

myCopter: Enabling Technologies for Personal Aerial Transportation Systems

Prof. Dr. Heinrich H. Bülthoff Dr. ir. Joost Venrooij

Max Planck Institute for Biological Cybernetics Department: Human Perception, Cognition and Action

The dream of Personal Aerial Vehicles

Technology exists to build aircraft for individual transport

 many concepts have already been developed

Drawbacks of current designs

- Need for of a pilot license
- Need for infrastructure (e.g., landing strip)
- Focus on vehicle design instead of transport system

Motivation for Personal Aviation

100 Billion Euro is lost yearly in the EU due to congestion

"Green Paper – Towards a new culture of urban mobility," Sept. 2007, Commission of the European Countries, Brussels.

10/13/2015

11

Max Planck Institute for Biological Cybernetics | Department: Human Perception, Cognition and Action

Motivation for Personal Aviation

20x more fuel is wasted in the USA in traffic jams than is used by the entire General Aviation fleet

"2009 Urban Mobility Report," The Texas A&M University System, 2009

Max Planck Institute for Biological Cybernetics | Department: Human Perception, Cognition and Action

Motivation for Personal Aviation

In large European cities, car drivers spend more than 50 hours per year in traffic jams

"Roadmap to a Single European Transport Area," 2011

10/13/2015

Max Planck Institute for Biological Cybernetics | Department: Human Perception, Cognition and Action

Challenges for Personal Aviation

"Designing the air vehicle is only a relative small part of overcoming the challenges... The other challenges remain..." [EC, 2007]

- How many?
- Who can fly?
- What about safety, noise, ... ?
- How are PAVs integrated into existing transport systems?

European Commission, Out of the box – Ideas about the future of air transport, 2007

EU-project: myCopter

- Duration: Jan 2011 Dec 2014
- Project cost: €4,287,529
- Project funding: € 3,424,534 •

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

ETH

Enabling Technologies for Personal Aviation

8

Novel Approaches to Automation

Goal: Develop robust novel algorithms for vision-based control and navigation

Challenges

- Emulate VFR pilots
 - Recognize obstacles and other traffic
 - Recognize landing areas
 - In all season and in adverse weather conditions

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Framework for Vision-Based Navigation

Collision Avoidance Strategies

50 vehicles at the same altitude fly from a point on a circle to a point on the opposite side

Demonstration of Swarm Technology

Piloting PAVs

Goal: Develop augmentation for PAVs

Challenges

- Flying a helicopter is difficult and requires lots of training
- It is not clear which skills prospective pilots should have

Augmented PAV Dynamics

Develop and assess new response types for VTOL vehicles

Basic helicopter rate control with cyclic

Attitude control (pitch and roll)

Translation control (forward/lateral velocity) Turn coordination, heave augmentation

Car-like steering

Human-Machine Interfaces

Goal: Develop human-machine interfaces that make flying as easy as driving a car

Challenges

- Current flight controls and displays are not intuitive
- Multisensory perception is not taken into account
- No reliable objective measurements of pilot workload

Intuitive Displays and Controls

Highway-in-the-Sky display

10/13/2015

 Active sidestick to feel the highway (spring-like guidance forces)

Multi-sensory Human-Machine Interfaces

Novel HMI: haptic shared control

- Combining the advantages of manual and automatic control
- The pilot remains in control and can overrule the automatic control system

Objective Measures for Workload using EEG

Novel mental workload measures

- Traditionally with questionnaires, such as NASA-TLX
- Alternative: psychophysiological measures, EEG, heart-rate variability, skin conductance

Human-Machine Interfaces

Exchange helicopter flight controls with a steering wheel and pedals

HMI Demonstration in DLR Simulator

The Socio-Technological Environment

Goal: Generate knowledge on the demands and preferences of society towards PAVs

Challenges

- Identifying hurdles for introducing PAVs
- User expectations and objections
- Investigating where PAVs could have an impact

How do people see Personal Air Transport?

Focus group interviews in 3 European countries to determine user perceptions and expectations

- 1. Discussion on mobility patterns and behaviour as well as perceived promises and actual expectations on PAV / PATS
- 2. Demonstration of a PAV ride in a simulator
- 3. Discussion on PAV-specific aspects such as design, operational environment, autonomy, usability, etc.

Where do we go from here?

Developing PAV handling with MPI's high fidelity motion simulator

CableRobot Simulator: https://youtu.be/cJCsomGwdk0

myCopter: Enabling Technologies for Personal Aerial Transportation Systems

Prof. Dr. Heinrich H. Bülthoff heinrich.buelthoff@tuebingen.mpg.de

Dr. ir. Joost Venrooij joost.venrooij@tuebingen.mpg.de

Max Planck Institute for Biological Cybernetics Department: Human Perception, Cognition and Action