Distinguishing transient signals and instrumental disturbances in semi-coherent searches for continuous gravitational waves with line-robust statistics

David Keitel

Albert-Einstein-Institut Hannover (Germany)

Amaldi11@Gwangju, June 22nd, 2015

LIGO-G1500769-v2

Overview

- Introduction and Context
- Persistent Astrophysical Signals
- 3 Persistent Single-Detector Line Artifacts
- 4 Transient Single-Detector Line Artifacts
- 5 Transient Astrophysical Signals

simplest example case:

² detectors X = 1, 2 and 2 segments k = 1, 2

1 intro: continuous waves

- non-axisymmetric rotating neutron stars emit quasi-monochromatic gravitational waves
- long-duration continuous wave (CW) signals: one of the main LIGO/Virgo/KAGRA targets
- many first-stage CW search methods susceptible to false alarms from instrumental artifacts
- usually treated with ad-hoc vetoes, and sometimes with expensive follow-up methods

1 intro: line-robust statistics

- CW searches (e.g. Einstein@Home) return limited toplists
 post-processing useless if toplists swamped by artifacts
 use robust statistics!
- Bayesian hypothesis testing: improve robustness with explicit model of persistent single-detector disturbances
- Keitel, Prix, Papa, Leaci, Siddiqi, PRD 89,064023 (2014)

1 intro: transients in semi-coherent searches

- long data sets and wide parameter spaces: semi-coherent searches, split data into short segments
- many outliers in semi-coherent searches of LIGO data caused by transient disturbances (~ hours ≤ T_{seg})
- neutron stars could emit transient CW-like signals (tCWs)
- pragmatic alternative to specialized tCW searches: make standard semi-coherent CW searches more tCW-sensitive

2 persistent astrophysical signals

- standard case of CW data analysis: quasi-stationary signals in Gaussian noise
- almost-optimal detection statistic: the \mathcal{F} -statistic [1, 2]
- corresponds to a Bayes factor [3]

$$B_{S/G}(d) = \frac{P(\text{ signal } | \text{data})}{P(\text{Gaussian} | \text{data})} = \frac{P\begin{pmatrix} \blacksquare & \blacksquare | d \end{pmatrix}}{P\begin{pmatrix} \square & \square | d \end{pmatrix}} \propto e^{\mathcal{F}(d)}$$

(notation reminder for 2-detector, 2-segment example matrix: signals ■, pure noise □)

^[1] Jaranowski, Królak, Schutz, *PRD* **58**,063001 (1998); [2] Cutler, Schutz, *PRD* **72**,063006 (2005)

3 persistent single-detector line artifacts

- such artifacts look like signals to the F-statistic
- explicit line hypothesis ⇒ modified detection statistic: [4]

$$B_{S/GL}(d) = \frac{P\begin{pmatrix} \blacksquare & \blacksquare & | & d \end{pmatrix}}{P\begin{pmatrix} \Box & \Box & | & d \end{pmatrix} + P\begin{pmatrix} \blacksquare & \Box & | & d \end{pmatrix} + P\begin{pmatrix} \Box & \blacksquare & | & d \end{pmatrix}}$$
$$\propto \frac{e^{\mathcal{F}(d)}}{\operatorname{const.} + \sum_{X} O_{L/G}^{X} e^{\mathcal{F}^{X}(d)}}$$

- detection efficiency: matches F in quiet data and improves over it in disturbed data [4]
- generalizes *F-stat consistency veto* [5, 6, 7]

4 transient single-detector line artifacts

- transient single-detector disturbances in LIGO often limited to single segment: ~ hours [7, 8]
- simulated data with transient disturbance:
 1 of 2 detectors,
 1 of 90 segments
- search setup similar to Einstein@Home
 S6Bucket search [9]

^[7] Aasi et al., PRD 88,102002 (2013);[8] O. Piccinni, master thesis, U. Roma La Sapienza (2014)[9] H.B. Eggenstein, talk later today

4 transient single-detector line artifacts

 extend noise model: sum over transient lines of length T_{seg}, in any single (X, k)

$$B_{\text{S/GLtL}}(d) = \frac{P(\blacksquare \blacksquare \mid d)}{P(\blacksquare \boxminus \mid d) + P(\blacksquare \boxminus \mid d) + \dots}$$

- can be tuned to safety for CW signals in Gaussian noise . . .
- ... while improving detection efficiency in transient-disturbed data

4 transient single-detector line artifacts

- injecting persistent CW signals into disturbed data (1 of 90 segments)
- search setup similar to Einstein@Home S6Bucket [9]
- transient-robust statistic
 B_{S/GLtL} as efficient as
 multi-detector
 permanence veto
 (p-veto) [7, 10]

^[9] H.B. Eggenstein, talk later today

^[7] Aasi et al., PRD 88,102002 (2013); [10] Behnke, Papa, Prix, PRD 91,064007 (2015)

5 transient astrophysical signals

- but what about tCWs (transient CW-like signals), which the p-veto would kill ...?
- Neutron stars can emit tCWs by various mechanisms [11, 12]
- for Ekman flow model, see talk by A. Singh (Fri 15:00, Source Modelling session)

^[11] Prix, Giampanis, Messenger, PRD 84,023007 (2011); [12] R.I. Santiago Prieto, PhD thesis, Glasgow (2014)

5 transient astrophysical signals

- improve over semi-coherent \mathcal{F} or $B_{S/GL}$ by including hypothesis for tCW signals of duration $\mathcal{T}_{tCW} = \mathcal{T}_{seg}$
- ⇒ extend signal model, sum over tCWs (both detectors, any single segment):

$$B_{\text{StS/GLtL}}(d) = \frac{P(\left[\begin{array}{c} \bullet \bullet \\ \bullet \end{array} \middle| d) + P(\left[\begin{array}{c} \bullet \bullet \\ \bullet \end{array} \middle| d) + P(\left[\begin{array}{c} \bullet \bullet \\ \bullet \end{array} \middle| d) + P(\left[\begin{array}{c} \bullet \bullet \\ \bullet \end{array} \middle| d) + P(\left[\begin{array}{c} \bullet \bullet \\ \bullet \end{array} \middle| d) + P(\left[\begin{array}{c} \bullet \bullet \\ \bullet \end{array} \middle| d) + P(\left[\begin{array}{c} \bullet \bullet \\ \bullet \end{array} \middle| d) + P(\left[\begin{array}{c} \bullet \bullet \\ \bullet \end{array} \middle| d) + P(\left[\begin{array}{c} \bullet \bullet \\ \bullet \bullet \end{array} \middle| d) + \dots$$

5 transient astrophysical signals

- injecting tCW signals into Gaussian noise
- duration $T_{tCW} = T_{seg}$
- search setup similar to Einstein@Home S6Bucket [9]
- same tuning as for CW safety: B_{StS/GLtL} improves tCW sensitivity

6 conclusions

- with appropriate tuning, B_{StS/GLtL} is ...
 ... robust against transient or persistent disturbances
 ... sensitive to transient or persistent CW-like signals
- disturbances or signals within a single segment: only need *loudest* single-segment \mathcal{F}_k , \mathcal{F}_k^X
- easy to modify existing searches, not much extra memory or computations needed
- ⇒ cheap transient search as "add-on" to semi-coherent CW search such as Einstein@Home [6, 9]
- no dedicated transient-CW searches done so far

6 outlook

- further improvements through B_{StS/GLtL}-ordered toplists, instead of recomputing from results sorted by F and B_{S/L}
- applications on real LIGO data, e.g. Einstein@Home post-processing . . . ? [9]
- compare transient-CW detection efficiency with dedicated coherent search [11] or stochastic search [13]
- possible generalization: Bayesian blocks [14, 15]

^[9] H.B. Eggenstein, talk later today

 $^[11] Prix, Giamp., Messenger, \textit{PRD} \ \textbf{84}, 023007 \ (2011); \\ [13] Thrane, Mandic, Christensen, \textit{PRD} \ \textbf{91}, 104021 \ (2015) \ (2015)$

references

- [1] Jaranowski, Królak, Schutz, PRD **58**.063001 (1998)
- [2] Cutler, Schutz, *PRD* **72**,063006 (2005)
- [3] Prix, Krishnan, *CQG* **26**,204013 (2009)
- [4] Keitel, Prix, Papa, Leaci, Siddiqi, *PRD* **89**,064023 (2014)
- [5] Abbott et al., *PRD* **76**,082001 (2007)
- [6] Aasi et al., *PRD* **87**,042001 (2013)
- [7] Aasi et al., *PRD* **88**,102002 (2013)
- [8] O. Piccinni, master thesis, U. Roma La Sapienza (2014)

- [9] H.B. Eggenstein, later today
- [10] Behnke, Papa, Prix, *PRD* **91**,064007 (2015)
- [11] Prix, Giampanis, Messenger, PRD **84**,023007 (2011)
- [12] R.I. Santiago Prieto, PhD thesis, Glasgow University (2014)
- [13] Thrane, Mandic, Christensen, *PRD* **91**,104021 (2015)
- [14] Scargle, APJ **504**,405 (1998)
- [15] Scargle, Norris, Jackson, Chiang *APJ* **764**,167 (2013)