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Characterization of Few-Cycle Laser Pulses—Near-infrared, few-cycle laser
pulses are an important tool for state-of-the-art spectroscopy methods. How-
ever, their characterization brings about challenges as the femtosecond field
transients are out of reach for electronic devices. Therefore, the objective of
this thesis is the characterization of such laser pulses by means of two different
techniques, namely the dispersion scan and attosecond streaking. Both methods
were set up and are—together with the underlying theory—reviewed in detail.

The dispersion scan has the goal of retrieving the spectral phase of the laser
pulses by using an iterative algorithm, which was implemented and is evaluated
here. Measurement results demonstrate the usefullness of the dispersion scan
for day-to-day pulse characterization.
For the attosecond streaking setup with its newly developed design, first test

measurements are reported here. The electron time-of-flight spectrometer at
the heart of the attosecond streaking setup extends the scope of the existing
attosecond transient absorption spectroscopy beamline towards photoelectron
studies and the characterization of attosecond pulses from high-order harmonic
generation.

Charakterisierung ultrakurzer Laserpulse—Laserpulse mit wenigen opti-
schen Zyklen im nahen infraroten Spektralbereich sind wichtige Werkzeuge
für modernste Spektroskopiemethoden. Allerdings erweist sich ihre Charak-
terisierung als Herausfordergung, da elektronische Hilfsmittel zur Erfassung
der wenige Femtosekunden kurzen Lichttransienten nicht genügen. Daher
ist es Ziel dieser Arbeit, solche Laserpulse anhand von zwei Methoden, dem
Dispersions-Scan und Attosekunden-Streaking, zu charakterisieren. Beide Me-
thoden wurden experimentell umgesetzt und werden hier zusammen mit der
zugrundeliegenden Theorie erläutert.
Der Dispersions-Scan gewinnt die spektrale Phase der Laserpulse mit Hilfe

eines iterativen Algorithmus, welcher implementiert wurde und hier vorgestellt
wird. Anhand von Messergebnissen wird gezeigt, dass der Dispersions-Scan
ein nützliches Werkzeug für die alltägliche Lasercharakterisierung darstellt.
Weiterhin werden erste Testmessungen des neu konzipierten Attosekunden-

Streaking-Aufbaus vorgestellt. Mit dem Elektronenflugzeitspektrometer, wel-
ches das Kernstück dieses Aufbaus ist, werden die Anwendungsmöglichkeiten
des bestehenden Experiments zur transienten Absorptionsspektroskopie erwei-
tert hin zu Photoelektronstudien und zur Charakterisierung von Attosekun-
denpulsen.
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1. Introduction
The expectations of life depend upon diligence; the mechanic
that would perfect his work must first sharpen his tools.

Confucius

This more than two thousand years old aphorism not only describes an attitude
towards life in general, but a key concept of the natural sciences: at the cutting
edge of science, persistence and due care are essential. Concerning the study of
ultrafast electron dynamics in atoms and molecules, it reminds us to be aware
of our tools—the femtosecond laser pulses (1 fs = 10−15 s) used to temporally
resolve these dynamics. The shorter the laser pulses are, the better is the
time resolution of the experiments and the easier it is to probe strong-field
interactions.
However, to be able to sharpen one’s tools implies the knowledge of their

current state. The difficulty with ultrashort laser pulses is that their shape
and structure are not easily measureable. Although their electric field is a
quantum mechanical observable, its rapidly varying envelope—let alone the
oscillations of the optical carrier wave—changes too fast to be resolved by
conventional electronics, which are limited to picosecond time scales (1 ps =
10−12 s). Thus, more evolved characterization techniques for ultrashort laser
pulses are indespensable.
As fs-laser-pulses are among the shortest, man-created processes, the trouble

of sampling them with an even shorter process is not feasible without the
laborious generation of attosecond pulses (1 as = 10−18 s). Instead the interplay
of the pulses with a copy of themselves by means of a non-linear process is
the common characterization approach. The non-linearity is crucial, because—
unlike linear processes—it features the necessary time dependence, whereas
the implementation in the form of gating or spectral interferometry varies from
technique to technique. Eventually, most techniques resort to the determination
of the spectral field—its amplitude and phase—and obtain the temporal pulses
by Fourier transformation to the time domain.
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2 1. Introduction

Recording the SHG intensity of two time-delay scanned replicas of a pulse
with a slow detector yields the intensity autocorrelation, which is the most
basic way to get an estimate of the pulse duration. The results of this method
cannot be unambiguously inverted and it oversimplifies the temporal structure
of the pulses [5], yet it is widely used to get a first estimate of the pulse duration.
Frequency-resolved optical gating (FROG) developed in 1993 by Trebino and

Kane [49][27] was the first technique to characterize fs-laser pulses up to their
carrier-envelope phase (CEP). It is closely related to the intensity autocorre-
lation, but instead of measuring just the intensity of a non-linear process, the
spectrum for each time delay is captured, which produces a two-dimensional
map—a so called FROG trace. This trace is then inverted using an iterative
algorithm[8][40] to recover the pulse structure.
Spectral phase interferometry for direct electric-field reconstruction (SPIDER) is

the second well established pulse characterization technique for ultrashort laser
pulses. It was devised in 1998 by Iaconis and Walmsley [23] and is a non-linear
interferometric method. It has the advantage that the phase is retrieved in a
non-iterative manner, but it is much more sensitive to misalignment due to
several interferometer arms.
By now, FROG and SPIDER have been extended to single shot [30][28] and

spatially resolved methods and their working principles have been adapted to
characterize sub-fs pulses from high-order harmonic generation (HHG) light
sources as well. Some of these variants go by the names of Grenouille[41],
Sea-Tadpole[3], Sea-Spider[31], Rabbitt[38] and Frog-Crab[34], just to mention
a few.
A more recent technique called multiphoton intrapulse interference phase scan

(MIIPS)[33; 52; 6] employs a pulse shaper as a tool for pulse characterization.
By recording the dependence of a SHG signal on different superimposed phase
masks, the GDD of the pulses is approximated and refined by means of an
iterative measurement procedure. The principle of using phase variations
for pulse characterization is addressed in this thesis, as it is the basis of the
dispersion scan technique as well.
The dispersion scan (short D-Scan) is a pulse characterization technique

developed by Miranda et al. [37][36] in 2012. The key concept of this approach
is utilizing optical elements which are already in the beam path—a pair of
glass wedges for dispersion control—and a non-linear response of the pulses
to deduce their spectral phase. The glass introduces a variation of the spectral
phase, which can then be retrieved by an iterative algorithm.
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Differing substentially from the methods described above, attosecond streak-
ing directly accesses the electric field, or more precisely the vector potential of
fs-laser-pulses [19]. It does so by measuring the phase-dependent, accelerating
effect of the laser field on electrons generated by photoionization of atoms by
means of an attosecond pulse. The electrons are detected with a time-of-flight
spectrometer. While this work focuses on the characterization of the laser
field, such a spectrometer is the heart of several established techniques for
the characterization of extreme ultraviolet (XUV) radiation from HHG. There
are the attosecond steak camera [24] or atomic transient recorder (ATR) [29]
for the characterization of isolated attosecond pulses and the reconstuction
of attosecond beating by interference of two-photon transitions (RABBIT) [38],
which is used to measure the spectral phase between individual harmonics in
trains of attosecond pulses. A more general technique, which encompasses the
latter two, is frequency-resolved optical-gating for the complete reconstruction
of attosecond bursts (FROG CRAB) [34]. In principle, all of these techniques
rely on the signature of a cross correlation between the strong driving field
and the attosecond excitation field [32] and were inspired by older correlation
techniques [9; 21].
The goal of this work was to design and construct a fully functional D-Scan

setup for the characterization of our laser system on a day-to-day basis. This
included the implementation and optimization of a phase retrieval algorithm.
Moreover, an attosecond streaking setup was conceived and constructed. In
addition, first test measurements were performed and are reported here.
This work gives a short introduction to the theoretical treatment of ultrashort

light pulses, before turning to the presentation of the D-Scan and the attosecond
streaking methods and the respective setups. Both techniques are introduced
in theory and measurement data is presented. The phase retrieval algorithm of
the D-Scan is reviewed in detail and evaluated.

Conventions
Throughout this work, the angular frequency ω of the electric field is often
referred to as frequency. In many plots, the spectrum is plotted over the photon
energy ~ω instead of the frequency ω without explicit notice.





2. Fundamentals

This thesis deals with the characterization of ultrashort laser pulses where
ultrashort means durations below 10 fs (1 fs = 10−15 s). Therefore, this chapter
gives an introduction to the mathematical description of such pulses in the
temporal as well as in the spectral domain in section 2.1 and describes their
behaviour upon propagation in section 2.2. Finally, the technical section 2.3
presents the laser system generating the pulses.

2.1. Ultrashort Laser Pulses

The space and time dependent electric field E(t,x) contains all information to
fully describe electromagnetic radiation. Here, the focus lays on the tempo-
ral structure of laser pulses. Assuming invariant, linear polarization during
propagation and fixing our view at a fixed point in space, we can omit the
vectorial character and the spatial dependence of the electric field and simplify
our investigation by studying the scalar quantity E(t).
As mentioned in chapter 1, the electric field is in principle directly accessible

and thus, a real quantity. It is related to the spectral field E(ω) in the frequency
domain via Fourier transform where ω is the angular frequency:

E(ω) = 1√
2π

∫ ∞

−∞
E(t)e−iωtdt, (2.1)

E(t) = 1√
2π

∫ ∞

−∞
E(ω)eiωtdω. (2.2)

To facilitate calculations, E(t) and its associated spectral counterpart E(ω) are
commonly replaced by the complex quantitiesE(t) andE(ω), which are refered
to as the analytic signals [2] of E(t) and E(ω). The same Fourier relationship
as in equations 2.1 and 2.2 holds for the analytic signals as well and the real

5



6 2. Fundamentals

valued electric field can always be recoverd by rejecting the imaginary part of
the analytic signal:

E(t) = 2 Re[E(t)]. (2.3)

The complex functions E(t) and E(ω) still fully characterize the shape of a
laser pulse and can be rewritten in terms of amplitudes and phases, both of
which will be discussed in more detail below:

E(t) = A(t)eiφ(t), (2.4)
E(ω) = A(ω)eiϕ(ω). (2.5)

Averaging over one optical period T the intensity of an ultrashort laser pulse
(in W/cm2) is defined as:

I(t) = ε0cn
1

T

∫ t+T/2

t−T/2

E2(t′)dt′, (2.6)

≈ 2ε0cnA
2(t), (2.7)

where ε0, c and n are the dielectric permittivity, the vacuum speed of light and
the refractive index of the propagation medium. The last equality (eq. 2.7) holds
only under the assumption that the temporal amplitude envelopeA(t) is slowly
varying compared to oscillations of the electric field:∣∣∣ ddtA(t)∣∣∣ � 2π

T
|A(t)| . (2.8)

While I(t) is primarily a theoretical quantity, most pulse characterization
techniques rely on the time-averaged measurement of the spectral intensity
S(ω):

S(ω) = 2ε0cn|E(ω)|2, (2.9)
= 2ε0cnA(ω)

2. (2.10)

As equation 2.10 shows, the spectral phase ϕ(ω) is lost during the measurement
and with it crucial information about the pulse shape. Chapter 3 will deal with
exactly this problem and is devoted to the recovery of the spectral phase.
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2.1.1. Time and Frequency Domain Relationship
We have seen that the functions describing the electric field in the time and in
the frequency domain are related via a Fourier transform (equations 2.1 and
2.2). What concequences does this have and what kind of information can one
infer from this?
Common measures for the pulse duration and the spectral bandwidth are the

full width of the intensity functions at half their maximum value (FWHM) in
their respective domain. Here, they shall be abbriviated by ∆tFWHM for the
pulse duration and ∆ωFWHM for the spectral width. Because of the similarity
theorem of the Fourier transformation [17], there is an inverse relationship
between∆tFWHM and∆ωFWHM . Similar to the uncertainty principle of quan-
tum physics, this leads to the time-bandwidth product, which is defined as:

∆tFWHM∆ωFWHM ≥ 2πcB, (2.11)

where cB is a constant, which depends on the pulse shape A(t). Consequently,
ultrashort light pulses have to be supported by broadband spectra. When
the equality above holds, the pulses are as short as possible provided a given
spectrum and are said to be bandwidth-limited or (Fourier-) transform-limited
(FTL).This case is met when the spectral phase is flat whereverA(ω) is non-zero,
which can be understood as all frequency components, which make up the
pulse, oscillating in phase.
As an example, which is also illustrated in figure 2.1, one can consider a

normalized, Gaussian pulse in the time domain with standard deviation σ:

A(t) =
1√
2πσ

exp
(
− t2

2σ2

)
. (2.12)

Using eq. 2.1 the corresponding spectral amplitude can be calculated:

A(ω) = exp
(
−σ2ω2

2

)
. (2.13)

The pulse duration and spectral bandwidth of the intensity functions (eqs.
2.7 and 2.10) can now be related to the standard deviation of these gaussian
functions:

∆tFWHM =
√
4 ln 2 σ, (2.14)

∆ωFWHM =

√
4 ln 2
σ

. (2.15)
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Figure 2.1.: Gaussian pulses in the spectral and time domain. With increasing width of
the spectral amplitude (left) the pulses represented by their electric field (right) become
shorter and reach higher field strengths.

Thus, for gaussian pulses the time-bandwidth product is always larger than
2πcB = 4 ln 2 ≈ 2.77.

2.1.2. Temporal and Spectral Phase
The time-bandwidth product (eq. 2.11) states that a broad spectrum is needed to
support a short laser pulse; but a given broad spectrum does not automatically
lead to short light pulses. This has to do with the temporal and spectral phases
φ(t) and ϕ(ω), which will be examined in the following.
First φ(t) is expressed as a Taylor series:

φ(t) =
∞∑
n=0

φn

n!
tn = φCEP + ωct+ Φ(t). (2.16)

Here, φCEP is a constant phase which causes a slip between the oscillations
of the electric field with carrier frequency ωc and the peak of the amplitude
function. Therefore the name carrier-envelope phase (CEP). The carrier or center
frequency ωc is not unambiguously defined. When performing the Fourier
transformation into the frequency domain (eq. 2.1) it leads to a shift of ωc

to zero because of the Fourier shift theorem [17]. It is often assigned to the
frequency of the peak of the spectrum or defined as a weighted average of
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all spectral components. Φ(t) contains all higher phase orders (n ≥ 2). Their
effect becomes more intuitive by studying the instantaneous frequency of the
pulses. The instantaneous frequency ω(t) of an oscillation is defined as the
time derivative of the temporal phase:

ω(t) =
d
dt
φ(t) = ωc +

d
dt
Φ(t). (2.17)

If the phase has only linear terms Φ(t)=0, ω(t) is constant and the frequency
does not change over the duration of the pulse. For Φ(t) 6= 0 the pulse is said
to be chirped. If the frequency increases/decreases with time, the pulse is called
up-chirped/down-chirped. In general, a chirp increases the time-bandwidth
product of a pulse (see equation 2.11). Thus, the spectrum of a chirped pulse
would support a shorter pulse duration, if it was not for the chirp. Propagation
in media imprints a chirp upon pulses depending on the material properties.
This leads to the lengthening of FTL pulses and will be addressed in section
2.2.1.
The spectral phase ϕ(ω) can be expanded into a Taylor series as well:

ϕ(ω) =
∞∑
n=0

ϕn

n!
ωn = ϕCEP + τ0ω + Φ(ω). (2.18)

The first four orders of this expansion and their effect on the electric field are
depicted in figure 2.2. The constant term ϕCEP is equal to the temporal phase
offset φCEP . τ0 is the pulse’s absolute position in time and Φ(ω) contains all
higher phase orders (n ≥ 2). Similar to the instantaneous frequency in the time
domain, the group delay is defined as the derivative of the spectral phase with
respect to frequency:

τ(ω) =
d
dω

ϕ(ω) = τ0 +
d
dω

Φ(ω). (2.19)

The group delay states a relative time delay of the spectral components which
make up the pulse. Thus, the linear term in eq. 2.18 corresponds to a delay of all
frequency components by−τ0, but has no effect on its shape. Any higher phase
orders (Φ(ω) 6= 0) introduce a frequency-dependent delay of different spectral
components, which eventually smears out the pulse. The first contribution to
Φ(ω), ϕ2 goes by the prominent name of group-delay disperison (GDD). Higher
orders (ϕ3, . . . ) are simply refered to as third-order dispersion (TOD), and so on.
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Figure 2.2.: Illustration of the effect of different spectral phase orders (left) on the
electric field in the time domain (right). Top to bottom: (1) ϕ(ω) = 0 : Fourier
transform-limited pulse. (2) Constant phase ϕCEP = π: phase-shift of the electric field
with respect to its envelope. (3) Linear phase : the pulse’s absolute position in time is
shifted. (4) Quadratic phase : the pulse is up-chirped, less peaked and longer. (5) Cubic
phase : chirp causes post-pulses.



2.2. Propagation Effects 11

2.2. Propagation Effects
To study the propagation of ultrashort laser pulses in matter, we turn to the
wave equation for the electric field E(t,x) in homogeneous media without
currents and charges derived from Maxwell’s equations:(

∇2 − 1

c2
∂2

∂t2

)
E(t, x, y, z) = µ0

∂2

∂t2
P(t, x, y, z). (2.20)

The polarization P accounts for the response of the medium. For convenience,
it can be split into the linear and a non-linear contributions PL and PNL:

P = PL + PNL. (2.21)

The linear polarization accounts for dispersion, which will be discussed for the
case of some standard optical elements in the following section 2.2.1, while the
non-linear polarization is the source of exotic processes, which go beyond the
superposition principle of linear optics, and will be discussed in section 2.2.2.
As for the spatial dependence of the electric field, which has to be taken into

account in the following, plane waves propagating in z-direction in a medium
with wave vector k(ω) are assumed as a solution to equation 2.20:

E(ω, z) = A(ω, 0) exp
(
i
(
ϕ(ω)− k(ω)z

))
. (2.22)

2.2.1. Dispersion
In transparent optical elements1, such as lenses and prisms (and air), dispersion
is governed by the index of refraction of the material, which is linked to the
wave vector via

k(ω) = n(ω)
ω

c
. (2.23)

If the refractive index is monotously increasing with frequency (dn/dω ≥ 0),
the dispersion is said to be normal, as is the case for most transparent materials
e.g. glasses. In case dn/dω < 0, the dispersion is said to be anomalous. As a
result of dispersion, the wave vector is usually not a linear function in frequency.
By plugging equation 2.23 into equation 2.22, we see that dispersion results in a

1Losses through reflection and absorption are neglected by the treatment here, which implies
that the transmitted amplitudes have no frequency dependence.
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Figure 2.3.: Schematics of a two-prism prism compressor (left) and single chirped
mirror (right). In both cases, the high spectral components (blue) have an effectve
shorter optical path than the lower ones (red).

phase modification of the propagating pulse. For instance, on a pulse with flat
spectral phase, the non-linearity of the wave vector introduces higher-order
phase terms, which eventually lead to a chirp. In normal-dispersive materials
the low frequency components of the pulse traverse the medium faster than
the high frequency components, which causes an up-chirp.
In order to keep ultrashort pulses as short as possible, dispersion control is

crucial in fs-laser-systems. Since more positive dispersion can always be added
to the pulses by inserting more glass into the beam, the more challenging task
is to introduce negative dispersion in order to compensate those dispersive
elements, which cannot be omitted. The usual approach to achieve this is
to arrange optical elements in a setup that has an effective shorter pathway
for higher frequency components and causes a down-chirp. Several optical
elements are suited to fulfill this function (see also figure 2.3):

Prisms and Gratings exhibit angular dispersion which can be employed
to build pulse compressors in a variety of arrangements.

Chirped mirrors (CM) are special dielectric mirrors composed of thin
multi-layer stacks, which can be designed to have a desired frequency-
dependent penetration depth.
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2.2.2. Non-linear Processes
Before the invention of the laser in 1961, no light sources in the optical range
were available with field strengths high enough to drive non-linear processes.
Since then, especially pulsed lasers with high peak intensities have revealed
many such processes, some of which rendered the generation and characteriza-
tion of even shorter light pulses possible. It is because of the latter that certain
non-linear processes will be discussed in the scope of this thesis.
Starting out from the wave equation 2.20, we expand the polarization P(t) in

a Taylor series of the incident field:

P(t) = ε0
(
χ(1)E(t) + χ(2)E(t)E(t) + χ(3)E(t)E(t)E(t) + . . .

)
. (2.24)

The different χ(n) are the nth-order susceptibilities and are in general tensors
of order n+ 1. The linear term with χ(1) is responsible for dispersion (see sec.
2.2.1). The first non-linear effect to be demonstrated [13] was the process of
second-harmonic generation (SHG), which χ(2) is responsible for. As the name
states, it converts two photons with energy ~ω0 to one photon with twice the
energy ~ωSHG = 2~ω0. To reach macroscopic second-harmonic yield, the
participating photons have to conserve momentum as the fundamental and
harmonic have to propagate in phase within the medium:

kSHG = k0,1 + k0,2. (2.25)

If this phase matching, which in terms of the refractive index is equivalent
to n(ωSHG) = n(ω0), is not fulfilled, the microscopic contributions to the
SHG signal across the generation medium interfere destructivly. For a given
frequency, phase matching can for example be fulfilled in birefringent crystals
with the fundamental and harmonic having different polarizations. But since
the wave vectors are frequency dependent k(ω), equation 2.25 can in reality
not be strictly satisfied for broadband, ultrashort laser pulses. By resorting to
extremly thin crystals, the phase-matching condition can be relaxed at the cost
of conversion efficiency.
The third-order non-linearities induced by χ(3) cause (besides other effects)

the propagation medium to exhibit an intensity-dependent refractive index:

n(r, t) = n0 + n2I(r, t). (2.26)

This is the so called optical Kerr effect, which is the source of self-focusing and
self-phase modulation (SPM).
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In self-focusing, the time- and space-dependent refractive index n(r, t) creates
a lensing effect, due to the spatial intensity profile of the laser beam. This is made
use of in fs Ti:sapphire laser oscillators. The Kerr effect inside the laser crystal
now benefits high-power pulsed operation over cw operation by inducing fewer
losses per cavity round-trip on high intensity pulses. This technique is called
Kerr lens mode-locking, because it locks all supported cavity modes in phase
in order to build up the shortest possible pulse with the highest peak intensity.
Since it uses no active element, it is a passive mode-locking technique.
Self-phase modulation is a process that leads to spectral broadening, because

of the temporal-dependence of the refractive index. As the latter is connected
to the wave vector, it enters into the temporal phase. By analysing the in-
stantaneous frequency (eq. 2.17) while assuming a gaussian intensity function
I(t) = I0 exp

(
− (t/τ)2

)
,

ω(t) = ωc −
ωc

c

d
dt
n(t), (2.27)

= ωc +
ωc

c

2I0n2

τ 2
te−(t/τ)2, (2.28)

we see that the leading/trailing edge of the pulse generates new frequency
components lower/higher thanωc. The pulse is now chirped but has a broadened
spectrum and can subsequently be compressed to shorter pulse durations.
Up to this point, the general theory laid out here pointed mainly to the

description of fs-laser-pulses out of a commercial laser system. Yet it is also
applicable to coherent radiation from a process called high-harmonic generation
(HHG). While SHG and SPM are merely two-/three-photon processes, several
dozen of photons can be involved in HHG. Since non-linear polarization cannot
account for it, the origin of HHG could not be explained until 1993, when
Corkum [7] proposed a semi-classical three-step model, which is sketched in
figure 2.4. Irradiating a gas target with a driving field whose peak field strength
approaches the order of magnitude of the binding field of the target atom’s
electrons, some electrons may tunnel out of their binding potential (I). Once
freed, they are accelerated by the intense driving field (II) and have a chance to
recombine with the parent ion (III). Upon recombination the binding energy
plus the excess kinetic energy is released as a high-energetic HHG photon.
Macroscopic bursts of HHG radiation are only generated by the peaks of the
driving field and are therefore confined to an even shorter time scale than the
fs-pulse. Because HHG radiation is located in the extreme ultra-violet (XUV)
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Figure 2.4.: Illustration of the three step model of high-harmonic generation. The
laser field (red) bends the atomic potential, which allows some electrons (yellow) to
tunnel free (step I). As the laser field passes, its slope changes sign and the electrons are
accelerated back towards the atomic core (step II), where they have a certain chance
to recombine with the parent ion. The excess energy is released as a high energetic
photon (step III).

spectral region, it is strongly ionizing and is absobed by any gas. In order to use
this radiation in experiments, beamlines containing parts for the generation,
the experiments and optics are operated under vacuum. Further information on
the beamline, which was extended by the electron time-of-flight spectrometer
presented in chapter 4, and its principal components can be taken from [42].

2.3. The Laser System
The main objective of this thesis is the characterization of fs-laser-pulses pro-
vided by a commercial , amplified and externally compressed laser system
consisting of a Femtopower Compact Pro CEP, a Kaleidoscope hollow-core fibre
(both from the company Femtolasers) and an additional home-built chirped-
mirror compressor (PC70, Ultrafast Innovations). The whole setup is depicted
in figure 2.5. The seed pulses are generated by a Rainbow CEP3 Ti:sapphire
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Figure 2.5.: Schematic of the whole laser system. Seed pulses are produced in the
oscillator, pass the stretcher and enter the multipass amplifier, where a Pockels cell
picks out every 20000th pulse to be amplified further in a 9th pass through the amplifier
crystal. Subsequently the pulses are compressed by a prism compressor with four
additional TOD mirrors. They are spectrally broadend in a 1m hollow-core fibre filled
with neon and recompressed by a chirped-mirror compressor. After passing the pair of
motorized wedges, a flip mirror mount can be used to couple the pulses either into a
HHG beamline or into the D-Scan (see chapter 3) for characterization.

oscillator2 at 78MHz repetition rate, 2 nJ pulse energy, 780 nm central wave-
length and < 10 fs pulse duration. These pulses are subsequently stretched in a
glass slab and amplified in a chirped-pulse amplification (CPA) stage[48]. The
stretching is necessary in order to avoid damage to the amplifier crystal (also
Ti:sapphire) and is compensated after the amplification to some extent by a
prism compressor (see section 2.2.1) and TOD mirrors. After the compression
the pulses have 0.7mJ pulse energy at 4 kHz repetition rate and < 30 fs duration.
In the CPA stage the pulses are amplified most efficiently around the center

of their spectrum, which is called gain narrowing and leads to longer pulse
durations. To broaden the spectrum again, the laser beam is focused into a 1m
long hollow-core glass fibre with a core diameter of 250 μm filled with neon at
a pressure of ~2.5 bar. The gas of choice is neon, because of its high ionization
threshold and large χ(3), which induces SPM (see equation 2.27) along the

2The CEP stabilisation was dismounted in this particular oscillator.
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length of the fibre. After the fibre the pulses are compressed in a chirped-mirror
compressor to compensate for the linear dispersion and non-linear chirp the
pulses suffer while propagating in the neon.
The chirped-mirror compressor originally consisted of 5 pairs of broadband

double-angle chirped mirrors. During this thesis it was expanded to 7 pairs in
order to precompensate for more dispersive optics. Losses from the fibre and
the CMs reduce the pulse energy to ~0.38mJ. With a pair of glass wedges (Fem-
tolasers, material nBK7, apex angle 8°) flexible dispersion control is achieved in
order to deliver pulses with durations below 6 fs.





3. The Dispersion Scan
The dispersion scan (short D-Scan) is a pulse characterization technique, which
makes use of the pair of glass wedges for dispersion fine-tuning in the laser’s
beam path and the change of a non-linear spectral signature that is introduced
by the phase the glass adds to the pulses upon moving. An iterative algorithm
extracts the spectral phase from the measurement data and together with the
fundamental spectrum the temporal shape of the pulses is then obtained by
Fourier transformation (equation 2.2).
This chapter presents the D-Scan constructed as part of this thesis. The

theoretical background and the setup are introduced in sections 3.1 and 3.2.
While the experimental part of the D-Scan is a staightforward measurement,
quite some effort has to be put into the phase retrieval, which is illustrated in
section 3.3. Section 3.4 is devoted to the explanation of the iterative algorithm,
which is at the heart of the phase retrieval . The algorithm is evaluated in section
3.5 in order to demonstrate its capabilities. Finally, examples of few-cycle pulse
characterization measurements are shown in section 3.6.

3.1. Theoretical Background
In the experimental setup of the D-Scan presented here, the laser pulses pass
two glass wedges and a SHG crystal1 before their second-harmonic spectrum
is measured. For the phase retrieval it is crucial for this to be described by an
analytic expression, which will be derived in the following:
We start off with the spectral electric field E(Ω). In first order, the effect of

glass on the laser electric field can be treated as a multiplicative phase factor,
which depends on the length z and the dispersion of the material (see equation
2.22). Second-harmonic generation is best treated in the time domain by simply
squaring the temporal E-field, while the spectral intensity S(ω) (equation 2.9)

1D-scans may work best with SHG, but are not limited to this non-linearity. Third-harmonic
generation (THG) has been shown to work as well [22].

19
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is recorded in the spectral domain, which makes Fourier transforming back and
forth between the two domains necessary. Thus, the SHG spectral intensity
measured by the spectrometer as a function of the amount of glass is—in a
perfect world—proportional to the following expression:

S(ω, z) ∝

∣∣∣∣∣∣
∞∫

−∞

 ∞∫
−∞

E(Ω)eizk(Ω)eiΩtdΩ

2

e−iωtdt

∣∣∣∣∣∣
2

. (3.1)

This is the two dimensional D-Scan trace, as it will be called in the following.

There is no straightforward way to invert this formula, but some insight can
already be gained by analyzing it. For this purpose different D-Scan traces,
whichwere simulated for pulseswith varying spectral phase, are shown in figure
3.1. For the simulation of a trace S(ω, z), the spectral field E(Ω) is composed
according to equation 2.5 of an amplitude, which is either measured or modeled
as a Gaussian and a desired phase function. The frequency dependence of the
wave vector k(Ω) is calculated by means of the refractive index, which in turn
is given by the Sellmeyer equation of the specific glass of which the wedges are
made from. The glass insertion z is sampled such that all of the trace’s features
around the strongest SHG signal are visible, which is in practice determined by
the experiment.

Even without the simulation, we can understand the origin of the shape of
the traces. Because a chirped-mirror compressor overcompensates the pulses
with negative dispersion, they reach the wedges with a high down-chirp. For
low amounts of glass insertion z the dispersion in the glass does not suffice to
fully recompress the pulses. This leads to comparatively weak peak intensites
and SHG signals from these long pulses. With increasing glass insertion, the
pulses reach a point of optimal compression corresponding to the strongest
SHG yield, before the signal fades out again, because too much glass insertion
has left the pulses up-chirped. This illustrates how the D-Scan is sensitive to
variations in the spectral phase (through glass insertion) and that it can be used
not only for characterization of the pulses, but to find the wedge position of
optimal pulse compression as well.
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Figure 3.1.: Laser pulses in the spectral domain (left) and their respective D-Scan
traces (right, colorbar shows SHG intensity in arbitrary units). Top to bottom: (1) A
pulse with flat phase produces an elliptical trace. (2) The quadratic phase mimicks the
behaviour of the glass’ dispersion, which shifts the trace on the y-axis, and additionally
introduces a small tilt. (3) A pulse with cubic phase is easily recognized by the strong
tilt of its D-Scan trace. (4) Small amounts of sinousoidal phase ripples as for example
introduced by misaligned chirped mirrors distort the trace substantially.
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3.2. The D-Scan Setup

A sketch of the D-Scan setup is shown in figure 3.2. First the laser pulses from
the chirped-mirror compressor propagate through a pair of BK-7 glass wedges
(Femtolasers) with AR-coating and an apex angle of 8°. Each wedge is mounted
on a 25mm linear stage, each of which is equipped with a Conex TRA25CC
actuator (Newport) controlled by a standard PC. These servo actuators have a
stepping accuracy of 10 μm, well below the precision needed here. By means of
a flip mirror mount, the beam can be coupled into the rest of the D-Scan setup
mounted on a single breadboard with 30 × 60 cm2 footprint. The non-linear
crystal used in this setup is a 5 μm thick BBO (β-Barium Borate) from Newlight
Photonics. The crystal has to be as thin as this, to relax the phase matching
condition for SHG sufficiently in order to facilitate broadband harmonic yield.
To reduce damage on the crystal, the SHG is driven by the front reflex of a
wedged glass window only (~ 0.4W), which is focused into the crystal by a
concave mirror with 40 cm focal length. The light which passes the wedge is
picked up by a screen and the diffuse reflection is captured by one arm of a
bifurcated fibre (Ocean Optics) in order to record the fundamental spectrum.
In front of the wedged window, a thin pole blocks the central part of the beam
to enable non-collinear SHG. The generated second-harmonic light is coupled
into the other arm of the bifurcated fibre by means of two aluminium mirrors
and a fused silica lens. Scattered fundamental light is filtered out as well as
possible using spatial filtering and a thin polarizing foil2. The bifurcated fibre
is coupled into a high resolution, broadband spectrometer from Ocean Optics
(HR4000CG-UV-NIR).
A D-Scan measurement consists of recording SHG spectra in dependence

of the amount of glass insertion. Usually, 100 spectra are recorded in order to
get a finely sampled trace. Between the acquisition of two spectra, the wedges
are alternately moved further into the beam, until each has been inserted by
50 steps of 0.2mm. Due to the small apex angle of the wedges, this effectively
corresponds to additional 2.76mm glass in the beam path.
Because only one end of the fibre should be employed at once in order to

avoid saturation of the fundamental, when the second harmonic is recorded,
mechanical shutters are installed before both ends of the bifurcated fibre. These

2BBO crystals are birefringent, which enables phase matching between the fundamental and
the harmonic by having them travel through the crystal with orthogonal polarisations.
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Figure 3.2.: Sketch of the D-Scan setup. After the chirped-mirror compressor, the
laser pulses pass through the glass wedges for dispersion fine-tuning. By means of a
flip-mirror mount, the beam is coupled into the D-Scan setup. The front reflex of a
small wedged window is split by a beam block and used to generate the SHG signal
in non-collinear geometry in the BBO crystal. Solely the SHG signal passes the filter
and is coupled into one arm of a bifurcated fibre, whereas the other arm picks up the
diffuse reflex of the fundamental, which passed the wedged window.

shutters were built from simple servo motors which are controlled by an Ar-
duino Leonardomicrocontroller which in return gets commands from a Labview
program on a standard PC.

3.2.1. Wedge Alignment

In order for the D-Scan to work, the wedge insertion into the beampath has
to cover some millimeters (~ 3mm) of glass dynamic range. The wedges are
carefully aligned to have the surfaces facing each other perfectly parallel—else
would result in a pulse-front tilt. Experimentally, an orientation angle of the
wedges with respect to the incident laser beam was found, which minimizes
the beam displacement behind the wedges upon moving them. This was found
desirable to reduce influences on any setup behind the wedges. As a unique
feature, this angle was further exploited for the calibration of the amount of
glass inserted into the beam path. To determine this angle, a ray-tracing script
written with Matlab[35] was used. The resulting angle of incidence on the first
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wedge was found to be 28.16°. When the wedges move, the beam path changes
and the change in path length which the beam spends in the glass corresponds
to the effective amount of glass insertion. With the ray-tracing script the glass
insertion was determined to be 13.81 % of the relative displacement of the stages.
The influence of dispersion within the wedges on the beam path was found to
be negligible. The only assumption made in the computation is that the laser
beam propagates parallel to the optical table.

3.3. Phase Retrieval
The phase retrieval algorithm takes a measured D-Scan trace Smeas(ω, z) and
fits a theoretical trace Ssim(ω, z) simulated according to equation 3.1 to it.
To this end, it computes the spectral electric field from the measured funda-
mental spectrum and varying spectral phases. Then it evaluates which phase
function is suited best to have good agreement with the measurement. The
iterative algorithm chosen to compute the fit is the Nelder Mead or Downhill
Simplex algorithm[39; 14], which is a versatile tool to solve multidimensional
optimization problems and is explained in detail in section 3.4. Here, it is
used to minimize the error function G, which is defined as the integrated, least-
square difference between the measured trace Smeas(ω, z) and a simulated trace
Ssim(ω, z):

G =

√
1

NiNj

∑
i,j

(
Smeas(ωi, zj)− µSsim(ωi, zj)

)2
. (3.2)

For numerical evaluation the traces are discretized to functions of the discrete
variables ωi and zj , which are arrays of length Ni and Nj respectively. µ is
a scaling factor, which minimizes the error in each iteration. Because here it
fulfills the additional, important function of a spectral-response filter, it will be
discussed in detail in section 3.3.1.
As mentioned above, the spectral phase, which the D-Scan tries to retrieve, is

varied systematically according to the results of the error function G. For this
reason, it is not possible to start off with an analytic expression for the spectral
phase, which would restrict its variation. In fact, in the implementation of the
D-Scan, the phase is rather given through a set of evenly spaced supports in
the spectral domain, which can be fed into the Downhill Simplex algorithm.
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Because prior knowledge about the algorithm is helpfull to understand the exact
construction of the spectral phases used in the iteration, further explainations
are postponed to section 3.4.1.
With this in mind, the basic steps of the retrieval algorithm are:

(i) Start with an initialized/random phase function ϕ(ω).

(ii) Simulate a D-Scan trace according to equation 3.1.

(iii) Compute the error function G.

(iv) Based on the value returned, choose a better phase function.

The last step is left to the automated Downhill Simplex algorithm (see section
3.4) and steps (ii)-(iv) are repeated until the error converges.

3.3.1. Spectral Response
When fitting the simulated trace Ssim(ω, z) to the experimental data, the goal
is to reproduce the shape of Smeas(ω, z). However, even if the two traces
match, but are not scaled with repect to each other, because the expression for
Ssim(ω, z) is only defined up to a constant, the error G is artificially increased.
This is the first reason to introduce the scaling factor µ in equation 3.2. Con-
sidering the error function as a linear least squares problem, µ would be the
overall factor that minimizes the error G in order to ensure a good fit. It has to
be updated for each iteration of the algorithm and can be derived by evaluating
the derivative of G with respect to µ:

∂G

∂µ
!
= 0. (3.3)

As mentioned before, the second reason to have a scaling factor in the error
function is that it may be used to mimick a spectral response filter. Without
the consideration of an inhomogeneous spectral response, the measured trace
is assumed to behave as perfect as equation 3.1 predicts, which is unrealistic.
For example neither the SHG conversion efficiency, nor the transmission of the
optical fibres, which couple into the spectrometer, can be expected to be the
same for all frequencies. These effects become even more pronounced, as the
second harmonic of a Ti:sapphire laser can be expected in the range between
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300-500 nm, which on the one hand is close to the edge of the transparency
window of most glasses and on the other hand quite a large bandwidth for the
SHG process to cover. While measuring or estimating these spectral properties
is not done easily, here they are included in the minimization of the error
functionG. Bymaking the scaling factor frequency-dependentµ → µi = µ(ωi),
it tries to minimize the error between Smeas(ω, z) and Ssim(ω, z) for every
frequency independently. If e.g. high frequency components in the measured
signal, were absorbed in the fibres, but are visible in the simulated trace, µi

rescales the simulated trace in this spectral region. Note that this does not
affect the shape or landscape features to be fitted, as their information is also
encoded in the amount of glass insertion. What is more, the spectral response
of the overall system is retrieved as a side-product at the end of the iterative
algorithm as the frequency-dependent scaling factor µi.
Finally, replacing µ by µi in the error function and evaluating the derivative

of G with respect to µi as in equation 3.3, the following expression for µi can
be found:

µi =

∑
j Smeas(ωi, zj)Ssim(ωi, zj)∑

j Ssim(ωi, zj)2
. (3.4)

3.4. The Downhill Simplex Algorithm

TheDownhill Simplex algorithm searches for extrema based on a systematically
proceeding, heuristic method. It has the advantage over gradient-basedmethods
of not using any derivatives of the function it minimizes, which may—as for
the error function G in the case of the D-Scan—be complicated. A simplified
version of the textbook illustration of the algorithm by Geiger and Kanzow [15]
will be sketched here.
The goal of the algorithm is to find the minimum of a function f : Rn → R,

which takes n input variables and returns one output value, where n will
be called the dimension. Now we take n + 1 sets of these n input variables
x1, . . . , xn+1. Any of these mutually different sets of parameters xi ∈ Rn is a
vertex of an n dimensional object we call a simplex as illustrated in figure ⁇
for the case n = 2. By evaluating the function f at each vertex of the simplex,
they can be ordered with respect to the functions output:

f(xb) ≤ · · · ≤ f(xw). (3.5)
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Figure 3.3.: In n = 2 dimensions a simplex has n + 1 = 3 vertices, which can be
depicted as the coordinates of the corners of a triangle. In three dimensions, the simplex
is an irregular tetrahederon, whose four corners/vertices are described by the three
spatial dimensions. In higher dimensions, the simplex is a rather unituitive hyper-cube.

Here, xb and xw denote the best/ worst vertex, respectively, which means at
any point during the iteration, xb is the best approximation to the minimum of
f , while xw is the worst.
Now the algorithm tries to construct a better simplex based on the n best

vertices of the old one. The single steps are drawn out in the following pseudo
code:

Choose parameters α > 0, β > 1 and 0 < γ < 1 and an initial simplex with
vertices x1, . . . , xn+1 ∈ Rn.
For each iteration step:

Determine xb, xw and the centeroid of the n best vertices x = 1
n

n+1∑
i=1;i 6=w

xi.

• Reflection: Compute xr by reflecting the worst vertex on x:

xr = x+ α(x− xw),

and evaluate f(xr). If f(xb) ≤ f(xr) ≤ f(xw), replace xw with xr.
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Figure 3.4.: In each iteration of the algorithm, the existing vertices are evaluated in
order to construct a new vertex. Calculating x from the best and second best vertices
xb and xs, the worst vertex xw is then reflected/ expanded/ contracted along the dashed
line.

• Expansion: If f(xr) < f(xb), compute the expansion vertex xe:

xe = x+ β(xr − x).

Evaluate f(xe) and replace xw by xe.

• Contraction: ElseIf f(xr) > f(xw), compute the contraction vertex
xc:

xc = x− γ(xr − x).

Evaluate f(xc) and replace xw by xc.

Repeat, until the simplex fulfills the convergence criterion.
The different steps are illustrated for the two dimensional case in figure 3.4
and can generally be interpreted as follows. Using the reflection alone, if
f(xb) ≤ f(xr) ≤ f(xw), each new simplex is an improvement to the previous.
But if the reflection vertex is already better than the best vertex, the hope that
there may be more to gain in this direction is justified and an expansion is
executed. The other possibility—the new vertex is worse than any other—is
caught by contracting the new vertex into the simplex center.
The algorithm was implemented as described above in the graphical program-

ming language Labview and tested to work satisfactorily. Although different
implementations of the single decision steps are possible, the one proposed
here is simplified compared to examples in published literature. Nevertheless,
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it seems to suffice, as a more elaborated version following [14] and [15] did
not converge any better. Furthermore, a shrinking step excluded here, always
let the algorithm run into a dead end. The shrinking step is designed to fol-
low up on contractions, in case any newly generated vertex is worse than xw.
An assumption is that in high dimensions—where the risk to converge into
local minima is substantial—this step runs the risk to shrink the simplex too
drastically, such that it gets easily stuck afterwards.
The reflection, expansion and contraction parameters (α, β, γ) were choosen

according to Gao and Han [14], who claim their set works better in higher
dimensions, than the standard set (1, 1/2, 2). Neither could this claim be con-
firmed, nor be proven wrong. The expressions for the parameters are:

α = 1, β = 1 +
2

n
, γ = 0.75− 1

2n
. (3.6)

3.4.1. Phase Construction
Now thatwe have established theDownhill Simplex algorithm as aminimization
technique, we can clarify how it is used to find the phase, which minimizes the
error function G.
In general, any set of basis functions e.g. sines & cosines, polynomials, etc.

could be used for this purpose. Here, an approach based on spline interpolation,
which proved very flexible, was implemented. It directly translates each of the
(n+1) n-dimensional vertices of a simplex to a one dimensional phase function.
The most direct way to do so, which is also illustrated in figure 3.5, is to employ
the values of the vertices directly as phase amplitudes at an automatically
generated set of hinges, which are thereafter linked by interpolated splines. The
splines used here are 2nd order polynomials. Two other, similar methods to build
a phase function, were implemented as well. There, the vertices are translated
to functions of the group delay and group delay dispersion (see sec. 2.1.2) in
the same manner as described above and are then integrated numerically once
or twice respectively, in order to yield a phase function. Essentially, all of
these descriptions are equivalent, as constant and linear phases—which remain
ambiguous in the integration—do not alter the D-Scan traces. Actually, it can be
shown analytically that constant and linear phase terms cancel out of equation
3.1. For this calculation, the reader is referred to appendix A.1.
The usage of splines as a basis set has the inherent benefit that the effort to

reconstruct a simplex from a given phase function—the inverse process of the
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Figure 3.5.: A phase function is build from the vertex of a simplex: In the spectral
region where the spectral amplitude (blue) is non-zero, an evenly spaced array with the
same length as a vertex is set up. (Left)The single vertex values (green) now translate to
the amplitudes of the phase at these positions. (Right) In a second step, a smooth phase
function (red) is interpolated from these discrete supports using spline interpolation.

phase construction described above—is low. To do so, the phase function or its
derivatives are sampled by an evenly spaced array and the amplitudes at these
positions, which basically represent one vertex, are used for the initialization
of a new simplex. This facilitated to implement the following features in the
algorithm:

• Save & Load: A phase function retrieved from the algorithm can be
stored. If there is good reason to assume that this phase might be a good
starting point for another retrieval it can be loaded and converted to a
simplex, in order to speed up convergence.

• Finer/Coarser Sampling: When a retrieval with a different sampling
compared to a prior analysis is desired, the latter can be used, instead of
starting out from zero. To this end, the phase function from the previous
or a saved retrieval is resampled at the desired number of sampling points
and taken into account during initialization of the new run.

It must be mentioned that recreating a phase function by sampling it and
rebuilding it with splines is not perfect, in a sense that the new phase is not
an exact copy of the old. But the difference is small enough to be neglected
in practice, as the algorithm introduces new variations to the phase upon
reinitialization anyway.
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3.4.2. Convergence Criterion
Because theDownhill Simplex algorithm—andwith it thewhole phase retrieval—
is an iterative procedure, the convergence towards the true phase function has
to be discussed. Within this scope, the number of parameters, which sample the
phase and the maximum number of iterations allowed, have to be considered
as well. Here, these topics are addressed, prior to the systematic analysis of the
algorithm in section 3.5.
From the different approaches in literature to define a convergence criterion

for the Downhill Simplex algorithm, the one originally proposed by Nelder and
Mead [39] was implemented. It relies on the standard deviation of the function
evaluations f(xi) of all the vertices xi of the simplex:√√√√ 1

n

n∑
i=1

(
f(xi)− f

)2
< ε, (3.7)

where ε > 0 is a constant and f = 1
n

∑n
i=1 f(x

i) is the mean of the function
evaluations. As this convergence criterion describes the spread of the function
evaluations, it is a good measure for the potential to improve with further
iterations. If the function evaluations clump together, all vertices of the simplex
are just about equally far away from the target, which makes the decision-
making of the algorithm harder, but does not necessarily lead to much more
improvement. Thus, depending on the quality of the data, ε is set to a value
between 0.05 and 1 to stop the iteration, when the standard deviation of the
function evaluations is below this threshold.
As convergence is not at all guaranteed, an upper limit to the number of iter-

ations is used to stop the algorithm as a contingency plan. With the algorithm
fully parallelized, ~180 iterations/s are possible on a standard computer, which
allows to do a retrieval with 30 000 iterations in less than 3min.
For practical reasons—mainly the runtime—the size of the vertices has to be

restricted to a reasonable value. On the one hand, more parameters within
a vertex can be beneficial, because the sampling of the phase has to be fine
enough to retrieve its details. On the other hand, for large, n-dimensional
vertices, a simplex contains (n + 1) of these, which all have to be initialized
and then updated one after the other. So not only is the computational cost
higher, because the arrays to be handled are larger, but it takes longer until
each individual vertex has been updated, because of the sequential nature of the
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Downhill Simplex algorithm. To find a good tradeoff between the dimension of
the vertices and the number of iterations needed, these parameters are evaluated
in section 3.5.

3.4.3. Initialization

Before the Downhill Simplex algorithm can start the minimization, an initial
simplex has to be generated 3. As a starting point, this simplex should be
made up of vertices, which represent spectral phase functions that are mutually
different in order to offer the algorithm a good choice to start the contraction
of the simplex, but that should still in some sense be reasonable as to not blow
up the simplex too much, which lengthens the retrieval.
As a first approach to introduce phase variations all over the spectral range

covered by the spectral amplitude, every vertex of the simplex is initialized such
that it is translated to a narrowly peaked phase function each with a different
center frequency. This method is illustrated in figure 3.6. Depending on the
number of vertices in the simplex, the shape of the dips changes slightly. As
more dips effectively cover the same range, they become narrower. This way
of initializing the simplex was used many times and never failed to converge
sooner or later.
A second method, which initializes the whole simplex with random numbers

from the open interval (−1, 1) was implemented as well. Here, the problem
arises that the initialization is sometimes not successfull, when the vertices are
initialized as a function of the group delay or group-delay dispersion. Through
the integration of these functions to the phase domain, the Downhill Simplex
algorithm apparently can get stuck, when the initial simplex is too far off or too
large. Thus, it is recomended to use this initialization only under supervision.
When the initial phase functions are build directly from splines between hinges
with random amplitude, the algorithm is more successful. In the evaluation, this
approach was compared to the one described above and found to be inferior.
In order to test the dependency of the algorithm’s outcome on the method

of initailization, a third scheme, which is a combination of the ones described
above, was tested as well. Here, the dips from the first method are scaled by a
random factor from the interval (0.3, 1.3) and negated with a chance of 50 %.
The results of this initialization scheme comply with the ones from the first

3Recall the pseudo code in section 3.4.
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Figure 3.6.: Each vertex is initialized as an individual dip along the spectral range
covered by the spectral amplitude. Here, only every third of a total 40 vertices is shown,
else the figure would be too crowded.

scheme, but the algorithm takes longer to reach convergence. Surely, this does
not prove the independence of the results of the algorithm on the method of
initialization since the two schemes compared are alike, but it suggests that
there is no trivial dependence.

3.5. Evaluation
The three main factors, which determine the performance of the retrieval
algorithm are the number of parameters from which the phase functions are
built, the maximum number of iterations the algorithm may perform and
the noise level of the measurement data. The results of different evaluation
programs, in which these parameters were varied systematically, are presented
here. For each set of input parameters, the phase retrieval was performed ten
times and the results of these runs were averaged. Twomeasures of the retrieval
quality are shown in the following sections: (1) The averaged retrieved spectral
phase and the associated standard deviation and (2) the mean FWHM of the
pulses, which were obtained by Fourier transformation of the spectral field.
Since the true spectral phase of the pulses cannot be accessed without an-

other characterization device, there are two methods to validate the retrieval
algorithm. First, we can check, how well consecutive retrievals from the same
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measurement data match. If it is not consistent by itself, there is little reason
to trust any of its results. This aspect of the evaluation is covered in section
3.5.1. The second instrument at hand is to simulate D-Scan measurements with
an constructed phase function in order to try to retrieve it. Artificial noise can
be added to the simulated measurements to mimick the real data. This kind of
accuracy check is addressed in section 3.5.2.

3.5.1. Consistency Check

In order to test the consistency of several retrievals of the D-Scan algorithm,
the results of ten runs of the algorithm—the spectral phase and the FWHM of
the temporal pulses—were averaged. This procedure was repeated for different
settings, which consisted of taking a number from the set [50, 70, 90, 110, 130]
as the number of parameters which provide the hinges for the spectral phase
and limiting the maximal number of iterations of the algorithm to a value in the
set [18000, 30000, 42000]. The resulting phases for two sets of data are shown
in figures 3.7 and 3.8 and the corresponding FWHM’s are plotted in figure 3.9.
In the figures 3.7 and 3.8 it can be observed that the standard deviation

for lower parameter numbers is considerably higher, which indicates that a
certain number of parameters is necessary to obtain a good retrieval. A possible
explanation of this effect is that the details of the phase cannot be resolved
with too few parameters because the anchor points do not sample the spectral
domain fine enough. Thus, instead of finding a minimum, the algorithm does
not converge to the true phase and consequently will not do it either upon the
next retrieval.
The lower left plot in figure 3.7, where a large number of parameters and few

iterations were used for the retrieval, shows huge deviations from the mean.
Because (n+1) vertices for n parameters are needed it takes much longer until
all vertices of a simplex are updated when n is large. Thus, 18 000 iterations
were simply not enough in this case to come close to convergence.
As a result from the observations above, it is suggested to use at least 90

parameters in order to resolve the details of the phase, but not more than
110, because it would slow down the algorithm. It should also be mentioned
that the Downhill Simplex algorithm becomes increasingly inefficient in high
dimensions[14], which is an additional reason why the number of parameters
should be kept as low as possible.
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Figure 3.9 shows the FWHM calculated from the retrieved spectral phases and
the corresponding spectral amplitudes. The values for few iterations (blue) differ
from the results with more iteration steps (green, red) and fewer parameter
numbers seem to overestimate the FWHM. The error bars of the individual
points as well as the standard deviation of all points around their mean (solid
lines) suggest that a first estimate of the D-Scan’s accuracy is ~0.1 fs. While
the topic of the accuracy of the algorithm will be addressed in the next section,
these plots show the consistency of the retrieval is quite good provided that
enough parameters and iterations are used.
In all the D-Scan measurements, which were recorded while the laser system

described in section 2.3 was active, a trace consisted of 100 spectra taken at
different amounts of glass insertion. In retrospect, it was found that 50 spectra
with a coarser sampling of the glass insertion yield the same results, while
their computation takes only half as long. The plots that support this claim and
which correspond to the same data sets as the plots shown here, may be found
in appendix A.2.1.
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Figure 3.7.: Mean spectral phase (blue) and its standard deviation (light blue) from
ten consecutive retrievals of the same data set with different boundary conditions.
The number of parameters that build the phase is increased from top to bottom. The
number of iterations is increased from left to right. The spectral amplitude (grey) is
shown in the background.
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Figure 3.8.: Mean spectral phase (blue) and its standard deviation (light blue) from
ten consecutive retrievals of the same data set with different boundary conditions.
The number of parameters that build the phase is increased from top to bottom. The
number of iterations is increased from left to right. The spectral amplitude (grey) is
shown in the background.
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(a) FWHM data corresponding to figure 3.7.

(b) FWHM data corresponding to figure 3.8.

Figure 3.9.: Full width at half maximum of the pulses which are obtained from the
spectral phases and amplitudes in the previous plots as a function of the number of
parameters that built the phase functions and the number of iterations of the algorithm.
The average of all values is indicated by the solid line with a confidence interval of one
standard deviation (dashed lines).
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3.5.2. Accuracy Tests

To estimate the accuracy of the algorithm, simulations of D-Scan traces were
calculated and subsequently the phases were retrieved under different condi-
tions.
In order to test the behaviour of the algorithm towards noisy signals, retrievals

from simulated traces with added Gaussian noise were performed. The standard
deviation of the noise distribution was set to 0 %, 3 %, 6 %, 9 %, 12 % and 15% of
the maximum of the second-harmonic signal trace. The number of parameters
was varied as well, while the number of iterations was fixed at 30 000. The
results of the retrieval of two exemplary phase functions are displayed in figures
3.10 and 3.11 while figure 3.12 shows the corresponding FWHM values as a
function of the noise amplitude. Figure 3.13 shows the retrieval under the same
conditions as for figure 3.11, but initialized with the random scheme described
in section 3.4.3. It is evident that this scheme is less successful to ensure a
good phase retrieval and would need more iterations to reach a satisfactory
approximation of the input phase.
As expected, the plots demonstrate that the phase retrieval is worse the higher

the noise is. Yet even for high noise levels, the retrievals are quite successful.
Further, the uncertainty is higher at the wings of the spectrum. This is due to
the non-linearity used to generate the D-Scan trace. Wherever the spectral
amplitude is low, the SHG efficiency drops dramatically, which makes the phase
retrieval in these spectral regions more difficult. In the center of the spectrum
of the pulses the phase is recovered well even for high noise levels. As for the
number of parameters used in the retrievals, the results show no tendency to
become better with increasing parameter numbers.
An interesting feature in figure 3.11 is that the retrieval introduces a phase

jump in the high frequency wing of the spectrum in most cases. After the
sudden jump, the rest of the phase is retrieved correctly in most cases. Since
the same phase step is retrieved in many times and because it has a height of
about 2π, it is assumed to leave no trace in the simulation of the D-Scan traces
and to be a systematic error of the algorithm. It should not affect the FWHM
of the pulses, since a constant phase jump of 2π in the spectral phase cancels
analytically. In the retrievals of the measurement data presented in section 3.6,
more of these jumps appear. An assumption is that the initialisation method is
responsible for this behaviour of the algorithm.
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From figure 3.12 we see that the FWHM of the pulses is recovered well by
the algorithm. For moderate noise levels, the values from the retrieval fall with
high certainty within an interval of less than ±0.2 fs of the input value. In
accordance with the error discussed at the end of the last section, the value of
±0.2 fs is proposed to be taken as a conservative estimate of the general error
of the D-Scan characterizations.
To determine after how many iterations the algorithm can be expected to

have reached convergence, a set of simulations with different upper limits to
the number of iterations was executed. Figures 3.14 and 3.15 show how an
increased number of iterations results in a better retrieval of the spectral phase.
The effect is more pronounced for the more complicated phase function shown
in figure 3.15. Furthermore, it can once more be observed that high parameter
numbers are necessary in order to retrieve the fine details of the phase. As can
be seen from figure 3.16, the FWHM are not quite as sensible to the number of
iterations. An acceptable deviation from the goal value is already reached after
20 000 iterations.
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Figure 3.10.: Mean spectral phase (blue) and its standard deviation (light blue) from
ten consecutive retrievals performed on simulated data. The input phase is plotted in
black and is almost entirely covered by the retrieved phase in most plots. The noise
on the simulated data increases from top to bottom. The number of parameters in the
retrieval is increased from left to right. In the background the spectral amplitude (grey)
is shown.
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Figure 3.11.: Mean spectral phase (blue) and its standard deviation (light blue) from
ten consecutive retrievals performed on simulated data. The input phase is plotted
in black. The noise on the simulated data increases from top to bottom. The number
of parameters in the retrieval is increased from left to right. In the background the
spectral amplitude (grey) is shown.
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(a) FWHM data corresponding to figure 3.10.

(b) FWHM data corresponding to figure 3.11.

Figure 3.12.: Full width at half maximum of the pulses which are obtained from the
spectral phases and amplitudes in the previous plots as a function of the number of
parameters that built the phase functions and the amplitude of the noise added to
the traces. The values which correspond to the input phases of the simulations are
indicated by the red dashed lines.
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Figure 3.13.: Mean spectral phase (blue) and its standard deviation (light blue) from
ten consecutive retrievals with random initialization performed on simulated data. The
input phase is plotted in black. The noise on the simulated data increases from top to
bottom. The number of parameters in the retrieval is increased from left to right. In
the background the spectral amplitude (grey) is shown.
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(a) Retrievals with 10 000 iterations. (b) Retrievals with 30 000 iterations.

Figure 3.14.: Mean spectral phase (blue) and its standard deviation (light blue) from
ten consecutive retrievals performed on simulated data. The input phase, which is the
same as in figure 3.10, indicated by the black dashed line. The number of parameters in
the retrieval is increased from top to bottom. In the background the spectral amplitude
(grey) is shown.
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(a) Retrievals with 10 000 iterations. (b) Retrievals with 30 000 iterations.

Figure 3.15.: Mean spectral phase (blue) and its standard deviation (light blue) from
ten consecutive retrievals performed on simulated data. The input phase, which is the
same as in figure 3.11, indicated by the black dashed line. The number of parameters in
the retrieval is increased from top to bottom. In the background the spectral amplitude
(grey) is shown.
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(a) FWHM data corresponding to figure 3.14.

(b) FWHM data corresponding to figure 3.15.

Figure 3.16.: Full width at half maximum of the pulses, which are obtained from the
spectral phases and amplitudes in the previous plots as a function of the number of
parameters that built the phase functions and the number of iterations of the algorithm.
The values which correspond to the input phases of the simulations are indicated by
the red dashed lines.
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3.6. D-Scan Measurements
This section shows actual results of D-Scan measurements. Four examples of
pulse characterizations are shown and discussed. Further plots are attached in
appendix A.2.2. It should be mentioned that the zero point of the glass insertion
scale in the plots was set arbitrarily to the center of the traces main features.
In addition, we performed a pressure scan of our hollow-core fibre to find out
the optimum pressure. At each pressure setting, a D-Scan was performed. The
results displayed in figure 3.19 show that the pulses are shorter and supported
by a broader spectrum as the pressure increases. That is because the refractive
index which induces the self-phase modulation in the gas scales with the density
of the medium.
The D-Scan measurements also proved to be a valuable tool for the delicate

alignment of the chirped-mirror compressor in the laser setup. To compensate
for more glass insertion, the old compressor with five pairs of double-angle
chirped mirrors was extended to seven pairs. The angle of incidence of the
laser onto this kind of mirrors is extremely critical, as small deviations can
introduce ripples onto the spectral phase[47]. Here, the D-Scan helped to check
the alignment progress.
Figure 3.17a shows the D-Scan results of pulses with the flattest spectral

phase, which we were able to produce and measure as part of this thesis. That
the phase is well behaved can be seen in the raw data already: the trace has a
strong horizontal symmetry.
Pulses with phase ripples as shown in figure 3.17b can be identified by the

rippling structures along the spectral axis in the traces. The fast modulation
of the spectral phase is most likely caused by a misalignment of the chirped
mirrors regarding the angle of incidence.
In figure 3.18a it is obvious that the measurement was performed with a bad

initial position of the glass wedges since only half of the trace is covered. In
such a case, the wedges should be adjusted and a new measurement has to be
performed. Nevertheless, the algorithm can still retrieve the spectral phase of
the pulses, but these results have to be handled with care. The phase, which is
depicted in the lower left plot and which leads to the temporal intensity in the
lower right, is not necessarily the optimal phase. The algorithm only chooses
among the phase functions, for which there is a corresponding glass insertion
value in the data. If more/less glass has to be inserted into the beam to reach
optimal pulse compression, the retrieval does not take notice of this. Surely,
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this scenario could be implemented and accounted for by the algorithm, but
correcting the measurement is the better choice, since a retrieval from a trace
with all features of the SHG signature will give better results.

The traces shown in figure 3.18b are strongly bend and the temporal intensity
has a long pre-pulse. From simulations it is known that both of these effects
are caused by a third-order phase component (see figures 2.2 and 3.1). No
such component is present though in the retrieved phase or at least not clearly
distinguishable. If the phase jumps at the wings of the spectrum were not
present, it would be interesting to analyze the polynomial phase orders more
thoroughly.
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(a) Example of the D-Scan characterization of near transform limited pulses.

(b) Example of the D-Scan characterization of pulses with strong phase ripples.

Figure 3.17.: On top are the experimental (left) and retrieved (right) traces. On the
bottom, the spectral fields (left) and the temporal pulse envelopes (right) are shown.
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(a) Example of the D-Scan characterization with poor settings of the initial
wedge positions.

(b) Example of the D-Scan characterization of pulses with a rather spiky spectral
amplitude.

Figure 3.18.: On top are the experimental (left) and retrieved (right) traces. On the
bottom, the spectral fields (left) and the temporal pulse envelopes (right) are shown.
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(a) Spectra acquiered during the pressure scan.

(b) Full width at half maximum and peak field strength of the pulses retrieved
by the D-Scan for each pressure setting.

Figure 3.19.: Pressure scan data taken as the neon pressure inside the hollow-core
fibre was increased from 1000mbar to 2550mbar.



4. Attosecond Streaking
In attosecond streaking—the method presented in this chapter—the oscillations
of a strong laser field are sampled by sub-cycle photoelectron bunches and are
mapped directly onto the electrons’ kinetic-energy spectra. The photoelectrons
are produced by ionization of a gas target by means of an attosecond XUV
pulse from high-harmonic generation, which co-propagates with the NIR laser
pulse. This technique does not only allow to directly observe the wave form of
the laser’s electric field, but can be extended to characterize the high-harmonic
light, which triggers the probe electrons, as well. For the detection of the
electrons typically a time-of-flight spectrometer is used. Such a device was
designed and constructed in the frame of this work.
We call this method attosecond streaking as a reference to conventional streak

cameras1 and, because the fs-laser-field of the measured pulses is sampled
with sub-cycle resolution. The fact that the electric field of the strong laser
pulses varies considerably on timescales shorter than the optical cycle, which
is TL = 2.5 fs at the laser’s center wavelength of 750 nm, is also the reason why
methods like the ATR and FROG-CRAB reveal information about the temporal
structure of the attosecond pulses. The related method of angular streaking
is referred to as attoclock[10; 11; 43; 44] because it uses this as-resolution of
fs-laser pulses to probe time delays in photoionization. Such time delays can
also be investigated with attosecond streaking as demonstrated by Schultze
et al. [45] for measurements in Neon.
Section 4.1 presents the theoretical background of attosecond streaking fol-

lowing the work by Goulielmakis et al. [19]. Furthermore, section 4.2 describes
our design of the electron time-of-flight spectrometer (section 4.2.1), which
is the key component of the experimental apparatus, the electron detector
(section 4.2.2) and the signal extraction (section 4.2.3). A technical description
of the streaking setup is summed up in section 4.3. For the current status of the

1Streak cameras are used to characterize light pulses as short as picoseconds (1 ps = 10−12 s).
Shining the pulses on a photocathode, time information on the photoelectrons is gained by
mapping a time-dependent accelerating electric field to the spatial coordinate of a detector.

53
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system and future measurement prospects, the reader is referred to the outlook
in chapter 5.

4.1. Theoretical Background

In classical electrodynamics, the electric field is defined as the force per unit
charge at a given point in space [25]. Consequently, the electric field of a
strong laser pulse can be accessed by measuring the effect of this force F =
eE on an electron. The electrons are said to be streaked by the laser field,
which throughout this chapter will be assumed to be linearly polarized. The
experimental principles of attosecond streaking, which will be explained in the
following, are sketched in figure 4.1.
As mentioned, the electron release is triggered by single-photon ionization

of a gas target by means of an XUV pulse. In our experimental setup, the
XUV pulse is generated by the strong NIR laser pulse itself via high-harmonic
generation, which has the following two advantages. Firstly, the two pulses
are synchronized and co-propagating, which allows to precisely control the
production of the probe electrons in space as well as in time. Secondly, the
introduction of a time delay between the two pulses is straightforward with
a split-mirror setup2. In the experimental setup described here, the accuracy
of the time-delay steps is of the order of 20 as—well below the duration of the
XUV pulse itself.

After the ionization, the electrons have a certain kinetic energyW0 and initial
momentum p0 according toW0 =

p20
2me

= ~ωXUV − Ip, whereme is the electron
mass, ~ωXUV is the energy of an XUV photon and Ip is the ionization potential
of the target gas. The XUV pulse inherently covers a certain bandwidth, which
is mapped onto the kinetic energy spectrum of the electrons. In the region of
temporal overlap between the two pulses, the probe electrons are set free by
the XUV pulse and undergo fast oscillations, due to the ponderomotive force
of the strong laser field. The final momentum of the electrons is not affected
by their quivering motion in the presence of the field, but rather by the field’s
vector potential at their moment of birth. If we instantaneously place the probe
electrons within the laser field at a moment τ0, they experience the passage

2For a description of the high-harmonic beamline, into which the setup described here is
implemented, see [42].
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Figure 4.1.: The principle of attosecond streaking. Atoms emerging in a gas jet
(turquoise) from a nozzle are ionized by an XUV pulse (violet) from high-harmonic
generation. The freed electrons (yellow) probe the field of the strong laser pulses E(t)
(red) and receive a momentum boost depending on the corresponding vector potential
A(t). The momentum of the electrons parallel to the laser’s axis of polarisation is
measured using a time-of-flight spectrometer.
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of the rest of the pulse, which induces a change of their momentum in the
direction of polarization by ∆p(τ0):

∆p(τ0) = e

∞∫
τ0

E(t)dt = eAL(τ0), (4.1)

where AL(t) is the vector potential of the electric field. We identify τ0 as the
time delay between the ionizing and the streaking pulse.
Thus, scanning the time delay and measuring the momentum shift ∆p simul-

taneously, is equal to measuring the pulses’ vector potential. If the latter is
sampled fine enough, we can directly deduce the electric field by taking the
derivative of AL(t) with respect to time,

E(t) =
∂

∂t
AL(t). (4.2)

Of course, the electrons are not generated instantaneously, because of the
duration ∆τXUV of the attosecond pulse. This uncertainty is mapped to an
inaccuracy of the time delays between the laser pulse and the electrons, which
are produced by the ionization. This smears out the measured vector potential,
but does not invalidate the approximation. The pulses from HHG are inherently
short τXUV < 1 fs and—except for the case of trains of attosecond pulses—still
allow sensible sampling of the vector potential.
Because photoelectrons from the laser generated by multi-photon absorption

affect the desired signal, the target gas has to resist strong-field ionization by
the laser alone. Thus, noble gases such as helium or neon, which can still be
ionized by the comparatively weak XUV pulse in a one-photon process, are
suitable choices for the target.

4.1.1. Measurement Principle
In order to detect the electrons, an electron time-of-flight spectrometer oriented
parallel to the streaking laser’s axis of polarization is needed, by means of
which the kinetic energy W of the electrons can be calculated. In absence
of the streaking field, the kinetic energy is W0 =

p20
2me

. The momentum shift
induced by the laser, translates to a shift of the kinetic energy of the electrons
by ∆W ≈ p0

me
∆p. Thus, a large initial momentum of the electrons is desirable
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for a good energy resolution. To be precise, it is even necessary that the initial
momentum is greater than the maximum momentum shift induced by the
streaking laser p0 > |∆pmax|. Otherwise, electrons would be streaked away
from the detector for certain sampling positions of the laser’s vector potential.
Experimentally, it is important to measure only electrons propagating along

the laser’s axis of polarization. The reason for this is that electrons that leave
the interaction region at different angles may have the same kinetic energy,
but reach the detector after different times-of-flight. Since the time-of-flight
is needed to deduce the kinetic energy, this would smear out the measurable
distribution of ∆W .
Because the momentum shift∆p has to be measured for different time delays

and in order to obtain a good signal to noise ratio, the experiment cannot
be performed with a single shot of the laser. This makes carrier-envelope
phase stabilisation during the acquisition of a scan necessary, otherwise only
CEP-averaged data is recorded. The result from a scan is a two-dimensional
streaking trace, where the counts of detected electrons are plotted over the
kinetic energy of the electrons and the time delay between the ionizing and
the streaking pulse. The expected traces for both cases—measurements with
and without CEP stabilisation—are illustrated in figure 4.2.
From figure 4.2 it is evident that the largest possible change in kinetic energy

∆Wmax has to be at least as large as the spectral width covered by the XUV
pulse. For this to be true, the peak strength of streaking field needs to be
sufficiently strong. If we demand that W0 = 50 eV and ∆Wmax = 15 eV and
approximate equation 4.2 for the peak field strength as

Emax ≈ 2ALmax

TL/2
, (4.3)

we find an estimate of the peak electric field strengthEmax needed for streaking:

Emax ≈ ∆W

eTL

√
8me

W0

, (4.4)

≈ 8 · 107 V/cm, (4.5)

which corresponds to an intensity of I ≈ 4 · 1013 W/cm2. These field strengths
are within the accesible range of the setup presented in section 2.3.
Since the spectrometer measures the time-of-flight of the electrons, the mo-

mentum of the electrons is easily calculated by taking the known distance from
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Figure 4.2.: Illustrations of possible streaking traces, where electron counts (colorscale
in arbitrary units) are plotted over the kinetic energy of the electrons and the XUV-NIR
time delay. On the left, the CEP of the laser is stabilized, on the right the effect expected
for a washed out CEP is demonstrated. Assuming the ionization potential of helium,
in the top row, the XUV beam used is bandpass filtered to span 8 eV around a center
energy of 72.7 eV. The bottom row illustrates measurements we expect for harmonics
lowpass filtered by transmission through aluminium, which has a cutoff at 72.7 eV (see
figure 4.3). Effects of atomic resonances are not considered here.

the interaction region to the detector into account. If there was nothing more
to it, this would suffice to access the laser’s vector potential. The need to com-
pute the kinetic energy arises, because the time-of-flight has to be calibrated.
Experimentally, the time-of-flight is recorded by a timer, which is started by a
trigger from the laser and stopped by signals from the detector. The start of
the timer can be set off by the signal of a photodiode somewhere along the
laser’s beam path. The laser pulses then propagate to the experiment, generate
the XUV pulses, which themselves propagate further to set initiate the real
reaction to be recorded by ionizing the gas target. The false offset the timer
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Figure 4.3.: Photon transmission spectrum of a 0.2 μm thin aluminium filter between
70–75 eV. The transmission window, which closes here, opens at ~18 eV. Data from
online service provided by [20].

measures, because the pulses and electric signals take time to propagate, has to
be accounted for. Else the timing unit with its 1 ns resolution, would introduce
errors as soon as the pulses have to travel further than 30 cm to the interaction
region. This timing offset is calibrated by matching the kinetic energy spectra
of the electrons recorded in the absence of the streaking laser to the spectrum of
the XUV pulse according to W0 = ~ωXUV − Ip. In work presented in literature
[18; 29; 19], the high–harmonics are bandpass–filtered and thus their spectrum
is known. In the setup described here, an XUV spectrometer at hand allows to
directly monitor the XUV spectrum. Another approach illustrated in figure 4.2
makes use of the spectral properties of an aluminium filter in the beam path
of the HHG radiation. The XUV transmission window of aluminium closes
abruptly at 72.7 eV (see figure 4.3). In the electron spectrum, this edge should
be mapped onto the fastest electrons and can then be used for calibration as
well.

4.2. The Electron Spectrometer
The following sections turn towards the practical details of time-of-flight elec-
tron spectroscopy. The design of the spectrometer, which was planned and
constructed as part of this thesis, is explained in section 4.2.1. Section 4.2.2
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focuses on the working principle of the electron detector, while section 4.2.3
illustrates how the data acquisition works.

4.2.1. Spectrometer Design

The essential considerations for the design of the electron time-of-flight spec-
trometer were threefold. (1)The positioning of the spectrometer must be flexible
in order to align it with the focus of the laser and the XUV. (2) Its inside has to
be field free, such that the flight of the electrons is not perturbed by external
electromagnetic fields. (3) The vacuum in the spectrometer arm has to be good
enough for the electron detector to be operated safely and the electrons to reach
the detector.
The first point demanded the use of large manipulators, one for the lateral

and one for the axial movement. The advantage of having these manipulators
resides in the flexibility they grant to the setup. Instead of having to move the
focal spot towards the spectrometer entrance, it can easily be adjusted by hand,
while a long-focal length microscope camera is used to monitor the tip of the
spectrometer. This way, no changes to the existing beamline had to be made
and it can in principle now be operated with the new electron spectrometer
and the old XUV spectrometer in dual operation mode3.
The need to keep the spectrometer free from stray electric and magnetic fields

arises, because they might deflect the electrons on their way to the detector.
The flying electrons are moving charged particles, whose straight trajectories
would be bent due to the Lorentz force caused by the earth’s magnetic field
and the remaining magnetization of the vacuum chambers, if left unshielded.
This in turn might either alter the electrons’ time-of-flight or lead them astray
such that they do not reach the detector at all. Therefore, a µ-metal tube with a
conical tip encloses the flight path from the interaction region to the detector.
µ-metal is a special alloy, which—after undergoing thermal postprocessing—has
an enormous magnetic permeability µ. Because of this, magnetic field lines
from the outside are trapped in the metal and do not penetrate the inside of
the spectrometer, which leads to the desired shielding. In order to shield the
electrons from electric fields from the electrodes of the detector, a fine mesh on
ground potential will be set up in front of the detector stack. Thus, all unwanted
electric and magnetic fields are taken care of.

3Also referred to as BADASS (Badass Attosecond Dual (Absorption & Streaking) Spectrometer )
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The last requierement on the design is that the pressure at the position of
the detector must be kept below 2 · 10−6 mbar during operation. The reason
for this is that the electron detector, which is build from two micro-channel
plates (MCPs) and an anode, operates at high voltages (HV) and is easily de-
stroyed under bad vacuum conditions. Additionally, lower pressures implicate
a larger mean free path of the electrons, which preferentially should exceed
the dimensions of the spectrometer. However, during absorption and streak-
ing measurements, the backgrond pressure in the experimental chamber is
typically in the range of 10−3 mbar and even higher close to the gas target.
Therefore the µ-metal shield was designed to act as a partition between the
main experimental chamber and the inside of the spectrometer. The tip of the
shield has an entrance aperture with a diameter of only 1mm, which acts as a
differential pumping stage beneficial to keep the pressure low and also helps
to select the electrons that leave the interaction region in a small solid angle
pointed towards the detector. By mounting a turbo molecular pump (HiPace
300, Pfeiffer Vacuum) behind the detector, the spectrometer volume can easily
be held at pressures well below the operation requirements of the MCPs. In fact,
at backing pressures of ~200mbar in the gas nozzle and 10−3 mbar in the exper-
imental chamber, the inside of the spectrometer still maintained 2.1 · 10−7 mbar.
In the future, this will enable to do electron streaking and XUV absorption
measurements at the same time.

4.2.2. The Detector

The electron detector from the company Roentdek is sketched in figure 4.4.
It consists of two MCPs and an anode plate, to all of which different, electric
potentials are applied. A single MCP is a 0.3mm thin disk perforated by an
array of microscopic channels, which have a pore diameter of 6 μm. Because
the microchannels have a small bias angle with respect to the surface normal,
the electrons cannot pass the MCPs without impinging on their walls. When
an electron first hits the wall of a pore, it creates secondary electrons, which
start an avalanche process that leads to the amplification of the electron signal.
Thus, every pore acts as an electron multiplier.
In the case of the detector described here, two MCPs were mounted on

top of each other, such that the electron avalanche from the front MCP is
further amplified by the back MCP. They are aligned in such a way that the



62 4. Attosecond Streaking

Figure 4.4.: Sketch of a cut through the detector. The whole detector has a diameter
of 40mm with an active area of 25mm diameter. The yellow screws and nuts are made
of plastic in order to provide isolation. Taken from a test report by Roentdek.

microchannels of the two plates have opposite bias angles. This configuration
is called a chevron stack, because the channels form a V-shape.

In order to reach high enough signal amplification and good detection effi-
ciency, all components have to be held at specific high–voltage levels. During
first test measurements, the MCP front was held at 300V, the MCP back at
2400V and the anode at 2700V. In principle, the signal can be picked from any
of the parts above by means of an RC-output coupler. The signals from the
anode have a FWHM of ~3 ns (see figure 4.5) and seemed to be well behaved.

A single pore of the MCP has a dead time of a couple of nanoseconds, because
it needs to refill its charge after the current drain by the signal. But in terms of
timing resolution this should not affect us, since it is very improbable to hit the
same spot on the detector twice by two consecutive electrons at the low count
rates of 1-10 events we expect per shot of the laser. The time resolution of the
signal digitizer to be treated in the next section is more critical .

With the detectorworking satisfactorily, the next step is to expand it by adding
a grounded mesh in front of the MCP stack. In the current configuration, the
electrons are accelerated by the electric field between the MCP front (positive
potential) and the entrance aperture of the spectrometer (ground potential).
Since this leads to a guiding of the electrons and shifts their natural kinetic
energy, the energy resolution would suffer under the current circumstances,
because the electrons have a shorter time-of-flight. This effect can be avoided
by shielding the MCP by means of an optically thin mesh on ground potential.
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Figure 4.5.: Typical signal from the MCP back (left) and anode (right). The anode
signal is amplified by a factor of 50. Taken from test report by Roentdek.

4.2.3. Signal Processing

When an electron hits the detector, a cascade of secondary electrons is released
and amplified as described above. This signal is strong enough to be outcoupled
by an RC-coupler which isolates the ac signal from the dc electrode potential.
Following this, the signal pulses are further amplified by a factor of 200 in a
fast amplifier (FTA 820a, Ortec) and converted to standardized NIM pulses4 by
a constant fraction discriminator (CFD). After the amplifier, the raw pulses have
FWHM durations of ~5 ns and look similar to the pulses displayed in figure
4.5. The CFD has the important task to process the raw signals and assign a
meaningful timestamp to them which, as we discussed in section 4.1.1, is used
as the stop signal for the time-of-flight measurement timer. The pulse shape
itself is neither processible by other devices nor reproducible. The operation,
which the CFD performs and which leads to its name, is to detect the position
at the rising edge of the pulse where the pulse has reached a given constant
fraction of its total height. This is equivalent to finding the pulses maximum
independently of the actual height. It then launches a normed pulse, which
marks this position. This way the important timing information is transferred
to a more robust type of signal.
The last element in the measurement chain is a time digitizer PC card for

the acquisition of the time-of-flight information. This so-called scaler card

4The Nuclear Instrumentation Module (NIM) standard provides mechanical and electrical
definitions for modular instrumentation devices.
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(P7888, Fast ComTec GmbH) has two analog inputs—the trigger taken from the
laser (start) and the signal from the electron detector (stop)—and is specifically
designed for the acquisition of time-of-flight spectra. Its work cycle is started
by a trigger signal. According to the settings, this opens a time window in
which the card expects stop signals. The start and end of this window are
programmable over a wide range and will have to be determined experimentally.
When no stop signal is recorded, the work cycle starts anew with the next
trigger pulse. For each time-delay setting the measured events are binned
in a histogram by the software provided with the card producing different
time-of-flight spectra. This software can be controlled via Labview by using a
dynamic data exchange (DDE) protocol. A Labview VI that controls both the
time-delay piezo and the data acquisition of the scaler card is already set up.

With the data transferred to Labview, the time-of-flight spectra are to be
converted to kinetic energy spectra according to:

Ekin =
me

2

(
l

t− t0

)2

(4.6)

=
(
(t− t0)/ns

)−21.023 413 4 · 106 eV, (4.7)

where l = 60 cm is the distance from the tip of the spectrometer to the detector
and t0 is the constant offset of the trigger that is discussed in section 4.1.1. In
the latter equation the conversion to electron volts is already included.

Regarding time resolution, the scaler card becomes the limiting factor of the
whole detection setup as it can only record histograms with a smallest bin width
of 1 ns, which corresponds to a sampling rate of 1 GHz. For electrons, which are
detected with a kinetic energy of 50 eV and therefore have a time-of-flight of ~
143 ns, this corresponds to an energy resolution of ~0.7 eV. For electrons with
lower kinetic energy the time-of-flight is longer and thus the energy resolution
becomes better. However, there is a tradeoff between the energy resolution
and the amplitude of the streaking shift in kinetic energy ∆W which scales
with the initial momentum of the electrons (see section 4.1.1). Eventually, the
spectral filter for the XUV radiation will determine the properties of the electron
bunches (see figure 4.2).
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Figure 4.6.: Sketch of all components, which are part of a streaking experiment. While
the vacuum chambers are mounted on an optical table, most of the read-out electronics
are housed in a standardized NIM rack, which acts as their power supply.

4.3. Experimental Setup
The last section explained in detail the overall working principle of the streaking
setup and its individual components. In order to see the larger picture, figure
4.6 gives an overview of all the parts involved in a streaking measurement. The
spectrometer as a whole is depicted in figure 4.7. For completeness, some more
detail information is provided in the following.

4.3.1. Power Supply
High-voltage levels have to be applied to the MCP front and back and the anode
of the detector. The MCP front is supplied with 300V, because this maximizes
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Figure 4.7.: Rendered cut through the time-of-flight spectrometer. The perfect flight
path of the electrons, which is depicted as the white line in the middle of the µ-metal
tube, is 60 cm long. The separation of the low pressure region of the spectrometer
(light blue) to the experimental chamber is evident.

the detection efficiency of electrons. The power supply used for the front
can deliver 2 kV and a current of 6mA (NHQ 202M, ISEG), while MCP back
and anode could be supplied with up to 6 kV/2mA (NHQ 206L, ISEG). During
the test measurements run so far, the voltage / current at the detector were
302V/4 μA at the MCP front, 2405V/50 μA at the MCP back and 2700V/0 μA at
the anode. The current through the MCPs is non-zero because the MCP stack
has a finite resistivity of ~55MΩ. As a result, the high voltage applied to the
MCP back does not drop over the MCP stack and would be fed into the power
supply of the MCP front. To prevent the latter from happening and to be able
to regulate the voltage on the MCP front independently from the back, the
MCP front is connected to ground via a 6MΩ resistor (see figure 4.6). This way
the resistor acts as one arm of a voltage divider and drains the majority of the
current from the MCP back. The power supply of the MCP front can now easily
counter the rest of the voltage that is applied to it by the other power supply.
When the high voltages are applied to the MCP back the first time after the

vacuum chambers have been vented, special care should be taken to ensure that
the MCP resistivity is unchanged, e.g. the current should be monitored each
time the voltage is raised and it should rise linearly with the voltage according
to Ohm’s law. Furthermore, the potential difference between the MCP back
and the anode should never exceed 500V and the anode current should stay at
0 μA at all times.
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4.3.2. Test Measurements
In order to align the µ-metal drift-tube, a long-focal length microscope camera
in front of an acrylic glass flange is pointed onto a mirror on the inside of
the vacuum chamber. This gives visual access to a sideview of the tip of the
spectrometer and the gas nozzle. By shining an adjustment laser (HeNe) onto
the nozzle, the z-manipulator and the vertical axis of the xy-manipulator can be
set to the right position. For the adjustment of the horizontal axis, we irradiated
the side of the gas nozzle with the XUV pulses, which knocked a large amount
of electrons out of the metal. Moving the spectrometer, this signal could then
be maximized by monitoring it on a GHz-oscilloscope (LeCroy). For further
fine adjustments of the horizontal axis we used the actual signal from the gas
jet. Picked up directly from the anode, these signals looked similar to the ones
shown in figure 4.5, which proves that the detector is working fine.





5. Summary and Outlook

The emphasis of this work is placed on the characterization of ultrashort fs-laser
pulses with the main objective being the implementation of a dispersion scan
(D-Scan) and an attosecond streaking setup. Both characterization methods
were installed and tested, and theD-Scan has already proven to be a valuable tool
in everyday laboratory routine. Because the two techniques differ substantially
from each other in in terms of requierements, benefits and operation principles,
they will be reviewed separately in the following sections.

5.1. Dispersion Scan
A pulse characterization with the D-Scan consists of the acquisition of the
measurement data and the phase retrieval by an iterative algorithm, both of
which take about 3min. It has been employed to optimize the delicate alignment
of a chirped–mirror compressor, to check the performance and optimal gas
pressure of a hollow-core fiber, and to monitor and optimize the day-to-day
trend in the performance of the laser system.
At the heart of this method is the retrieval algorithm, which was tuned

and tested in order to yield stable results. Its parallelization proved to be
extremly valueable as it allowed to test parameter regimes, which were beyond
practical limits of retrieval times before. The evaluation showed that good phase
retrievals can be expected if the algorithm is run with 100 phase parameters and
at least 20 000 iterations. The error of the FWHM of the characterized pulses is
estimated to be ±0.2 fs.
The evaluation showed that traces with lower sampling of the glass insertion

do not alter the performance of the retrieval, which could be used in the future
to speed up both, the measurement and the algorithm by approximately a factor
of two.
In order to decouple the D-Scan from a specific position within a single

laser system, an expansion of the setup is currently under consideration. By

69
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adding a small chirped-mirror compressor and using glass wedges, which
are independent of the laser system, the D-Scan can become a stand-alone
application. This may be the only way to include it in laser systems with
less precompensated glass insertion as is usually the case when dealing with
sub-two-cycle laser pulses.

5.2. Attosecond Streaking
With the electron time-of-flight spectrometer, which is the principle compo-
nent of the attosecond streaking setup, the attosecond transient absorption
spectroscopy (ATAS) beamline has gained a powerful new feature to access the
dynamics of atomic and molecular quantum systems. First tests have shown
that the detector and the signal electronics work as expected.
The next step to a fully functional setup will be the addition of a mesh to be

placed in front of the detector in order to shield electrons from the potential of
the MCP front, which is currently under construction. Further improvements
could envisage a new design for the gas nozzle of the gas target. Reports from
leading groups in the field of attosecond streaking [18; 46] are that glass nozzles
coated with graphite are more suitable than the current steel nozzle to keep the
interaction region in front of the spectrometer free from stray electric fields.
Finally, the spectrometer resolution could be improved by slowing the electrons
down by means of a retarding potential in front of the drift tube [12].
Parameters which have yet to be determined experimentally include the

electron count rate and thus the time it takes to record a full time-of-flight
spectrum as well as the duty cycle of the scaler card. Furthermore, it will
be intriguing to find out whether we can rely on the edge in the spectral
transmission of the aluminum filters (see figure 4.2) as a spectral filter.
Regarding the processing of the data, it should be straightforward to extract

the shape and duration of the NIR laser pulses. More involved analyses to
extract information on the HHG pulses will either make the implementation of
a FROG CRAB algorithm [34] or an adaption of the D-Scan algorithm necessary.
Provided all of the requierements above are met, the attosecond streaking

will not only be a technique for an in situ measurement of the NIR laser pulses
but a complement to the ATAS XUV spectrometer. The latter has access to
bound-bound transitions in atoms and molecules and the effects of strong laser
fields on the dynamics of bound electrons, whereas attosecond streaking takes
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hold of the freed electrons. A first test measurement could be the repetition of
measurements of autoionizing states in helium described by Blättermann et al.
[1] with the simultaneous capture of the photoelectrons. Such a comparison has
not yet been reported experimentally and only recently been done in theory [54].
Even though the investigation of autoionizing states by streaking techniques
has already been conducted in theory [51; 53; 4; 26] and experiment [16; 50],
we are confident that our dual approach may serve to gather new insights.
Finally, it should be mentioned that such dual measurements have not yet
been performed and will be feasible with our setup only because of the highly
efficient differential pumping stage.





A. Appendix

A.1. Phase Dependence of the D-Scan Trace

This appendix proves the independence of the D-Scan trace from constant and
linear phases.

Starting out from the analytic expression given by equation 3.1 and writing
the spectral field in terms of amplitude and phase following equation 2.5, yields:
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As in equation 2.18, the spectral phase is expressed as a taylor series up to the
second order ϕ(ω) = ϕ0 + τ0ω + Φ(ω).
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Next, the inner square product, which represents the SHG, is written out
explicitly:

S(ω, z) ∝
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The term with the constant phase can be drawn out of the integrals and cancels
due to the absolute value.
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Now we see that the last exponential factor and the integral over dΩ2 are the
definition of the Dirac δ-distribution: δ(Ω2 = ω − Ω1) =

∫
dΩ2e

i(Ω1+Ω2−ω)t.
With this we find:

S(ω, z) ∝

∣∣∣∣∣
∫ ∫

dtdΩ1 A(Ω1)A(Ω2)e
iz(k(Ω1)k(Ω2))

× ei(τ0(Ω1+ω−Ω1)+Φ(Ω1)+Φ(ω−Ω1))

∣∣∣∣∣
2



A.1. Phase Dependence of the D-Scan Trace iii

S(ω, z) ∝
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Since now τ0ω is also only a constant phase, it can be pulled out and vanishes.
The result has no dependence on constant and linear phase orders anymore:
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A.2. Supplementary D-Scan Plots

A.2.1. Consistency Measurements
By comparing figures A.1, A.2 and A.3 to figures 3.7, 3.8 and 3.9 on pages 36-38,
it was found that D-Scan measurement and retrievals with half the ususal
sampling rate yield the same results within the bounds of the error of the
algorithm.

A.2.2. Example D-Scan Characterizations
Further exemplary D-Scan characterizations are illustrated in figures A.4 and
A.5 on pages viii and ix.
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Figure A.1.:The same plots as in figure 3.7, with the difference that the measured data
was sampled with half the number of steps in the glass insertion axis.
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Figure A.2.:The same plots as in figure 3.8, with the difference that the measured data
was sampled with half the number of steps in the glass insertion axis.
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(a) FWHM data corresponding to figure A.1.

(b) FWHM data corresponding to figure A.2.

Figure A.3.: Full width at half maximum of the pulses, which are obtained from the
spectral phases and amplitudes in the previous plots as a function of the number of
parameters that built the phase functions and the number of iterations of the algorithm.
The average of all values is indicated by the solid line with a confidence interval of one
standard deviation (dashed lines).
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(a) Example of the D-Scan characterization of pulses with phase ripples and
third order phase.

(b) Example of a very noisy D-Scan measurement.

Figure A.4.: On top are the experimental (left) and retrieved (right) traces. On the
bottom, the spectral fields (left) and the temporal pulse envelopes (right) are shown.
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(a) Example of a D-Scan characterization.

(b) Example of a D-Scan characterization.

Figure A.5.: On top are the experimental (left) and retrieved (right) traces. On the
bottom, the spectral fields (left) and the temporal pulse envelopes (right) are shown.
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