Interaction between neoclassical effects and ion temperature gradient turbulence in

gradient- and flux-driven gyrokinetic simulations

M. Oberparleiter,2'®) F. Jenko,® D. Told,® H. Doerk,? and T. Gérler?

Y Department of Earth and Space Sciences, Chalmers University of Technology,
SE-412 96 Gothenburg, Sweden

2 Maz Planck Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching,

Germany

3) Department of Physics and Astronomy, University of California, Los Angeles,

CA 90095, USA
(Dated: 30 March 2016)

Neoclassical and turbulent transport in tokamaks have been studied extensively over
the past decades, but their possible interaction remains largely an open question. The
two are only truly independent if the length scales governing each of them are suffi-
ciently separate, i.e. if the ratio p, between ion gyroradius and the pressure gradient
scale length is small. This is not the case in particularly interesting regions such as
transport barriers. Global simulations of collisional ion-temperature-gradient-driven
microturbulence performed with the nonlinear global gyrokinetic code GENE are
presented. In particular, comparisons are made between systems with and without
neoclassical effects. In fixed-gradient simulations the modified radial electric field is
shown to alter the zonal flow pattern such that a significant increase in turbulent
transport is observed for p, 2 1/300. Furthermore, the dependency of the flux on
the collisionality changes. In simulations with fixed power input we find that the
presence of neoclassical effects decreases the frequency and amplitude of intermit-

tent turbulent transport bursts (avalanches) and thus plays an important role for the

self-organisation behaviour.
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I. INTRODUCTION

The modelling and prediction of cross-field transport of particles, heat and momentum in
magnetically confined plasmas remains one of the central tasks for the development of future
fusion power plants. It is a well-established fact that the dominant transport channel of the
main ion species in the core region of tokamak devices is ion-temperature-gradient driven
(ITG) turbulence.’? Collisions in connection with the toroidal geometry of the magnetic
guide field, however, provide another relevant channel: neoclassical transport.®* In contrast
to turbulent mechanisms, it does not possess a critical threshold for the driving pressure
gradient and also provides a minimal flux level in transport barriers where turbulence is

suppressed.®

Often turbulence and neoclassical transport are treated separately in numerical modelling.
This is justified by the fact that in the local (flux-tube) limit both effects are formally
independent due to the separation of their characteristic length scales. In global simulations,
which take the radial profiles of magnetic field geometry, density and temperature into
account, however, the question arises to which degree this decoupling still occurs. This is
of special interest for physical situations where global effects are known to be important
such as small devices and the previously mentioned transport barriers. A previous study®
of the role of collisional effects in global turbulence simulations with fixed gradient profiles
found that the total heat conductivity of a collisional simulation is larger than the sum of
the purely neoclassical conductivity for that collisionality and the turbulent conductivity of
an otherwise identical non-collisional system. A possible explanation for this can, however,
be found without involving neoclassical effects: Collisions themselves damp zonal flows and

hence can increase the level of turbulent transport.”®

In this work we use the global gyrokinetic code GENE*!Y to compare collisional simula-
tions which either include or neglect neoclassical effects. In Section II systems with fixed
background density and temperature gradients are covered where we especially study the
role of the scaling parameter p, = p;/a, i.e. the ratio of ion gyroradius and device minor
radius as it determines the interaction strength between neoclassical and turbulent phe-
nomena. The modification of the zonal flow patterns by the additional radial electric field is
investigated in this context. Additionally, we present how the presence of neoclassical effects

affects the dependency on the ion-ion collisionality v, = v;;/wye, which relates the bounce



frequency wy, of banana orbits to the effective ion-ion collision frequency v;; /e for scattering
particles from these orbits.

In Section III results from simulations with a fixed power input are presented. In par-
ticular, it is shown how the presence of neoclassical effects changes the intermittency of
turbulence: Due to the additional transport channel without a critical gradient turbulent
bursts tend to become less frequent. When the power input is varied, it is also demonstrated
that the temperature gradient is stiff while heat transport scales with the input power. In

the final chapter conclusions are drawn from these results.

II. EFFECT OF NEOCLASSICAL PHYSICS IN FIXED-GRADIENT
SIMULATIONS

A. Simulation setup

When the gyrokinetic equations are derived in the ¢ f formulation, i.e. the distribution
function f is split into a Maxwellian background Fj and a small perturbation § f = f;, they

can be formally written as:

Lfi+N[fi]+B=C(f), (1)

where £ is a linear and A/ a nonlinear operator, C(f1) the collision operator and B = v4-V F
a term which only depends on the Maxwellian background distribution function Fj and the
drift velocity vy due to the background magnetic field. This term B is responsible for the
presence of neoclassical effects in the system and consequently called the neoclassical source
or drive. In the flux-tube limit this term only contributes to the toroidally and radially
symmetric mode (k,, k,) = (0,0) which does not couple to the turbulent modes with finite
wave numbers leading to the previously mentioned decoupling of neoclassical and turbulent
physics. As this is not the case in global simulations, it is straightforward to perform
simulations including or excluding neoclassical phenomena with a numerical code based on
this equation such as GENE .

In the simulations presented in this work circular concentric flux surfaces'! are employed

where the safety factor profile,

q(z/a) = 0.854 + 2.239(x/a)* + 0.147(x /a)*, (2)
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FIG. 1. Radial profiles for the logarithmic gradients of T; and n;. Dashed: initial state, solid: time

average over 500a/cs at t ~ 2000a/cs.

is chosen so that the local values of q and the magnetic shear § at the reference position
x = 0.5a (half minor radius) are close to the Cyclone Base Case!?. This also applies to the
inverse aspect ratio e(z = 0.5a) = 0.18.

For gradient-driven simulations we set up the logarithmic gradient profiles of ion temper-

ature and density in either the “peaked” form,

. 2 2
dinT } cosh (%) — cosh <5}—TT>
~ — hT )
dz 1 — cosh <5)—7;)

: (3)

or the “flat-top” form,

dlnAT:@ tanh T—cp+or ol T—cr—O0r ’ (4)
dz 2 wr wr

and maintain this initial state in a time-averaged sense by using an adaptive Krook type

heating. The radial coordinate & = x/a in Eq. (3) and (4) is normalised to the minor radius
a. The ion density n and temperature 1" are normalised to their values nf, Trer at = 0.5a.
Time in the simulation is measured in units of a/c; where ¢, = \/m is the ion thermal
speed at x = 0.5a. The electrons are treated in the adiabatic limit.

We study both types of profiles with the shape and position parameters given in Tab. I.

Their initial state and their time average over several hundred time units at around t =
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shape Cn,T W, wr On,T Kn KT

peaked 0.5 0.15 0.25 - 0.789 3.49
flat-top 0.5 0.05 0.05 0.25 0.789 3.49

TABLE I. Profile parameters for gradient driven simulations. For their definition see Eq. (3) and

(4).

2000a/c; in a typical simulation are shown in Fig. 1. While some deviation from the initial
state can be found, it is not problematic and based on a trade-off with the modification of
the system caused by a stronger Krook source.

The gyrokinetic equations are solved on a fixed grid where in configuration space the
radial coordinate x and the direction along the field lines z are considered in real space.
The field line label y, however, is represented in Fourier space. The typical numerical grid is
chosen as (N,, Ny, , IV, Ny, N,) = (N, 32, 32,64, 32), where N, is adapted when the system
size parameter p, is changed to ensure 1 —1.33 grid points per ion gyroradius. The y domain
is chosen so that every simulation covers 1/3 of the torus. The collisionality is set at the
reference position as v, (z = 0.5a) = 0.29 and varies with the geometry and pressure profiles.
The plasma is in the banana regime over the entire radial domain, though. The simulation
time is chosen to cover at least 2 ion-ion collision times at all radial positions in order to
ensure sufficiently converged neoclassical fluxes.

The uncertainties presented in the figures of this article are standard error of the mean
estimates based on batch means. Each batch is comprised from simulation data within 5

correlation times.

B. System size scaling

The physical parameter of primary interest is the normalized gyroradius p, = p;/a. Any
observed interaction between ITG turbulence and the neoclassical effects should weaken and
disappear when p, decreases since the simulations then approach the local (flux tube) limit.
The p, given here is its value at the position x/a = 0.5. The local ion gyroradius varies with
the temperature and the magnetic field strength. It should also be noted that since both

profiles are quite narrow the scaling of the turbulent flows does rather depend on an effective



Pret = P+/Ar (Where Ar is related to wr of Eq. (3) or 7 of Eq. (4) respectively)!314.

The weakening of interaction can be observed comparing Fig. 2 and 3 where the time-
averaged heat fluxes are plotted as a function of the radial position for the peaked gradient
profile for p.(z/a = 0.5) = 1/500 and p. = 1/150. The turbulent flow is not affected by
the presence of neoclassical effects for p, = 1/500 within the statistical error while it is
significantly increased for p, = 1/150.

The time-averaged neoclassical heat flux Q. agrees well with the Chang-Hinton prediction®
in both cases if the neoclassical source is present. The discrepancy found in Fig. 3 for
x < 0.15 can be attributed to wide-orbit effects.!7'8 If the neoclassical source is absent,
non-zero though small transport (ca. 10% of the physical NC transport) is measured in this
channel. This reflects the fact that Q. is the energy flux on the axisymmetric (k, = 0)

mode caused by the magnetic drift,

o= ([ 2l + Rl ). 5)

whose dominant but not exclusive contribution is neoclassical effects. The second term is
a small contribution from the radial component of the E x B drift caused by variations of
the potential along z.

If we consider additional values for p, and compare the value of the time-averaged fluxes
averaged over the radial region x/a = 0.4 — 0.6 (with the maximal turbulent flow appearing
at x/a ~ 0.43 for all cases), we arrive at the scaling shown in Fig. 4. The general trend
that turbulent transport decreases with growing p, is a well established observation.!41922
Due to the narrow profile shape (see above) the convergence to the local limit occurs at
relatively small p,. At this point it is important to remember that the fluxes are measured
in units which imply the gyro-Bohm scaling, i.e. diffusive behaviour with the scale of the
ion gyroradius and thus locality. Neoclassical heat transport outside of the near-axis region
fulfils this condition and hence is mostly independent of p, in Fig. 4. The observed scaling
of turbulent transport implies that system size effects start to play a role at large p,. Below
p« = 1/300 the scaling is quite close to Bohm-like, i.e. Q/Qqp o 1/p.. Comparing its
values for a fixed system size we find a systematic increase of 20 — 30% for the system with
neoclassical effects for p, > 1/300. It should be emphasized that this difference is not the
neoclassical flux, which is measured separately and comes on top for an estimate of the total

energy flux.
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FIG. 2. Neoclassical and turbulent radial heat flux profile (peaked gradient, averaged over last 600

time units, p, = 1/500).

For p, = 1/50 both transport channels reach the same magnitude because the turbulent
eddies’ radial extent barely fits into the region where the temperature gradient can drive
them. Since this case operates at the limits of the validity of the used gyrokinetic model and
boundary artefacts can spread far across the radial domain, we do not analyse it beyond

this qualitative observation.

The time resolved turbulent ion heat flux profiles in Fig. 5 both show the ripple struc-
tures which have been observed in several studies of ITG turbulence.'*?® Such structures of
increased heat flux moving ballistically in- or outwards are commonly called avalanches and
are features of so-called self-organized criticality.?* 2® Ref. 29 finds their direction to be con-
nected with the sign of the E x B shear: wgxp > 0 means outward movement, wgyxp < 0
inward movement. Obviously, in Fig. 5 the presence of neoclassical effects changes their

directions from a singular one (left) to a V shape (right). In consequence, we attribute the
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FIG. 3. Neoclassical and turbulent radial heat flux profile (peaked gradient, averaged over last 600

time units, p, = 1/150).

transport modification at least partly to a change in the zonal E x B shear pattern by the
additional long range radial electric field which appears self-consistently when neoclassical
effects are included in the Vlasov equation.

Indeed, if we look at the time averaged E x B shearing rate, wgxp, for p, = 1/150
(Fig. 6), the presence of neoclassical effects seems to align an area with low shear - the
minimum of F, - with the peak of the gradient at x = 0.5a. This is illustrated by the
measured ITG growth rates v;,. from local linear gyrokinetic simulations at the respective
radial positions. Hence, the strongest turbulence drive coincides with the weakest damping
rate. The reason for this large scale shape of the radial electric field lies in the radial force

balance

ek, = =Vup+wB, — u,By, (6)

which has contributions from the pressure gradient Vp and the temperature gradient in the
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FIG. 4. Dependence on p, of the temporally and radially (z/a = 0.4 — 0.6) averaged radial
turbulent and neoclassical heat fluxes in global ITG simulations. Dash-dotted: flux-tube limit

(shaded: uncertainty).

form of the neoclassical poloidal velocity u,*. The toroidal velocity u; is a degree of freedom

in neoclassical theory. It can also be written in the following, normalised, form:

dInT;, dlnn; E,
- ) ™)

(1,8) = (6 - Tl AR, B
where the poloidal rotation is now represented by the coefficient k. In Fig. 7 we compare the
radial profile of this parameter from a simulation that includes the neoclassical source term
with two predictions from neoclassical theory, an approximate fit by Hinton and Hazeltine*
and the more precise derivation by Hirshman and Sigmar.? It appears that the simulated
radial electric field agrees well with neoclassical transport theory but its turbulent contri-
butions can locally also cause notable deviations from the Hirshman-Sigmar prediction.

In contrast to the differences in the spatial structure, root mean square radial averages of
wgx B yield similar values for simulations with and without neoclassical effects. This implies
that the additional radial electric field does not generate a significant amount of absolute

shearing rate (which would imply a decrease in turbulent transport).
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FIG. 5. Time resolved turbulent heat flux for p, = 1/150 (left: without, right: with NC source).

In the case of smaller p, the spatial scales of zonal flows (20 — 50p;) and long-range
radial electric field (system size, i.e. 500p;) are so far apart that the flow pattern is not
generally affected: The direction of the avalanches can be found to change multiple times

independently of the long-range background field.

C. Profile shape

A straightforward way to see the different contributions to the radial electric field and the
statement made about the alignment of temperature gradient and E x B shear profile is to
study systems with the flat-top profiles of Fig. 1b. In this case the pressure gradient cannot
contribute to the E x B shearing rate in its flat-top region, so the neoclassical poloidal
velocity plays a larger role.

We find again a consistently increased (~ 30%) turbulent ion heat flux in the simulation

10



w/o NC

. — w/NC
03 ". ” Vioc |

0.2

0.1

0.0

<WE ><B>/(Cs/a)

-0.1

-0.2 _'._ D ]

03102 03 04 05 06 07 08 0.9

FIG. 6. Time averaged FE x B shear in simulations without and with neoclassical effects, p. = 1/150,

peaked gradient. Local linear ITG growth rate for comparison.

with p, = 1/150 when the neoclassical source is present (Fig. 8). When we examine the
E x B shear profiles of the two cases in Fig. 9, the simulation with neoclassical source
exhibits a visibly lower level of shear in the region z/a ~ 0.5 — 0.8. On the other hand, the
shear is on average lower in the non-NC simulation around z/a ~ 0.4. In comparison with
the local ITG growth rate, we find again that in the case with neoclassical effects a region

with low E X B shear coincides with high turbulent growth rates.

Consequently, for a flat-top gradient the alignment argument is insufficient when only
considering the temperature and E x B shear to explain the turbulent flux modification
by the neoclassical source. Although the gradient is the dominant quantity for determining
the turbulence drive, it is not the only one: The magnetic shear §, for example, also plays
a role.3132 So the modification of the radial electric field by the presence of the neoclassical

source in Eq. (1) remains a crucial effect.

The neoclassical flux in Fig. 8 now differs significantly from the Chang-Hinton prediction.
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FIG. 7. Force balance parameter k in a turbulent simulation with neoclassical effects(p, = 1/150,

peaked gradient) compared to neoclassical predictions from Ref. 4(H-H) and 30(H-S).

Since the equivalent case for p, = 1/500 shows agreement at the same level as its peaked-
profile counterpart in Fig. 2, this is another indication for an interaction between neoclassical

and turbulent effects.

D. Collisionality scaling

The collision frequency in the results presented so far is chosen artificially high in order to
achieve convergence of the neoclassical fluxes with a reasonable computational effort. The
radial electric field is coupled to the parallel dynamics in the form of the radial force balance
and establishes much faster. Hence, we investigate the influence of reducing the collision
frequency which - as a side effect - brings it closer to a realistic value (as far as our model
system can be considered realistic). This is achieved by setting the collisionality to 1/3 or

1/10 of its original value, i.e. v, (x = 0.5a) = 0.095 or v.(z = 0.5a) = 0.029. We will refer

12
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FIG. 8. Neoclassical and turbulent radial heat flux profile (flat-top gradient, averaged over last 600

time units, p, = 1/150).

to these cases as medium and low collisionality, respectively.

The turbulent heat fluxes exhibit an interesting behaviour: Without the neoclassical
source term (Fig. 10a) the energy flux is reduced with decreasing collision frequency as

78 If neoclassical effects

can be explained by a weaker collisional damping of zonal flows
are present (Fig. 10), however, this dependency vanishes and we find a flux profile which
is very similar for all three collisionalities considered so far. Hence, the level of turbulent
energy transport remains independent from the collisionality over an order of magnitude.
A possible approach for an explanation is that the background radial electric field which is
mostly independent of the collisionality in these cases provides a fixed structure to which

the zonal flow pattern of the turbulence adapts. Further investigations, however, are needed

to understand how this can counteract the collisional damping.

It should be noted that even if the independence of the fluxes holds numerically for
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FIG. 10. Collisionality scaling of the radial turbulent heat flux (values of v, at x = 0.5a).
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v — 0, it is not in contradiction to results comparing collisional and collisionless systems
such as Ref. 6 because a different behaviour for the limit ; — 0 and v; = 0 is possible: A
truly collisionless simulation needs to neglect the neoclassical source term, too. Otherwise,
numerically necessary velocity space hyperdiffusion acts as a crude collision term and any
observed neoclassical effects should be considered spurious.

The neoclassical radial heat fluxes (not plotted) behave qualitatively as expected in the
form that they scale approximately linearly for smaller collisionality as they obey the stan-

dard neoclassical scaling in the banana regime.?3

ITII. EFFECTS OF NEOCLASSICAL PHYSICS IN FIXED-FLUX
SIMULATIONS

It is often argued that flux-driven simulations allow more self-organisation for the pressure
profile and for transport. Thus, we now turn from gradient-driven to flux-driven scenarios.
The heat source is no longer adaptive with the possibility of acting as a sink but a localized
profile with fixed power input which is undeniably much closer to experimental conditions.
This principle is the natural operation mode of full-f codes. Since this formalism automat-
ically includes neoclassical effects, a number of results exist on the role they can play in
turbulent flux-driven simulations. With the GYSELA code3*, for example, it is found that
the poloidal rotation profile is dominated by the neoclassical mean flow and the E x B
shearing rate attributed to it has a similar magnitude as the one caused by zonal flows.?®
Temperature gradients also tend to establish closer to their critical values than in gradient-
driven simulations so that the level of neoclassical heat transport can compete with its

2337 closeness to criticality is observed as well

turbulent counterpart.®® In GT5D simulations
in the sense that a significant part of the turbulent heat flux occurs in the form of transient
avalanches.

Since GENE is based on the ¢ f form of the gyrokinetic equations, a mechanism needs to
be found in order to allow evolution of the temperature and density profiles while preserving
df/f < 1. This can be achieved by monitoring 0 f and triggering a reset when its magnitude
exceeds a predefined threshold: The current state of the total distribution function Fy + 6 f

is used to calculate new radial profiles which are then used as the initial state of a restarted

simulation. This amounts to optimizing the initial condition of the gyrokinetic initial value
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problem until § f remains within the assumptions on its magnitude.

The heat source in our simulations is an input of fixed shape equivalent to Eq. (4) (see
also Ref. 36) positioned in the radial region x/a = 0 — 0.4. Its amplitude is varied between
simulations. The inner radial boundary of the simulation domain is floating (a Neumann
boundary condition) thus allowing for temperature and density evolution due to the source.
At the outer edge temperature and density are fixed — formally a Dirichlet boundary con-
dition — and a Krook type buffer zone is used to dissipate heat smoothly there: A term of
the form —k(x — x)? f1 for z > m3, is added to the gyrokinetic Vlasov equation i.e. the outer
boundary dampens the perturbed distribution function for x > x;, = 0.89a in our simulation.
This sink model is similar to the one in Ref. 23 where the term has exponent 1.

The temperature and density profiles are initialized according to the flat-top gradient
profiles of Eq. (4) with an amplitude significantly above the critical gradient for the temper-
ature which accelerates their following evolution. While the density profile remains static
due to the adiabatic electron approximation, the temperature evolves to adapt to the heat
source and its evolution makes an adaptation of the background Maxwellian necessary. The
threshold we use for this is |f;/Fp| > 0.18. This is a relatively large value but triggering the
adaption too often can lead to undesired numerical artefacts and we analyse simulations in a
state when the last such reset is around 1000 time units past, i.e. the system has evolved to
remain significantly below the threshold at that point. We study a system of p, = 1/150 for
two different power input amplitudes (S’O = 11250 and 45000 in units of nerp.cs/ (avfhmf))
and examine the result of including or neglecting neoclassical effects as well as the scaling
with 5’0.

In Fig. 11 we present the time averaged temperature and heat flux profiles for the high
strength source in the radial region z/a = 0.3 —0.85 where sources and sinks are not present
or very weak. As can be seen in Fig. 11a the temperature gradients for the simulation with
and without neoclassical source are nearly equal. The averaged turbulent heat fluxes in
Fig. 11b accordingly have a similar magnitude. When the neoclassical source is present,
however, some energy is also transported through the neoclassical flux channel. Hence, we
observe a consistently lower turbulent energy flux in that case.

The time-resolved turbulent heat fluxes in Fig. 12 present a qualitatively different be-
haviour depending on the presence of the neoclassical source: Both cases exhibit the fishbone-

like patterns familiar from Fig. 5. As pointed out in Section II B, the direction of these
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FIG. 11. Time averaged temperature profile and heat flux (averaged over last 1000 time units) in the
source-free region for strong source amplitude (90 = 45000). Dash-dotted: without, solid/dashed:
with NC effects.

avalanches is related to the sign of the E x B shear. Sign changes of the shear can lead to
corrugations in the temperature profile in flux-driven simulations and the resulting pattern
has been given the name E x B staircase.?®?° Curiously, in our simulations the only struc-
ture which fulfils the criteria for a stair step is occurring close to the sink region at x ~ 0.75
in Fig. 12. While an influence from the sink cannot be completely ruled out, the density

gradient also changes significantly at this radial position (see Fig. 1b).

It is clear, however, when comparing the two simulations shown in Fig. 12 that just as
in gradient-driven cases the avalanche pattern is fundamentally changed when neoclassical
effects are included. Furthermore, there is a clear change to the intermittency of heat flux
bursts: The system with neoclassical effects (Fig. 12, right) appears calmer with phases of
low turbulent transport () < 5) lasting up to 100 a/c;. Without the neoclassical channel
on the other hand these phases end already after 30-40 a/c, (Fig. 12, left).

The explanation for this lies in the closeness of flux-driven systems to criticality.?*3¢ When

the temperature gradient decreases below the critical level energy builds up and pushes
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FIG. 12. Time resolved turbulent heat flux for strong source amplitude Sy = 45000 (left: without,

right: with NC source).

it beyond criticality again. The collisional Dimits shift softening of the critical gradient
smooths this behaviour slightly. Since the neoclassical transport channel has no critical
gradient, its presence will slow down this mechanism: While it is in our case not sufficiently

large to transport all input heat, it provides a leak to the energy build-up.

Closeness to criticality is expected to be stronger when we turn our attention to a system
with halved heating power (S; = 11250) but otherwise identical parameters. As can be
seen for the time-averaged quantities in Fig. 13a the system with neoclassical effects has a
slightly higher ion temperature gradient which leads to higher turbulent flux in the outer
region (Fig. 13b). Since we are comparing both systems for the same time window, the
different convergence behaviour with and without neoclassical effects is probably responsible

for this (neoclassical transport accelerates the evolution of the temperature profile towards
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FIG. 13. Time averaged temperature profile and heat flux (averaged over last 1000 time units) in the

source-free region for weak source amplitude (Sp = 11250). Dash-dotted: without, solid/dashed:
with NC effects.

its steady state). The region z/a < 0.5 in Fig. 13b, however, confirms the notion that part
of the input power can be transported through the neoclassical channel and is hence missing

in the turbulent flux.

For the time-resolved turbulent heat fluxes in Fig. 14 it is found that the presence of
neoclassical transport reduces the strength of the intermittent turbulent bursts. In contrast
to the case with strong source, however, the simulation without neoclassical effects (left)
has a smaller burst frequency than its counterpart with neoclassical transport. The latter
does not even exhibit a strong pattern of intermittency. It appears that the significant
fraction of neoclassical transport inhibits the build-up of heat strong enough so that the
system remains in a relatively steady state of weakly driven turbulence. This becomes more
obvious when we compare the probability density functions of the turbulent heat fluxes in
Fig. 15: In the simulation with neoclassical effects the distribution lacks a tail end at high

fluxes (Q/Qu5 > 4) and the quiet component (Q/Q,5 < 1) is significantly weaker.

Finally, when we collect the information from the two heating power scenarios and include
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FIG. 14. Time resolved turbulent heat flux for weak source amplitude Sy = 11250 (left: without,

right: with NC source).

a third intermediary heating amplitude, a comparison of the heat flux and gradients at the
representative position z/a = 0.6 in Fig. 16 demonstrates the well-established phenomenon

4041 in a very clear way: The temperature gradient remains nearly constant

of profile stiffness
while the total heat flux at least doubles from the weakest to the strongest power input.
This is the inverse situation compared to gradient-driven simulation where the fluxes are very
sensitive to the input gradient. In addition, the sum of the neoclassical and turbulent heat
flux for each power input agrees well with the turbulent heat flux from the corresponding

non-neoclassical simulation.
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FIG. 15. Probability density function of the turbulent heat flux at = 0.4 — 0.75 for weak source

amplitude Sy = 11250.
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FIG. 16. Comparison of the time averaged temperature gradients and heat fluxes at z/a = 0.6 for

different power inputs.
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IV. CONCLUSION

In this article, radially global gyrokinetic simulations were used to explore the interac-
tion between neoclassical and turbulent effects. In gradient-driven scenarios (i.e. with the
time-averaged gradients fixed) it was demonstrated that this interaction only occurs when
non-local effects play a role and that it vanishes for p, < 1/500. This indicates that the
analytical separation between the two effects in the local limit can be reproduced. It also
implies that treating neoclassical and turbulent transport separately is valid for p. < 1/400
where flux-tube simulations are justified by the turbulent scaling with p,.'*?® This is often
assumed to be the case for modelling of experiments. For larger p, (or p..; where the minor
radius is replaced by the variation length of the gradient!?), however, including neoclas-
sical effects in a turbulent simulation becomes strongly advisable. It was shown that the
presence of neoclassical effects tends to reduce the dependence of turbulent transport on
the collisionality. A possible explanation for this is that the additional radial electric field
arising from the added neoclassical term determines the spatial positioning of the zonal flow
pattern aligning zones with small E x B shear with ones of high turbulence drive. It was

also possible to reproduce the phenomenon of radial heat flux avalanches whose direction

follows the sign of the E x B shearing rate found in simulation results in the literature.

Finally, systems with fixed power input (flux-driven) were investigated where the temper-
ature (gradient) profile evolves self-consistently according to a localized heat source. These
simulations are considerably more complex and computationally intensive but allow more
insight into self-organization phenomena. It was possible to reproduce the basic qualitative
behaviour of results from full-f simulations such as the occurrence of intermittent bursts as
a transport mechanism for energy because the system is closer to criticality. The frequency
and amplitude of these bursts is modified when the additional neoclassical transport channel
is present. By comparing different energy input powers the experimentally and theoretically

established phenomenon of profile stiffness was confirmed.

For future work, the flux-driven simulations can be analysed in more detail. Additionally,
gradient-driven simulations can be performed with the self-consistent steady-state profiles in
order to better understand the difference between the two approaches. For both approaches
it is also feasible to relieve some approximations made such as employing a more realistic

model for the magnetic equilibrium or including electron dynamics in the investigation.
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