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Abstract

Core-shell particles allow highly efficient and fast separation of complex samples. They

provide advantages over fully porous particles, such as highly efficient separation with

fast flow rate due to shorter diffusional path length in particle macropores. On the other

hand, capacities are reduced due to the inert core. This work is focused on the numerical

approximation of a nonlinear general rate model for fixed-beds packed with core-shell parti-

cles. The model equations consider axial dispersion, interfacial mass transfer, intraparticle

diffusion, and multi-component Langmuir isotherm. A semi-discrete high resolution flux-

limiting finite volume scheme is proposed to accurately and efficiently solve the model

equations. The scheme is second order accurate in axial and radial coordinates. The re-

sulting system of ordinary differential equations (ODEs) are solved by using a second-order

TVD Runge-Kutta method. For illustration, a few selected scenarios of single solute and

multi-component elution bands are generated to study theoretically the effects of the core

radius fractions on the course of elution curves. Typically applied performance criteria are
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evaluated for identifying ranges of optimum values of the core radius fraction.

Key words: Dynamics of chromatography, nonlinear general rate model, core-shell

particles, adsorption, mass transfer.

1. Introduction

High performance liquid chromatography (HPLC) is considered to be an essential analysis

tool for research, manufacturing, clinical tests, and diagnostics. The current trends in

HPLC are towards achievement of higher kinetic efficiency, shorter analysis time and low

back pressure for various types of samples. In efforts to increase the power of HPLC,

the particles packed into the columns have been progressively improved and downsized.

The development of ultra-high-performance liquid chromatography (UHPLC) using such

smaller particles has made possible to enhance the good analytical features of HPLC and to

improve the column performance. However, despite the fact that UHPLC allows efficient

and fast separations and utilizes smaller amounts of solvents, the small sized particles put

an extra burden on HPLC instrumentation, see Salisbury (2008). The invention of core

beads (also known as pellicular, superficially porous, and fused-cored beads or particles)

has introduced an alternative technology which avoids the use of special equipments. Their

efficiency is comparable to UHPLC and have low back pressures, see Kirkland et al. (2000);

Fanigliulo et al. (2010); Pietrogrande et al. (2010). They also provide the possibility of

using already existing conventional HPLC systems in the laboratories, see Ali et al. (2012).

Cored beads are made of a solid core surrounded by a porous layer having essentially

the properties of porous particles used in conventional HPLC columns, see Horvath et al.
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(1967); Pesek et al. (1973); Ning et al. (1998); Coutinho et al. (2001); Greibrokk (2004);

Kirkland et al. (2000, 2007); Zhou et al. (2007); Kiss (2010); Manchon et al. (2010); Gritti

et al. (2010a,b); Guiochon and Gritti (2011); Spudeit et al. (2014); Hayes et al. (2014);

Lambert et al. (2014); González-Ruiz et al. (2015); Horváth and Felinger (2015). They

were introduced to build highly efficient HPLC columns for separating the constituents of

high molecular weight compounds of biological origin, see e.g. Horvath et al. (1967). They

offer advantages over fully porous beads, such as highly efficient separation with fast flow

rate due to shorter diffusional path length in particle macropores. For compounds having

high internal mass-transfer resistance, the gain in efficiency compensates the reduction

in sample capacity due to the lower volume of porous adsorbent, see Kaczmarski and

Guiochon (2007). On the other hand, the gain decreases with decreasing mass-transfer

resistance, for instance with decreasing molecular weight of the compound.

In HPLC, the use of cored beads is a compromise between fully porous beads and non-

porous beads, see Wang et al. (2006). Non-porous beads eliminate intraparticle diffusion

and generate sharp elution peaks of the shortest retention times, see Lee (1997); Rissler

(2000); Xiang et al. (2003); Fekete et al. (2010); Gu et al. (2011). However, they are unable

to provide sufficient retention time range in HPLC due to their limited binding capacities,

see e.g. Kirkland et al. (2000); Miyabe (2008). In contrast, fully porous beads offer the

largest retention time differences, but suffering from excessive band broadening. Fanigliulo

et al. (2010) and Cabootera et al. (2010) performed experiments to compare and analyze

several commercially available fully porous and cored beads.

Mathematical modeling of the dynamic chromatographic process is an important ingredient

3



of the chromatography theory. It offers a technique for predicting the dynamic behaviors

of the solute in the columns without extensive experiments. Because of different levels of

complexity, several models have been established and applied in the literature, see Ruthven

(1984); Carta (1988); Guiochon (2003); Guiochon and Lin (2003). Among them, the Gen-

eral Rate model (GRM) is the most complicated and complete. It includes most of the

factors which influence mass transfer process in the column, such as the axial dispersion, ex-

ternal mass transfer resistance, pore diffusion, surface diffusion and adsorption/desorption

kinetic procedure. Thus, GRM possesses the potential to include more kinetic resistances,

which makes it more realistic. For certain limits of transport parameters it converges

into the LKM, see Guiochon et al. (2006). Zhou et al. (2007) used a general rate model

for cored beads to obtain intraparticle diffusion coefficients. Kaczmarski and Guiochon

(2007) considered thin-shelled coated beads using a lumped particle model. They assumed

that the concentration profile inside the thin shell could be expressed by a single averaged

concentration value. For comparison with fully porous beads, they used the general rate

model for fully porous beads. Li et al. (2010) performed optimization of core size for linear

chromatography by minimizing height equivalent theoretical plate (HETP) number. Gu et

al. (2011) have presented a nonlinear general rate model for cored beads and its numerical

solution strategy. The model was used to optimize the core radius fraction for a prepar-

ative ternary elution system as an example case. Luo et al. (2013) have simulated cored

beads for size-exclusion chromatography using the general rate model (GRM). Li et al.

(2003a) have used GRM and Langmuir isotherm to analyze adsorption/desorption kinetics

of protein on the binding ligand of inert core adsorbent. Moreover, Li et al. (2003b, 2004)
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have derived analytical solution of the linear GRM to predict breakthrough curves for the

inert core adsorbent. Core-shell particles find one real application at industrial scale on

expanded bed adsorption for protein capture. The use of similar model and application

has been discussed by Li et al. (2005, 2006).

This article is concerned with the numerical approximation of a nonlinear GRM for core-

shell particles. It is an extension of our recent work on the analysis of linear GRM for core-

shell particles, see Qamar et al. (2015). For nonlinear adsorption isotherms, analytical so-

lutions of the model equations are not possible. For that reason, numerical simulations are

required to accurately predict the dynamic behavior of chromatographic columns. Steep

concentration fronts may occur because of the convection dominated partial differential

equations (PDEs) of the chromatographic models. Thus, efficient and accurate numerical

method is required to study dynamics in chromatographic columns packed with core-shell

particles. The model considers multi-component mixture, axial dispersion, interfacial mass

transfer, intraparticle diffusion, and nonlinear adsorption. A high resolution flux-limiting

finite volume scheme is suggested to solve the model equations. The accuracy and effi-

ciency of this scheme for equilibrium dispersive model was recently tested by Javeed et al.

(2011). In that article, it was found that the proposed scheme is simple, accurate, and

easy to implement as compared to other high resolution finite volume and finite element

methods applied to the same model equations. Different case studies of the one-, two-, and

three-component mixtures are considered. With these case studies it is intended to analyze

the effects of core radius fraction, axial dispersion, film mass transfer resistance and intra-

particle diffusion resistance, on the elution curves. Assessment criteria are introduced to
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understand the process and to optimize the core size for achieving maximum productivity.

A comparison of linear and nonlinear cases is presented to reveal the effects of nonlinearity.

The tools developed and the simulation results generated should be helpful to synthesize

tailor-made particles.

This article is arranged as follows. In Section 2, the nonlinear general rate model us-

ing cored beads is briefly introduced. In Section 3, the proposed accurate and efficient

numerical scheme is derived and criteria to evaluate the performance of preparative chro-

matography are introduced. In Section 4, several case studies are carried out which are

helpful in rationally designing thicknesses of shell layers for preparative applications. Fi-

nally, conclusions are drown in Section 5

2. Mathematical model for core beads

An isothermal adsorption column packed with inert core particles is considered as shown

in Figure 1. At time zero, a step change in the concentration of an adsorbate is introduced

in a flowing stream. The adsorption column is subjected to axial dispersion, film mass

transfer resistance and intraparticle diffusion resistance. It is assumed that cored beads

have uniform particle size Rp and core size Rcore. The inner core cannot be penetrated and

there is only diffusion (no convection) in the porous shell. The column is considered to be

isothermal.

Under these assumptions, the mass balance equations for a multi-component mixture of

Nc components percolating through a column filled with spherical core beads of radius Rp
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are given as (c.f. Guiochon (2003); Guiochon et al. (2006))

∂Cb,i

∂t
+ u

∂Cb,i

∂z
= Db,i

∂2Cb,i

∂z2
−

3

Rp
Fbkext

(

Cb,i − Cp,i|r=Rp

)

, i = 1, 2, · · · , Nc . (1)

In the above equation, Cb,i and Cp,i are the concentrations of i-th component of the mixture

in the bulk of the fluid and in particle pores, respectively. The phase ratio Fb is defined as

Fb = (1 − ǫb)/ǫb, where ǫb is the external porosity. Moreover, u is the interstitial velocity

which respects the external porosity, Db,i represents the axial dispersion coefficient of the

i-th component, kext is the external mass transfer coefficient, and t and z denote time and

axial coordinate of the column. In addition, r denotes the radial coordinate (c.f. Figure 1).

The mass balance equation for the solute in the stationary phase can be expressed as (c.f.

Guiochon (2003); Guiochon et al. (2006))

ǫp
∂Cp,i

∂t
+ (1− ǫp)

∂qp,i
∂t

=
ǫpDp,i

r2
∂

∂r

(

r2
∂Cp,i

∂r

)

, (2)

where qp,i is the local concentration of i-th component of the mixture in the shell of the sta-

tionary phase, ǫp is the internal porosity, and Dp,i is the pore diffusivity of i-th component

of the mixture.

To simplify the notations and reduce the number of variables, the following dimensionless

quantities are introduced:

cb,i =
Cb,i

C inj
b,i

, cp,i =
Cp,i

C inj
b,i

, q∗p,i =
qp,i

C inj
b,i

, τ =
ut

L
, ρ =

r

Rp
, x =

z

L
,

Pei =
Lu

Db,i
, Bii =

kextRp

ǫpDp,i
, ηi =

ǫpDp,iL

R2
pu

, ξi = 3BiiηiFb . (3)

In the above equation, C inj
b,i denotes the non-zero injected bulk concentration of i−th com-

ponent, Pei is the Peclet number based on column length, Bii represents the modified Biot
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number, and ηi describes the ratio of space time and interaparticle diffusion time for the

i-th component. Using the above dimensionless variables, the model Eqs. (1) and (2) can

be rewritten as

∂cb,i
∂τ

+
∂cb,i
∂x

=
1

Pe

∂2cb,i
∂x2

− ξi (cb,i − cp,i|ρ=1) , (4)

ǫp
∂cp,i
∂t

+ (1− ǫp)
∂q∗p,i
∂t

=
ηi
ρ2

∂

∂ρ

(

ρ2
∂cp,i
∂ρ

)

. (5)

Eqs. (4) and (5) are connected at r = Rp via the following expression which quantifies the

temporal change of the average loading of the particles:

∂cp,i
∂ρ

∣

∣

∣

∣

ρ=1

= Bii(cb,i − cp,i|ρ=1) . (6)

The corresponding convex nonlinear Langmuir isotherm in dimensionless form is given as

q∗p,i =
aicp,i

1 +
Nc
∑

j=1

(bjC
inj
b,j )cp,j

. (7)

For fully porous particles ρ ranges from 0 to 1, while for cored particles it ranges from

ρcore = Rcore/Rp to 1. As this study is concerned with the cored particles of arbitrary

core radius fraction ρcore, it is necessary to allow the core radius to be changed. For cored

particles (c.f. Eq. (5)), ρcore ≤ ρ ≤ 1. For fully porous particles ρcore=0, while ρcore 6= 0

for cored particles. Thus, following Gu et al. (2011), it is helpful to replace ρ-axis by

0 ≤ γ ≤ 1, where

γ =
ρ− ρcore
1− ρcore

. (8)
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On substituting

ρ = γ(1− ρcore) + ρcore , (9)

in Eqs. (4) and (5) and using Eq. (7), they yield

∂cb,i
∂τ

+
∂cb,i
∂x

=
1

Pei

∂2cb,i
∂x2

− ξi (cb,i − cp,i|γ=1) , i = 1, 2, · · · , Nc, (10)

(

ǫp + (1− ǫp)
∂q∗p,i
∂cp,i

)

∂cp,i
∂τ

= ηb

(

1

(1− ρcore)2
∂2cp,i
∂γ2

+
2

γ(1− ρcore)2 + ρcore(1− ρcore)

∂cp,i
∂γ

)

.

(11)

The Eqs. (10) and (11) are also subjected to the initial and boundary conditions. The

initial conditions for an initially regenerated column are given as

cb,i(0, x) = 0 , cp,i(0, x, γ) = 0 , ∀ x, γ ∈ (0, 1), i = 1, 2, · · · , Nc. (12)

The following boundary conditions at γ = 0 and γ = 1 are assumed for Eq. (11) (c.f. Eq.

(6))

∂cp,i
∂γ

∣

∣

∣

∣

γ=0

= 0 ,
∂cp,i
∂γ

∣

∣

∣

∣

γ=1

= (1− ρcore)Bii(cb,i − cp,i|γ=1) . (13)

Appropriate inlet and outlet boundary conditions (BCs) are required for Eq. (10). In this

case, the Robin type boundary condition, known in chemical engineering as Danckwerts

boundary conditions, are applied at the column inlet (c.f. Danckwerts (1953))

−
1

Pei

∂cb,i
∂x

+ cb,i

∣

∣

∣

∣

x=0

=















1 , if 0 < τ ≤ τinj ,

0 , τ > τinj ,

(14a)

where τinj is the time of injection. At the outlet of the column of finite length x = 1, the

following Neumann outflow boundary conditions are used:

∂cb,i(1, τ)

∂x
= 0 . (14b)
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3. Numerical scheme

Various numerical schemes are available in the literature to approximate the chromato-

graphic models, see Javeed et al. (2011); Guiochon and Lin (2003); Guiochon et al. (2006);

Lieres (2010) and reference therein. In this work, a semi-discrete high resolution flux-

limiting finite volume scheme is applied to solve the current model equations in axial- and

radial-coordinates. This scheme was tested recently for equilibrium dispersive model by

Javeed et al. (2011). In that article, it has been shown analytically and numerically that

the proposed scheme is second order accurate, see Javeed et al. (2011). A second-order

TVD Runge-Kutta method is applied to solve the ODE system in time-coordinate.

By considering the Langmuir isotherm in Eq. (7) and a three-component mixture (i.e.

Nc = 3), we deduce the following system of equations from dimensionless Eqs. (10) and

(11):

∂cb
∂τ

+
∂cb
∂x

= P
∂2cb
∂x2

− ξ(cb − cp|r=1), (15)

J
∂cp
∂τ

= η

(

1

(1− ρcore)2
∂2cp
∂γ2

+
2

γ(1− ρcore)2 + ρcore(1− ρcore)

∂cp
∂γ

)

, (16)

where

cb =

















cb,1

cb,2

cb,3

















, cp =

















cp,1

cp,2

cp,3

















, P =

















1
Pe1

0 0

0 1
Pe2

0

0 0 1
Pe3

















, ξ =

















ξ1 0 0

0 ξ2 0

0 0 ξ3

















,

J =

















1 + Fb
∂qp,1
∂cp,1

Fb
∂qp,1
∂cp,2

Fb
∂qp,1
∂cp,3

Fb
∂qp,2
∂cp,1

1 + Fb
∂qp,2
∂cp,2

Fb
∂qp,2
∂cp,3

Fb
∂qp,3
∂cp,1

Fb
∂qp,3
∂cp,2

1 + Fb
∂qp,3
∂cp,3

















, η =

















η1 0 0

0 η2 0

0 0 η3

















. (17)
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Here, Fb = (1 − ǫb)/ǫb, where ǫb is the external porosity. Before deriving the scheme, the

first step is to discretize the computational domain.

3.1. Domain discretization

Let Nx and Nγ be the large integers in x and γ-coordinates, respectively. We consider

a domain [0, 1] × [0, 1] which is covered by cells Ωkl ≡
[

xk− 1

2

, xk+ 1

2

]

×
[

γk− 1

2

, γl+ 1

2

]

for

1 ≤ k ≤ Nx and 1 ≤ l ≤ Nγ . The representative coordinates in the cell Ωkl are denoted by

(xk, γl). Here

(x1/2, x1/2) = (0, 0), xk =
xk−1/2 + xk+1/2

2
, γl =

γl−1/2 + γl+1/2

2
, (18)

and for uniform mesh

∆x = xk+1/2 − xk−1/2 , ∆γ = γl+1/2 − γl−1/2 . (19)

Note that

cb = cb(t, x) , and cp = cp(t, x, γ) . (20)

Thus, for Ik =
[

xk− 1

2

, xk+ 1

2

]

and Ωkl, the cell averaged values cb,k(t) and cp,k,l(t) at any

time t are given as

cl = cl(t) =
1

∆xk

∫

Ik

c(t, x) dx , cp,l = cp,k,l(t) =
1

∆xk∆γl

∫

Ωkl

cp(t, x, γ) dγdx . (21)

On integrating Eq. (15) over the interval Ik and using Eq. (21), we obtain

dcb,k
dτ

=−
(cb,k+1/2 − cb,k−1/2)

∆x
+

P

∆x

[

(

∂cb
∂x

)

k+1/2

−

(

∂cb
∂x

)

k−1/2

]

− ξ(cb,k − cp,k,Nγ),

(22)
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where k = 1, 2, · · · , Nx. The differential terms of the diffusion part can be approximated

as

(

∂cb
∂x

)

k±1/2

= ±
(cb,k±1 − cb,k)

∆x
. (23)

Now, integration of equation (16) over the interval Ωij gives

dcp,k,l
dτ

=
J−1η

(1− ρcore)2∆γ

[

(

∂cb
∂γ

)

k,l+1/2

−

(

∂cb
∂γ

)

k,l−1/2

+
2(cp,k,l+1/2 − cp,k,l−1/2)

γl+1/2 + ρcore/(1− ρcore)

]

,

(24)

where

(

∂cp
∂x

)

k,l±1/2

= ±
(cp,k,l±1 − cp,k,l)

∆γ
. (25)

The next step is to approximate concentrations at the cells interfaces xk±1/2 and γl±1/2

in Eqs. (22) and (24). There are several ways to approximate these fluxes, leading to

different numerical schemes. Here, we present the first and second order approximations.

Since all components of vectors P and 2J−1η
∆γ[γl+1/2(1−ρcore)2+ρcore(1−ρcore)]

are positive, the vectors

of contractions cb and cp at the cell interfaces are approximated as follows.

3.2. First order scheme

In this scheme backward difference formula is used to approximate concentrations at the

cell interfaces:

cb,k+ 1

2

= cb,k, cb,k− 1

2

= cb,k−1, cp,k,l+ 1

2

= cp,k,l, cp,k,l− 1

2

= cp,k,l−1 . (26)

The above approximations give first order accuracy of the scheme in the axial- and particle

radial-coordinates.
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3.3. The flux-limiting high resolution scheme

According to this scheme the cell interface concentrations are approximated as (c.f. Javeed

et al. (2011))

cb,k+ 1

2

= cb,k +
1

2
ϕ
(

µk+ 1

2

)

(cb,k − cb,k−1) , µk+ 1

2

=
cb,k+1 − cb,k + ζ

cb,k − cb,k−1 + ζ
, (27)

cp,k,l+ 1

2

= cp,k,l +
1

2
ψ
(

νk,l+ 1

2

)

(cp,k,l − cp,k,l−1) , νk+ 1

2

=
cp,k,l+1 − cp,k,l + ζ

cp,k,l − cp,k,l−1 + ζ
. (28)

Here, ζ = 10−10 is use to prevent division by zero. The flux limiting functions ϕ and ψ are

used to preserve the local monotonicity (positivity) of the numerical scheme (c.f. Javeed

et al. (2011)). They are given as

ϕ(µk+ 1

2

) = max

(

0,min

(

2µk+ 1

2

,min

(

1

3
+

2

3
µk+ 1

2

, 2

)))

, (29)

ψ(νk,l+ 1

2

) = max

(

0,min

(

2νk,l+ 1

2

,min

(

1

3
+

2

3
νk,l+ 1

2

, 2

)))

. (30)

The proposed high resolution scheme in Eqs. (27)-(30) is not applicable up to the boundary

intervals. Therefore, the first order (backwards) approximations are used in the boundary

intervals. The fluxes at all other interior interval are computed by using Eqs. (27)-(30).

Note that, this first order scheme will not diminish the global accuracy of the method.

To obtain the second order accuracy in time, we use a second order TVD Runge-Kutta

scheme to solve Eqs. (27)-(30), see Javeed et al. (2011). Denoting the right-hand side of

Eqs. (27) and (28) as L(cb, cp|γ=1) and M(cp), a second order TVD Runge-Kutta scheme

update cb and cp through the following two stages

c
(1)
b = cnb +∆τL(cnb , c

n
p |γ=1) , c(1)p = cnp +∆τM(cnp ) , (31a)

cn+1
b =

1

2

[

cnb + c
(1)
b +∆τ L(c

(1)
b , c(1)p |γ=1)

]

, cn+1
p =

1

2

[

cnp + c(1)p +∆τM(c(1)p )
]

, (31b)
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where cnb and cnp are solutions at the previous time step τn and cn+1
b and cn+1

p are updated

solutions at the next time step τn+1. Moreover, ∆τ represents the time step which is

calculated under the following Courant-Friedrichs-Lewy (CFL) condition

∆τ ≤ 0.5min

(

∆x,
∆x2

max(Peb,k)
,

∆γ2

σ(J−1ηp,k)
,
ρcore(1− ρcore)∆γ

2σ(J−1ηp,k)

)

, (32)

where σ represents the spectral radius of a matrix. The suggested numerical scheme is

second order accurate in time and spatial coordinates, see Javeed et al. (2011). The

algorithm was implemented in the computer using C programming language.

3.4. Process performance criteria

Like the other industrial processes, preparative chromatography needs to be optimized.

Here, we introduce a performance criteria which could be used for the assessment of quality

of a product, see Horváth and Felinger (2015). Consider a two component mixture in which

component 1 has lower affinity for the stationary phase as compared to the component 2, i.e.

a1 < a2. The concentration of i−th component in grams per liter is given as Cb,i = cb,iC
inj
b,i ,

where cb,i is the dimensionless concentration normalized with C inj
b,i as defined in Eq. (3).

Let τ1 be the dimensionless time at which the fraction of component 1 exceeds some

threshold, i.e. Cb,1 ≥ ǫC inj
b,1, where ǫ = 10−5 in this case. Similarly, τ2 is the time at which

the fraction of component 2 drops below some threshold, Cb,2 ≤ ǫC inj
b,1. The cycle time τcyc

is defined as the time lapse between two successive injections:

τcyc = τ2 − τ1 . (33)
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The cut time of component 1 is the time at which fractionation of the this component

stops. The following equation was solved to obtain the cut time τcut of component 1:

Pur =

τcut
∫

τ1

Cb,1(τ, x = 1)dτ

τcut
∫

τ1

[Cb,1(τ, x = 1) + Cb,2(τ, x = 1)]dτ

. (34)

The required peak area based purity was set to 99%. A reduced productivity Pr is the

amount of desired compound produced per time cycle. For the case of component 1, it is

defined as

Pr =

τcut
∫

τ1

Cb,1(τ, x = 1)dτ

τcyc
. (35)

This reduced productivity can be be easily back transformed in the usual dimensional form

by multiplying with the volumetric flow rate. The recovery yield is the ratio of between the

amount of desired component in purified fraction and the amount injected at the column

inlet. For component 1, it is expressed as

Y =

τcut
∫

τ1

Cb,1(τ, x = 1)dτ

τ2
∫

τ1

Cb,1(τ, x = 1)dτ

. (36)

4. Numerical case studies

This section presents some numerical test problems to analyze the effects of ρcore, Pe and

Bi on the elution profiles. Moreover, the effects of ρcore, Ci,inj, and Bi are analyzed on

productivity and yield. The representative parameters used for illustration in the test

problems are given in Table 1.
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4.1. Single-component elution

Figure 2(a) shows a comparison of the concentration profiles for different core radius frac-

tions including fully porous beads. On increasing ρcore from 0 (fully porous beads) to 0.8

(beads with thin shell), the elution profiles became sharpened. Thus, with an increase in

ρcore, efficiency of the column improves. Simultaneously, the retention time of the column

shortens, i.e. the capacity of the column reduces. The sharpening of the peaks are due to

the reduced intraparticle diffusional mass transfer resistance. The shorter residence times

are due to the loss of binding sites with increasing the ρcore value. Figure 2(b) compares

the results for linear (b = 0) and nonlinear (b = 10) cases. The nonlinear effects caused

further reduction in the retention times and more pronounced peak tailings. The effects

of model parameters Pe and Bi on the elution curves are also shown in Figures 2(c) and

2(d) for two different values of ρcore. It is apparent that if axial dispersion or film mass

transfer resistance are important, the peaks become wider and the times corresponding to

the peak maxima are slightly lower. The effect of ρcore is similar in all plots.

4.2. Multi-component elution

Figure 3 shows the effect of ρcore on the retention times and band broadening of the elution

profiles for a two-component mixture with b1C
inj
b,1 = b2C

inj
b,2 = 1. It can be observed again

that for fully porous particles the overlap in the elution profiles is rather significant. Thus,

the separation of the two peaks is not achieved in this case. However, for core-beads with

ρcore = 0.8 elution peaks are sharper, retention times of both components are shorter and

the resolution is much better. It can be observed that at ρcore = 0.8 separation of the two
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peaks is almost achieved due to decrease in band broadening. The aggregate dimensionless

time required for totally eluting out the two peaks was reduced from 42 for fully porous

beads (c.f. Figure 3) to 16 for cored beads having ρcore = 0.8, offering larger productivities

in a repetitive batch regime.

The peak areas of both components for ρcore = 0.8 were numerically integrated and were

found to be 0.998 and 0.995, respectively. They matched well with the dimensionless

sample pulse size of one injected for τinj = 1.0. Moreover, the numerical dispersion of the

scheme was very small and elution profiles on course and refined grids were almost the

same. These tests verify the accuracy of proposed numerical algorithm.

Figure 4 shows the effect of ρcore on retention times and band broadening of the elution

profiles for a three-component mixture. It can be observed in Figure 4a that fully porous

particles did not provide separation of the three peaks. It was also found that cored beads

with ρcore = 0.5 did not help much in further improving the separation. However, as ρcore

was increased to 0.8, elution peaks became sharper (c.f. Figure 4b) and retention times of

all three components were shorter. With this value of ρcore, separation of the three peaks

could be achieved. The aggregate dimensionless time required for totally eluting the three

peaks was roughly 80 for fully porous beads (c.f. Figure 4), compared to 35 for cored beads

having ρcore = 0.8.

The peak areas of three components for ρcore = 0.8 were numerically integrated and were

found to be 1.001, 1.002 and 1.0, respectively. They matched well with the dimensionless

sample pulse size of 1.0 for τinj = 1. This verifies the accuracy of proposed numerical

method. Our numerical results are also in good agreement with those obtained by Gu et

17



al. (2011) for the same data.

4.3. Assessment of the process performance

Figure 5 shows the plot of τcyc, τcut, Pr, and Y (c.f. (33)-(36)) over ρcore. It can be observed

that the cycle time is decreasing from 42 for fully porous beads to 12 for cored beads having

ρcore = 0.85. Similarly, the cut times reduce from 9.7 to 5.6. The productivity increases till

ρcore = 0.7 and decreases afterwards. On the other hand, the yield Y increases continuously

with increasing ρcore. It should be noted that the characteristic maximum visible in Figure

5c is just valid for the specific parameters considered. Below we will illustrate the effect of

selected parameters on the course of the performance criteria.

Figure 6 shows the effect of the injection concentration C inj
b,1 on the parameters τcyc, τcut,

Pr, and Y (c.f. Eqs. (33)-(36)) for four different values of ρcore. Here, we have chosen

C inj
b,1 = C inj

b,2. On increasing C inj
b,1 the productivity initially increases and achieves a maximum

value. Afterwards, it decreases and finally attains a steady state level. Table 2 lists the

maximum values of productivity along with other parameters at the given values of ρcore

and C inj
b,1. It can be seen in Table 2 and Figure 6 that maximum values of productivity

were achieved in the range 1.0 g/l ≤ cinj ≤ 3.0 g/l for 0 ≤ ρcore ≤ 0.8. In this range, for

ρcore = 0.7 and C inj
b,1 = 3 g/l the maximum productivity is found. It should be noted that

an increase in the feed concentration is equivalent to the increase of bi as shown in the

isotherm expression given by Eq. (7).

To illustrate the effects of the thickness of the core and the injection concentrations, Figure

7 displays the elution curves at maximum levels of productivity achieved at particular
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values of ρcore and C
inj
b,1 = C inj

b,2 (c.f. Table 2 and Figure 6).

We further evaluated the effects of two kinetic parameters, namely a) the external mass

transfer resistance, expressed via Bi, and b) the intraparticle diffusion resistance, expressed

via η.

Figure 8 show that the optimal ρcore values clearly depend on kinetic parameter Bi. Taking

the results of Figures 5(c),(d) generated for Bi = 50 as a reference, two other Biot numbers

were considered ( Bi = 5 and Bi = 150). A decrease and an increase of the mass transfer

rate around the particles changed in the same way the ratio between external and internal

mass transfer resistances. Figure 8(a) shows that the optimal ρcore values, which lead to

the highest productivity for collecting the first eluting component, move to larger values

on decreasing the Bi, i.e. to thinner shell layers. Simultaneously, the recovery drops with a

decrease in mass transfer rate. The differences in productivity and yield for Biot numbers

of 50 or 150 are small. This indicates that for Bi = 50 the effect of the transport through

the laminar boundary layer is already almost negligible. Band shapes are under such

conditions essentially controlled be internal mass transfer resistances and axial dispersion.

Finally, results in Figure 9 show the dependence of optimal ρcore values on parameter η.

Once again, taking the results of Figures 5(c),(d) generated for η = 2.0 as a reference, two

other η numbers were considered (i.e. η = 0.5, 2.5). Figure 9(a) shows that the optimal ρcore

values, which lead to the highest productivity for collecting the first eluting component,

move to lower values on increasing the η. For η = 2.5 the optimum ρcore is roughly

0.5. Thus, faster transfer rates in the shell allow to thicken this layer. Simultaneously,

the recovery drops monotonously with a decrease in η value. It should be emphasized that
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these results and the results shown in Figure 8 are just valid for the given feed composition.

Changes in the optima would occur for other injections concentrations as illustrated in

Figure 6.

With the model applied and the accurate solution method investigated the impact of

all other relevant parameters could be studied in detail. The selected case studies of this

manuscript clearly indicate that a full optimization of core-shell particles for applications in

nonlinear preparative chromatography is a challenging task. For application in preparative

chromatography a rational optimization needs to carefully consider, besides the geometric,

kinetic and thermodynamic parameters, also the operating parameters, in particular the

injection concentrations.

4.4. Conclusion

A semi-discrete high resolution finite volume scheme was proposed to solve the nonlinear

general rate model for fixed-beds packed with core shell adsorbents. It quantifies the effects

of intraparticle diffusion resistance, film mass transfer resistance and the axial dispersion

influence on the shape of elution curves. The results showed that an increase in core radius

fraction leads to shorter residence times and sharper peaks. Thus, if a column is packed

with core shell adsorbents, the column separation efficiency will increase due to the short-

ened diffusion path in the adsorbents. In contrast the loading capacity decreases. Suitable

performance criteria considering the cycle times were evaluated exploiting numerical sim-

ulations for finding the optimum values of core radius fraction and injected concentration.

Selected parametric studies revealed that the optimal shell layer thickness which maxi-
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mizes the productivity of preparative chromatography is, among others, a function of the

injection concentration, the Biot number and the intraparticle diffusion resistance. The

presented model and the numerical solutions are seen to be useful to understand and

optimize the process and to develop proper core shell particles.
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mission (HEC) of Pakistan for financial support.
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Table 1: Standard parameters of the problems.

Figure Nr. Component Nr. Pei Bi ηi ǫb ǫp ai bi C inj
b,i

2 1 1500 50 2.0 0.4 0.5 10 1.0 1.0

3 1 10 1.0 1.0

2 1500 50 2.0 0.4 0.5 25 1.0 1.0

4 1 10 0.5 0.1

2 30 1.5 0.4

3 1500 50 2.0 0.4 0.5 70 3.5 0.4

5, 6 & 7 1 10 1.0 1.0

2 1500 50 2.0 0.4 0.5 25 1.0 1.0

8 1 10 1.0 1.0

2 1500 (5, 50, 150) 2.0 0.4 0.5 25 1.0 1.0

9 1 10 1.0 1.0

2 1500 50 (0.5, 2, 2.5) 0.4 0.5 25 1.0 1.0
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Table 2: Optimum values of assessment parameters.

ρcore C inj
b,1 Pr Y τcyc τcut

0.0 3.0 0.044 0.60 39.96 5.18

0.5 3.0 0.062 0.66 31.31 4.45

0.7 3.0 0.088 0.76 21.26 4.01

0.8 1.0 0.048 0.99 14.71 5.90
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Figure 1: Schematic diagrams of fixed-bed adsorber and inert core adsorbent.
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Figure 2: Single solute: Study of the effects of (a) ρcore, (b) extent of nonlinearity b, (c) Pe, and (d) Bi

on elusion curves. Here, τinj = 1 and values of the standard parameters are given in Table 1.
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(b) cored beads for b1C
inj
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inj

b,2. The values of standard parameters are given in Table 1.
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Figure 4: Three-component mixture: Elution profiles at the column outlet for (a) fully porous particles

and (b) cored beads for τinj = 1. The values of standard parameters are given in Table 1.
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inj

b,2 and b1 = 1 = b2. The values of standard parameters

are given in Table 1.
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Figure 7: Two-component mixture: Plots plots (a), (b), (c) and (d) show comparisons of elution profiles

at maximum productivity levels for particular ρcore and C
inj

b,i (c.f. Figure 6(b)). Here, τinj = 1.0 and

b1 = 1 = b2. The values of standard parameters are given in Table 1.
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Figure 8: Two-component mixture: Plots of (a) Pr and (b) Y as functions of ρcore for three different values

of Bi (5, 50 (Figure 5), 150) and fixed values of b1C
inj

b,1 = 1 = b2C
inj

b,2 and τinj = 1.0. The values of standard

parameters are given in Table 1.
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Figure 9: Two-component mixture: Plots of (a) Pr and (b) Y as functions of ρcore for three different values

of η (0.5, 2 (Figure 5), 2.5) and fixed values of b1C
inj

b,1 = 1 = b2C
inj

b,2 and τinj = 1.0. The values of standard

parameters are given in Table 1.
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