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1. Resistor network simulations and current inhomogeneities 

In the data analysis we assume a homogeneous current density jmacro over the sample. To 

estimate the homogeneity of the current distribution we perform classical resistor network 

simulations of the transport map as introduced by Homoth et al.1. The sample system has been 

modelled corresponding to the topography in Figure 2a by connecting the data points with 

resistors horizontally and vertically. The area is divided into monolayer, bilayer, and wrinkle 

areas and to each resistor the value of the experimental results as given in the manuscript is 

assigned. The potential VTransport on the left and right image borders is derived by a linear fit 

of the experimental transport data. The result of the simulated potential map is shown in Figure 

S1a. It is highly dominated by a linear voltage drop. From potential and resistance values the 

local current in each data point can be calculated. The current map can be found in Figure S1b. 

The edges of defects, i.e. ML/BL steps and wrinkles, are sketched by black lines because the 

simulation of the currents in these edges depends on the discretization of the model. However, 

the current flow on free areas is consistently described for the given surface structure including 

defects. The current density is found to be homogeneous over the 30µm x 30µm sample as 

depicted in Figure S1c. Both, a Gaussian fit and statistical evaluation of the data, give a 

coefficient of variation, i.e. a ratio of standard deviation to the mean value of 𝜎/𝜇 = 3.8% over 

the whole area for the resistance values from the manuscript ρ
ML

= 342 Ω , ρ
ML/BL

= 20 Ωµm, 

and ρ
Wr

= 50 Ωµm. Hence, the simulation justifies the assumption of a nearly homogeneous 

current density. An uncertainty of 4% is included in the calculation of the error of sheet and 

wrinkle resistances. 

Even for an increased wrinkle resistance of ρ
Wr

= 200 Ωµm, the standard deviation of the 

current is still given by a value of 6%. However, then the voltage drop over the wrinkle should 



be in the order of ∆𝑉 ≈ 8mV for a current density of jmacro = 39 
A

m
 which is substantially 

above the experimental results (see Figure 4d). 

On the nanoscale the orientation of the current in the free graphene sheet is to very high extent 

given by the horizontal component, i.e. parallel to the macroscopic current density. Therefore 

it is legitimate for the evaluation of wrinkle resistances to assume the microscopic current to be 

running horizontally with the macroscopic current density. 

As shown in Figure 2h in the manuscript, the sheet resistances for different areas vary by up to 

8%. We found that even including such variations in the simulations by applying a Gaussian to 

the resistance values on free areas does not change the uniformity of the current significantly 

and results in a still moderate coefficient of variation of 6%.

 

Figure S1. Resistor network simulation of the transport map shown as Figure 2e in the manuscript with 

a discretization of 512x512 data points matching the KPFM resolution. (a) Transport potential VTransport 

resulting from a network with resistor values ρ
ML

= 342 Ω , ρ
ML/BL

= 20 Ωµm, and ρ
Wr

= 50 Ωµm. 

(b) Local current map with defects sketched in black. (c) Histogram of total currents of the map shown 

in (b) with Gaussian fit with mean value 𝜇 = 2.38µA and standard deviation 𝜎 = 8.95 ∙ 10−2µA. The 

relative deviation of 𝜎/𝜇 = 3.8% shows the homogeneity of the current density over the sample. 

 

2. Modelling the temperature-dependence of graphene on SiO2 

The temperature-dependence of graphene on SiO2 has been discussed by Chen et al.2 As 

described in the manuscript, the additional dependence has been introduced by a linear 

temperature-dependence ρA(T) due to acoustic phonons and an exponential contribution due to 



coupling to phonon-modes in the substrate. In the simplest model this has been expressed as a 

single contribution.2 A third contribution ρ0 is independent of temperature and thus limits the 

low-temperature case. Thus, the dependence is given by  

ρ(T) =  ρ0 + ρA(T) + ρB(T)     (S1) 

with  ρA(T) = K1 ∙ T = (
h

e2
) 

π2DA
2 kB

2h2ρsvs
2vF

∙ T  and   ρB(T) =  K2 ∙ (
1

eE0/kBT−1
) 

Here, DA is the acoustic deformation potential, ρs is the 2D mass density of graphene, vs is the 

velocity for LA phonons and vF is the Fermi-velocity. Using the values in [2] we set K1 =

0.0316
1

K
. Moreover, K2 has been introduced to take account for the dependence on the gate 

voltage. Therefore, we also replace it with the value for no gate voltage K2 = 5730 Ω, as in our 

experiment. Our best fit parameters for the macroscopic case and the two local dependencies 

can be found in Table S1.  

 

 

 

 

 

Table S1. Parameters to describe the temperature-dependent resistance. 

3. Resistor network model for a folded graphene wrinkle 

The concepts of the resistor network model have been introduced elsewhere.1,3 Figure S2 

depicts the equivalent circuit diagram of the resistor network model for the folded graphene 

wrinkle. RML=
W

L
∙ρ

ML
 is here the resistance of a segment of monolayer graphene (sheet 

 𝝆𝟎 [𝛀] 𝐄𝟎 [𝐦𝐞𝐕] 

𝛒𝐦𝐚𝐜𝐫𝐨 303  122 

𝛒𝐌𝐋,𝟏 260 129 

𝛒𝐌𝐋,𝟐 298 127 



resistance ρ
ML

= 350 Ω) with length L and width W. We here neglected any possible changes 

in the charge carrier concentration of the single layers and assumed an equal distribution, so 

that all three layers have the same resistance. Additionally, interlayer resistance R⊥,12=κ ∙ RML ∙

d2

W∙L
 can be expressed as a multiple κ of the ML resistance RML (times the dimensionless factor 

d2

W∙L
 with d = 3.4 Å  the graphite layer thickness, that accounts for the different current 

direction). While L and W are introduced here to define the values of the resistance, the results 

are independent of them as long as the choice of the grid is made small enough. 

 

Figure 2. Geometry and equivalent circuit diagram of the folded graphene wrinkle.  

 

We use κ as a fitting factor to the experimental data. R⊥,12 and R⊥,23 are the interlayer 

resistances for the first and second/second and third layer, respectively. We now simulate two 

limiting cases 

1. R⊥,12 ≪ R⊥,23: This implicates that the folded wrinkle is only coupled to the upper (or 

lower) sheet as has been assumed in [4]. 

2. R⊥,12 = R⊥,23: This is the case when the wrinkle couples to both sheets and forms a 

trilayer-like structure as suggested by the KPFM data in the manuscript. 

The evaluation of the defect resistance ρWrinkle is performed analogously to the experimental 

data in the manuscript by fitting linear functions to the regions left and right of the defect and 



dividing the voltage drop by the current density. Figure S3a depicts the result for case 1 and 

Figure S3b for case 2. We show the defect resistance as a function of the wrinkle length LWrinkle 

as well as for different values κ. For case 1, two regimes can be distinguished: for small values 

of LWrinkle the increase is linear, since the wrinkle is too short for electrons to tunnel between 

the layers and thus the transport is still dominated by the in-plane transport. For larger values 

of LWrinkle the resistance saturates, since now the transport is completely dominated by 

tunneling and thus independent of the length of the wrinkle. This is in agreement with the 

simulation by Zhu et al.4 The gray area marks the range of LWrinkle observed experimentally. 

Consequently, here the transport is already dominated by the tunneling. For case 2, the transport 

is even decreasing for long wrinkles, since the transport can take place in all three layers 

effectively reducing the resistance in the wrinkle (even leading to lower resistances than on the 

ML). The experimentally observed defect resistance is ρ
Wrinkle

≈ 50 Ωµm. Thus, we obtain the 

best fit with κ = 1 ∙ 105 (case 1) and κ = 4 ∙ 105 (case 2). The resistance between two layers 

can also be treated as a contact resistance2 that can be calculated by 

RC =
1

2
∙ κ ∙ ρ

ML
∙ d2     (S2) 

 Leading to 

RC,1=2∙10
-8

Ωcm2  (case 1)   RC,2=8∙10
-8

Ωcm2 (case 2) 

As stated in the manuscript, this is significantly higher than the contact resistance found for the 

monolayer bilayer transition in epitaxial graphene (4.2∙10
-10

Ωcm2).2 This can be explained with 

a weaker coupling than in epitaxial graphene. In fact, since the atomic lattice is not resolved in 

this experiment, we cannot determine the stacking of the different layers. This should however 

be crucial for the interlayer tunneling.  



 

Figure S3. Results for the resistor network model of the folded graphene wrinkle with the defect 

resistance ρ
Wrinkle

 as a function of wrinkle length LWrinkle. (a) Results for a bilayer coupling (R⊥,12 ≪

R⊥,23) for different values of κ between 104 and 106. (b) Results for trilayer coupling (R⊥,12 = R⊥,23) 

for different values of κ between 104 and 106 [same as in (a)]. Gray area marks the experimentally 

investigated length of folded graphene wrinkles. 

 

4. Temperature-dependence of the step resistance of folded bilayer wrinkles 

In Figure S4 we show the data from Figure 4d in the manuscript, now explicitly the step 

resistance of the folded graphene wrinkle ρ
Wrinkle

 as a function of temperature T. This is 

calculated by 

ρ
Wrinkle

=  
∆V

jmacro
     (S3) 

and the measured relation between the temperature and the current density is given by 

T=(0.0089±0.0002)
m2

A2 K∙j
macro

2
+(298.9±0.7)K. Note that the current-dependence of Equation S3 

is due to temperature-independent reasons, namely the dependence on the sample width and the 

applied bias voltage VBias. We now fitted two models to the data points, the temperature-

independent case 

     ρ
Wrinkle

(T) =  ρ0∙leff     (S4) 

and a model for the temperature-dependent behavior as observed on the ML sheets 



ρ
Wrinkle

(T) = [ρ0 + ρA(T) + ρB(T)]∙leff   (S5) 

Here, we also introduced the effective length leff that corresponds to the length of a graphene 

channel that would yield the same resistance as the defect. This concept has been used 

previously to describe localized defects5,6 and is introduced here to relate the defect resistance 

ρ
Wrinkle

 ([Ωm]) to the sheet resistance ρ
ML

 ([Ω]). We use leff = 0.15 µm so that the 

temperature-independent resistance ρ0 is close to the measured sheet resistance ρML ≈ 350 Ω. 

In both models we use ρ0 as the only fitting parameter. For the temperature-dependent case 

we use the same values for the parameters K1, K2 and E0 as for the ML sheet resistance ρ
ML

 

(see Supplementary Information, Section 2). Note that the influence of the temperature-

dependent part can be scaled by other choices of leff. The choices made here assume the same 

relative increase in the given temperature-range as for the monolayer sheet resistance ρML. 

This would for example be the case, if the transport through the wrinkle is simply given by 

the elongated path in case of no interlayer tunneling (see Supplementary Information, Section 

3). The best fits to the data for the T-independent case and for the T-dependent case are 

shown in Figure S4 as orange and black line, respectively. 

 

Figure S4. Step resistance ρ
Wrinkle

 of the folded graphene wrinkle shown in Figure 4 in the manuscript 

as a function of temperature T. Orange line indicates the fit to the temperature-independent model. The 

black line corresponds to the temperature-dependent model with an increase in resistance as observed 

on the graphene sheets. 



While both lines seem to describe the data equally well, a more detailed statistical analysis 

reveals the differences in the quality of the fits. By comparing the chi-squared  

χ2 = ∑ (
ρi−ρ(Ti) 

σi
)N

i=1        (S6) 

with the error σρWrinkle
 of the wrinkle defect resistance we find a 30% higher value for the T-

dependent model than for the T-independent case.  

     
χT-dependent

2

χ
T-independent
2 =130 % 

In fact, this is even more pronounced when we exclude the data points at T = 312 K. As can be 

seen from Figure 4d in the manuscript the total voltage drop ∆V is very small and close to the 

noise limit. This leads to high errors, since σρWrinkle
=  

𝜎∆𝑉

∆𝑉
∙ ρ. While these points cannot be 

described well by any of the two models, they are the only ones motivating a positive slope as 

required for the T-dependent model. Thus, excluding the data at T = 312 K from the statistical 

analysis even leads to  

     
χT-dependent

2

χ
T-independent
2 =193 % 

So almost twice as high for the T-dependent case. This even holds for different choices for the 

effective length  leff. As discussed above, this effectively scales the influence of the temperature-

dependent part of the resistance. In Figure S5a we show the dependence of χ2 on leff for both 

models. As can be seen, for all choices of leff, we find that χ2 is higher for the temperature-

dependent model. For small values of leff, the temperature-dependent data converges to the 

temperature-independent case. However, in this limit the temperature-dependence is so small 

that it hardly differs from the independent model as can be seen in Figure S5b.  



Consequently, if the wrinkle resistance ρ
Wrinkle

 was temperature-dependent, our data suggests 

that this dependence would be smaller than the ML sheet resistance, while the best fit is obtained 

with a temperature-independent model. Thus, we hypothesize that the step resistance ρ
Wrinkle

 at 

the folded graphene wrinkle does not change with temperature. 

 

Figure S5. (a) Chi-squared χ2 as a function of effective length leff for all data points (black) and for 

excluding the lowest data points at T = 312 K (red). The continuous (dashed) lines show the results for 

the temperature-dependent (temperature-independent) model. Grey line indicates the choice of leff for 

the same temperature-dependence as for the ML sheet resistances. (b) Wrinkle resistance ρ
Wrinkle

 as a 

function of temperature T for different values of leff. 
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