Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Electrochemistry suggests proton access from the exit site to the binuclear center in Paracoccus denitrificans cytochrome c oxidase pathway variants

MPG-Autoren
/persons/resource/persons137733

Kannt,  Aimo
Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons137817

Müller,  Hanne
Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons137800

Michel,  Hartmut       
Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Meyer, T., Melin, F., Richter, O.-M., Ludwig, B., Kannt, A., Müller, H., et al. (2015). Electrochemistry suggests proton access from the exit site to the binuclear center in Paracoccus denitrificans cytochrome c oxidase pathway variants. FEBS Letters, 589(5), 565-568. doi:10.1016/j.febslet.2015.01.014.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002A-410C-0
Zusammenfassung
Two different pathways through which protons access cytochrome c oxidase operate during oxygen reduction from the mitochondrial matrix, or the bacterial cytoplasm. Here, we use electrocatalytic current measurements to follow oxygen reduction coupled to proton uptake in cytochrome c oxidase isolated from Paracoccus denitrificans. Wild type enzyme and site-specific variants with defects in both proton uptake pathways (K354M, D124N and K354M/D124N) were immobilized on gold nanoparticles, and oxygen reduction was probed electrochemically in the presence of varying concentrations of Zn2+ ions, which are known to inhibit both the entry and the exit proton pathways in the enzyme. Our data suggest that under these conditions substrate protons gain access to the oxygen reduction site via the exit pathway.