Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Poster

Novel Splittable N-Tx/2N-Rx Transceiver Phased Array to Optimize both SNR and Transmit Efficiency at 9.4 T

MPG-Autoren
/persons/resource/persons133464

Avdievich,  NI
Research Group MR Spectroscopy and Ultra-High Field Methodology, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons192635

Giapitzakis,  IA
Research Group MR Spectroscopy and Ultra-High Field Methodology, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84402

Henning,  A
Research Group MR Spectroscopy and Ultra-High Field Methodology, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Avdievich, N., Giapitzakis, I., & Henning, A. (2015). Novel Splittable N-Tx/2N-Rx Transceiver Phased Array to Optimize both SNR and Transmit Efficiency at 9.4 T. Poster presented at 23rd Annual Meeting and Exhibition of the International Society for Magnetic Resonance in Medicine (ISMRM 2015), Toronto, Canada.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002A-4608-C
Zusammenfassung
Surface loop transceiver head phased arrays improve transmit efficiency in comparison to larger Tx-only arrays due to tighter fit. However, the number of elements is limited by the number of available Tx-channels and decoupling issues, which compromises SNR and parallel receive performance. As a proof of concept we developed and constructed a novel splittable 9.4T transceiver array. Splitting of each Tx-loop doubles the number of Rx-elements without necessity of moving the array away from the subject, which allows optimization of both Tx and Rx performance at the same time. Splitting in a larger number of Rx-elements, (e.g.4, 8), is possible.