 

will construct its own multi-scale modelling platform (Lappalainen et al. 2014). In terms of generating, 1360 

processing and integrating relevant Earth system datasets, a detailed conceptual design of the PEEX 1361 

research infrastructure (RI) will include a concept design of coherent in-situ observation network, 1362 

coordinated use of remote sensing observations and standardized and harmonized data procedures as 1363 

well as a data system. One of the first tasks of PEEX -RI is to fill in the observational gap in atmospheric 1364 

in-situ and ground base remote sensing data in the Northern Eurasia, especially in Siberia. This 1365 

approach is based on the coordination of existing observation activities (Alekseychik et al., 2016), but 1366 

also making plans for a new infrastructure needed. PEEX-RI development will be largely based on the 1367 

SMEAR (Station for Measuring Ecosystem-Atmosphere Relations) concept (Kulmala et al. 2016), 1368 
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which has been developed by University of Helsinki, Division of Atmospheric Sciences together with 1369 

Division of Forest Ecology starting from 1995 (Hari and Kulmala, 2005; Hari et al., 2016). The 1370 

SMEAR-concept provides a state-of-the-art foundation for establishing a PEEX observation system to 1371 

be integrated into the global GEOSS data system. Furthermore, detailed design of greenhouse gas, 1372 

aerosol, cloud, trace gas measurements and observation of biological activity will find synergies with 1373 

the major European land-atmosphere observation infrastructures, such as the ICOS (a research 1374 

infrastructure to decipher the greenhouse gas balance of Europe and adjacent regions), ACTRIS 1375 

(aerosols, clouds, and trace gases research infrastructure), GAW (Global Atmospheric Watch), and 1376 

AnaEE (the experimentation in terrestrial ecosystem research).  1377 

PEEX is interested in developing the most appropriate methodologies for integrating natural 1378 

science and social science knowledge as part of the operational ESS questions indicated by 1379 

Schellnhuber et al. (2004). The first-priority tasks in this case is to establish an integrated information 1380 

background, needed also for zoning and urban planning of Arctic and boreal areas (Ribeiro et al., 2009; 1381 

Hunt and Sanchez-Rodriquez, 2009; Shvidenko et al. 2010; Skryzhevska et al., 2015). An information 1382 

background would the first step serving the development of a common language of integrated studies. 1383 

Furthermore, it could provide a platform for compatible definitions and classification schemes. For 1384 

example, we need spatially and temporally explicit descriptions of terrestrial ecosystems, landscapes, 1385 

atmosphere and hydrosphere. A common information background would be a unified base for the 1386 

PEEX modelling platform and for the development of integrated modelling clusters which could 1387 

combine ecological, economic and social dimensions. It could used as a benchmark for historical 1388 

assessment of future trajectories of land cover, state and resilience of ecosystems, stability of 1389 

landscapes, and dynamics of environmental indicators of environment. The already exiting Integrated 1390 

Land Information System could provide a common basis for combining all historical knowledge about 1391 

the region and all scientific results obtained by past, current and future studies across the region (e.g. 1392 

Schepaschenko et al., 2011; Shvidenko and Schepaschenko, 2014).  1393 

In addition to data services, PEEX is developing procedures for integrating and linking natural 1394 

science and social science knowledge and data. As one example, we need to analyze data on emission 1395 

sources together with population health risk factors, environment pollution, food security, drinking 1396 
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water quality, changes in the spreading areas of infectious diseases, and changes in the general 1397 

epidemiological situation (Bityukova and Kasimov, 2012; Malkhazova et al., 2013). Via novel 1398 

multidisciplinary data interfaces and data procedures, we are able to connect satellite observations with 1399 

inverse modeling, provide fast updates to emission inventories, estimate the emission for the climate 1400 

models, and, in the end, provide climate and air quality scenarios and the storylines of the future 1401 

development of the arctic-boreal region (Fig. 10 ).  1402 

In terms of strategic questions of the ESS, such as “what is the optimal mix of adaptation and 1403 

mitigation measures to respond global change?” or “what is the structure of an effective and efficient 1404 

system of global and development of institutions?”, PEEX is an active player in creating direct contacts 1405 

with the stakeholders so that its scientific information and services will receive an optimal impact on 1406 

decision making. Furthermore, the PEEX approach endorses the Earth System Manifesto. 1407 

(https://www.atm.helsinki.fi/peex/images/manifesti_peex_ru_hub2.pdf) which addresses three 1408 

strategic tasks: (i) construction of novel observation systems, (ii) finding consensus addressing 1409 

necessary mitigation and adaptation actions in different parts of the world, and (iii) operational 1410 

prerequisites for technological development to moderate the global change towards the sustainable 1411 

Earth System. In this framework, PEEX will work closely with influential organizations, such as the 1412 

Intergovernmental Panel for Climate Change (IPCC) delivering PEEX assessment of Arctic-boreal 1413 

region, the Future Earth acting as an Arctic-Boreal Hub, and the Digital Earth via demonstrating novel 1414 

methods integrating in situ data to satellite observations.  1415 
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Figure 1: The thematic research areas relevant to the Northern Eurasian land system include Land-2620 

Topic-1 “changing ecosystem processes”, Land-Topic-2  “ecosystem structural changes and resilience” 2621 

and Land-Topic--3 “risk areas of permafrost thawing”. For the atmospheric system they are 2622 

Atmosphere-topic-1 “atmospheric composition and chemistry”, Atmosphere-topic -2 “Urban air 2623 

quality”, are Atmosphere-topic-3, “atmospheric circulation and weather”, for the aquatic system they 2624 

are  Aquatic-Topic-1 “Arctic Ocean in the climate system” , Aquatic-Topic-2 “maritime ecosystems”, 2625 

Aquatic-Topic-3 “Lakes and large river systems” and for the social system they are Society-Topic-1 2626 

“natural resources and anthropogenic activities”, Society-Topic-2 “natural hazards” and  Society-2627 

Topic-3“social transformations”. 2628 

 2629 

Figure 2: Linear trends in the annual maximum Normalized Difference Vegetation Index (NDVI) 2630 

obtained from analysis of the MODIS 0.25 km data product for 2000-2014.  2631 

 2632 

 2633 
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 2635 

 2636 

Figure 3: The map demonstrates the existing ACTRIS (Aerosols, clouds and trace gases Research 2637 

Infrastructure Network)  and ICOS (Integrated Carbon Observations System)  stations in Europe (blue), 2638 

stations making atmospheric and/or ecosystem measurements in Russia (red), INTERACT 2639 

(International Network for Terrestrial Research and Monitoring in the Arctic) stations in Russia (light 2640 

blue) and China Flux stations in China (yellow). However, all of these stations need certain upgrade. 2641 
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 2643 

 2644 

Figure 4: In urban and industrialized regions, the process understanding of biogeochemical cycles 2645 

includes anthropogenic sources, such as industry and fertilizers, as essential parts of the 2646 

biogeochemical cycles. 2647 
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 2649 

Figure 5: Hydrological cycle schematics. 2650 

 2651 

 2652 

Figure 6: Carbon cycling in the Arctic will change as the climate warms. Figure after ACIA, 2004. 2653 

(Impacts of a Warming Arctic: Arctic Climate Impact Assessment (ACIA) Overview Report). 2654 
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 2657 

 2658 

 2659 

Figure 7: Schematic figure for terrestrial nitrogen cycle. 2660 

 2661 

 2662 

Figure 8: Schematic figure of the phosphorus cycle. 2663 
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 2666 

Figure 9: Schematic figure of the sulfur cycle. 2667 

 2668 

 2669 

 2670 

Figure 10. An example of the study approach to be implemented by PEEX for integrating natural 2671 

science and social science knowledge and generating climate predictions and narratives of the Northern 2672 

regions. 2673 
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