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Semiempirical Quantum Chemistry
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Max-Planck-Institut fiir Kohlenforschung, Miilheim an der Ruhr, Germany

In this chapter, we demonstrate how graphics processing units (GPUs) can be used to accelerate
large-scale semiempirical quantum-chemical calculations on hybrid CPU-GPU platforms. We exam-
ine the computational bottlenecks using a series of calculations on eight proteins with up to 3558
atoms and outline how relevant operations are parallelized and ported to GPUs, making use of mul-
tiple devices where possible. Significant speedups are achieved that enable simulations on large
systems with thousands of atoms. As an example we present results for geometry optimizations of
three representative proteins with a-helix, p-sheet, and random coil structures using several common
semiempirical Hamiltonians.

11.1 Introduction

Semiempirical quantum chemical methods are cost-effective tools for chemists to study the struc-
ture, stability, and spectroscopy of molecules as well as chemical reactions [1] (see also Chapter 3).
They are based on the Hartree—Fock method commonly used in ab initio molecular orbital (MO)
theory [2]. The different semiempirical models simplify the Hartree—Fock procedure by introducing
distinct approximations to the Hamiltonian, neglecting many integrals to speed up computations by
several orders of magnitude [3]. The remaining integrals are modeled using empirical functions with
adjustable parameters that are calibrated against a large number of accurate experimental or high-level
theoretical reference data to make semiempirical methods as reliable and general as possible. These
features make semiempirical models well suited to many research areas in chemistry, and enabled a
large number of semiempirical applications already in the 1970s and 1980s. Since the 1990s, density
functional theory (DFT) has become the major workhorse in computational chemistry [4]. However,
considering that semiempirical methods are ~1000x faster than standard DFT approaches [5], they
are still valuable computational tools nowadays, for example, for screening large numbers of drug

Electronic Structure Calculations on Graphics Processing Units:

From Quantum Chemistry to Condensed Matter Physics, First Edition.
Edited by Ross C. Walker and Andreas W. Gotz.

© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.



240  Electronic Structure Calculations on Graphics Processing Units

candidates [6], for calculations on proteins [7], for long-time scale ground-state molecular dynamics
simulations [8], and for nonadiabatic excited-state dynamics of large chromophores [9].

The development of computational chemistry is intimately tied to the evolution of computer tech-
nology. The first computational chemistry programs developed since the 1950s had been exclusively
written for sequential execution on a single central processing unit (CPU) [10]. With the widespread
advent of parallel computing in the 1990s, many quantum chemical codes were parallelized to take
advantage of the new architectures, including semiempirical programs [11]. The most recent wave of
hardware-driven code development was triggered by the rise of graphics processing units (GPUs). A
GPU is a specially designed integrated circuit with powerful, but fixed-function pipelines for faster
image rendering and video games (see also Chapter 1). Until 2006, implementing algorithms for gen-
eral numeric calculations on a GPU was tediously difficult because the problem had to be cast into
graphics operations by resorting to a specific (graphics) API (application programming interface).
Programming purely computational tasks on a GPU was considerably simplified by the introduc-
tion of the CUDA (compute unified device architecture) and OpenCL (open computing language)
frameworks (see Chapter 2). In this chapter, we will focus exclusively on the CUDA framework,
which allows developers to employ the C programming language, with CUDA-specific extensions,
to use a CUDA-capable GPU as coprocessor of the CPU for computations [12]. As of 2012, the
raw hardware peak performance and memory bandwidth of a many-core GPU had significantly out-
paced a multicore CPU (see Figure 1.5 in Chapter 1). For example, the maximum floating-point
performance and theoretical memory bandwidth of an Intel Xeon E5-4650 CPU (eight cores with a
base clock of 2.7 GHz and a maximum boost clock of 3.3 GHz with the Intel Turbo Boost Technol-
ogy, four-channel DDR-1600) are 0.17-0.21 TFlop/s (floating-point operations per second) and 51.2
GBY/s, respectively. By contrast, the flagship Tesla K20x by Nvidia (2688 CUDA cores at 732 MHz)
has a peak of 1.31 TFlop/s for double-precision arithmetic and a memory bandwidth of 250 GB/s
with ECC (error-correcting code) off. Hence many groups decided to develop GPU-accelerated pro-
grams [13, 14] to take advantage of this promising device for quantum Monte Carlo computations
[15, 16], evaluation of two-electron integrals [17-22], DFT calculations [23-30], high-level corre-
lated ab initio methods [31-38], and semiempirical quantum chemistry [39, 40]. The other chapters
of this book contain an excellent overview of many of these porting efforts.

In this chapter, we begin with a brief review of semiempirical quantum chemistry, referring read-
ers interested in the detailed formalism and the numerical results to available books [41-43] and
reviews [5, 11, 44-50]. We then examine the computational bottlenecks by performing systematic
calculations on a set of eight proteins with up to 3558 atoms and 8727 basis functions. Thereafter,
we outline how the hotspots identified in this manner are ported to a GPU (making use of multiple
devices where possible), and how the remaining code is parallelized using CPUs only using the sym-
metric multiprocessing (SMP) capabilities via OpenMP. Next, we analyze the overall performance
of our code on the hybrid CPU-GPU platform and compare it with the CPU-only case. Finally, as an
illustrative application, we use our CPU-GPU hybrid program to optimize the geometries of three
small proteins, each consisting predominantly of one type of secondary structure, namely a-helix,
[-strand, and random coil, employing six different semiempirical methods.

11.2 Overview of Semiempirical Methods

Nonrelativistic quantum chemistry aims at finding sufficiently accurate but approximate solutions
to the Schrodinger equation. In the early days of quantum chemistry, the zero-differential-overlap
(ZDO) approximation [51, 52] was introduced to deal with “the nightmare of the integrals” [10], that
is, the difficulty of evaluating the large number of three- and four-center integrals in ab initio meth-
ods. As a consequence, the integral problem could be tackled at different levels of approximation.
Currently, the most accurate semiempirical methods are based on the NDDO (neglect of diatomic
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differential overlap) model [3], which retains all one- and two-center two-electron repulsion integrals
in the Fock matrix. The first successful and widely adopted NDDO-based parameterization was the
MNDO (modified neglect of diatomic overlap) method [53-55]. The MNDO model also serves as
the basis for later parameterizations that have been widely applied, including AM1 (Austin Model 1)
[56], PMx (parametric methods, x = 3, 5, 6, and 7) [57-60], as well as PDDG/MNDO and
PDDG/PM3 (MNDO and PM3 augmented with pairwise distance directed Gaussian functions) [61].
Conceptual deficiencies in the established MNDO-type methods include the lack of representation
of Pauli exchange repulsion in the Fock matrix. One possible remedy is to introduce orthogonaliza-
tion corrections into the Fock matrix to account for Pauli exchange repulsion. This can be done
through truncated and parameterized series expansions in terms of overlap, which provide correc-
tions to the one-electron core Hamiltonian. These corrections are applied to the one-center matrix
elements in OM1 (orthogonalization model 1) [62] and to all one- and two-center matrix elements
in OM2 [63] and OM3 [64]. Benchmark calculations demonstrate that the OMx methods, especially
OM2 and OM3, are superior to AM1 and PM3 for both ground-state and excited-state molecular
properties [65—67]. The computational cost of OMx calculations is roughly the same as that for
MNDO-type calculations [39], especially when using suitable cutoffs to neglect the exponentially
decreasing three-center orthogonalization corrections to matrix elements involving distant atoms.

11.3 Computational Bottlenecks

In this chapter, the OM3 method is taken as an example to illustrate the general strategy of optimizing
a semiempirical quantum chemical program on a hybrid CPU-GPU platform. We have selected a set
of eight proteins that are denoted as P, (x being the number of residues) and listed in Table 11.1,
for the purpose of profiling OM3 calculations in a systematic manner [68—75]. Timings for the OMx
methods are also representative for MNDO-type methods, because the most time-consuming parts
of the calculations are the same in both cases. Consequently, similar wall clock times are obtained:
for example, one SCF (self-consistent field) iteration in MNDO, AM1, PM3, OM1, OM2, and OM3
calculations on a cluster of 1000 water molecules takes 80, 84, 89, 73, 87, and 83 seconds, respec-
tively, on a single Intel Xeon X5670 CPU core [39]. Hence, it is sufficient to consider only OM3 in
the following.

The OM3 calculations on our test proteins were performed on a server with two Intel Xeon X5690
CPUs (six cores at 3.46 GHz per chip), 48 GiB host memory (24 GiB of triple-channel DDR-1333 per
chip) with a total theoretical bandwidth! of 64 GB/s, and two Nvidia Tesla M2090 GPUs (512 CUDA
cores at 1.3 GHz per device) with 5.25 GiB ECC memory and a bandwidth of 155 GB/s per device.
Intel Turbo Boost Technology (which may automatically increase the CPU frequency above the base
clock in accordance with the workload in order to exhaust the allowed thermal envelope of the CPU)
was intentionally turned off to ensure consistent timings. Three criteria were adopted for SCF con-
vergence in our single-point energy calculations: (i) a variation of the electronic energy in successive

Table 11.1 Proteins in the test set for the OM3 calculations

Notation Po2o Poe3 Poge P100 P25 Pis6 P16 P2

PDB ID 1BTQ 1K50 2HXX 3K6F TACF 2A4V 4A02 3AQ0
/\/a 307 1097 1495 1842 2004 2969 3415 3558
Ny 754 2699 3655 4446 4920 7157 8173 8727

N, and N; denote the number of atoms and basis functions, respectively.

!'If one CPU needs to access memory connected to the other CPU, the theoretical bandwidth is lower.
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SCF iterations of at most 1.0 x 1076 €V, (ii) a maximum change of the density matrix elements of
1.0 x 107, and (iii) a maximum entry in the error matrix of 1.0 x 107 in the DIIS (direct inversion
of iterative subspace) extrapolation [76]. To speed up the calculations, the full diagonalization was
automatically replaced in the SCF procedure by fast pseudo-diagonalization [77] whenever possible.

The code development was conducted on a CVS version of the MNDO99 package [78]. The Intel
composer XE 13.1 and Nvidia CUDA Toolkit 5.0 were used for compiling the Fortran subroutines
of the CPU code and the CUDA kernels for the GPU, respectively. The final executable was dynam-
ically linked against Intel Math Kernel Library (MKL) 11.0, CUBLAS from the Nvidia Toolkit, and
MAGMA version 1.3.0 [79]. The latter includes a subset of LAPACK routines ported to the GPU;
it has been modified locally to conform to the ILP64 (64-bit integers, long integers, and pointers)
data model, which is needed to access arrays with 232 or more elements.?> Before the inclusion of
dynamic memory allocation in the Fortran standard, the early versions of the MNDO program emu-
lated dynamic memory by passing sections of a fixed-size array in the unnamed COMMON block as
arguments to subroutines. The current version of the MNDO code uses essentially the same mecha-
nism, but with a dynamically allocated array instead of the fixed-size array. For larger proteins, the
indices of this array may exceed the 32-bit integer range—this is why 64-bit integers are needed.

The computing setup for the OM3 benchmark calculations is denoted as C; _,q,, Where the sub-
scripts x and y are numbers of CPU cores and GPU devices in use, respectively. The wall clock
time of an OM3 calculation on C;,¢, is the reference for calculations with the other compute con-
figurations and the basis for assessing the corresponding speedups. Timings for C;,; and Ci,g, refer
to subroutines executed exclusively on one GPU or two GPUs, respectively, including the associ-
ated and generally negligible CPU-GPU communication. All floating-point operations were done in
double precision, both on the CPUs and GPUs, and therefore the numerical results produced on all
hardware setups are essentially the same. Deviations in the computed heat of formation (total energy)
were occasionally encountered, but remained below 1.0 x 1073 kcal/mol. Such tiny discrepancies can
be attributed to the different order in which the floating-point operations are performed on the CPU
and GPU architectures. Since many operations are performed in parallel, the execution order may not
even be fixed, that is, there might be small deviations between different runs of the same calculation
on the same computing setup. The execution order matters because limited-precision floating-point
arithmetics is not associative.

The general form of a two-electron repulsion integral (ERI) in ab initio and DFT methods is

wtio) = [ [HDADID ) gy gy,
1J2 1

2
where the Greek letters represent basis functions or atomic orbitals (AOs). The complexity of the
two-electron integral evaluation formally scales as (D(Nj‘.‘) for N, basis functions, but the actual scaling
may be more favorable due to the application of screening techniques [80]. The currently applied
semiempirical methods make use of the NDDO approximation [3] for ERI evaluation:

(HavplAcOp) = ap bcp (HyVplAcOp)s
where atomic centers are denoted by capital letters and 6, (or 6.,,) will vanish unless A and B (or C
and D) are the same atom. This rather drastic approximation reduces the formal scaling of the ERI
computation in semiempirical methods to O(Nj?) and makes it possible to simulate complex systems
with thousands of atoms. The solution of the secular equations
Y(F,, —6,€)C, =0 (11.1)

scales as O(N?) and thus becomes the primary computational task in semiempirical methods. ¢; is
the energy of the ith MO. Because the Fock matrix elements F,, depend on the elements C, of the

2 Starting with version 1.4, MAGMA supports both 32-bit and 64-bit integers out of the box.
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Figure 11.1  Profiles of the OM3 calculations for the test proteins for the C;; computing setup

eigenvectors, Eq. (11.1) has to be solved by an iterative SCF procedure that requires (9(1\7/3-) dense
linear algebraic operations.

Figure 11.1 depicts the profiles of OM3 calculations for the Cj¢ setup. The pseudo-
diagonalization procedure (PDIAG) is roughly twice as fast as a full diagonalization (FDIAG),
and it is thus preferable to replace FDIAG by PDIAG as often as possible. Applying the default
criteria of the MNDO code for the choice between FDIAG and PDIAG, it is normally sufficient to
call FDIAG in four of the SCF iterations (i.e., the first three and the last one) during single-point
energy evaluation and to call PDIAG in the other SCF iterations (typically 25).> Hence most OM3
calculations are dominated by PDIAG with 42.1% of the wall clock time on average. FDIAG and
PDIAG complement each other; they collectively contribute ~55% of the total CPU time and are
thus the first two bottlenecks.

DIIS is the third hotspot that consumes ~30% of the computation time (see Figure 11.1). Although
the DIIS extrapolation may be omitted for small systems (with less than 100 atoms), it is in our
experience imperative to apply DIIS to reliably converge the SCF procedure for larger molecules
such as proteins. We will thus also investigate the option of leveraging multiple GPUs for the DIIS
treatment (see Section 11.4).

The last two bottlenecks are the calculation of the density matrix (also called the bond-order
matrix, subroutine BORDER) and the orthogonalization corrections (subroutine ORTCOR in the
case of OM3). We spent considerable effort on both routines to achieve optimum performance with
the MNDOY9 program [78], especially for ORTCOR, where we obtained a huge speedup by formu-
lating all operations as standard matrix—matrix multiplications. After code optimization, BORDER
and ORTCOR take 9.4% and 1.1% of the wall clock time on average, respectively, on the C,,, setup.

Other computational tasks in an OM3 calculation include integral evaluation, formation of the Fock
matrix, and initial density matrix generation, which all scale as O(N?). Cumulatively, they require 7%
of the CPU time in a serial calculation for a small protein such as P, with 307 atoms and 754 orbitals,
but this portion quickly diminishes with increasing system size, to ~0.5% for the largest proteins in
our test set, which are the main targets of our code development. Therefore, these other tasks are not
considered to be real bottlenecks, and the corresponding subroutines are thus only subjected to an
OpenMP parallelization to take advantage of multiple CPU cores.

3 An exception is Pge with 11 calls to FDIAG.
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In summary, we have identified five subroutines (FDIAG, PDIAG, DIIS, BORDER, and ORT-
COR) as computational bottlenecks by systematic analysis of OM3 calculations on a set of proteins.
We describe the optimization of these hotspots on a hybrid CPU-GPU platform in the following.

11.4 Profile-Guided Optimization for the Hybrid Platform

11.4.1 Full Diagonalization, Density Matrix, and DIIS

The GPU-accelerated full diagonalization, density matrix construction, and DIIS extrapolation are
jointly described here because they heavily rely on the standard routines in the BLAS (basic linear
algebra subprograms) and LAPACK (linear algebra package) libraries.

Equation (11.1) is an eigenvalue problem that can be solved by diagonalizing the Fock matrix F,
which yields the ith MO energy ¢, and the coefficient vector ¢;:

Fc, = ¢c,.

This task can be carried out by the LAPACK function DSYEVD, which computes all eigenvalues
and eigenvectors of a real symmetric matrix using the divide-and-conquer algorithm. DSYEVD
of the Intel MKL library makes use of all processor cores on a CPU-only platform, whereas the
DSYEVD implementation in MAGMA is a hybrid that utilizes both multicore CPUs and GPU(s)*
for the diagonalization [81]. In Figure 11.2, the speedups of FDIAG are plotted as obtained in the
OM3 calculations on the proteins in our test set. The scalability on CPU-only setups is evidently rather
poor: for instance, the best speedups are observed in the calculations on Py, which are 4.3 on Cig
and 5.4 on C;,¢. Hence, the symmetric parallel processors are highly underutilized in the FDIAG
subroutine, and the efficiency’ is merely 0.72 and 0.45, respectively. This becomes even worse for
larger systems: for example, the speedup of FDIAG for P,,; on Ci4c, is 3.3 and barely increases to 3.8
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Figure 11.2  Speedups of the FDIAG subroutine in the OM3 calculations on the multi-CPU Cygc;, Cp15¢),
and hybrid CPU-GPU C;,¢_;; computing setups over the serial configuration

4 The hybrid DSYEVD function in MAGMA version 1.3 does not support multiple GPUs. This feature is available starting with
MAGMA version 1.4.

3 Processor efficiency is defined as the speedup divided by the number of parallel processing units.
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on Cjy,¢;» With corresponding efficiencies of 0.55 and 0.32, respectively. On the contrary, the speedup
of the hybrid FDIAG subroutine is constantly rising until P, (up to more than 8000 basis functions).
Moreover, it is always superior to its CPU-only counterpart with the exception of Py, on the C;¢
setup. For the larger calculations, the hybrid FDIAG subroutine tends to be more than 7x faster than
the serial version and at least 2 faster than the parallel CPU-only version.

The primary computational task (>99% of the CPU time) in BORDER is a matrix—matrix multi-
plication, P = ZCOCE, where P is the density matrix and C is the coefficient matrix of the occupied
MOs. A general DGEMM routine could be used to perform this task. Because P is symmetric, and
only the lower triangle is stored as a linear array in the MNDO99 package, we employ a more specific
function, namely DSYRK, which only calculates the lower part of a symmetric matrix and thus avoids
unnecessary floating-point operations. The CPU-only DSYRK routine has no difficulty to fully load
all processors, and the performance scales almost ideally with respect to the number of CPU cores
(see Figure 11.3). For example, the speedups for P, are 5.8 on Cie; and 9.9 on Cj,¢;. At present,
no multi-GPU-enabled version of DSYRK is available in either CUBLAS or MAGMA. On the other
hand, DSYRK on a single GPU may be more than 20X faster than a single-threaded CPU routine.
Thus, we will stick to DSYRK in our development, hoping that multi-GPU support will be added by
the vendors in the future.

The DIIS procedure is composed of several different kinds of algebraic operations, in which the
calculation of the error matrix (A = FP — PF) usually consumes more than 98% of the CPU time
[39]. Because the product of F and P is a general matrix, the standard DGEMM function is chosen
for the DIIS subroutine. The number of floating-point operations and memory accesses in DGEMM
scale as O(V?) and O(N?) (N being the matrix dimension), respectively. This implies that the number
of compute operations per memory access is proportional to N in DGEMM. Thus DGEMM is a
compute-bound routine that should be well suited to parallelization. The observed speedups on the
CPU-only setups are ~5.5 on C¢¢; and ~10.0 on C;;,¢;. Moreover, a call to DIIS accelerated by a
single GPU (C|,)) can be up to 20X faster than for the baseline setup C;,,. However, the speedup
for Cj,, turns out not to be monotonous with increasing system size: it is highest for P,s with ~20
and then drops again for the next-larger protein P, to ~18.

In order to make the best use of our dual-GPU equipped hardware, we designed a block matrix
scheme for the matrix—matrix multiplication aimed at multiple GPU devices based on the standard
DGEMM routine (X. Wu, A. Koslowski, W. Thiel, unpublished results). There are of course more
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Figure 11.3  Speedups of the BORDER subroutine in the OM3 calculations on the multi-CPU Cigcy, Cp15¢y
and GPU-only C;;; computing setups over the serial configuration
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Figure 11.4  Speedups of the DIIS subroutine in the OM3 calculations on the multi-CPU Cps;, Cpp5¢y
and GPU-only Cj;; and Cp,; computing setups over the serial configuration

sophisticated multi-GPU DGEMM implementations reported in the literature [82, 83], but the per-
formance of our homemade multi-GPU DGEMM is virtually doubled on two GPUs (C,,¢; compared
to C;;;) with a peak around 0.7 TFlop/s.

The overall speedup for the DIIS procedure with the multi-GPU DGEMM routine on the C,yg,
setup is plotted in Figure 11.4. We find a monotonous increase in performance up to a factor of 30
compared with the C;,, setup. The use of two GPU devices (Cp,g,) results in a 1.6-fold speedup over
the setup with one single GPU (C; ).

11.4.2 Pseudo-diagonalization

As mentioned in the previous section, pseudo-diagonalization will be ~2X faster than the conven-
tional diagonalization in a given SCF iteration. Thus PDIAG is used instead of FDIAG whenever
possible. However, an efficient implementation of PDIAG on multiple GPUs can be challenging.
Here, we first analyze the computations involved in pseudo-diagonalization, and then report the indi-
vidual and overall speedups that have been achieved.

The details of pseudo-diagonalization have been described in the original paper [77]. From a com-
putational point of view, it is basically comprised of two tasks. First, the Fock matrix is transformed
from the AO basis to the MO basis by a triple matrix multiplication (FMO):

F,,, = C'FC,,

where C and C, denote the matrices of the occupied and virtual MO vectors, respectively. Then
noniterative Jacobi-like 2 X 2 rotations (JACOBI) between pairs of occupied (c,) and virtual (c,)
vectors are executed:

¢ =ac,—bc, and ¢, =bc, +ac, (11.2)

where a and b are the elements of the rotation matrix, and the new MO vectors ¢, and ¢/, are denoted
by primes.

The profiles of the serial PDIAG version for the OM3 calculations on the proteins in our test set
are given in Table 11.2. On average, FMO and JACOBI consume ~45% and ~55% of the CPU time,
respectively. The other operations are negligible (<1%) and can be safely excluded from optimization.
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Table 11.2 Percentages (%) of computation time in the PDIAG subroutine consumed by FMO, JACOBI,
and other tasks in the OM3 calculations on a single CPU core

Notation Po2o Poe3 Poge P100 P25 P1s6 P16 Pyas
FMO 47.2 40.8 45.1 41.8 42.5 44.7 42.2 42.3
JACOBI 51.6 58.8 54.5 57.9 57.2 55.1 57.6 57.5
Others 1.3 0.5 0.4 0.3 0.2 0.2 0.2 0.2

Table 11.3  Speedups of the FMO and JACOBI steps in the PDIAG subroutine on the multi-CPU C(),
Cp12¢p and GPU-only Cp;; and Cpy; computing setups over the serial setup

FMO JACOBI

C[()C] C[12C] C[]G] C[ZG] C[6C] C[TZC] C[]G] C[ZG]
Poso 5.2 7.8 5.9 5.2 3.4 5.1 2.6 3.6
Pos3 5.7 10.2 16.2 18.6 1.6 1.6 4.4 7.9
Pose 5.8 10.6 19.6 22.4 1.4 1.4 4.6 8.6
P1oo 5.8 10.7 20.0 23.1 13 1.2 4.5 8.1
Pis 5.8 10.8 203 25.4 1.2 1.2 5.0 9.4
Pise 5.8 11.3 21.0 30.4 1.2 1.2 4.4 8.6
Preo 5.8 1.3 20.6 31.9 1.2 1.2 4.4 8.6
Por 5.5 10.6 20.8 32.9 1.4 1.4 5.1 9.9

The FMO step contains only the DGEMM calls for the matrix multiplications. The relevant
speedups with different computing configurations are summarized in Table 11.3. Since DGEMM is
compute-bound, FMO scales well with respect to the number of parallel processors in the CPU-only
setups. One single GPU-accelerated FMO step can be as much as 20x faster than on one CPU core.
The setup with two GPU devices may further increase the speedup to more than 30-fold, being
about 1.6x faster than on C/,,. The best performance for a small protein like P, is achieved with
the CPU-only setup of 12 cores, however. This is because a GPU is designed for massively parallel
tasks that a small system will not fully exploit, and some inevitable overhead such as CPU-GPU
data transfer may hurt the overall performance of a smaller calculation.

The GPU-oriented optimization of the JACOBI step is demanding. The technical details can be
found in our paper [39]. The resulting speedups are shown in Table 11.3. As one 2 X 2 rotation
given in Eq. (11.2) involves six memory accesses (four reads and two writes) and six floating-point
operations, the performance of JACOBI is fully determined by the memory bandwidth. In the case of
Py, the MO coefficient matrix is small enough (4.3 MiB) to completely fit into the CPU cache (12
MiB per chip). Modest speedups of 3.4 and 5.1 are therefore achieved on the C4c; and Cyjyc setups,
respectively. On the other hand, numerous cache misses can occur for larger proteins starting from
P,e;- The performance on the CPU-only platform will then be determined entirely by the available
memory bandwidth. The obtained speedup rapidly falls down to 1.2, no matter how many CPU cores
are in use for parallelization. On the contrary, JACOBI on a single GPU benefits from the enhanced
memory bandwidth (155 GB/s vs. 64 GB/s for two CPUs), and speedups of around 4.5-fold are
consistently achieved in the benchmarks except for the smallest case, P,,. Addition of a second
GPU doubles the total memory bandwidth, and the equal distribution of horizontal blocks of the
coefficient matrix among the available devices enables the rotations to be carried out independently
on each device (X. Wu, A. Koslowski, W. Thiel, unpublished results). The overall speedup on the
Claq setup for Py, is 10, which is 1.9 higher than that on a single GPU (C, ).
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Figure 11.5 Speedups of the PDIAG subroutine in the OM3 calculations on the multi-CPU Cysy, Cp15¢y
and GPU-only Cj;¢; and Cpy; computing setups over the serial configuration

Since the JACOBI step consumes a slightly higher fraction of the CPU time (between 55% and
60% for most proteins in our test set) than FMO in the PDIAG subroutine for the serial configuration,
and since JACOBI benefits less from parallelization than PDIAG on all computing setups, the overall
speedups of PDIAG shown in Figure 11.5 resemble those of JACOBI (see Table 11.3), but with some
additional performance benefits from the FMO step. The highest speedup is 13.7 for Py,; on Cyg)
which is again 1.9% higher than that on a single GPU (Cj,)).

11.4.3  Orthogonalization Corrections in OM3

The OM3 method [64] accounts for Pauli exchange repulsion by explicitly adding the orthogonaliza-
tion corrections (Vgﬁ) to the core Hamiltonian of the Fock matrix:

1
V/(‘)ARVE = _EG?B AZ(SMMcﬁﬁCVB + ﬂMMCSicVB) (C#AandC#B),
C

where S and f denote elements of the overlap and resonance matrices, respectively, and G’;‘B is defined
in terms of parameters that can be adjusted to fit reference data. y1,, v, and A are AOs at atoms A,
B, and C, respectively. If A and B are the same atom, V‘?ARVE is a correction to a one-center term;
otherwise it refers to a two-center element. Inclusion of the latter three-center contributions leads to
qualitative improvements over the MNDO-type methods for calculated molecular properties, such
as rotational barriers, relative energies of isomers, hydrogen bonds, and vertical excitation energies
[1, 65-67].

Even though the ORTCOR subroutine consumes only ~1% of the wall clock time for the Cj,(,
setup, we implemented a dedicated algorithm utilizing multiple GPUs in an attempt to harness all
available computing power. The ORTCOR performance for various setups is depicted in Figure 11.6.
The technical details will be presented elsewhere.

The speedup of the ORTCOR subroutine scales reasonably well on the symmetric multi-CPU
setups. For example, 5.5- and 10.1-fold performance boosts are feasible on the C4c; and Cj;,, setups,
respectively. ORTCOR is accelerated up to 28-fold for medium-sized proteins like Py, on a single
GPU (C;,g, setup), but thereafter the speedup decreases again with increasing system size to ~20 for
the largest proteins in our test set. The speedup on the C,, setup can reach 35-fold for a moderately
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Figure 11.6  Speedups of the ORTCOR subroutine in the OM3 calculations on the multi-CPU Cj4(,,
Cp12¢p and GPU-only Cp;; and Cpy; computing setups over the serial configuration

sized protein, and there is no performance deterioration for larger proteins. Moreover, the multi-GPU
ORTCOR scales well compared to a single GPU device for sufficiently large proteins. For example,
ORTCOR is 1.7x faster on C,, than on Cj,, for Pp,;.

11.5 Performance

Since a user will of course never run an individual subroutine by itself, the overall speedups for the
OM3 calculations on proteins are more relevant in practice. They are presented in Figure 11.7.

The performance of the OM3 calculations on the CPU-only platform can hardly be improved by
using more processor cores. The speedups quickly reach a saturation point and never exceed 4. The
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Figure 11.7  Overall speedups of the OM3 calculations of test proteins on the multi-CPU Cyscy, Cp15¢y
and hybrid CPU-GPU Cj;,c_;¢; and Cpy5c_,c) computing setups over the serial configuration
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mean values averaged over the proteins in the test set are 2.9 and 3.4 on C¢c; and C;;,(;, respectively.
Moreover, the individual speedups seem to be almost invariant with respect to the size of the pro-
tein. Thus neither using more CPU cores nor increasing the system size yields higher speedups on
the CPU-only setup. At first glance, this conclusion seems to contradict our previous result that the
speedup of an MNDO calculation on fullerene Cs,, could reach 7.7 on Cray Y-MP with eight vector
processors [84]. This apparent discrepancy can be resolved by considering the relevant arithmetic
operations and the differences in the computer architectures. Concerning the computational bottle-
necks mentioned in the preceding section, only three subroutines (BORDER, DIIS, and ORTCOR)
of the five hotspots in the OM3 calculations can be well accelerated on current hardware by using
additional CPU cores (see Figures 11.3, 11.4, and 11.6), whereas neither FDIAG nor PDIAG, which
consume ~65% of the wall clock time, scale favorably with the number of cores (see Figures 11.2 and
11.5). This is because the former three are primarily dominated by compute-bound routines, which
demand more arithmetic power than memory bandwidth. On the other hand, both diagonalization
subroutines are composed of bandwidth-bound operations that would parallelize well on more CPU
cores if and only if the demand for memory bandwidth could be satisfied in the first place. The theoret-
ical floating-point peak performance of the two Xeon X5690 CPUs (a total of 166 GFlop/s) exceeds
that of the Cray Y-MP (2.6 GFlop/s) by a factor of 64. The theoretical memory bandwidth of our cur-
rent Xeon server (64 GB/s), however, is merely 2X greater than that of the 25-year-old Cray Y-MP
(32 GB/s). Therefore, a tremendously inadequate memory bandwidth prevents the performance boost
on a computer system including only parallel superscalar CPUs.

Because of the advantages of GPUs with regard to floating-point peak performance and memory
bandwidth, the speedups achieved for the OM3 calculations on GPUs are monotonously growing with
the size of the proteins and the number of GPUs (see Figure 11.7). Although the hybrid CPU-GPU
platform provides higher speedups than the CPU-only platform for most bottlenecks, there may be
exceptions in the case of calculations on small proteins like P,,. This may be due to the CPU-GPU
communication overhead, to the unfavorable behavior of certain subroutines for small systems on a
hybrid platform compared to a CPU-only setup (especially PDIAG, see Figure 11.5), or to the less
optimized non-GPU routines becoming more dominant. For example, the CPU-only computation on
Py takes 41% of the wall clock time for the Cjjyc.og; setup (see Figure 11.8, label “others”). Thus the
overall performance of the OM3 calculations for Py, is rather similar on all computing setups. On the
other hand, the acceleration on the hybrid CPU-GPU and CPU-only platforms is quite different for

Number of basis functions
1000 2000 3000 4000 5000 6000 7000 8000 9000
1 1 1

60 --%-- PDIAG --e-- DIIS --v-- ORTCOR
--8-- FDIAG --2-- BORDER --¢-- Others

50

40

30

20

Percentage of wall time

Figure 11.8  Profiles of the OM3 calculations for the test proteins on the Cy;,_,; computing setup
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large calculations. The speedups of the OM3 calculations for Py, reach 9.5 and 14.6 on the C;j,c
and Cj,c 5 setups, respectively. The relative speedup of Cjjc 56 0ver Cjpe. g i ~1.5 for the OM3
calculations of large proteins. Further performance increases are thus very likely when more GPU
devices are employed in even larger semiempirical quantum chemical calculations.

Finally, we inspect the profiles of the OM3 calculations on the hybrid Cjj,c,; setup (see
Figure 11.8). DIIS, BORDER, and ORTCOR are the three subroutines most accelerated on the GPU,
thus their combined share of the wall clock time is just about half of that on C;,¢;. On average, the
shares of DIIS, BORDER, and ORTCOR amount to 31.4%, 9.4%, 1.1% and 14.0%, 5.7%, 0.4% on
the Cj;; and Cj5¢ 56 setups, respectively. The speedups for FDIAG and PDIAG are not as good as
those for the former three routines, and hence their combined share on the Cpj)c g, setup is increased
to 64.4% on average. The remaining subroutines (e.g., for integral evaluation and Fock matrix
formation) have not yet been ported to a GPU, but are executed in parallel using multiple CPU
cores (via OpenMP). They become the bottlenecks for small protein calculations with a time share
of 40.9% in P, which gradually decreases with system size, down to 7.8% for a large protein like
P,,,. We may thus anticipate some further improvement of the overall performance with dedicated
multi-GPU kernels for the semiempirical integral evaluation and Fock matrix construction.

11.6 Applications

Given the code developments outlined above, it has now become a routine task to carry out semiempir-
ical quantum chemical calculations for large biomolecules, such as proteins, on a hybrid CPU-GPU
computing platform. We have carried out full geometry optimizations of three proteins with a-helix,
p-sheet, and random coil structures (see Figure 11.9), which were chosen from a collection of pro-
teins used in previous work [85]. Six different semiempirical methods were applied, namely MNDO,
AM1, PM3, and OMx (x = 1, 2, and 3). The optimizations were terminated when the gradient vec-
tor norm dropped below a preselected threshold value (|g| < 1.0 kcal - mol™" - A_l). The quality of
the computed structures was assessed in terms of the conformation of the main chain by using the
PROCHECK package [86], in comparison with the structures determined in aqueous solution by
nuclear magnetic resonance (NMR) experiments. It should be stressed that the results given here are
just for demonstration, since more realistic simulations would require more elaborate approches (e.g.,
including explicit solvent).

The backbones of the proteins are shown in Figure 11.9. Highly regular local structures imposed
by hydrogen bonds are found in P, and Py, whereas P possesses an unfolded polypeptide chain.
The backbone conformation of a protein is determined by a pair of less rigid dihedral angles [¢, y] at
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Figure 11.9 Experimental structures of (a) P, (PDB ID: 2AP7, 80% a-helix), (b) Py (PDB ID: 2EVQ,
50% p-strands), and (c) P (PDB ID: 1LVR, 100% random coil). Only the backbone atoms are shown,
with the C* atoms represented by black balls. Four dihedral angles (¢, w, w, and &) in a residue serve as
stereochemical metrics, see the schematic sketch in (d)
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Table 11.4  Statistics (%) for [¢, y] in the most favored (Pg 1//) and additionally allowed (P1 ) regions
of the Ramachandran plot and standard deviations (°) of w and ¢

Pa Pg Pc
0 1 0 1 0 1

P¢,w PdJ,w % % P¢.w Pdw % % Pdw Pdm// % %¢
Expt. 100.0 0.0 0.8 0.6 87.5 125 26 0.7 429 429 23 1.8
MNDO 91.7 8.3 9.0 1.3 87.5 12,5 149 0.5 286 57.1 170 2.5
AM1 75.0 16.7 9.7 1.0 100.0 0.0 158 1.0 286 71.4 7.0 1.9
PM3 75.0 250 153 1.3 87.5 12,5 197 1.0 429 571 228 1.7
OM1 81.8 18.2 12.4 1.0 87.5 12.5 9.4 0.9 28.6 71.4 12.5 2.5
OM2 83.3 16.7 8.6 1.1 87.5 125 104 1.1 429 429 105 2.1
OM3 83.3 16.7 7.6 1.1 87.5 12.5 15.7 1.2 429 429 14.3 2.5

Results for the experimental structures of P, Py, and P are compared with those calculated by semiempirical quantum
chemical methods.

the C*-atom [87] and a stiff torsion angle w of the peptide bond. w is usually restricted to be around
180° for an energetically more favorable trans conformer due to the partial double bond character
of the amide bond, which prevents facile rotation. In addition, a virtual dihedral angle ¢ is defined
between C;-N and noncovalently bound C; - - -C? as a measure of chirality at the central C}' atom of
the amino acid [88].

PROCHECK divides a Ramachandran map into four regions: most favored, additionally allowed,
generously allowed, and disallowed. The shares of the first two distributions, P0 and P1 , for P,,
Py, and P are listed in Table 11.4. In most cases, P0 b and P1 add up to the total populatlon
Neither experlmental nor theoretically optimized protein structures are spoiled by disallowed [¢, v]
combinations. Since more regular secondary structures exist in P, and Py than in the disordered P,
significantly higher values for P;’S are obtained for the former two proteins. MNDO, AM1, PM3,
and OM1 predict a higher [¢, ] populatlon in the additionally allowed region for P, whereas OM2,
OM3, and the NMR experiment give equal values for Pgw and P1 . Although the deficiencies of
the original MNDO method for the description of hydrogen bonds are known from early studies
[89, 90], its actual performance for the proteins in the test set seems rather satisfactory. Both the
a-helix (in P,) and B-strand (in Py) structures are found, and reasonable [¢,y] distributions are
retained in the optimized structures.

All semiempirical methods predict greater deviations from planarity around the peptide bond than
deduced from experiment (see the o, values). Such deviations from planarity in the peptide group
have already been reported in earlier theoretical studies [7, 91, 92]: the sp>-hybrid nitrogen in a
peptide bond should be planar, but it tends to be pyramidalized in semiempirical calculations. The
average value of ¢ for L-amino acids is 33.81 +4.17° [88]. The o, values from experiment and from
semiempirical calculations are rather small and of similar quality, indicating a good description of
the local environment of the sp3—Cl?Y atoms in the main chains.

11.7 Conclusion

In this chapter, we have presented a profile-guided optimization of the semiempirical quantum chem-
ical MNDO program on a hybrid CPU-GPU platform. OM3 calculations on a set of eight proteins
were used to guide the code development and to assess the performance. The computational bottle-
necks on one single CPU core were identified as the diagonalization of the Fock matrix (FDIAG), fast
pseudodiagonalization (PDIAG), SCF acceleration (DIIS), density matrix formation (BORDER), and
computation of the orthogonalization corrections in OM3 (ORTCOR), which cover altogether ~99%
of the wall clock time in the test runs. Standard library routines and special finely tuned kernels
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targeting multiple GPU devices were employed to accelerate these routines, whereas the relevant
remaining subroutines (~1% of the computation time) were run in parallel using multiple CPU cores
(via OpenMP) to achieve optimum performance on the hybrid CPU-GPU platform.

We have identified severe restraints to parallelize the semiempirical calculations on currently
available CPU-only computing architectures. No matter how many processor cores are utilized in a
calculation, a ceiling of the overall acceleration is reached rapidly because of the limitations imposed
by the hardware memory bandwidth. On the other hand, the speedup of the calculations on the hybrid
CPU-GPU platform rises continuously with increasing system size and reaches one order of magni-
tude in large protein calculations. The overall performance can be further improved through the use
of multiple GPUs.

As an illustrative application, geometry optimizations of three typical proteins with o-helix,
p-sheet, and random coil structures were carried out by means of the MNDO, AM1, PM3, and OMx
(x =1, 2, and 3) methods. These calculations produced qualitatively reasonable conformations of the
main chains (with regard to the usual metrics for assessing protein backbone structures) but showed
some deviation from experiment by giving slightly nonplanar peptide bonds. We are confident that
such quantitative deficiencies can be ameliorated in future semiempirical method development. This
will enhance the impact of the current code development work on hybrid CPU-GPU platforms,
which has enabled semiempirical quantum chemical calculations on large systems such as proteins
with thousands of atoms.
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