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Abstract

This thesis contributes to the development of algorithms for the simulation of
quantum systems.

The first part of this work considers the classical simulation of quantum many-
body systems with the help of Tensor Network States (TNS). TNS denotes a vari-
ational class of states that, during the last years, has led to completely new al-
gorithms to tackle many-body problems. Firstly, we focus on a particular subset
of TNS called Projected Entangled Pair States (PEPS) in two dimensions. We an-
alyze and compare several recently proposed PEPS algorithms, and we introduce
our own algorithmic concept which unifies previously independent methods. Fur-
thermore, we present new procedures that improve the precision and efficiency
of PEPS computations, and we provide the currently best PEPS results for the
ground state approximation of Heisenberg and quantum Ising Hamiltonians on
finite square lattices of sizes 10 × 10 to 21 × 21. Secondly, we address the ques-
tion wether TNS concepts could be useful for density functional theory (DFT).
Within DFT, extremely successful numerical procedures have been devised for the
analysis of realistic many-electron problems such as, e.g., real molecules or solids.
However, there exists no general DFT scheme that provides an error estimate for
the final result of the DFT computation or a systematic way of improving it. With
the aim of constructing such a highly desirable DFT algorithm, we study different
approaches motivated by TNS, identify the necessary characteristics that our ap-
proach must have, and present first promising results for one-dimensional Fermi-
Hubbard Hamiltonians as well as fermions with a Coulomb interaction.

The second part of this work deals with the quantum simulation of quantum
many-body systems by means of ultracold atoms in optical lattices. An unprece-
dented degree of control over this system allows current experiments to prepare
it in such a way that it is described by a Hubbard Hamiltonian whose parameters
can be tuned with high accuracy. Firstly, we consider a realization of the strongly
interacting Fermi-Hubbard model, i.e., of the t− J Hamiltonian, whose phase dia-
gram is still discussed controversially and might give insight into the mechanism
underlying high-Tc superconducting cuprates. A key challenge for the experimen-
tal preparation of this Hamiltonian is the low entropy required for the emergence
of magnetic order. We propose an adiabatic protocol that starts from a state that
can be created experimentally with low entropy. Our calculations for one- and
two-dimensional systems demonstrate the feasibility of our protocol for reason-
able system sizes and time scales. Secondly, we consider a realization of the Bose-
Hubbard model, and we investigate the entanglement properties between the left
and right halves of finite one-dimensional systems after the local particle number
in one half has been measured. We observe that ground and thermal states are only
weakly entangled, and we propose an experimentally realizable protocol that en-
hances this amount of entanglement by several orders of magnitude and turns out
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to be robust against experimental imperfections.
The third part of this work contains an additional algorithm for classical simu-

lation. We demonstrate that the fidelity measure can be applied to the analysis of
quantum chaotic energy spectra.

In the appendix, we present an algorithm for the diagonalization of complex
symmetric matrices that is particularly suited for the computation of all eigenval-
ues and eigenvectors of dense matrices. Although this work is not directly related
to the rest of the thesis, it was done during this Ph.D. and we include it for com-
pleteness.



Zusammenfassung

Diese Doktorarbeit trägt zu der Entwicklung von Algorithmen zur Simulation von
Quantensystemen bei.

Der erste Teil dieser Arbeit betrachtet die klassische Simulation von Quanten-
Vielteilchensystemen mit Hilfe von Tensornetzwerkzuständen (TNZ). TNZ be-
zeichnet eine variationelle Klasse von Zuständen welche, während der letzten
Jahre, zu komplett neuen Algorithmen geführt hat um Vielteilchenprobleme
anzugehen. Erstens konzentrieren wir uns auf eine bestimmte Untermenge von
TNZ genannt Projected Entangled Pair States (PEPS) in zwei Dimensionen. Wir
analysieren und vergleichen verschiedene kürzlich vorgeschlagene PEPS Algo-
rithmen, und wir führen unser eigenes algorithmisches Konzept ein welches zu-
vor unabhängige Methoden vereinheitlicht. Außerdem präsentieren wir neue Ver-
fahren welche die Genauigkeit und Effizienz von PEPS Berechnungen verbessern,
und wir stellen die momentan besten PEPS Ergebnisse zur Grundzustandsapprox-
imation von Heisenberg und Quanten-Ising Hamiltonians auf endlichen Quadrat-
gittern der Größen 10 × 10 bis 21 × 21 zur Verfügung. Zweitens gehen wir der
Frage nach ob TNZ Konzepte für Dichtefunktionaltheorie (DFT) nützlich sein
könnten. Innerhalb von DFT wurden ausserordentlich erfolgreiche Verfahren zur
Analyse von realistischen Vielelektronproblemen wie, z. B., echten Molekülen oder
Festkörpern entwickelt. Jedoch gibt es kein allgemeines DFT Schema welches
eine Fehlerabschätzung für das Endergebnis einer DFT Berechnung oder einen
systematischen Weg dieses zu verbessern zur Verfügung stellt. Mit dem Ziel solch
einen sehr wünschenswerten DFT Algorithmus zu konstruieren, untersuchen wir
unterschiedliche, von TNZ motivierte Ansätze, identifizieren die notwendigen
Charakteristiken die unser Ansatz haben muss, und präsentieren erste vielver-
sprechende Ergebnisse für eindimensionale Fermi-Hubbard Hamiltonians als
auch Fermionen mit Coulomb-Wechselwirkung

Der zweite Teil dieser Arbeit handelt von der Quantensimulation von Quanten-
Vielteilchensystemen mittels ultrakalter Atome in optischen Gittern. Ein zu-
vorniedagewesenes Maß an Kontrolle über dieses System erlaubt heutigen Ex-
perimenten es in solcher Weise zu präparieren dass es durch einen Hub-
bard Hamiltonian beschrieben wird wessen Parameter mit hoher Genauigkeit
eingestellt werden können. Erstens betrachten wir die Realisierung des stark
wechselwirkenden Fermi-Hubbard Modells, d. h., des t− J Hamiltonians, dessen
Phasendiagramm noch kontrovers diskutiert wird und in den Mechanismus
Einsicht geben könnte welcher Hochtemperatur-supraleitenden Kupraten unter-
liegt. Eine besondere Herausforderung für die experimentelle Präparierung dieses
Hamiltonians ist die niedrige Entropie die zur Entstehung von magnetischer
Ordnung benötigt wird. Wir schlagen ein adiabatisches Protokoll vor, das von
einem Zustand aus startet, der experimentell mit niedriger Entropie erzeugt wer-
den kann. Unsere Berechnungen für ein- und zweidimensionale Systeme demon-
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strieren die Machbarkeit unseres Protokolls für vernünftige Systemgrößen und
Zeitskalen. Zweitens betrachten wir eine Realisierung des Bose-Hubbard Modells,
und wir untersuchen die Verschränkungseigenschaften zwischen den linken und
rechten Hälften endlicher eindimensionaler Systeme nachdem die lokale Teilchen-
zahl in einer Hälfte gemessen wurde. Wir beobachten dass Grundzustände und
thermische Zustände nur schwach verschränkt sind, und wir schlagen ein ex-
perimentell realisierbares Protokoll vor welches diese Menge an Verschränkung
um mehrere Größenordnungen erhöht und sich als robust gegen experimentelle
Ungenauigkeiten herausstellt.

Der dritte Teil dieser Arbeit beinhaltet einen zusätzlichen Algorithmus zur
klassischen Simulation. Wir zeigen dass das Fidelity-Maß zur Analyse von quan-
tenchaotischen Energiespektren verwendet werden kann.

Im Appendix stellen wir einen Algorithmus zur Diagonalisierung von kom-
plexen symmetrischen Matrizen vor, welcher besonders für die Berechnung aller
Eigenwerte und Eigenvektoren von dichten Matrizen geeignet ist. Obwohl diese
Arbeit nicht direkt mit dem Rest der Doktorarbeit zusammenhängt, wurde sie
während dieser Doktorarbeit fertiggestellt, und wir fügen sie der Vollständigkeit
halber ein.
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Chapter 0

Introduction

Programming is understanding.
- Kristen Nygaard

Quantum mechanics explains how the equations describing quantum systems
are written down but not how they are solved. For some problems exact analyti-
cal solutions exist, and then also problems in the vicinity of such problems might
be solvable by means of perturbation theory. However, many interesting quantum
systems can only be theoretically analyzed with the help of clever algorithms run-
ning on powerful technical devices.

Often quantum many-body systems fall into this category. Although classical
computers can, in principle, handle such systems exactly, the exact quantum me-
chanical description of a system comprising N constituents requires the storage of
a number of parameters that grows exponentially with N. Then any calculation
performed for such a system, as, e.g., the evaluation of an observable, requires the
execution of a number of operations that depends exponentially on N. As a conse-
quence, exact calculations with classical computers are limited to relatively small
system sizes N.

Much larger values of N can be treated by classical computers approximately,
thanks to smart algorithmic approaches. Prominent algorithms of that kind are
the quantum Monte Carlo method [1, 2], density functional theory [3, 4], and the
density matrix renormalization group [5]. Each of these algorithms approximates
a different aspect of the quantum many-body problem and, therefore, functions
particularly well for a specific class of systems, namely, for which that particular
aspect is not of crucial importance. Because these methods are already known for
some time, their strengths have been identified as well as their fundamental limi-
tations. The quantum Monte Carlo method is fundamentally hindered by the sign
problem, which shows up, e.g., for frustrated or fermionic systems. Density func-
tional theory does, typically, not provide an error estimate for a final result, which
then has to be checked with an experiment or with another numerical method. The
density matrix renormalization group is, in principle, limited to one-dimensional
systems with not too much entanglement.

In recent years, a new class of algorithms has been introduced that general-
izes the density matrix renormalization group to higher-dimensional systems with
more entanglement, can provide error estimates for their computations, and can
be applied to frustrated or fermionic systems. These new algorithms are based on
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a description of quantum many-body states as Tensor Network States (TNS). The
concept of TNS is very general and has led to significant algorithmic progress in
many different areas, ranging from the computation of higher-dimensional classi-
cal partition functions to the general simulation of ground, thermal, time evolved,
or higher-dimensional quantum systems, their variational optimization and eval-
uation, and their adaptation to, e.g., fermionic degrees of freedom [6–23]. First
results for problems like the Kagome Heisenberg model [24] or the t − J Hamil-
tonian on a two-dimensional square lattice [25, 26] compare well to the best re-
sults of longer existing and further developed alternative algorithms. These results
demonstrate the potential of TNS, and, thus, of classical simulations, to contribute
to the solution of truly outstanding problems in condensed matter theory.

Another technical device, different from a classical computer, for the simulation
of large quantum many-body systems, is a quantum simulator [27–29]. This is a
quantum system that can be very well controlled and that is described by a known
Hamiltonian whose parameters can be adjusted accurately. The idea is, that this
Hamiltonian shall also describe other interesting quantum many-body problems,
which are hard to solve by other means, and can then be investigated by analyz-
ing the properties of the quantum simulator. Numerous quantum simulators have
been realized and their potential for the simulation of interesting models rang-
ing from condensed matter to quantum field theory has been demonstrated. They
were based on different physical systems such as, e.g., photons, ultracold atoms in
optical lattices, arrays of trapped ions, quantum dots, or Josephson junctions, each
one having different advantages and disadvantages.

During the last years, an unprecedented degree of control has been achieved
over ultracold atoms in optical lattices [30–33]. This system is realized by loading
a cold gas of atoms into an optical lattice, i.e., a periodic potential resulting from
counter-propagating laser fields. Since the atom number as well as the lattice size
can, in principle, be increased easily without loss of coherence, an advantage of this
quantum simulator is its easy scalability. When the atoms are cold enough and the
lattice is deep enough, this system is described by a one-band Hubbard Hamilto-
nian [34]. That this regime can really be reached has been demonstrated by experi-
ments which successfully prepared quantum phases of both the Bose-Hubbard [35]
and the Fermi-Hubbard model [36, 37]. Nowadays, these models can be analyzed
experimentally with a remarkable resolution of single lattice sites [38, 39]. The
tremendous progress of this research field within few years and the many possi-
bilities of this quantum simulator to outperform current classical computers, e.g.,
by simulating higher-dimensional Fermi-Hubbard Hamiltonians [37] or long time
evolutions of quantum many-body systems [40], suggest that this technical device
might one day allow to understand quantum phenomena that are not accessible
by any other means.

In this thesis, we develop algorithms for classical computers, i.e., classical sim-
ulations, and for quantum simulators, i.e., quantum simulations. The major part
of this work is concerned with the quantum many-body problem, and presents
new approaches for classical simulations based on TNS and for quantum simula-
tions based on ultracold atoms in optical lattices. These two approaches are not
disconnected: The classical TNS tools turn out to be of fundamental utility for the
design and validation of quantum simulations. A minor part of this work contains
additional algorithmic proposals that are useful for classical simulations not nec-
essarily of many-body systems. We have therefore structured this thesis in three
parts: parts I and II for classical and quantum simulations of quantum many-body
systems respectively, and part III, and the appendix, for other classical simulations.
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Part I contains contributions to two different fields of TNS: to a specific subset
of TNS called Projected Entangled Pair States (PEPS), in chapters 1 and 2, and to
the use of TNS concepts in density functional theory (DFT), in chapter 3.

While PEPS have very promising properties for the description of strongly cor-
related quantum many-body systems, in general, their corresponding tensor net-
works can only be evaluated approximately and numerical calculations with them
are characterized by a high computational cost [41]. During the last years, many
PEPS algorithms have come out that propose different strategies for the evalu-
ation of PEPS tensor networks and are characterized by different computational
costs [22, 42, 43]. In chapter 1, after a brief introduction to PEPS, we analyze and
compare several of these proposals, and we find that those with low computational
cost, typically, also lead to low precision in the result of the PEPS computation. By
introducing our own algorithmic concept, we are able to unify previously inde-
pendent methods, and obtain a PEPS algorithm in which the desired precision can
be adjusted together with the computational cost. We have published this analy-
sis in reference [44]. Chapter 2 is based on the published article [45], in which we
study other numerical aspects of PEPS algorithms, present new procedures that in-
crease their precision and decrease their computational cost, and demonstrate the
validity of the PEPS ansatz for the ground state approximation of Heisenberg and
quantum Ising Hamiltonians on finite square lattices of sizes 10× 10 to 21× 21. Al-
though this chapter is relatively technical, the aspects we discuss are essential, and
can not be ignored by any implementation of PEPS that aims to obtain significant
results in a practical application.

Chapter 3 focuses on a novel application of TNS techniques to a field which
in principle does not seem connected to the more common cases of use of these
techniques, namely DFT. DFT is a general theory for the classical simulation of
quantum many-body systems that has proven extremely powerful for the study
of real many-electron systems. However, typical DFT algorithms provide neither
an error estimate for the final result nor a way of systematically improving it. This
holds, in particular, for the widely used DFT routines based on the local density ap-
proximation (LDA). The development of general extensions beyond the LDA, that
would allow error estimates or systematic improvements of general DFT results,
is a topic of intensive research [46–50] but has only obtained moderate success. In
chapter 3, we present first promising results for the construction of such a general
DFT algorithm with the help of TNS concepts.

Part II contributes to two different kinds of quantum simulations that can be
performed with ultracold atoms in optical lattices: of a t− J Hamiltonian resulting
from a strongly interacting Fermi-Hubbard system, in chapter 4, and of a Bose-
Hubbard Hamiltonian, in chapter 5.

The phase diagram of the t − J Hamiltonian on a two-dimensional square
lattice might contain the answer to a “holy grail” question of condensed matter
physics, namely, what the mechanism is that leads to high-temperature supercon-
ductivity in cuprates [51]. So far, all attempts, in particular also by classical com-
puters, of characterizing the relevant parts of this phase diagram have encoun-
tered serious obstacles and have not led to definite conclusions. The first successful
quantum simulation of this problem might, therefore, not only provide crucial in-
sight into an important physical phenomenon but would, furthermore, outperform
current classical simulations. Ultracold atoms in optical lattices are a very natural
choice for the construction of a quantum simulator to approach this problem, since
two species of sufficiently cold and strongly interacting fermions in a sufficiently
deep optical lattice are described by the t− J Hamiltonian. However, the key chal-
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lenge of current experiments is the low temperature, or entropy, required for the
emergence of order within the two species of fermions. In chapter 4, we focus on
a particular ground state of the t− J model, namely, the Heisenberg antiferromag-
net, and we propose its creation via an adiabatic protocol, starting from a state that
can be experimentally prepared with low entropy and then adiabatically raising
a second optical lattice. Our analysis of this protocol in one and two dimensions
concludes that emergence of the desired order can be expected for feasible system
sizes within feasible time scales, and is published in reference [52].

Chapter 5 discusses the entanglement properties of the Bose-Hubbard model
when the entangled entities are the spatial Fock states corresponding to the left
and right half of a finite optical lattice. The choice of these entangled entities has
the advantage, that, by experimentally raising the intermediate barrier between
the two lattice halves, two spatially separated quantum systems are obtained, that
each can be locally addressed, in the spirit of the Alice and Bob paradigm in quan-
tum information theory [53]. We furthermore demand that each entangled entity
has a fixed total particle number, i.e., we measure the total particle number of each
lattice half before we compute the entanglement between the two halves. Our re-
sults are published in reference [54], in which we show that ground and thermal
states feature only low amounts of entanglement that, however, can be increased
by several orders of magnitude when the lattice height is periodically modulated.
This analysis demonstrates a way of achieving a high degree of control over the
entanglement produced in an experimental setup.

Part III presents a different work, which departs from the common theme of
the previous chapters. It reflects, nevertheless, aspects that are of relevance for the
study of quantum systems: namely the characterization of quantum chaos, in chap-
ter 6. Since the procedures introduced in this chapter are mostly relevant for the
numerical understanding of quantum problems, we have included them under the
name of classical simulations.

For the identification of a quantum critical point, a fidelity measure defined
via the overlap of two nearby ground states has proven successful [55]. This can
be understood from the fact that a quantum critical point separates two different
quantum phases, i.e., ground states of a certain quantum mechanical Hamiltonian,
and, while the overlap between nearby ground states should be close to 1 within
a quantum phase, it should differ from 1 when a quantum phase transition takes
place in a thermodynamic system. In a finite system, a quantum critical point ap-
pears as an avoided crossing in the energy spectrum between the ground and the
first excited state, and one might ask the question wether a natural fidelity can
be defined to characterize such avoided crossings. In chapter 6, we propose such
a fidelity measure and lift its applicability to many eigenstates in the context of
quantum chaos. Our study is published in reference [56] and demonstrates, e.g.,
that energy level-spacing statistics, which are the basis of standard procedures for
the analysis of quantum chaos, can be obtained from our fidelity. However, while
the standard quantum chaos procedures require many energy levels in order to
make a clear statement about their statistics, our fidelity measure can equally be
applied to very few energy levels and can thus characterize quantum chaos also
only in a small part of the spectrum.

Finally, in the appendix, we include another work that can be useful for the
numerical analysis of quantum systems: on the diagonalization of complex sym-
metric matrices, in appendix A.

If a complex symmetric matrix A, i.e., with complex entries and the property
A = At, is diagonalizable, then it can be diagonalized by a complex orthogonal
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matrix Z, i.e., having the inverse Zt. Although this is a well-known fact, common
numerical libraries, such as LAPACK or Intel’s MKL, do not provide routines that
make use of this fact. In appendix A, we develop our own algorithm, that makes
use of complex orthogonality, and we observe a speedup factor 2 compared with
the best available LAPACK routine. This numerical analysis is carried out in the
context of PT -symmetric quantum mechanics where complex symmetric matrices
arise and is published in reference [57].
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Chapter 1

Unifying Projected Entangled
Pair State Contractions

Projected Entangled Pair States (PEPS) are a promising ansatz for the study
of strongly correlated quantum many-body systems in two dimensions. How-
ever, due to their high computational cost, developing and improving PEPS al-
gorithms is necessary to make the ansatz widely usable in practice. The approx-
imate contraction of a PEPS tensor network is a fundamental ingredient of any
PEPS algorithm, required for the optimization of the tensors in ground state
search or time evolution, as well as for the evaluation of expectation values. An
exact contraction is in general impossible, and the choice of the approximating
procedure determines the efficiency and accuracy of the algorithm. We analyze
different previous proposals for this approximation, and show that they can be
understood via the form of their environment, i.e. the operator that results from
contracting part of the network. This provides physical insight into the limi-
tation of various approaches, and allows us to introduce a new strategy, based
on the idea of clusters, that unifies previous methods. The resulting contrac-
tion algorithm interpolates naturally between the cheapest and most imprecise
and the most costly and most precise method. We benchmark the different algo-
rithms with finite PEPS, and show how the cluster strategy can be used for both
the tensor optimization and the calculation of expectation values. Additionally,
we discuss its applicability to the parallelization of PEPS and to infinite systems
(iPEPS). This chapter is published in reference [44].

1.1 Introduction

In the last years, Tensor Network States (TNS) have revealed as a very promising
choice for the numerical simulation of strongly correlated quantum many-body
systems. A sustained effort has led to significant conceptual and technical advance-
ment of these methods, e.g. [7–13, 15–17, 41, 42, 58–68].

In the case of one-dimensional systems, Matrix Product States (MPS) are the
variational class of TNS underlying the density matrix renormalization group
(DMRG) [69]. Insight gained from quantum information theory has allowed the
understanding of DMRG’s enormous success at approximating ground states of
spin chains, and the extension of the technique to dynamical problems [7–10,12,58]
and lattices of more complex geometry [11, 15, 16, 59].
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Projected Entangled Pair States (PEPS) [11] constitute a family of TNS that
naturally generalizes MPS to spatial dimensions larger than one and arbitrary
lattice geometry. As MPS, PEPS incorporate the area law by construction, what
makes them a very promising variational ansatz for strongly correlated systems
which might not be tractable by other means, e.g. frustrated or fermionic states
where quantum Monte Carlo methods suffer from the sign problem. Although
originally defined for spin systems, PEPS have been subsequently formulated for
fermions [18–20, 22], and their potential in the numerical simulation of fermionic
phases has been demonstrated [21–23, 25]. First PEPS results for such problems
in condensed matter as the t− J model or the Kagome antiferromagnet compare
well to the best currently known results achieved by other means [24–26]. But in
contrast to MPS, even local expectation values cannot be computed exactly in the
case of PEPS. This is because the exact evaluation of the TN that represents the ob-
servables has an exponential cost in the system size. The same difficulty affects the
contraction of the TN that surrounds a given tensor, the so-called environment, re-
quired for the local update operations in the course of optimization algorithms. It
is nevertheless possible to perform an approximate TN contraction with controlled
error, albeit involving a much higher computational cost than in the case of MPS.
This limits the feasible PEPS simulations to relatively small tensor dimensions.

Lately, several algorithmic proposals have come out [42, 43, 70, 71] that make
larger tensors accessible by using new approximations in the PEPS contraction.
Although these approaches allow the manipulation of a larger set of PEPS, their
assumptions have an impact on the accuracy of the ground state approximation,
and this accuracy is not always directly related to the maximum bond dimension
the algorithm can accommodate. It is nevertheless possible to analyze the various
approximations from the unifying point of view of how they treat the environment
contraction, which in turn has a physical meaning. This allows us to understand
how a given strategy may attain only a limited precision approximation to the
ground state, even when its computational cost allows for large bond dimensions.

Contraction strategies proposed in the literature include the original PEPS
method [11], the simple update [42],1 and the single-layer [43] algorithm. In this
chapter we investigate these algorithms from the unifying perspective introduced
above, and present a new contraction scheme that naturally interpolates between
the cheapest and most imprecise method and the most expensive and precise one.
We illustrate our findings with finite-size PEPS with open boundary conditions. A
finite PEPS, in which each tensor contributes independent variational parameters,
is less biased than its infinite counterpart iPEPS [17], in which a unit cell of varia-
tional tensors is replicated infinitely often and the form of that unit cell can have
an effect on the observed order. However, all our results apply also to iPEPS, and,
as we will argue, provide the basis for a new promising approach in that context.

1.1.1 Reader’s Guide

This chapter is structured as follows. In section 1.2 we briefly introduce the ba-
sic PEPS concepts and original algorithms. Section 1.3 reviews the simple update
method introduced in [42], and analyzes its performance with finite PEPS. We find
that the resulting ground state energies can be less accurate than those of the orig-
inal algorithm when the environment form assumed in the method is far from the

1In the original proposal [42] the simple update does not denote a contraction strategy but a ten-
sor update procedure for imaginary time evolution. However, the environment used in this update
corresponds also to a certain contraction method, as we will show later.
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true one. The single-layer algorithm proposed in [43] can be seen as a first, concep-
tual generalization of the simple update, and we investigate it in section 1.4. We
show that the error introduced by this method exhibits a strong system size depen-
dence, in contrast to the original algorithm. With the gained insight, in section 1.5
we formulate and investigate a new strategy for the environment approximation
based on the idea of clusters, that is applicable to both the tensor update and the
computation of expectation values. Furthermore, we discuss how this cluster strat-
egy is also beneficial to the parallelization of PEPS as well as to the infinite case,
i.e. iPEPS. Finally in section 1.6 we briefly summarize our results.

1.2 PEPS: Basic Concepts and Algorithms

We consider a system of N quantum particles with Hilbert spaces of dimensions dl ,
for l = 1, . . . , N, spanned by individual bases {|sl〉}, with sl = 1, . . . , dl . Projected
Entangled Pair States (PEPS) [11] are states for which the coefficients in the product
basis are given by the contraction of a tensor network,

|ψPEPS〉 := ∑
s1,s2,...,sN

F (As1
1 As2

2 . . . AsN
N )|s1s2 . . . sN〉 ,

with one tensor Al per physical site. The tensors Al are arranged in a certain lattice
geometry and connected to neighboring sites by shared indices, such that the coor-
dination number, c, of a certain lattice site coincides with the number of connecting
indices. The latter are called virtual, and apart from them, each tensor Al possesses
one physical index sl , standing for the physical degree of freedom of the quantum
particle on lattice site l. The function F represents the contraction of all virtual in-
dices. Each of them ranges up to the parameter D which is named bond dimension.
D determines the number of variational parameters of each tensor, namely dDc.2

The bond dimension sets an upper bound to the entanglement entropy of the state,
in fulfillment of the area law. In particular, if we consider a subsystem delimited
by a regular shape of side length `, the entropy of its reduced density matrix, ρ`,
is upper-bounded by S(ρ`)max ∝ `dim−1 log(D), where dim denotes the system’s
dimensionality.

In one dimension, PEPS are called Matrix Product States (MPS). For periodic
boundary conditions, every MPS tensor has two virtual indices and is thus, for
fixed physical index, a matrix of dimension D × D. In that case, the function F
becomes a trace over a product of matrices. For open boundary conditions, almost
all MPS tensors have two virtual indices, only the two boundary tensors have just
one virtual index. In that case, the boundary tensors, for fixed physical index, are
vectors and the function F is not needed. The MPS family constitutes a very good
approximation to thermal states of local Hamiltonians as well as to ground states
of gapped local Hamiltonians in one dimension [72, 73]. The computational cost
of MPS algorithms, including ground state search and time evolution, scales as
O(ND3), for systems with open boundary conditions. The one-dimensional TN
structure of the ansatz allows its exact contraction and therefore, e.g., the exact
computation of (local) expectation values and the norm. All these aspects make
MPS a very powerful tool for the analysis of one-dimensional quantum many-
body problems, and we refer the interested reader to the review articles [41,74–76]
for more details on MPS algorithms and applications.

2In the case of open boundary conditions the tensors on the boundaries have fewer virtual indices
and variational parameters.
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Figure 1.1: (a) A 4× 4 PEPS |ψPEPS〉 := ∑s1,s2,...,s16
F (As1

1 As2
2 . . . As16

16 )|s1s2 . . . s16〉
on a square lattice. (b) A tensor from the interior with four virtual indices α1 to α4.
The function F performs the contraction of the tensor network by summing over
connected virtual indices.

In any dimension, the PEPS family is known to represent a very good approx-
imation for thermal states of local Hamiltonians and it is believed to represent
a very good approximation for ground states of gapped local Hamiltonians [77].
The computational cost of higher-dimensional PEPS algorithms is larger than for
MPS and depends strongly on the considered algorithm as well as the considered
geometry. Throughout this chapter, we consider PEPS on two-dimensional square
lattices of size N = L× L with side length L and open boundary conditions. An
example is shown in figure 1.1.

For general PEPS, the computation of an expectation value or even the norm
is known to be hard [78], like the evaluation of a two-dimensional classical par-
tition function [6]. Hence only an approximate contraction is possible for already
moderate lattice sizes. The originally proposed algorithm [11, 41] approximates
the two-dimensional TN of an expectation value 〈ψ|Ô|ψ〉 or the norm 〈ψ|ψ〉 by
means of a succession of one-dimensional MPS contractions, as sketched in fig-
ure 1.2 (a) for the norm. The procedure starts by identifying two opposite sides of
the TN, e.g. the upper- and bottommost rows, with MPS, and each of the inter-
mediate rows with a Matrix Product Operator (MPO) [79]. Beginning from one of
the edges, the contraction of the last row with the immediately neighboring one
is then a MPS-MPO product, which can be optimally approximated by a MPS of
fixed bond dimension, D′. By repeating the procedure from both opposite sides,
successive MPS-MPO approximations lead to a representation of both halves of
the TN by MPS. Finally the row in the center is contracted between both MPS to
give the approximate expectation value or norm.

At each point of this procedure, the obtained MPS approximates the boundary
between the contracted part of the network and the rest. This MPS can be inter-
preted as an operator that maps the virtual indices of the ket boundary to the bra
and thus we will refer to it as the boundary MPO, shown in figure 1.2 (b).3 The ap-
proximate contraction of the norm has the leading cost O(D4D′3) +O(dD6D′2),
and thus both cost and error are determined solely by the bond dimension D′ of
the boundary MPO. Although in principle D′ could scale exponentially with the
number of rows, in practice it typically scales as D′ ∝ D2 independent of the sys-
tem size, such that the original contraction [11,41] has the total computational cost
O(D10).

For certain problems, this observed mild scaling can be given a more rigor-
ous ground. Indeed, the boundary MPO can be interpreted as the thermal state
of a Hamiltonian defined on the virtual degrees of freedom of the boundary. This

3If the contraction was exact, this boundary MPO would always be positive in the case of the norm
computation, due to the bra-ket structure of all the rows involved, but this positive character is in
general lost in the truncation.
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Figure 1.2: Original contraction [11,41] of the norm 〈ψ|ψ〉. (a) The TN correspond-
ing to 〈ψ|ψ〉 results from figure 1.1 (a) as ket and as bra and contraction over the
physical indices (left). The hard computation of this two-dimensional PEPS TN
is approximated by an efficiently contractible one-dimensional MPS expectation
value (right). (b) This is done by successively approximating the action of a bulk
row of the PEPS TN, of bond dimension D, on a boundary MPO, of bond dimen-
sion D′, (left) by a new boundary MPO (right). The latter can be determined with
computational cost O(D4D′3) +O(dD6D′2).

boundary Hamiltonian is obtained by identifying its excitation spectrum with the
entanglement spectrum of the state [80]. Such a construction is very natural in
the framework of PEPS and establishes a holographic principle [81]. While PEPS
are expected to represent the low energy sector of local Hamiltonians well, it has
not been proven when expectation values can be computed efficiently with them.
However, if the boundary Hamiltonian is local, as evidence suggests for gapped
models [81], the corresponding thermal state will be efficiently approximated by a
MPO [77].

In the following, we obtain the PEPS approximation to the ground state of a cer-
tain Hamiltonian by means of imaginary time evolution. It is based on the idea that
e−tĤ |ψ0〉 converges to the ground state of H exponentially fast with t, as long as
the ground state is not degenerate and has non-vanishing overlap with the initial
state, |ψ0〉. In the context of TNS [8], the initial state is chosen within the appro-
priate TNS family, and a Suzuki-Trotter decomposition of the evolution operator
U(t) = e−tĤ = (e−τĤ)n is applied to local Hamiltonians, such that each step of
the evolution, τ = t/n, is approximated by a product of local Trotter gates. The re-
sulting state after each gate or set of gates, is again approximated by an adequate
TNS. In particular, the action of a certain operator Ô on a PEPS |φ〉 can be approxi-
mated by a new PEPS |ψ〉 by minimizing the cost function d(|ψ〉) = |||ψ〉− Ô|φ〉||2.
We perform this minimization for each gate via an alternating least squares (ALS)
scheme, optimizing one tensor at a time while the others are fixed, and sweeping
only over the tensors on which the Trotter gate acts. The optimal tensor at position
l is the solution of a system of linear equations Nl ~Al =~bl , where the norm matrix
Nl is defined from the tensor network 〈ψ|ψ〉 by leaving out the tensor Al in the ket
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Figure 1.3: (a) A 4× 4 PEPS |ψPEPS,SU〉 := ∑s1,s2,...,s16
F (Γs1

1 λ1 . . . Γs16
16 )|s1s2 . . . s16〉

of the simple update (SU) form, composed of Γ tensors and λ matrices. (b) Assum-
ing nearest-neighbor Trotter gates, the 6 λ matrices surrounding a tensor pair ΓA
and ΓB are sufficient for the update of this pair and its λAB.

and A∗l in the bra, and the vector ~bl results from the tensor network 〈ψ|Ô|φ〉 by
removing A∗l from the bra.

The environment of a tensor at site l is the open TN that results when this tensor
and its adjoint are removed from the norm of the state. Contracting the environ-
ment is necessary to evaluate Nl and bl , which determine the local equation for Al .
Such contraction can only be carried out approximately, and the approximation
strategy is decisive both for the accuracy and for the computational cost of the al-
gorithm.4 Because we process the Trotter gates one after another and modify only
the tensors on which the gate directly acts, in the following we focus on the con-
traction of the norm TN around a Trotter gate. The importance of the environment
approximation has been recognized also in other works, e.g. [82], or in the differ-
ent context of tensor renormalization group algorithms [67] where a more precise
environment representation lead to significant improvements [68].

1.3 Simple Update

The simple update method (SU) [42] directly generalizes the one-dimensional
TEBD [7–10, 14] and proposes for the PEPS tensors the decomposition

|ψPEPS,SU〉 := ∑
s1,s2,...,sN

F (Γs1
1 λ1Γs2

2 λ2 . . . ΓsN
N )|s1s2 . . . sN〉 ,

formally analogous to the canonical form for MPS [7], where the Γl are tensors with
the same dimensions as the original Al , and the λl are D × D diagonal and posi-
tive matrices, see figure 1.3. Although in the case of PEPS, the λ matrices do not
have the clear meaning of their one-dimensional counterparts, the SU has proven
a successful strategy in the context of iPEPS, starting with [42]. This success can
be attributed, on the one hand, to the low computational cost of the tensor up-
date, which is why large values of D can be reached easily. Indeed, the SU rule
requires only the λ matrices that are closest to a tensor pair and as a consequence
has the computational costO(D5). On the other hand, all parts of the algorithm are
well-conditioned. These positive aspects arise at the expense of an oversimplified
representation of the environment as separable and local, that, in general, can only
be a rough approximation of the true environment.

In order to illustrate its performance, we employ the SU to find ground states

4In general, also the tensor update operations contribute to the final cost. If we restrict the variational
parameters to the reduced tensor [22, 70], the linear equations can be solved with O(D6) operations.
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Figure 1.4: Relative energy error εE := |E(D) − E0|/|E0| of the SU, E(D), with
regard to the exact ground state energy, E0. We consider the Ising model (thin lines)
on a 4× 4 lattice with B = 1.0 (solid), 2.0 (dotted), 3.0 (dash-dotted), 4.0 (dashed),
and the Heisenberg model (thick lines) on a 4 × 4 (dashed) and 10 × 10 (solid)
lattice.

of the quantum Ising Hamiltonian with transverse field

Ĥ = − ∑
〈l,m〉

σz
l ⊗ σz

m − B ∑
l

σx
l (1.1)

and of the Heisenberg model

Ĥ = ∑
〈l,m〉

~Sl · ~Sm , (1.2)

where 〈l, m〉 denotes pairs of neighboring sites l and m. In the context of finite
PEPS considered here, to the best of our knowledge, the SU had not been yet used.
We determine the ground state of a particular problem by evolving an initial state
long enough in imaginary time and successively decreasing the time step τ until
convergence.

Figure 1.4 compares SU results to exact ground state energies. The scheme per-
forms remarkably well for the Ising model at B = 1.0, 3.0, and 4.0, where the
relative energy error is below 10−5 already with D = 3. But at B = 2.0 and for
the Heisenberg Hamiltonian, we observe that the energy does not improve sig-
nificantly beyond a certain value of the bond dimension, and remains far from the
exact value. We identify this as a limitation, not of the ansatz, but of the update pro-
cedure, since the original PEPS algorithm [11] achieves for the Heisenberg model
on a 4× 4 lattice with D = 3 already lower energy than any of the SU values from
the figure, and with D = 4 it attains an energy per site −0.5739 already very close
to the exact value −0.5743. Although we observed that the SU result can depend
on the initial state, in particular for the larger bond dimensions,5 this dependence

5This became evident by running the algorithm with various values of D separately, each run start-
ing from a product state in which the tensors’ zeroes were replaced by random numbers from the
interval [−0.01, 0.01]. In this setting we observed that the SU can lead to a final D = 8 energy above the
D = 7 value.
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Figure 1.5: SL contraction of the norm 〈ψ|ψ〉. As explained in the text, the approx-
imation of figure 1.2 is achieved by means of operations in the ket alone.

appeared not so strongly when we increased the bond dimension successively dur-
ing imaginary time evolution.

1.4 Single-Layer

The single-layer (SL) algorithm for the computation of the norm 〈ψ|ψ〉 was pre-
sented in [43]. This method takes into account the bra-ket structure of the norm
TN, and maintains it and hence the positive character of the environment while
the contraction of the network progresses from one edge. To achieve this struc-
ture, the approximate contraction proceeds by successive MPO-MPS operations,
like the original algorithm, but this time performed on a single layer of the norm
TN. Then the boundary, i.e. the already contracted part of the network, is always
approximated by a purification MPO [12], namely the result of tracing out a part
of the physical indices at every site of a MPS. This MPS is assumed to have some
maximum bond dimension, D′′, and physical dimension D × d′, where d′ is the
dimension of the traced out degrees of freedom, what we call purification bond. In
this way, the local and separable environment defined by the λ matrices in the SU
is generalized by means of purification MPS that can better capture non-local and
non-separable boundary correlations. Moreover, the boundary purification MPO is
always a positive operator, and it allows to devise a stable tensor update procedure
for imaginary time evolution [43].

The SL operations take place in the two steps shown in figure 1.5. First, the ket
part of a PEPS row is applied as a MPO to the MPS of the boundary purification.
The result is truncated to a MPS with bond dimension D′′ and increased purifica-
tion bond, dd′. Then the purification bond is reduced from dd′ to d′, by imposing
the canonical form [7] and projecting the reduced density matrix of each site onto
the space spanned by its d′ largest eigenvectors. The computational cost of the
first step, which proceeds via the standard ALS scheme, scales as O(dd′D4D′′2) +
O(dd′D2D′′3), while the leading cost of the second step is O(d2d′2DD′′2), negligi-
ble only when d′ is small. Because the purification bond satisfies d′ ≤ DD′′2, the
maximum cost can at most grow as O(dD5D′′4) +O(dD3D′′6) when d′ takes on
its largest possible value. In [43, 71] it was proposed to set d′ = D = D′′, in which
case the number of operations scales only like O(D7), and a clear computational
gain compared to the original contraction can be expected.

In order to analyze the performance of the SL procedure, we study the accuracy
of the norm contraction,N ≡ 〈ψ|ψ〉, as a function of the truncation parameters, D′′

and d′, for a set of different PEPS, and compare the results to those of the original
algorithm. In particular, we consider D = 2− 4 PEPS ground state approximations
from the SU for the Ising model (1.1) with transverse fields B = 1.0, 2.0, 3.0, and
4.0, on lattices with side lengths L = 11 and 21. In all cases, the exact norm was
estimated by means of the original contraction [11, 41] with bond dimension D′ =
100, large enough to make the error negligible.

In the case of the original algorithm, the relative error always decreases expo-
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Figure 1.6: Relative norm error εN in the SL contraction of a D = 2 SU ground
state approximation of the Ising model with B = 3.0 on a 11 × 11 (inset) and
21× 21 (main) lattice. We consider d′ = 2 (dotted), d′ = 4 (dash-dotted), d′ = 8
(dashed), and the maximum possible d′ = DD′′2 (solid). We defined εN :=
|N (D′′) − Nre f |/|Nre f | where the reference value Nre f was computed with the
original contraction using D′ = 100.

nentially with the bond dimension of the general boundary MPO, D′. Moreover,
for a fixed bond dimension of the PEPS, D, this error shows no system size de-
pendence. In the SL algorithm, for fixed purification bond d′, the contraction error
converges quickly as function of D′′ to a final value that is entirely determined
by d′. Even when that purification bond dimension takes on its maximum value,
d′ = DD′′2, this error lies many orders of magnitude above the one from the orig-
inal contraction [11, 41] with the same D′ = D′′. It is worth noticing that for large
D′ = D′′ � D the computational cost of the original method is actually lower than
the one of the SL algorithm with maximum d′ = DD′′2.

The differences between the original and the SL contraction become even more
apparent when the lattice size is increased to N = 21× 21, because the SL algo-
rithm depends strongly on the system size as can be gathered from Fig. 1.6. In that
case, given d′ = DD′′2 and D′′ = 10, the norm error grows from εN ≈ 0.007 in the
11× 11 to εN ≈ 0.1 in the 21× 21 lattice, in marked contrast to εN ≈ 10−11 in the
original contraction with D′ = 10 obtained for both lattice sizes. And we observe a
similar scaling for PEPS with larger bond dimensions. For instance, the SL value to
D = 4, d′ = 8, and D′′ = 10 grows from εN ≈ 0.06 in the 11× 11 to εN ≈ 0.6 in the
21× 21 lattice, which has to be compared to εN ≈ 10−5 in the original contraction
with D′ = 10 achieved for both lattice sizes.

From this analysis we conclude that the choice d′ = D = D′′, which ensures
the advantageous computational cost O(D7), is in general too restrictive in order
to get a comparable precision to that of the original algorithm. Moreover, because
the required values of the parameters d′ and D′′ for a certain contraction precision
depend strongly on the system size, one cannot make a general statement about the
cost scaling of the SL algorithm. This is different from the situation in the original
algorithm, where the parameter D′ controlling the cost can typically be chosen as
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D′ ∝ D2 with a prefactor that seems not to depend on the system size but only on
the state.

The environment approximation in the SL scheme, despite being positive, does
not correspond to the most general boundary purification, a fact that provides
some insight into the limitations of the method. The purification of a mixed state is
only defined up to an isometry on the traced-out degrees of freedom. But the opti-
mization in the SL algorithm does merely allow for local isometries, i.e. for tensor
products of isometries each acting on a single site of the boundary only. It is possi-
ble to devise an ALS algorithm that searches the optimal general boundary purifi-
cation, at the expense of a cost function for each site which is no longer quadratic
but quartic in the local tensor variables. The minimum of such a cost function is
no longer the solution of linear but of nonlinear equations, which are numerically
much more demanding than the simple QR decomposition that gives the optimal
general boundary MPO in the original algorithm. Therefore such a strategy may
result in an undesirable slowing down of the algorithm. Notice also that, while
a given purification can always be written efficiently as a positive MPO, namely
via contraction of the tensors at each site over their purification bond, the reverse
statement is not true, since there exist positive MPO that cannot be written effi-
ciently as purifications [83]. We conclude that, for the problems considered here, it
is more advisable to work with a general boundary MPO upon which positivity is
not explicitly imposed,6 and based on it formulate contraction algorithms where
cost and precision grow simultaneously, as we shall do in the following section.

1.5 Clusters

The most precise environment approximation is achieved by the original algo-
rithm, in the form of a MPO with sufficiently large bond dimension D′. On the
opposite extreme of the spectrum, the lowest computational cost corresponds to
the SU, where the environment is represented by a tensor product of matrices each
acting on a single virtual bond only. Here, we aim at a contraction scheme that al-
lows to systematically tune the environment precision together with the cost and
that interpolates between the SU and the original algorithm.

This goal is achieved with the help of clusters. In a state with short-range cor-
relations, we expect that the major contribution to the environment of a given
tensor comes from the closest sites. If such sites are not correlated with further
ones, or among themselves, the environment will actually be a product, similar to
the SU approximation. Correlations in the state cause the environment to be non-
separable in general, and to incorporate relevant contributions from faraway sites.
Hence, by progressively taking into account the contribution of sites at longer dis-
tances, we would improve the environment description.

In our PEPS algorithm, we are interested in the environment of a row (respec-
tively column), which is required for the update of all the tensors in it. We therefore
define a cluster of size δ around a certain row as all the surrounding rows which
are separated from it by a distance smaller or equal to δ, and similarly for columns.
The environment contribution from sites outside the cluster can be roughly ap-
proximated by a product in the spirit of the SU, while the contribution from sites
inside the cluster is taken into account with more precision, as in the original algo-

6Although, when D′ is chosen too small, the negative eigenvalues of the environment can lead to
instabilities in the tensor update, when D′ is large enough, the tensor update is stable and then more
accurate.
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Figure 1.7: Separable Environment with D′ = 1.

Figure 1.8: Tensor contractions during the ALS sweeping in the computation of the
environment for CU0. For each local update, the norm matrix (left) is the identity
times a positive constant, such that the solution is simply proportional to bl (right),
which is given by a positive TN if each of the local tensors is positive.

rithm. This defines a new contraction scheme that we call cluster update in analogy
to [71], and that we abbreviate as CUδ for cluster size δ. The limiting cases of this
strategy are δ = L − 1, when the environment reverts to the one of the original
algorithm, and δ = 0, which is closely related to the SU.

1.5.1 Cluster Size δ = 0: A Generalized Simple Update

The particular case δ = 0 (CU0) leads to the environment approximation of a cer-
tain row, or column, as a product MPO, illustrated in figure 1.7. This can be found
by optimizing the boundary MPO with D′ = 1, where the standard MPO-MPS
ALS scheme can now yield a positive MPO. Indeed, if each of the local tensors
of the MPO is positive, this positivity is maintained during the update procedure,
since for each local optimization the norm matrix in Nl ~Al = ~bl is proportional to
the identity, and the TN to bl is positive, as explained in figure 1.8. Starting the
ALS sweeping from an initial positive MPO, which can be trivially constructed
from positive local tensors (e.g. of the form X†X with random X), ensures then a
positive environment. Moreover, all contractions can be performed with O(dD5)
operations, so that the computation of the optimal separable environment does not
exceed the leading cost of the SU.

Imaginary time evolution based on a positive separable boundary MPO leads
to an algorithm which is very similar to the SU. Both schemes are characterized by
the same computational cost,7 and make use of a separable environment, but the
CU0 method proposed here optimizes the approximate boundary over all possible
separable MPO, and hence can be interpreted as a generalized simple update.

In order to elucidate the connection between both algorithms, we study how
imaginary time evolution with CU0 changes PEPS ground state approximations
from the SU for the Ising model (1.1) with various magnetic fields. In our quan-
titative comparison we consider a specific virtual bond between two neighboring
sites in the center of the lattice, and focus on the corresponding λ matrix gener-
ated by the SU after convergence, λSU. The diagonal of that matrix can directly

7Just like the environment approximation, the tensor update in a separable environment can be
performed with O(D5) operations.
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B = 1.0 B = 2.0 B = 3.0 B = 4.0
λSU

2 0.006007 0.026032 0.078572 0.071486
λCU0

2 0.006022 0.026252 0.078953 0.071210
ΣCU0

2 (i) 0.006008 0.026049 0.078399 0.071216
ΣCU0

2 (ii) 0.006008 0.026048 0.078421 0.071216
ΣCU0

2 (iii) 0.005784 0.025236 0.077678 0.071391
ΣCU0

2 (iv) 0.005784 0.025237 0.077828 0.071391
ΣCU0

2 (v) 0.005567 0.024434 0.076890 0.071566
ΣCU0

2 (vi) 0.005567 0.024434 0.077094 0.071566

Table 1.1: We apply the SU with D = 2 to a 11× 11 Ising model with different mag-
netic fields B. All λ matrices have converged to machine precision and we report
the final second entry λSU

2 on the vertical virtual bond at row 5 and column 6. The
resulting PEPS is further evolved with the CU0 until convergence. We show the
second singular value λCU0

2 emerging in the tensor update on the considered bond
and the second eigenvalue ΣCU0

2 of the boundary MPO matrix at that place when-
ever it enters a tensor update. This happens on the six different positions relative
to a tensor pair defined in the figure on the right, during the approximation of the
four sets of Trotter gates in one time evolution step. We adopt the normalization in
which each first λ entry, singular value and eigenvalue is always 1.

be compared to the converged singular values emerging in the CU0 every time a
gate is applied to this particular pair of sites, λCU0 . As shown in table 1.1 for a
11× 11 PEPS with D = 2, the relative difference between the entries of these two
λ matrices is below ≈ 10−2.

We can analyze the similarities between both algorithms in more detail by look-
ing at the role of the λ matrices in the environment for the update operations. In the
SU, the entries in λSU are determined after applying one gate to the relevant pair
of tensors, but (in the here considered case of nearest neighbor interactions) they
are not affected by gates which involve only one member of the pair. For the latter
tensor updates, the λSU matrix enters the environment unchanged, even after the
Γ tensors of the pair have been modified. In contrast, in the CU, the environment
for a given update operation depends on the surrounding tensors, and changes
every time they are updated. In the case of CU0, a similar role to that of λSU is
played by the eigenvalues of the local tensor in the boundary MPO at the site cor-
responding to this particular virtual bond, ΣCU0 . For nearest neighbor interactions
and the bond we are considering, there are six Trotter gates in each time step (see
the figure in table 1.1) that involve only one of the tensors of the pair. The ΣCU0

entries change only slightly, ≈ 10−2, for each such tensor update, as can be appre-
ciated in table 1.1. And their difference to the corresponding λSU is of the same
order. Additionally, we computed the separable boundary MPO for the SU PEPS
and compared the eigenvalues of the local tensors to the corresponding ΣCU0 , to
find a similar agreement. We observed the same behavior in larger lattices, with
larger bond dimensions, as well as on different virtual bonds.

Our observations provide an explanation for the functioning of the SU: because
the latter scheme applies the same λSU matrix to the tensor updates of all four sets
of Trotter gates, this λSU can be seen as a mean value for the six ΣCU0 from the
optimal positive separable environment, and the SU indeed converges it to that
mean value.
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Figure 1.9: Environment for the CU1 of a middle row. (a) Outside the cluster, the
approximate contraction of the TN is performed via a positive separable boundary
MPO. (b) The contraction continues inside the cluster via a general boundary MPO
with bond dimension D′.

The CU with δ = 0 always uses the best separable environment in each tensor
update, and therefore depends less on the initial state and can produce energies
slightly below the ones from the SU. However, the final energies of both methods
are very close to each other (compare figures 1.4 and 1.10).

Although the SU is an algorithm completely formulated in the SL, our study in
the double layer picture provided crucial insight into it, thus reinforcing the idea
that the boundary should be described as a general MPO.

1.5.2 From Simple to Full Update

By considering clusters of size δ ≥ 1 we can systematically take into account more
of the correlations in the environment approximation. Outside the cluster, the en-
vironment is represented by a separable MPO and determined as in the CU0 de-
scribed above. Then the cluster tensors are contracted row by row with this bound-
ary, as in the original algorithm, to produce a new boundary MPO with larger
bond dimension. The approximation is controlled by the cluster size and the bond
dimension D′ used in the contractions within the cluster.

Figure 1.9 shows the smallest non trivial cluster, for CU1, in which only the
two rows adjacent to the one to be updated enter the cluster contraction. In this
case, the optimal boundary MPO with bond dimension D′ for the update of a row
is computed from the action of a bulk row on a separable boundary MPO with
O(dD5D′2) operations. This is the dominant cost in the environment approxima-
tion of CU1, given the fact that the separable MPO outside the cluster is obtained
with only O(dD5) operations. Hence, the environment approximation for clus-
ters of size δ = 1 is computationally cheaper than the full contraction with cost
O(D4D′3) +O(dD6D′2).



22 Unifying PEPS Contractions

To examine the usefulness of this cluster strategy, we compare its performance
to that of the SU via their ground state accuracies for the Heisenberg model (1.2).
Starting from converged SU PEPS, we ran the CU imaginary time evolution with
several cluster sizes for various bond dimensions D and D′ on 4× 4 and 10× 10
lattices. Figure 1.10 contains our cluster results for δ = 0, 1, and L− 1, as function
of D, such that they can be compared directly to the SU results of figure 1.4. The
convergence of the CU with cluster size δ as well as with bond dimension D′ can
be gathered from figure 1.11 for 10× 10 PEPS with D = 2 and 4. We refer to the CU
with maximum cluster size δ = L− 1 as full update (FU), a notion taken from iPEPS
(see e.g. [22]). The FU is not identical to the original PEPS algorithm [11], because
in the CU the action of single Trotter gates is approximated sequentially, such that
for each gate the only tensors updated are those on which the gate directly acts.
Thanks to this procedure, the FU requires just the approximate contraction of the
norm TN, and is therefore computationally less demanding than the original algo-
rithm, in which, additionally, the PEPS TN with a full set of Trotter gates acting on
all the state has to be contracted.

We find that the CU0 produces very similar energies as the SU, with slight im-
provement for small systems or for large bond dimensions. The difference between
both methods is most apparent in case of the smaller 4× 4 lattice where the CU0
gives lower energies for bond dimensions D ≥ 4. This can be understood tak-
ing into account that the effect of the system boundary, better captured by the
environment approximation in CU0, is more important for smaller systems. We
observe then that the CU1 improves the SU energies considerably. Finally, the FU
reduces the energy further significantly when D ≥ 4, and its effect appears more
pronounced with increasing bond dimension D. For D = 2 and 3, the FU improves
upon the CU1 only in case of the smaller 4× 4 system. Notice that the tables 1.2-1.7
contain the precise energy values that were used in this analysis.

From the arguments above it is apparent that a better representation of the
environment is crucial for an improved PEPS approximation of the true ground
state. We also infer that larger bond dimensions D require more precise environ-
ment representations in the tensor update. Within the CU, this improvement can
be achieved systematically by gradually increasing, firstly, the cluster size δ and,
secondly, for each fixed δ, the boundary bond dimension D′. Indeed, we can see
in figure 1.11 for each fixed cluster size that with growing D′ the energy decreases
consistently, as the precision of the environment representation in the tensor up-
date increases. The energy converges at a certain value D′max that depends both
on the bond dimension D of the considered PEPS and on the cluster size. While
for D = 2 the lowest energy is already attained with CU1, for D = 4 the energy
improves when larger clusters are used and the FU value is obtained with CU4.

This behavior agrees with our previous observation that larger bond dimen-
sions benefit more from accurate environment representations. We can gain fur-
ther insight into this feature by looking at the convergence of a boundary MPO as
function of D′ for different cluster sizes. In figure 1.12 the environment MPO for
the leftmost column, computed with different cluster sizes, is compared to the full
contraction of the L− 1 right columns with large enough D′, for PEPS with bond
dimensions D = 2 and 4 on a 20× 20 lattice. We find that for each cluster size δ
there exists a maximum value of D′ beyond which the distance to the reference
boundary MPO does not decrease anymore, and that this value is smaller than the
largest possible D′ = D2δ. Considering a sufficiently large fixed D′, the distance
drops exponentially with increasing cluster size until the value of the full contrac-
tion is reached. Beyond this, larger clusters have no effect. Finally, we can directly
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Figure 1.10: Relative energy error εE as in figure 1.4 for a 4× 4 (a) and 10× 10 (b)
Heisenberg model. We consider the CU0 (dotted), the CU1 with D′ = D2 (dash-
dotted), and the FU with D′ = D2 (dashed), D′ = 2D2 (solid), and D′ = 130
(cross).
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Figure 1.11: Relative energy error εE as in figure 1.4 for a 10 × 10 Heisenberg
model, obtained with various fixed values of the bond dimension D′ of the bound-
ary MPO. We propagated D = 2 (upper thin lines) and D = 4 (lower thick lines)
PEPS with the CU with cluster size δ = 1 (dotted), 2 (dash-dotted), 3 (dashed), and
with the FU (solid).

see that, in order to have the same distance, the D = 4 PEPS requires larger clusters
and larger boundary bond dimensions than the D = 2 PEPS, which explains why
it responds stronger to a better environment representation.

1.5.3 Computation of Expectation Values

Although we introduced clusters in the specific context of environment approxi-
mations for the tensor update, figure 1.12 suggests that, in fact, the reduced density
matrix of any part of a PEPS can be accurately approximated by a cluster around
that part, with a precision determined by the cluster size. Therefore the cluster
strategy could also be applied to the evaluation of (local) expectation values, with-
out the need for an accurate contraction of the full TN. To validate this idea, we
computed the energy of PEPS with D = 2 and 4 on a 20× 20 lattice using clusters
of different sizes around the local terms of the Hamiltonian, shown in figure 1.13.
We observe, analogously to figure 1.12, that for each cluster size the energy error
converges for a certain value of D′, and that the larger bond dimensions require
larger clusters and larger values of D′. Most remarkably, we find again that for
large enough fixed D′ the error drops exponentially with the cluster size.

1.5.4 Applicability to a Parallel PEPS Code and to iPEPS

In the context of finite PEPS, considered in this study, the computational cost of
the environment approximation for CUδ is lower than that for the full contrac-
tion only when δ = 0 (O(dD5)) and when δ = 1 (O(dD5D′2)). Indeed, if the
boundary MPO has bond dimension D′0, contracting it with a PEPS row and
approximating the result by a new boundary with bond dimension D′1 needs
O(dD6D′0D′1) +O(D4D′20 D′1) +O(D4D′0D′21 ) operations. If D′0 = D′1, we recover
the scaling of the full contraction, so that the CU only results in a cheaper scheme if
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Figure 1.12: Distance to the exact boundary MPO, 1− f with f := |tr(ρ†
re f ρ(D′))|,

for the left-most column boundary MPO ρ(D′) of a D = 2 (inset) and D = 4
(main) SU Heisenberg PEPS on a 20× 20 lattice. We compare the cluster contraction
based on clusters of size δ = 1 (dotted), 2 (dash-double-dotted), 3 (dash-dotted),
and 4 (dashed), to the full contraction (solid). The reference boundary MPO ρre f
comes from the full contraction with D′ = 100, and we adopt the normalization
tr(ρ†ρ) = 1.
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Figure 1.13: Relative energy error εE := |E(D′)− Ere f |/|Ere f | of the D = 2 (inset)
and D = 4 (main) PEPS from figure 1.12, for the same setting. The reference value
Ere f comes from the full contraction with D′ = 100, and the clusters are formed
around the individual terms of the Hamiltonian independently of each other.
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the environment bond dimensions D′i decrease as we increase the distance i to the
row (or column) to be updated. Moreover, after every update of a row, the com-
plete cluster surrounding the next row has to be contracted, without being able
to reuse the previously obtained cluster boundary MPO. This situation is differ-
ent from the FU, where, when moving to the update of a new row, only one new
boundary MPO has to be determined, as the previously computed and properly
stored boundaries can be reused. In the CU, the only boundary MPO that can be
reused are the previously obtained separable ones, and 2δ+ 1 new MPO have to be
computed for the update of the next row. Of those, one is separable and thus deter-
mined with computational cost O(dD5), and two require O(dD5D′2) operations,
which we can neglect, such that 2δ− 2 new boundary MPO have to be found with
cost O(dD6D′2) + O(D4D′3). On the other hand, the CU takes up less memory
than the FU. The separable boundary MPO do not have to be written to hard disk
but can be stored in main memory since they take up much less memory than MPO
with bond dimensions D′ > 1, and then the cluster boundary MPO are computed
on the fly.

Although the CUδ with cluster sizes δ > 1 does not reduce the computational
cost of a sequential algorithm, in which one tensor is updated after another, it can
reduce the cost of a parallel algorithm, in which different rows or columns are
updated simultaneously on different processors. Assuming that the time for the
optimization of a boundary MPO (for a middle row) is tB on average, and that the
update of all the tensors in a row or column is achieved in the time tU , then the
sequential FU requires 2(L− 2) · tB + L · tU for one set of Trotter gates. In contrast,
each row or column update with the CUδ for δ ≥ 1 necessitates the computation
of only 2(δ− 1) boundary MPO and thus has the cost 2(δ− 1) · tB + tU . We con-
clude that a parallel CU algorithm can attain a L/δ speed-up. Since δ does not
depend on the system size, L, but only on the bond dimension, D, it can be chosen
much smaller than L, such that this speed-up factor may be large. This estimation
neglects all computations with sub-leading costs O(dD5) and O(dD5D′2) and the
communication between the parallel processors. Although the latter will have an
impact on the final performance of the algorithm, we expect the speed-up to be
still significant, given the fact that just the small individual tensors of separable
boundary MPO have to be exchanged between different processors after each set
of Trotter gates.

The success of this parallelization strategy relies heavily on the simultaneous
update of tensors in different rows. As described in section 1.2, each tensor update
is based on solving a system of linear equations that arises from the minimization
of a cost function for the whole PEPS by utilizing an ALS scheme. In this scheme
one sweeps over the tensors and for each one minimizes the cost function under
the assumption that all the others are fixed. This guarantees a non-increasing cost
function only when the tensors are updated sequentially. An important question
is then whether the convergence of the energy in imaginary time is as fast with
the independent updates as with the sequential ones. That this is indeed the case
can be gathered from figure 1.14. The plot demonstrates an impressive agreement,
which can be attributed to a minor modification of the tensor when the action of
a time evolution gate is approximated in a sequential update. We conclude that
imaginary time evolution with the CU constitutes a natural basis for a parallel
ground state search algorithm based on PEPS. A similar agreement as in figure
1.14 cannot be expected in direct energy minimization, where a tensor is changed
significantly during an update.8

8In direct energy minimization, the energy 〈ψ|Ĥ|ψ〉/〈ψ|ψ〉 is minimized directly by sweeping over
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Figure 1.14: Energy per site e of the Heisenberg model on a 10× 10 lattice during
imaginary time evolution of a D = 4 PEPS via the CU with parallel (lines) and
sequential (symbols) tensor updates. The boundary MPO have fixed bond dimen-
sion D′ = 1 (top red lines and symbols), D′ = 2 (middle green lines and symbols),
and D′ = 16 (bottom blue lines and symbols), and we further distinguish cluster
size 1 (dashed lines and circles) and 2 (solid lines and crosses). The state propagates
1000 time steps with τ = 0.01 and then 2000 time steps with τ = 0.001.

Although we carried out our analysis in the framework of finite PEPS, it is clear
that the CUδ can also be applied to iPEPS, to replace the costly computation of the
environment via the dominant boundary eigenvector with D′ > 1 [17], fixpoint
corner transfer matrices [66], or second renormalized environment [68]. A CU pro-
cedure would only require the search for the dominant boundary eigenvector with
D′ = 1, which needs O(dD5) operations, followed by a cluster contraction as in
the finite case. Then, the cost and precision of both tensor update and expectation
value computation would be determined by the cluster size and the bond dimen-
sion D′ employed in the contraction of the cluster. Furthermore, it is always pos-
sible to evaluate clusters by means of Monte Carlo sampling [64, 65]. This method
requires only the contraction of the PEPS coefficients, computationally less costly
than the contraction of the PEPS norm TN, for different sampled values of the
physical indices s1, s2, . . ., depicted in figure 1.1. While a full infinite PEPS cannot
be sampled, since this would necessitate determining infinitely many classical spin
values, clusters open the door to variational Monte Carlo in the realm of iPEPS.
For the sampling of an observable as well as of an energy gradient, a cluster would
be formed around the considered tensors and then only the physical indices of
that cluster would have to be sampled. Larger clusters necessitate longer sampling
times such that the error of a finite cluster could be adjusted together with the
Monte Carlo error according to the available computational resources.

the tensors with an ALS scheme. This algorithm converges typically within much fewer sweeps over
the PEPS than imaginary time evolution, when all sweeps for all time steps are taken into account, and
therefore modifies a tensor considerably in an update.
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1.6 Conclusions

In this chapter, we have analyzed the environment representation in previous pro-
posals, namely the simple update and the single-layer algorithm. We have shown
how the different approximations applied to the environment explain the limita-
tions of each method in the achievable ground state accuracy, an issue that we
have studied quantitatively in the context of finite PEPS. Based on this deeper un-
derstanding, we have formulated a new proposal, the cluster strategy, that allows
a systematic increase of the environment precision from the simplest possible rep-
resentation, in the SU, to the most accurate full contraction, in the FU.

In its simplest form, CU0 provides an explanation for the simple update in
terms of a separable boundary approximation, and constitutes a slightly improved
version of the latter for the models analyzed here, characterized by the same com-
putational cost. The first non trivial cluster update, CU1, produces significantly
better ground state energies than the SU, and has a lower computational cost than
the FU. In general, CUδ interpolates naturally between the SU and the FU. We have
shown that increasing the cluster size improves the precision of the environment
approximation exponentially. This improvement applies directly to the computa-
tion of local observables, which can always be accelerated with the help of clusters.

Our analysis of the computational costs of the CU revealed that in the sequen-
tial update of finite PEPS any cluster size δ > 1 exceeds the cost of the FU, which
can reuse intermediate calculations more efficiently. However, the CUδ forms the
basis of a very promising parallel PEPS algorithm, with a prospective large gain in
computational time also for larger clusters. Although our numerical studies have
all been carried out in the framework of finite PEPS, we have also argued how the
CUδ is straightforwardly useful for the infinite iPEPS ansatz.

In summary, we have shown that the environment approximation is a key in-
gredient to the precision of any PEPS contraction, whether we are interested in the
norm, or in some expectation value. The CUδ provides the means to control this
approximation accuracy and can be used in any contraction. It is then reasonable
to think of its potential applicability to other PEPS algorithms.

1.7 Appendix

1.7.1 Heisenberg Reference and PEPS Energies

Here, we list explicitly a selection of precise values, as they are used in the main
text.

Regarding the reference energies, for L = 4 the exact energy values come from
exact diagonalization. The exact Heisenberg ground state energy per site on a 4× 4
lattice reads −0.57432544. For L = 10, we computed the exact values with the
quantum Monte Carlo loop algorithm from the ALPS library [84–86], and we use
the result for temperature T = 0.0001, where we have checked consistency with
T = 0.01 and 0.001. That energy per site for a 10× 10 system reads −0.628655(2).

1.7.2 Numerical Details

We used the following setup for time evolution and energy computation, if not
explicitly stated otherwise.

We initialize imaginary time evolution with a separable D = 2 PEPS in which
the zeroes are replaced by noise as uniformly distributed random numbers from
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D 4× 4 10× 10
2 -0.54404(1) -0.61281(1)
3 -0.55396(2) -0.61846(2)
4 -0.56281(1) -0.62382(1)
5 -0.56628(2) -0.62520(2)
6 -0.56684(3) -0.62541(2)
7 -0.56696(2) -0.62537(2)
8 -0.56715(3) -0.62538(2)

Table 1.2: Energy per site e of the Heisenberg model on a 4× 4 and 10× 10 lattice,
obtained by means of the SU, presented in figure 1.4.

D 4× 4 10× 10
2 -0.54404(3) -0.61280(2)
3 -0.55397(2) -0.61846(2)
4 -0.56287(5) -0.62382(2)
5 -0.56637(2) -0.62521(2)
6 -0.56694(2) -0.62541(2)
7 -0.56706(3)

Table 1.3: Energy per site e of the Heisenberg model on a 4× 4 and 10× 10 lattice,
obtained by means of the CU0, presented in figure 1.10.

D 4× 4 10× 10
2 -0.54458(2) -0.61310(2)
3 -0.5605(3) -0.62007(1)
4 -0.56999(3) -0.62583(2)
5 -0.57238(7) -0.62667(2)
6 -0.57153(7) -0.6264(2)
7 -0.57194(1)

Table 1.4: Energy per site e of the Heisenberg model on a 4× 4 and 10× 10 lattice,
obtained by means of the CU1 with D′ = D2, presented in figure 1.10.

D D′ 4× 4 10× 10
2 4 -0.54458(2) -0.61310(2)

8 -0.54458(2) -0.61310(2)
3 9 -0.56101(2) -0.62002(2)

18 -0.5612(1) -0.62000(2)
4 16 -0.5738(3) -0.62636(3)

32 -0.5739(2) -0.62637(2)
5 25 -0.57408(1) -0.62732(4)

50 -0.57410(3) -0.62739(1)
6 36 -0.57418(2) -0.62751(2)

72 -0.57419(1) -0.62770(7)
7 49 -0.57408(1)

98 -0.57419(1)
130 -0.57426(1)

Table 1.5: Energy per site e of the Heisenberg model on a 4× 4 and 10× 10 lattice,
obtained by means of the FU, presented in figure 1.10.
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D′ CU1 FU
1 -0.61280(2) -0.61280(2)
2 -0.61290(2) -0.61289(1)
3 -0.61307(2) -0.61307(1)
4 -0.61310(2) -0.61310(2)

100 -0.61310(2)

Table 1.6: Energy per site e of the Heisenberg model on a 10 × 10 lattice, from
D = 2, presented in figure 1.11.

D′ CU1 CU2 CU3 CU4 FU
1 -0.62382(2) -0.62382(2) -0.62382(2) -0.62382(2) -0.62382(2)
2 -0.62481(1) -0.62501(1) -0.62506(5) -0.62504(1) -0.62508(4)
4 -0.62513(3) -0.62583(4) -0.62600(1) -0.62607(2) -0.62602(1)

12 -0.62583(2) -0.62623(2) -0.62631(2) -0.62634(3) -0.62635(2)
16 -0.62583(2) -0.62623(2) -0.62632(3) -0.62635(3) -0.62636(3)
20 -0.62624(2) -0.62632(2) -0.62635(2) -0.62636(2)
32 -0.62637(3)

Table 1.7: Energy per site e of the Heisenberg model on a 10 × 10 lattice, from
D = 4, presented in figure 1.11.

[−0.01, 0.01]. This state is evolved for N1 steps with τ1, followed by N2 steps with
τ2, and so on, what we abbreviate to the short notation (N1 × τ1, N2 × τ2, . . .) for
fixed bond dimension D. In order to specify a successively growing value of D, we
introduce the recursive notation (Di+1 = Dτ

i + 1, N1 × τ1, N2 × τ2, . . .). It defines
the next PEPS for the propagation with bond dimension Di+1 as the final state of
the previous evolution with bond dimension Di and time step τi with a by 1 incre-
mented bond dimension. In the case of the cluster and full update, the additional
parameter D′ is typically chosen as D′ = 1, 2, and, related to D, as D′ = D, D2,
and so on. The final PEPS obtained with a certain value of D′ is always the initial
state for increased D with that D′.

Regarding the energy computation, all energies are evaluated with D′ = 100
for the final PEPS corresponding to the smallest time step. We define the energy
error as the difference between the energy of this final state and the energy of an
intermediate state. The latter is either the PEPS obtained after half of the evolution
or the final PEPS corresponding to the immediately larger time step, depending on
wether or not the propagation was also performed with this larger time step.

In the following, we list the precise configurations that were used for the results
which are shown in the figures:

Figure 1.4:
We propagate the initial D = 2 PEPS 1000 time steps with τ = 0.1, then 2000 time
steps with τ = 0.01, then 8000 time steps with τ = 0.001, and then according to the
configuration (Di+1 = Dτ=0.01

i + 1, 2000× τ = 0.01, 8000× τ = 0.001).

Figure 1.6:
We propagate the initial D = 2 PEPS each time 10000 steps first with τ = 0.1, then
with τ = 0.01, then with τ = 0.001, then 20000 steps with τ = 0.0001, and finally
50000 steps with τ = 0.00001. The D = 3 and 4 results, used in the analysis, were
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obtained by evolving the final D = 2 PEPS from τ = 0.0001 further according to
the configuration (Di+1 = Dτ=0.0001

i + 1, 20000× τ = 0.0001).

Table 1.1:
We apply the SU to a 11 × 11 Ising model with different magnetic fields B, and
propagate the initial D = 2 PEPS 10000 time evolution steps with τ = 0.1 and then
10000 steps with τ = 0.01. The resulting PEPS is further evolved with the CU0
for 10000 time steps with τ = 0.01. All shown numbers are converged to machine
precision.

Figure 1.10 (a) (N = 4× 4):
The initial state of the imaginary time evolution is the converged D = 2 SU ground
state approximation to time step τ = 0.01. We propagate this state 1000 time steps
with τ = 0.01, then 2000 time steps with τ = 0.001, and then according to the
configuration (Di+1 = Dτ=0.01

i + 1, 1000 × τ = 0.01, 2000 × τ = 0.001) up to
bond dimension D = 5. Then, we continue with (Di+1 = Dτ=0.01

i + 1, 500× τ =
0.01, 1000× τ = 0.001). In the case of the FU with D = 7 and D′ = 130, the state
propagates 100 time steps with τ = 0.01.

Figure 1.10 (b) (N = 10× 10):
The initial state of the imaginary time evolution is the converged D = 2 SU ground
state approximation to time step τ = 0.01. We propagate this state 1000 time steps
with τ = 0.01, then 2000 time steps with τ = 0.001, and then according to the con-
figuration (Di+1 = Dτ=0.01

i + 1, 1000× τ = 0.01, 2000× τ = 0.001). In the cases of
the CU0 and the CU1 we use this time evolution configuration up to D = 5, and
for D = 6 propagate the states 500 time steps with τ = 0.01 and then 500 time
steps with τ = 0.001. In the case of the FU we use this configuration up to D = 4,
and for D = 5 evolve the states 500 time steps with τ = 0.01 and then 1000 time
steps with τ = 0.001, and for D = 6 we propagate the states 500 time steps with
τ = 0.01.

Figure 1.11:
The initial state of the imaginary time evolution is the converged SU ground state
approximation to time step τ = 0.01 with the considered bond dimension. In the
case of D = 2, we propagate this state 1000 time steps with τ = 0.01, then 2000
time steps with τ = 0.001. In the case of D = 4, for CU1 we use (1000 × τ =
0.01, 2000× τ = 0.001), for CU2 (1000× τ = 0.01, 1000× τ = 0.001), and for CU3,
CU4, and FU we use (500× τ = 0.01, 1000× τ = 0.001).
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Chapter 2

Algorithms for Finite Projected
Entangled Pair States

In the preceding chapter, we focused on a particular part of PEPS, namely, their
environment approximation. Here, we analyze several algorithmic aspects of the
method in order to achieve a more complete understanding of PEPS compu-
tations. On the one hand, we quantify the connection between the correlation
length of the PEPS and the accuracy of its approximate contraction, and discuss
how purifications can be used in the latter. On the other, we present algorithmic
improvements for the update of the tensor that introduce drastic gains in the
numerical conditioning and the efficiency of the algorithms. Finally, the state-
of-the-art general PEPS code is benchmarked with the Heisenberg and quantum
Ising models on lattices of up to 21 × 21 sites. This chapter is published in ref-
erence [45].

2.1 Introduction

As explained in the previous chapter, during the last years, significant concep-
tual and algorithmic progress has been made in the context of PEPS, e.g. refer-
ences [17, 22, 42, 43, 66–68, 70, 87]. Many of the numerical studies have focused on
systems in the thermodynamic limit, for which the iPEPS [17] ansatz can be used.
In such case, the translational invariance of the system is exploited to reduce the
number of variational parameters to the few tensors in a small unit cell. But the
non translationally invariant finite PEPS ansatz is also of great importance. On the
one hand, by avoiding a predefined unit cell it allows a more unbiased approach to
the thermodynamic limit, when combined with finite size scaling (although, also,
a systematically increased unit cell in iPEPS can be expected to produce more and
more unbiased results [24, 26]). On the other, it is the proper ansatz for problems
that are intrinsically non translationally invariant, such as the simulation of current
optical lattice experiments that are being carried out in inhomogeneous traps. In
exchange, the price to pay is a more involved implementation and longer running
times that scale with the system size.

The original PEPS algorithms [11, 41] can cope with the non translationally in-
variant situations [52,61,62,88], but a straightforward implementation attains only
small tensor dimensions, and is not enough to explore the power of the ansatz. In
order to reach larger dimensions (i.e. comparable to those used in present iPEPS
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calculations) and to approach the optimal ground state approximations for them,
it is necessary to take into account and to optimize the cost and stability of every
stage of the algorithms, which is only feasible through a thorough understand-
ing of the various possibilities. Only then it will be possible to adopt the optimal
strategies for the particular problem at hand.

In this chapter we aim at a global understanding of the algorithmic aspects of
finite PEPS, both at the physical and technical level. We address the two fundamen-
tal ingredients of PEPS algorithms, namely the environment approximation, i.e. the
approximate contraction of the tensor network (TN), and the tensor update. In the
previous chapter, we focused on the environment approximation. We studied the
physical significance and limitations of various contraction strategies, and intro-
duced the cluster scheme, which unifies previous methods and gives rise to a new
contraction algorithm with a trade-off between precision and computational cost.
Here, we extend the analysis of the environment approximation to provide new
insight into the convergence of the cluster strategy by relating it to the correlation
length of the system. Additionally, we show how the environment approximation
can be kept exactly positive with the help of purifications. Regarding the tensor
update, we investigate the effect of restricting the variational parameters to a re-
duced tensor [22], a technique used often in the case of iPEPS and characterized
by a lower computational cost. Via the reduced tensor we derive new numerical
methods, namely suitable gauge choices, which significantly enhance the stability
of the update algorithm. These gauge choices admit also a generalization to cases
where the full tensor needs to be updated.

Furthermore, we benchmark the state-of-the-art finite PEPS algorithms using
the Heisenberg Hamiltonian and the quantum Ising model with transverse field.
By presenting converged finite PEPS results for lattice sizes typically considered in
the context of finite size scaling, we not only assess the validity of the ansatz, but
enable a systematic comparison to other methods and implementations.

2.1.1 Reader’s Guide

The rest of the chapter is structured as follows. In section 2.2 we briefly present the
basic notation and concepts common to PEPS algorithms. The algorithmic details
regarding the convergence of the cluster scheme, the use of positive environments
and the strategies to improve the tensor update are discussed in section 2.3. Sec-
tion 2.4 collects the numerical results corresponding to our best PEPS ground state
approximations for the benchmark models. Finally in section 2.5 we summarize
our conclusions. Supplemental material is provided in the appendix in section 2.6.

2.2 Notation and Preliminary Concepts

PEPS algorithms for finding ground states can be classified in two types, namely
variational minimization of energy and imaginary time evolution. With only mi-
nor changes, the second one allows also the simulation of real time evolution. Both
kinds of algorithm can be formulated in terms of the minimization of a certain cost
function by varying the tensor parameters.1 This minimization is realized in prac-
tice by means of an alternating least squares (ALS) scheme, in which one sweeps

1We remark that the initial time evolution method [7, 8, 10] works slightly different, and the basis of
this chapter is rather given by reference [12].
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over the tensors and updates them one after another, each time choosing the com-
ponents that minimize the cost function under the constraint that all the other ten-
sors are fixed.

Throughout this chapter we focus (almost exclusively) on the imaginary time
evolution. In this case, it is customary to use a Suzuki-Trotter approximation of
the evolution operator where the Hamiltonian is split into parts containing only
mutually commuting terms. The cost function to be minimized is then the distance
d(|ψ〉) = |||ψ〉 − Ô|φ〉||2, where |φ〉 is the initial PEPS, Ô is an operator represent-
ing one (or more) Trotter gates, i.e. the exponential of one (or several) such Hamilto-
nian terms [41], and |ψ〉 is the resulting PEPS. During the ALS sweeping, the tensor
for site l is the one that minimizes

d(Al) =: ~A†
l Nl ~Al − ~A†

l
~bl −~b†

l
~Al + const. (2.1)

It is given by the solution of the linear system of equations Nl ~Al = ~bl , i.e. ~Al =

N−1
l
~bl , where the norm matrix Nl results from the norm TN 〈ψ|ψ〉 by leaving out

the tensor A∗l in the bra and Al in the ket, and~bl results from the TN 〈ψ|Ô|φ〉 by
leaving out A∗l in the bra. This procedure can be iterated for the necessary number
of steps to reach the desired total (real or imaginary) time.2

Two main parts, namely the environment approximation and the tensor update,
constitute the building blocks of this algorithm and will be often referred to in the
rest of this chapter. The first notion corresponds to the exact or approximate eval-
uation of the effective matrix (Nl) and vector (~bl) that determine the local equation
to be solved for the tensor at a given site. The second term denotes the solution of
the vector equation and the corresponding change of the PEPS with the updated
tensor.

Some strategies developed in the context of iPEPS can also be applied to the
finite case, and we will do that in the following. The most widely used iPEPS
method, due to its efficiency and stability, is the simple update (SU) [42], in which
the environment is assumed to be separable and then the tensors are updated via
simple SVD. As we showed in the previous chapter, the SU works equally with fi-
nite PEPS but produces results with limited accuracy. The full update (FU) [17, 22]
is based on a more accurate approximation of the environment, in closer analogy
to the original finite PEPS algorithm [11, 41], but differing from it in the fact that
Trotter gates are not applied simultaneously, so that the environment for the up-
date of one gate does only require the norm contraction around that gate. We will
in the following use the term FU in the context of finite PEPS to denote the sequen-
tial application of Trotter gates together with the full contraction of the norm TN,
as in the previous chapter.

2.3 Algorithmic Aspects

In this section we analyze several distinct aspects of finite PEPS algorithms, re-
garding both the environment approximation and the tensor update.

In particular, for the environment approximation we show how the success
of the cluster scheme introduced in the previous chapter is deeply connected to

2In the direct minimization of the energy, the cost function to be minimized is E(|ψ〉) =
〈ψ|Ĥ|ψ〉/〈ψ|ψ〉 over the PEPS |ψ〉. For an update during the ALS sweeping, the tensor at position l
is set to Al minimizing E(~Al) = ~A†

l Hl ~Al/~A†
l Nl ~Al , which can be found as the lowest eigenstate of

the generalized eigenproblem Hl ~Al = λNl ~Al . Here, the matrix Hl is defined from the TN 〈ψ|Ĥ|ψ〉, in
which one leaves out the tensor Al in the ket and A∗l in the bra, and Nl is the norm matrix.
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the correlation length of the state. We also discuss the feasibility and the cost of
explicitly keeping a positive environment by making use of purification MPO.

For the tensor update we propose gauge choices for each possible update
scheme, and show how they improve the numerical stability of the algorithms. We
additionally discuss how the reduced tensor, originally introduced in the context
of iPEPS [22], can similarly be used in the finite case to speed up the computations.
The normalization of the tensors is another factor that can improve the stability of
the method.

While part of this section is significantly technical, the considerations exposed
here are relevant for the implementation of any (finite) PEPS algorithm. Further-
more they have also clear physical implications, especially in the case of the envi-
ronment contraction.

2.3.1 Environment Approximation

In the imaginary time algorithm, the update of one tensor at lattice site l involves
the contraction around that tensor of the norm TN 〈ψ|ψ〉 and of the TN 〈ψ|e−τĤx |φ〉
for a certain subset of (mutually commuting) Hamiltonian parts Ĥx. The first con-
traction leads to the norm matrix Nl and the second to the vector ~bl from which
the new tensor for that lattice site follows as ~Al = N−1

l
~bl . The original algo-

rithm [11, 41] includes the complete e−τĤx , i.e. all (mutually commuting) Trotter
gates, in the TN 〈ψ|e−τĤx |φ〉 and thus requires two independent environment ap-
proximations, one for 〈ψ|ψ〉 and one for 〈ψ|e−τĤx |φ〉. However, in the following
we adopt the strategy from the previous chapter: If Trotter gates are applied one by
one, and only the tensors on which a given gate acts are modified, then it suffices
to consider the environment approximation of the norm TN alone, and, starting
from this environment, the vector~bl is constructed from the exact contraction of a
single Trotter gate.3

Accuracy of the Cluster Contraction

The cluster update (CU) introduced in the previous chapter allows a trade-off be-
tween precision and efficiency in the environment approximation. The SU and the
FU are special cases of this procedure, which naturally interpolates between them
in both accuracy and computational cost. Because clusters are not only useful for
the tensor update but equally for the computation of expectation values, they real-
ize a unifying framework for PEPS contractions.

We observed in the previous chapter that the contraction error decreases expo-
nentially with the cluster size for PEPS ground state approximations of the Heisen-
berg model. This property, which justifies the usability of clusters, is ultimately
related to a finite correlation length of the system, as we appreciate here with the
help of the quantum Ising model. This model becomes critical in the thermody-
namic limit at transverse field B ≈ 3.044, and, thus, by varying B we can create
states with different correlation lengths.

We have analyzed the cluster contraction error of a local observable acting on
the center of the lattice, εα(δ) := |〈σα〉δ − 〈σα〉|/|〈σα〉|, for α = X, Z, where 〈σα〉δ
is the approximated contraction using cluster size δ, and 〈σα〉 the result of contract-
ing the full TN. The behavior of this quantity can be compared to the correlation

3In an efficient implementation of this algorithm we only store and update the boundary MPO for
the rows and columns of the norm TN, and the contraction for the vector~bl is performed on the fly.
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function, Gα(x) := 〈σα
l σα

l+x〉 − 〈σ
α
l 〉〈σ

α
l+x〉, for two sites separated by a distance x

along the central column of the lattice. All contractions were performed with large
enough D′ = 100 such that the contraction error was independent of D′.4 We ob-
serve in figure 2.1 (a) that the decrease of the contraction error is always steeper for
a faster decaying correlation function. In order to make this statement more pre-
cise, we can fit the decay of the error to an exponential function of the cluster size,
εα(δ) ∝ exp(−δ/δ0), and obtain a characteristic cluster size δ0. Correspondingly,
we can extract a correlation length ζ from a similar fit of the correlation function
Gα(x) ∝ exp(−x/ζ). After having calculated δ0 and ζ for several PEPS,5 we plot δ0
as a function of ζ in figure 2.1 (b) and conclude that δ0 ≈ ζ.6 This demonstrates an
extremely clear quantitative connection between the cluster contraction error for a
given cluster size and the correlations in the state.

Positive Environment

The exact norm environment, resulting from an exact contraction of 〈ψ|ψ〉 around
one (or several) site(s), is positive by construction, as can be seen in figure 2.2.
Although this positive characteristic is considered a desirable property for the en-
vironment approximation, in general it is not respected by the approximated con-
tractions. Nevertheless, it is possible to use schemes that maintain it. In particular,
the single-layer (SL) algorithm was introduced in reference [43] as a way to im-
prove the environment approximation of the SU while preserving its efficiency
and numerical stability. The SL method performs the norm contraction by means
of transformations in the ket alone [43]. Then the boundary is described by a pu-
rification MPO [12], defined via a MPS of virtual bond dimension D′′ and physical
dimension D× d′ in such a way that the MPO results from tracing over the purifi-
cation bonds of dimension d′. Approximating the environment in the SL way and
then updating the tensors as explained in reference [43] ensures a stable algorithm,
but as seen in the previous chapter the error in the environment approximation can
be several orders of magnitude above that of the original contraction [11, 41], and
it can depend strongly on the system size.

Several factors can cause these accuracy limitations. Even if there exists a good
positive MPO approximation for the boundary with moderate bond dimension D′

(as observed for gapped systems [81]), it does not necessarily follow that D′′ is
small [83, 89] and hence it is not clear a priori that fixing the maximum D′′ pro-
duces an accurate approximation for the environment. Moreover, as argued in the
previous chapter, by operating on a single layer, the scheme does not find the most
general purification with given bond D′′. Here we want to address the question
wether the accuracy limitations of the SL algorithm are due to the description of
the boundary as purification or wether they are due to the specific operations pro-
posed in reference [43] to determine that boundary purification.

One way to allow for a more general purification is to formulate an algorithm
in the double-layer picture in the following way. Given the MPS bond dimension,
D′′, and the purification bond, d′, we write a purification MPO [12] by using in
the lower layer the complex conjugated tensors from the upper layer. The prob-
lem of approximating the boundary after the contraction of one further row of the

4The dependence of the cluster contraction on D′ was already investigated in the previous chapter.
5We determine δ0 via the two values of εα(δ) at δ = 2 and 4, and ζ via the two values of Gα(x) at

x = 4 and 8.
6The slight deviation of figure 2.1 (b) from the exact diagonal for larger ζ is due to the fact that they

correspond to B ≈ 3.0 where both εα(δ) and Gα(x) decrease rather polynomially and thus δ0 as well as
ζ depend more strongly on the two values from which they were determined.
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Figure 2.1: Relation between cluster error and correlation function in the Ising
model on a 21× 21 lattice. (a) Cluster error (main plot) and correlation function
(inset) for observable σZ, for D = 2 (open symbols), 3 (filled symbols), and B =
2.0 (triangles), 2.5 (squares), 2.8 (circles). (b) Characteristic cluster size, δ0, versus
correlation length, ζ, for several values of B ∈ [2, 4], for observable σZ with D = 2
(plusses), 3 (crosses), and for σX with D = 2 (triangles), 3 (circles).
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Figure 2.2: Norm environment for a single site of a 5 × 5 PEPS. Because each
PEPS tensor A (see figure 1.1) is contracted with its complex conjugate A∗ over
the physical index, an exact contraction of this norm TN would give a positive
Hermitian norm matrix N. For large PEPS, an exact contraction of N is not feasi-
ble, and the original contraction approximation [11,41] based on general boundary
MPO (shown in figure 1.2) does not keep the positivity.

Figure 2.3: Positive contraction of the norm TN for a PEPS with bond dimension D.
The product of a bulk row with a boundary purification of virtual bond dimension
D′′ and purification bond dimension d′ is approximated by a new boundary purifi-
cation of the same dimensions. Each update of a tensor A constitutes a nonlinear
problem, and solving the linearized equations costs O(dD6D′′4) + O(D4D′′6) +
O(d′3D3D′′6) where d′ ≤ DD′′2.

PEPS norm TN is then formulated for this structure instead of the general MPO,
as sketched in figure 2.3. The local equations result from replacing the single ten-
sor of the general MPO by the structure consisting of Al and A∗l . Following the
standard ALS procedure, we sweep over the sites l, and for each site solve the cor-
responding optimization problem for Al . However, in this case the cost function
to be minimized is no longer quadratic, but quartic in the variables of a tensor
at site l, and its minimum corresponds to the solution of nonlinear equations, in
contrast to the linear equations encountered in the original contraction [11, 41] of
figure 1.2. The nonlinear equations for Al have to be solved iteratively. We describe
and benchmark several options in section 2.6.1.

We compare this scheme to the original [11, 41] and the SL algorithm based
on the norm contraction of the same PEPS used in the analysis of the previous
chapter. The results are shown in figure 2.4. For a fixed purification bond d′, we
observe that the relative error of the norm decreases fast as a function of D′′. The
comparison of the 11× 11 to the 21× 21 lattice (figure 2.4 (a)) shows that, similar
to the original algorithm [11, 41], the error does not have a strong dependence on
the system size. On the other hand, with growing d′, the curves tend to converge
to the error of the original contraction [11, 41]. This effect can be observed already
with small purification bonds for B = 1.0 (figure 2.4 (b)). These results suggest that
the error in the SL method is mainly due to the restricted class of purifications it
can attain, and not to the description of the boundary as a purification with small
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bond D′′.7

From the discussion above we conclude that it is possible to efficiently find a
(close to) optimal general purification by means of the solution of nonlinear equa-
tions. In the context of PEPS contractions, this technique improves the SL scheme
significantly, but given its higher computational cost compared to the original con-
traction [11, 41], resulting from the iterative routines (see section 2.6.1), it is not a
practical option. Hence, in the following, all our cluster and full contractions will
be based upon the original contraction algorithm [11,41] and thus make use of gen-
eral boundary MPO as shown in figure 1.2. Nevertheless, the procedures analyzed
here may be useful for other problems where the question of numerically optimiz-
ing a purification MPO appears, such as for the description of one-dimensional
thermal states or open systems.

2.3.2 Tensor Update

Once the environment is computed, the actual update of the tensors takes place by
solving the appropriate local equations. It is also possible to use simplifications of
this step which render a more efficient and stable algorithm.

For the update of a pair of neighboring tensors, the environment can be ap-
proximated in general by a MPO with periodic boundary conditions, as illustrated
in figure 2.5. A first simplification of the tensor update procedure comes from se-
quentially processing the Trotter gates, as described above, and changing only the
tensors on which each gate acts. Then all the update operations on the pair are
performed with a fixed environment.

The computational cost of the tensor update can be greatly decreased by re-
stricting the update to the reduced tensor [22]. This reduced tensor update mini-
mizes the cost function (2.1) for the full tensors exactly only in the case of a separa-
ble environment (see previous chapter), as e.g. in the SU, but it is worth studying
its performance in a more general situation. In any case, it allows to work with
larger bond dimensions, which might compensate for the smaller number of vari-
ational parameters.

Another major difference between MPS and PEPS concerns the conditioning
of the effective norm matrix Nl . For MPS with open boundary conditions, a gauge
transformation8 can be chosen such that Nl = 1, which guarantees the stability
of the tensor update. Although this is impossible for PEPS, we will show how a
proper gauge choice and tensor normalization drastically improve the stability of
the algorithm.

Reduced Tensor

Before performing the update under a nearest-neighbor Trotter gate, the tensor for
a lattice site can be decomposed into the contraction of two tensors, in such a way
that one of them carries the physical index and the virtual bond corresponding to

7Although our conclusions are based on PEPS from the SU, because we had thoroughly analyzed
exactly the same PEPS with the SL algorithm in the previous chapter, we clearly expect similar im-
provements for PEPS from the FU (in particular the ground state of the quantum Ising model at B = 1.0,
away from criticality, should be well approximated by the SU and thus figure 2.4 (b) should only change
slightly for the corresponding FU PEPS).

8In a PEPS, for any pair of neighboring tensors that are connected via a virtual index, an arbitrary
matrix M can be contracted with one tensor and the matrix M−1 with the other in such a way that
the state does not change. This establishes the analogue of a (local) gauge freedom. Throughout this
chapter, the matrix M is called gauge matrix or gauge transformation in accordance with reference [41],
and the term gauge fixing or gauge choice refers to the process of choosing a specific matrix M.



2.3 Algorithmic Aspects 41

10
-3

10
0

1 2 3 4 5 6 7 8 9
10
-12

10
-6

10
-9

10
-3

10
0

1 2 3 4 5 6 7 8 9
10
-12

10
-6

10
-9

Figure 2.4: Relative error of the norm contraction using boundary purification
MPO, for SU Ising ground state approximations. (a) B = 3.0 and D = 2 on lat-
tices of size 21× 21 (main plot) and 11× 11 (inset). (b) B = 1.0 and D = 4 on a
11× 11 lattice. For reference, we show the error of the SL method with maximum
d′ = DD′′2 (open circles) and of the original algorithm [11, 41] (filled circles). Our
purification contraction was performed with d′ = 1 (triangles), 2 (squares), and 3
(diamonds), and D′′ =

√
D′.

Figure 2.5: The 6 environment tensors of a nearest-neighbor tensor pair. They form
a periodic boundary MPO with virtual bond dimension D′ and physical dimension
D. It is constructed with O(dD6D′2) + O(D4D′3) operations, resulting from the
optimal search for a boundary MPO and the contraction of the environment up to
the tensor pair.
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Figure 2.6: A QR decomposition of the left full tensor AL generates the left reduced
tensor aL as the R. Similarly, a LQ decomposition of the right full tensor AR gives
the right reduced tensor aR as the L. The initial dD4 variational parameters of the
full tensor are decreased to the d2D2 variational parameters of the reduced tensor.

Figure 2.7: Environment tensor Nred of a reduced nearest-neighbor tensor pair
and its closest positive semidefinite approximant X̃X̃† constructed as explained
in the text. The contractions are characterized by the leading computational cost
O(d4D4D′2) +O(d2D6D′2) +O(d2D4D′3) and the computation of the positive ap-
proximant requires additionally O(d6D6) operations.

the link on which the two-site gate acts, i.e. all the indices directly affected by the
gate. This tensor is called the reduced tensor [22], and can be obtained from the full
tensor by means of a QR decomposition, as sketched in figure 2.6.

In the reduced tensor update, only the components of such reduced tensor are
modified during the update procedure, while the remaining part of the full tensor
is left unchanged. These remaining parts of both tensors in the pair are contracted
with the periodic MPO of figure 2.5 to get the environment for the reduced tensor
pair, Nred, shown in figure 2.7. Due to the approximate contractions, this reduced
environment is in general not positive, neither is it Hermitian, but its positive ap-
proximant can be constructed in two steps [90]. First, we compute the optimal
Hermitian approximant Ñred := (Nred + N†

red)/2. Second, from its eigendecom-
position Ñred = UΣU† we obtain the positive approximant as UΣ+U† where Σ+

results from Σ by setting all negative eigenvalues to zero. Finally, the environment
is written as X̃X̃† in terms of its square root X̃ := U

√
Σ+.

The computational cost of the contractions for the periodic boundary MPO (fig-
ure 2.5), needed in both the reduced and the full tensor update, readsO(dD6D′2)+
O(D4D′3). The construction of Nred (figure 2.6 and 2.7) is only slightly more expen-
sive with O(d4D4D′2) + O(d2D6D′2) + O(d2D4D′3) operations. Its eigendecom-
position requires O(d6D6). In the complete update of the reduced tensors via the
sweeping of the ALS scheme, all further operations have lower computational cost.
Notice that in the case of the full tensors the contraction of the norm environment
for a single tensor needsO(D8D′2) +O(D4D′3) operations while the eigendecom-
position of the norm matrix has the cost O(d3D12).

In order to study wether the reduced tensor limits the accuracy of the method,
we considered imaginary time evolution of the Heisenberg model on 4 × 4 and
10× 10 lattices, and compared the final energies from the reduced tensor update
to the ones from the full tensor update. We found that, while for the small bond
dimensions D = 2 and 3 the full tensor update produced better energies, for D = 4
the energies of both approaches were already very similar. This can be appreciated
by comparison of the results in section 2.6.3 (obtained with the reduced tensor) to
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the full tensor results published in references [11, 62].
Because the reduced tensor update is less costly, we could reach larger bond

dimensions than with the full tensor update, and, in the end, obtained the lowest
energies with the reduced tensors. Therefore the reduced tensor update was used
for the results presented in this chapter.

Gauge Fixing

In the case of MPS, it is possible to keep up a canonical form of the tensors during
their updates with the help of a local gauge fixing, and that ensures the stability
of the algorithm and optimizes its performance [41]. In the case of PEPS, there ex-
ists neither such a canonical form nor any means to locally gauge away the norm
matrix. Nevertheless, using the gauge freedom, it is possible to improve the con-
ditioning of the norm matrix and positively affect the precision and stability of the
method, as we describe in the following.9

We propose a gauge fixing that is inspired by the one-dimensional case with
open boundary conditions. In that case, the norm tensor can be reduced to the
identity by (partially) imposing the canonical form of the MPS, achieved by QR
(or LQ) decomposition of each tensor after its update [41]. Alternatively, for an
arbitrary MPS it is always possible to reduce the norm matrix to the identity by
taking the square roots of the unconnected left and right environment halves and
absorbing part of their QR (LQ) decompositions in the tensor to be updated.

In the case of PEPS, it is not possible to ensure an identity norm matrix by
means of QR or LQ decompositions after the tensor update. Hence, we adapt the
second possibility and obtain the gauge transformations from the environment be-
fore the tensor update, namely from the norm tensor itself, such that the norm
matrix is better-conditioned. Because this gauge fixing can be combined with any
of the environment approximations described previously, we propose a precise
scheme for each case.

When the environment of the tensor pair is separable, i.e. D′ = 1 in figure 2.5,
it decomposes into six positive semidefinite matrices, which can be determined by
the algorithm from section 1.5.1. We compute the square roots of these matrices and
absorb them in the tensor pair. After contraction of the tensor pair with the Trotter
gate, a SVD is performed to find the new tensors, and finally these are multiplied
by the inverses of the previous square roots. This procedure coincides with the
SU [42] in which the λ matrices surrounding the tensor pair are substituted here
by the square roots of the environment matrices corresponding to each link. Since
the positive separable environment of the tensor pair is obtained with O(dD5)
operations, the leading cost of the complete update is O(d6D3) +O(d2D5), under
the assumption d ≤ D2.

When the environment of the tensor pair is non-separable, and we restrict the
update to the reduced tensor, we propose the gauge fixing from figure 2.8. By tak-
ing R and L from independent QR and LQ decompositions of the same X̃ from fig-
ure 2.7, we treat both virtual bonds of the environment equally, such that both re-
duced tensors will experience similar condition numbers in the linear equations of
the following sweeping.10 After we have obtained the desired better-conditioned

9A recent alternative approach for an improved imaginary time evolution is presented in refer-
ence [91], in which the authors propose a “quasicanonical form” that arises as fix point of the SU per-
formed with nearest-neighbor identity gates, and in which they demonstrate how that form allows an
efficient and stable imaginary time evolution with Projected Entangled Pair Operators (PEPO) in the
context of iPEPS.

10We also explicitly checked the resulting condition numbers when first a QR and then a LQ, or the
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Figure 2.8: Gauge fixing on the environment tensor of the reduced tensor pair,
when the environment is non-separable. (a) We perform a QR and LQ decomposi-
tion on X̃ from figure 2.7 independently of each other (notice that we have short-
ened here the horizontal open indices of X̃ compared to figure 2.7). (b) Contraction
of X̃ with L−1 and R−1 gives the final square root of the environment tensor, X. (c)
In order to leave the state unchanged, the left and right reduced tensors aL and aR
from figure 2.6 have to be contracted with the gauge transformations L and R as
shown here, which gives the starting tensors ãL and ãR for the update explained in
figure 2.9.

square root of the environment tensor, X, in order to leave the state unchanged,
the left (right) reduced tensor has to be contracted with L (R) over its left (right)
virtual index.

After our gauge fixing has been applied, the actual update takes place in three
steps. First, the tensors are initialized using a SVD as shown in figure 2.9 (a). This
step coincides with the SU. If the environment is separable, the cost function is
already minimal. In any other case, we can anticipate good starting tensors that
are closer to the minimum of the cost function. Second, we optimize the tensors by
means of the standard ALS sweeping, in which each tensor update is followed by
the standard gauge fixing [41], i.e. the left (right) tensor is QR (LQ) decomposed
along its right (left) virtual bond. Third, a gauge choice is made on the internal link
of the converged pair as shown in figure 2.9 (b).

We have observed that our gauge choices improve the condition number of the
norm matrix by several orders of magnitude in all studied cases. This statement is
quantified by the results in table 2.1, which compares typical condition numbers
found in the simulation of the Ising and Heisenberg models with and without
our gauge fixing. Strictly speaking, the condition number of the norm matrix Nl
provides only an upper bound for the final error of the solution ~Al to the linear
system of equations [92]: Therefore, a large condition number does not imply low
accuracy, but a small condition number implies high accuracy of the solution. In
practical computations with finite PEPS, when our gauge transformations are not
used instabilities can occur (e.g. as reported in reference [43]) that we have never
encountered after our gauge fixing.

We can also investigate the effect of our gauge fixing on the convergence of

other way round, or only a single decomposition is applied. In these cases, one tensor always encoun-
ters better condition numbers than the other in the linear equations of the following sweeping.
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Figure 2.9: Initial and final step of the reduced tensor update. (a) Initialization:
Before we update the reduced tensors by sweeping, we apply a SVD to their joint
contraction with the Trotter gate, and keep only the D largest singular values in
Σ. Splitting Σ gives the initial tensors aL := U

√
Σ and aR :=

√
ΣV for the ALS

procedure. (b) Final form: After convergence of the ALS sweeping, we put the two
tensors on an equal footing.

(a) Model Positive approximant Gauge fixing
B = 1.0 Ising (2± 3) · 107 1.1± 0.1
B = 3.0 Ising (2± 3) · 103 1.6± 0.1
Heisenberg (8± 5) · 10 1.08± 0.02

(b) Model Positive approximant Gauge fixing
B = 1.0 Ising (9± 205) · 1013 (1± 3) · 104

B = 3.0 Ising (4± 158) · 1013 (5± 6) · 102

Heisenberg (3± 2) · 104 5± 3

Table 2.1: We show the mean condition number of the norm matrix with its stan-
dard deviation in the reduced tensor update without our gauge fixing, using only
the positive approximant, and with our gauge fixing during the FU imaginary time
evolution of D = 2 (a) and D = 4 (b) PEPS of size N = 11× 11 for the Ising model
and of size N = 10× 10 for the Heisenberg model. The values were obtained aver-
aging over 10 time steps and all tensors in the lattice.
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Figure 2.10: Mean value of the relative change εd(u) := |d(u)− d(u− 1)|/|dinit| of
the cost function d, equation (2.1), after consecutive update sweeps u over a tensor
pair computed with respect to the initial value of the cost function dinit, for the
D = 4 reduced tensor update setting of table 2.1. We compare the FU evolution
without our gauge fixing using only the positive approximant (open symbols) to
the same propagation with our gauge fixing (filled symbols), for a 11× 11 Ising
model at B = 1.0 (circles) and 3.0 (squares), and for a 10× 10 Heisenberg model
(triangles).

the ALS sweeping, which can be gathered from figure 2.10 for the update of the
reduced tensor. Most remarkably, in the presence of the gauge transformations, al-
ready the initial SVD drastically reduces the cost function equation (2.1), by a value
that in all considered cases is larger than the one attained after one sweep without
the gauge transformations. Furthermore, the final total reduction of the cost func-
tion is also larger with our gauge fixing than without. Because the relative change
of the cost function in figure 2.10 always decreases faster in the presence of our
gauge transformations, we conclude that the latter accelerate the convergence of
the ALS scheme. Our results indicate that a simplified tensor update consisting
of the combination gauge fixing and SVD only, without the ALS sweeps, might
be successful. Indeed, for the Ising model, the cost function after our gauge fixing
and SVD is already smaller than after 10 sweeps without our gauge fixing. How-
ever, the sweeping can further decrease the cost function, and this is revealed most
evidently for the Heisenberg model.

So far, we assumed that the update is performed on two directly neighbor-
ing tensors, after applying on them one of the Trotter gates of a nearest-neighbor
Hamiltonian. The discussion can be extended to the update of more distant ten-
sors, as would appear in the case of Hamiltonians with long-range interactions.
However, for n non-adjacent reduced tensors the dimension of the norm matrix is
typically (d2D2)n × (d2D2)n, and its diagonalization, even for two tensors, is not
desirable. A further simplification is to choose the gauge transformations from the
local environment of a single tensor, since the norm matrix in this case has size
d2D2 × d2D2. By means of a numerical simulation we confirmed that such a lo-
cal gauge choice can produce condition numbers comparable to the ones obtained
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from the gauging of the environment of the pair.11 Moreover, we found that the
gauge matrices L and R computed from the local norm tensors of each separate
tensor in the pair can also be applied to the pair environment, and then we can
follow the update procedure of figure 2.9. Thus, we expect that local gauge choices
similarly improve the tensor update in the case of general long-range interactions,
where the tensor initialization and final form in figure 2.9 will be given by their
analogues from TEBD [7].

While the discussion here is focussed on the reduced tensors, in section 2.6.2 we
derive an efficient gauge fixing for the full tensors. This gauge fixing equally im-
proves the condition number of the norm matrix and the convergence of the ALS
sweeping in the tensor update of the full tensors. Because all our gauge transfor-
mations are derived from and applied to the norm TN alone, they do not explicitly
depend on the operator whose action on the PEPS is approximated. We would
therefore expect that our gauge choices similarly improve the original time evolu-
tion algorithm [11, 41] in which the action of Projected Entangled Pair Operators
(PEPO) on PEPS is approximated.12

Stability Issues

The previously described gauge choices guarantee a better conditioned norm ma-
trix. But for the stability, precision and efficiency of the algorithms, especially
when the environment approximation is very rough (e.g. by using small clusters
or boundary bond dimensions), also the following factors need to be taken into
account.

• For PEPS, the matrices Nl are not exactly Hermitian and positive semidef-
inite. The advisable strategy is to replace them by their closest Hermitian
approximants (Nl + N†

l )/2, and additionally set to zero any negative eigen-
values in order to get the closest positive semidefinite approximant of Nl , as
described above for the environment of the reduced tensor pair.13

• In general, some eigenvalues of Nl are zero and its positive subspace is ill-
conditioned. That is why N−1

l must be a pseudoinverse. A cutoff is set such
that only the subspace of Nl with eigenvalues larger than a certain value is
considered in the construction of the pseudoinverse.

• Finally, the correct tensor normalization has a decisive impact. Imaginary
time evolution steadily modifies the norm of the state. Thus we impose the
normalization of the PEPS, 〈ψ|ψ〉 = 1, after each set of Trotter gates, and, in
order to avoid the existence of very small or very large tensors, we addition-
ally scale all PEPS tensors to have the same largest element absolute.

11We propagated, using the FU, several 11× 11 D = 2 PEPS, obtained from the SU for the Ising model
with different fields, and we monitored eigenvalues and singular values of norm and gauge matrices
throughout the evolution.

12We can also expect that the direct variational minimization of the energy benefits from our gauge
transformations because they improve the condition number of the norm matrix Nl that enters the
generalized eigenproblem Hl ~Al = λNl ~Al which has to be solved for the tensor update at lattice site l.

13In the direct variational minimization of the energy, also the matrices Hl are not exactly Hermitian
and hence should be replaced by their closest Hermitian approximants (Hl + H†

l )/2. Furthermore, the
eigendecomposition of (Nl + N†

l )/2 enables us to replace the generalized eigenproblem by a standard

one,
√

Nl
−1 Hl

√
Nl
−1~Bl = λ~Bl . Its lowest eigenvector, ~Bl , yields the desired new variational parameters

via ~Al =
√

Nl
−1~Bl .
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2.4 Performance of Finite PEPS

With the aim of analyzing its performance in terms of system size and bond di-
mension, we have applied the generic finite PEPS code to the ground state search
for the Heisenberg and quantum Ising model, and compared the results to those
obtained by other numerical methods, when available. Our best PEPS results were
obtained with the FU, i.e. updating the reduced tensors, applying the Trotter gates
sequentially, and approximating the full contraction of the environment by means
of general boundary MPO. This combination of techniques allowed us to push the
simulations to lattices of size up to 21× 21. On the same systems, we ran also the
SU for finite PEPS.

2.4.1 Convergence Procedure

In each case, the PEPS ground state approximation was found by means of imag-
inary time evolution. The initial state was always a D = 2 PEPS which was con-
structed by embedding in it a separable PEPS and replacing the zero entries by
small random numbers. Beginning with the time step τ = 0.01, the propagation
was performed long enough for the energy to converge, and then the procedure
was repeated for smaller time step(s). After convergence was attained for the min-
imum time step, the scheme was iterated for a larger bond dimension, starting
from a previously converged PEPS as initial state.

We observed that the converged SU PEPS of a certain bond dimension was
always a good initial state for further propagation with the FU for this bond di-
mension. On the one hand, in general, the SU PEPS can already be a good ground
state approximation and then only few further steps with the FU are required. On
the other hand, we have found, that such state required smaller values of D′ when
the evolution was continued with the FU.

Energies and correlators reported here for a certain value of D correspond to
the final PEPS for the smallest time step. The error in the corresponding observ-
able was estimated via the difference to the expectation value calculated with the
converged PEPS for the previous time step. All contractions were performed with
boundary bond dimension D′ = 100, big enough to neglect contraction errors, as
we explicitly checked by comparison to results from D′ = 200.

2.4.2 Heisenberg Model

We considered imaginary time evolution with an antiferromagnetic Heisenberg
Hamiltonian Ĥ = ∑〈l,m〉 ~Sl · ~Sm. This model on a two-dimensional square lattice is
a paradigmatic benchmark Hamiltonian because quantum Monte Carlo methods
provide quasi exact results for very large system sizes [93], and thus we can di-
rectly compare our results to quantum Monte Carlo.14 In the context of PEPS, the
ground state order parameter of this model, i.e. the squared staggered magnetiza-
tion M2

stag := 1
N2 ∑N

l,m=1(−1)l+m〈~Sl · ~Sm〉, is particularly challenging [94] (also on a
honeycomb lattice [68]) and a precise determination has so far only been possible
with very large bond dimension D = 16 in reference [70]. Here we want to find
out what our improved algorithmic procedures can do.

To our Heisenberg Hamiltonian we added a small staggered magnetic field
BZ ∑l(−1)lSZ

l which we slowly switched off during the evolution, starting from
BZ = 10−3. In the presence of this staggered field the SU(2) symmetry of the

14We obtain our quantum Monte Carlo reference values from the ALPS library [84–86].
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Figure 2.11: Relative energy error εE := |E(D)− E0|/|E0|, where E0 denotes the
exact ground state energy from the ALPS library [84–86], of the SU (open symbols)
and the FU (filled symbols) for different lattice sizes. In the case of the SU, we
consider N = 10× 10 (triangles), 14× 14 (squares), 16× 16 (diamonds), and 20× 20
(circles). In the case of the FU, we consider N = 10× 10 (diamonds) and 14× 14
(circles).

Heisenberg model is explicitly broken and smaller values of D′ suffice. This pro-
cedure improved the convergence of all our algorithms significantly. In the case of
the SU, it helped to avoid local minima and reach lower final energies, in par-
ticular on the largest 20 × 20 lattice. And, in the case of the FU, already when
the staggered field was still switched on, low values of the energy were attained
while smaller values of D′ were required. All propagations were performed for
time steps τ = 10−2 and 10−3.

Figure 2.11 shows the convergence of the energy with increasing bond dimen-
sion. We observe that, while the FU energy error decreases rapidly with D, the SU
energies saturate, and for bond dimensions up to D = 6, the lowest SU energies lie
between the values for D = 3 and 4 obtained with the FU. This is consistent with
our earlier observations in the previous chapter based on smaller lattices. Both the
SU and the FU produce better energies when the lattice size increases.

We can now compare our energy accuracies to the existing literature. The orig-
inal finite PEPS algorithm [11, 41] obtained a lowest energy per site −0.62515 on a
10× 10 lattice, using time step τ = 0.001 and bond dimension D = 4 (this PEPS
result is given in references [63, 95]). For this system size and the same values of
τ and D we now achieve the slightly lower energy per site −0.62637(2), and we
can also provide the converged D = 6 result −0.62774(1). All our energies as
well as our quantum Monte Carlo reference values corresponding to figure 2.11
are collected in section 2.6.3. Our D = 4 energy per site is already lower than
the best values reported for the wave function ansatzes (block) sequentially gener-
ated states (−0.61713) [63], entangled-plaquette states (−0.6258(1)) [95], and string
bond states (−0.6225) [96], to which we can directly compare because they also
considered finite systems with open boundary conditions. For infinite systems,
the iPEPS ansatz attains slightly better energy precisions between 10−3 and 10−4

for D = 4 to 6, as reported in reference [97]. And for large finite cylinders, the
best DMRG results are also more accurate: Reference [98] analyzes the Heisenberg
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model on a cylinder with a constant staggered magnetic field on the boundaries
and, by making use of SZ symmetry in the algorithm, reaches an energy accuracy
of 10−4 on a 20× 10 lattice.

In order to check the accuracy of the ground state approximation, we evaluated
also non-local observables. In particular, we computed the correlator 〈~Sl · ~Sl+x〉, in
the center of the lattice for two sites separated by a distance x, either along the
diagonal or along the same column. We checked explicitly that the correlators of
the converged PEPS along the diagonal and vertical direction are quantitatively
very similar. This feature is obviously due to the PEPS ansatz and would be harder
to reproduce e.g. with MPS in two dimensions. The precision of our considered
spin-spin correlator 〈~Sl · ~Sl+x〉 also indicates the precision that can be expected for
the order parameter M2

stag := 1
N2 ∑N

l,m=1(−1)l+m〈~Sl · ~Sm〉. Since the former quan-
tity, being dependent on the distance x, provides more information than the latter
quantity, being just a single number, we focus here on the spin-spin correlator.

The results for the diagonal correlators in 10× 10 PEPS are shown in figure 2.12
(a), and figure 2.12 (b) displays the vertical correlators for 14× 14 PEPS. We ob-
serve that the FU converges quickly to the true correlator with increasing bond
dimension. Although for fixed D the error grows with the distance x, for fixed
x it decreases fast with D. In particular, if we consider the correlator at distance
x = L/2, as commonly done for the construction of the thermodynamic value via
finite size scaling, we read off εD=6

C ≈ 0.01 and εD=7
C ≈ 0.003 on the 10× 10 lattice,

and we find εD=5
C ≈ 0.07 and εD=6

C ≈ 0.01 on the 14× 14 lattice. As for the energy,
the SU results saturate, and they get better when the system size is larger.

We want to compare our results for the spin-spin correlator to previous works.
The widely used iPEPS algorithms achieve a remarkably low relative energy error
in the thermodynamic limit [97] while their relative correlator error≈ 0.1 reported
in reference [94] for D = 5 is still rather high (although larger values of D are
accessible within iPEPS algorithms nowadays [26,99] by making use of symmetries
[100, 101]). In reference [70] the SU was used together with Monte Carlo sampling
to reach much larger bond dimensions, and their best accuracies obtained with
D = 16 were 0.003(2) on a 8× 8 lattice and 0.013(2) on a 16× 16 lattice, assuming
periodic boundary conditions. We now attain the same precisions here on 10× 10
and 14 × 14 lattices already with much smaller bond dimensions D = 6 and 7.
Again, the best DMRG results are still more accurate: Reference [98] reports an
uncertainty of 0.0007 for the observable |〈SZ〉| in the center of a 20× 10 cylinder
with constant staggered magnetic fields on the boundaries.

We can try to understand the characteristics of the SU and the FU results with
the help of the environment approximation used in their tensor updates. As we
have argued in the previous chapter, SU and FU represent special cases of a uni-
fying CUδ: the SU is equivalent to clusters of size δ = 0 in the tensor update,
while the FU corresponds to the largest possible cluster size δ = L − 1. Here we
showed in section 2.3, that the cluster contraction error as a function of the cluster
size behaves like the correlation function of the considered PEPS, such that states
with short correlation lengths can be accurately contracted by means of small clus-
ters. It is then reasonable to expect that the cluster size δ used in CUδ limits the
finally achievable correlation length. We address this question on a 10× 10 lattice
with D = 4 in the main part of figure 2.13. Indeed, the correlation function decays
slower when larger clusters are used in the CU.

Moreover, we can gather from figure 2.13 that the correlation functions for sys-
tem size 14× 14 from SU as well as FU decay faster than the corresponding ones
for system size 10× 10, while figure 2.11 shows that a higher energy accuracy is
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Figure 2.12: Spin correlations C(x) := |〈~Sl · ~Sl+x〉| (main) and relative error
εC(x) := |C(x) − C0(x)|/|C0(x)| (inset), with the exact values C0(x) (thick line)
from the ALPS library [84–86], for two sites separated by distance x along the diag-
onal in the center of 10× 10 PEPS (a) and along the vertical in the center of 14× 14
PEPS (b). We consider PEPS Heisenberg ground state approximations from the FU
with D = 2 (dash-double-dotted), 4 (dash-dotted), 5 (dashed), 6 (filled circles),
and 7 (crosses), and from the SU with D = 4 (squares), 6 (diamonds), and 8 (open
circles).
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Figure 2.13: Correlation function G(x) := 〈~Sl · ~Sl+x〉 − 〈~Sl〉 · 〈~Sl+x〉 for two sites
separated by distance x along the diagonal in the center of 10 × 10 (main) and
14× 14 (inset) PEPS Heisenberg ground state approximations of bond dimension
D = 4. We compare SU (dotted), CU1 (dash-double-dotted), CU2 (dash-dotted),
CU3 (dashed), and FU (solid).

attained on the larger lattice. This indicates that, for the finite systems with open
boundary conditions considered here, the true correlation length of the Heisen-
berg model slightly decreases with growing lattice size. In the context of the SU,
this would explain why the SU results of figures 2.11 and 2.12 are better on larger
lattices. And in the context of the FU, this would explain our numerical obser-
vation that the convergence of energies and spin-spin correlators required smaller
values of D′ for larger systems:15 A smaller correlation length can be captured with
a smaller cluster size δ in the CUδ and the contraction precision achieved with such
δ can equally be obtained by the full contraction, used in the FU, with correspond-
ingly smaller value of D′ (see figures 1.12 and 1.13 in the previous chapter).

2.4.3 Quantum Ising Model

We have also applied our finite PEPS algorithms to the quantum Ising model with
transverse field, Ĥ = −∑〈l,m〉 σZ

l σZ
m − B ∑l σX

l . This Hamiltonian features a quan-
tum phase transition in the thermodynamic limit, and its critical point Bc ≈ 3.044
and exponent β ≈ 0.327 are known very accurately thanks to finite size scal-
ing with quantum Monte Carlo [102]. Since iPEPS have already very successfully
demonstrated the adequacy of the PEPS ansatz for the quantum Ising model even
at criticality [17,66] (reference [66] reports Bc ≈ 3.04 and β ≈ 0.328), we present our
results here and in section 2.6.3 just for benchmark purposes, e.g. to enable a com-
parison with another PEPS implementation or with another wave function ansatz.
We thus consider here only few different values of the magnetic field around B = 3
and run our computations only for the two system sizes 11× 11 and 21× 21. For

15To be precise, our FU energies and spin-spin correlators for the Heisenberg model were converged
with D′ = 2D2 for all D = 2 to 6 on the 14× 14 lattice, i.e. our results did not change anymore when
we further ran the FU with larger D′. However, this convergence occurred only with D′ = 75 for D = 5
and D′ = 126 for D = 6 on the 10× 10 lattice.
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Figure 2.14: Observables 〈σZ〉 (main) and 〈σX〉 (inset) evaluated in the center of
21× 21 PEPS Ising ground state approximations from the FU with D = 2 (plusses),
3 (crosses), and 4 (filled circles), where the D = 4 are basically on top of the D = 3
results. Open symbols show the SU at B = 3.0, for D = 2 (down-triangles), 4 (up-
triangles), 5 (squares), 6 (diamonds), and 7 (open circles). We interpolate the FU
D = 4 〈σZ〉 results between B = 2.85 and B0 := 3.000035 with |B− B0|0.34.

each value of B, we converge the imaginary time evolution independently, using
time steps τ = 10−2, 10−3, and 10−4.

Figure 2.14 shows the order parameter evaluated in the center of 21× 21 PEPS
from the FU for several points in the phase diagram. Without performing a finite
size scaling, we can already extract estimates of the critical point Bc ≈ 3.0 and
exponent β ≈ 0.34 from this finite system, which are close to the iPEPS results
[17, 66]. We conclude that this lattice is already large enough to display features
similar to iPEPS.

For comparison, we also present SU results at B = 3. As expected from our
previous analysis, the SU does not work well there, where the correlation length
should be large. Figure 2.15 shows that the FU can indeed generate PEPS with
larger correlation lengths. While a least squares fit gives a correlation length for
the FU D = 4 PEPS ζD=4

FU ≈ 2.6, it reveals for the SU D = 7 PEPS only ζD=7
SU ≈ 1.2.

The inset of figure 2.15 demonstrates the largest correlation length ζD=4
FU ≈ 4.3 for

the 11 × 11 lattice. Notice that, here, we have not performed such an extensive
convergence analysis with D′ as we have done before for the Heisenberg Hamilto-
nian.16 Nevertheless, we want to emphasize that our correlation functions for the
21× 21 lattice are in perfect agreement with the best iPEPS results [66].

Remarkably, long correlation lengths can be analyzed, i.e. large clusters can be
contracted, with very high accuracy in the framework of PEPS. This constitutes
clear evidence for the power of general boundary MPO. They can capture the cor-
relations of a large cluster size δ with a boundary bond dimension much smaller
than the one needed for the exact contraction, D′ = D2δ.

16For the quantum Ising model and all considered transverse fields B, on the 11× 11 lattice, we ran
the FU with D′ = 8 for D = 2, D′ = 54 for D = 3, and D′ = 128 for D = 4, while on the 21× 21 lattice,
we ran the FU with D′ = 8 for D = 2, D′ = 36 for D = 3, and D′ = 128 for D = 4.
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Figure 2.15: Correlation function G(x) := 〈σZ
l σZ

l+x〉 − 〈σ
Z
l 〉〈σ

Z
l+x〉 for two sites

separated by distance x along the diagonal in the center of PEPS ground state ap-
proximations of the Ising model on a 21× 21 lattice with transverse field B = 3.0
(main) and on a 11× 11 lattice with B = 2.8 (inset). The results were obtained with
the FU using bond dimension D = 2 (plusses), 3 (crosses), and 4 (filled circles),
and with the SU using D = 4 (squares), 6 (diamonds), and 7 (open circles).

2.5 Conclusions

In this chapter we have reviewed various aspects that need to be taken into account
in the implementation of efficient state-of-the-art finite PEPS algorithms. Within
the two main parts of PEPS algorithms, namely the environment approximation
and the tensor update, we have analyzed algorithmic strategies that improve the
efficiency and stability of the procedures, and the physical properties of the solu-
tion.

The environment approximation has decisive influence on the precision of the
final PEPS of an imaginary time evolution, and is equally crucial for the computa-
tion of expectation values. We have shown how the accuracy of the cluster strategy,
which allows for a natural trade-off between precision and computational cost of
the environment, is fundamentally connected to the correlation length of the state.
Additionally, we have demonstrated that it is possible to make use of purifica-
tion MPO in order to ensure a positive environment approximation, and that this
overcomes the limitations of the single-layer algorithm [43]. The numerical tech-
niques analyzed in this problem can straightforwardly be applied to the cluster
update and to the full update, but also to other scenarios where a positive MPO is
required, e.g. to describe the mixed state of a one-dimensional system.

Not only the environment approximation, but also the method chosen for the
tensor update affects the cost and stability of the routines. We have proposed an
update scheme that is more efficient and better conditioned than the one from the
original algorithm [11,41]. By restricting the variational parameters to the reduced
tensor, the update is drastically accelerated. For both the reduced and the full ten-
sor, we have formulated gauge fixings that significantly improve the conditioning.
These gauge fixings, additionally, when combined with a cheap SVD, constitute a
promising simplified but fast tensor update procedure.

Finally, we have combined the ingredients discussed above in an efficient im-
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plementation of finite PEPS imaginary time evolution, capable of dealing with
large systems and bond dimensions. In particular we have opted for the sequential
application of Trotter gates, using general boundary MPO in the contraction of the
full environment,17 and restricting the update to the reduced tensors. To bench-
mark the performance of finite PEPS and to quantitatively assess the algorithmic
properties, we have applied the code to the ground state search for the Heisenberg
and the quantum Ising model.

We have presented ground state calculations for system sizes up to 21 × 21
and bond dimensions up to D ≈ 7, 8. Our results demonstrate the adequacy of
the PEPS ansatz for the description of strongly correlated quantum many-body
systems, with energy and order parameter converging fast with increasing bond
dimension, when they were obtained with the full update. In that case, thanks
to the algorithmic improvements developed in this chapter, we have been able
to achieve precisions of the spin-spin correlator in the Heisenberg model using
bond dimensions D = 6 and 7 that previously had only been attained using a
much larger D = 16 in reference [70]. Our analysis of a 21 × 21 quantum Ising
model gave, already without finite size scaling, critical point, critical exponent and
correlation functions in good agreement with the iPEPS results [17, 66].

The simple update [42] and the cluster update using small cluster sizes, while
ensuring a less costly environment and thus being able to deal with larger bond di-
mensions, do not produce the best ground state approximation for a certain value
of D, and, in particular, give rise to PEPS with limited correlation length, which
is especially relevant for strongly correlated systems as e.g. the Ising model close
to criticality. This makes clear that the largest bond dimension attained is not the
significant measure of the power of a PEPS algorithm.

By reaching system sizes typically considered for finite size scaling, we have
given evidence that finite PEPS, when all algorithmic details are taken into account,
offer a feasible unbiased alternative to their infinite counterpart iPEPS [17]. On the
other hand, the algorithmic methods proposed here can also be applied to iPEPS,
and the feasibility of large finite PEPS demonstrated here suggests that large unit
cells are possible in iPEPS, such that their potential bias due to a finite unit cell can
be well analyzed by systematically increasing the unit cell from small to very large
size.

Our analysis has been carried out with a generic implementation of PEPS algo-
rithms, so that one can expect that adapting the methods to the specific properties
of a certain problem will further enhance the performance. A particularly promis-
ing next step is to incorporate the symmetries of the considered Hamiltonian in
the tensors [100, 101], a key element of ground-breaking two-dimensional DMRG
studies, such as references [103, 104], and of seminal iPEPS calculations, such as
references [26, 99].

2.6 Appendix

2.6.1 Purification Approximations

Approximating the boundary by a purification MPO, as described in section 2.3.1,
requires the solution of nonlinear equations for each tensor Al . Different algo-
rithms can be used for this purpose, and we have tried and compared three meth-
ods.

17Notice that clusters could be beneficial in a parallel implementation as discussed in the previous
chapter.
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• Linearization: Instead of solving the equations for the product Al A∗l , we
solve them for Al Bl , treating Al and A∗l as independent tensors. In order
to achieve convergence, the change of the tensor in each iteration needs to be
small, and hence we construct the solution of the ith iteration according to
A(i)

l = (1− α)A(i−1)
l + αAl , where Al solves the linearized equations of the

previous iteration and is added to the previous solution A(i−1)
l with a weight

α. The latter parameter must be chosen small enough to guarantee a decreas-
ing cost function, and large enough to avoid unnecessarily long convergence
times.18 The construction of the individual parts of the linear equations has
the leading cost O(dD6D′′4) +O(D4D′′6). Because we cannot impose a kind
of canonical form that gives a trivial norm matrix Nl = 1, we have to ex-
plicitly contract its tensor network, which contributes a cost O(d′2D2D′′6).
Finally, computing the pseudoinverse to solve the linear equations requires
O(d′3D3D′′6) operations, which typically represent the dominant cost when
d′ ≥ D.

• Conjugate gradient: We employ a canned routine19 that comprises a con-
jugate gradient method with line minimization. It has the lowest compu-
tational cost, as it only requires the computation of the cost function and
its gradient with respect to a single tensor, which can be obtained with
O(dD6D′′4) +O(D4D′′6) operations.

• Newton method: It approaches a root of the gradient by iterating
H(i−1)

l (~A(i)
l − ~A(i−1)

l ) = −~G(i−1)
l , where H(i−1)

l denotes the Hessian matrix

and ~G(i−1)
l the gradient of the cost function with respect to the tensor com-

ponents at site l, evaluated with the solution A(i−1)
l of the previous itera-

tion.20 The Newton method has the advantage that the step width is natu-
rally given, in contrast to the linearized equations where α needs to be cho-
sen heuristically, and in contrast to the conjugate gradient routine where
it is determined via line search. In addition to the parts of the conjugate
gradient algorithm, the Newton method needs the Hessian matrix of the
cost function, which contributes O(d′2D2D′′6) to the cost, and its pseudoin-
verse, determined by O(d′3D3D′′6) operations, such that the leading cost
O(dD6D′′4) + O(D4D′′6) + O(d′3D3D′′6) is the same as for the linearized
problem.

To compare the different alternatives, we benchmarked their performance in
the search for an optimal purification with fixed D′′ = 2 and varying d′, given
a reference purification with D′′ = 4 and d′ = 4. The latter was constructed by
taking two rows from one edge of a PEPS norm TN, for several 11 × 11 D = 2
SU ground state approximations of the Ising model at various magnetic fields.
As a general rule, the initial tensors for the search with incremented purification
bond d′ + 1 were chosen as the previous solution for d′ where the extra elements
were filled with uniformly distributed random numbers. From the three consid-
ered algorithms, the Newton method performed best. It converged reliably for all
d′ within few local updates per tensor.

18We found that the optimization worked well if the initial value was α = 0.01 and was multiplied
by 0.8 whenever the cost function increased.

19For conjugate gradient minimization we use nag_opt_conj_grad from the NAG library [105].
20We observed that, occasionally, the Hessian matrix had many negative eigenvalues and then it was

crucial to include only the positive ones (above a certain cutoff) in the construction of its pseudoinverse.
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Figure 2.16: Gauge fixing on the environment tensors of the full tensor pair,
when the environment is non-separable. (a) The environment tensor NL of the
left full tensor. (b) We determine the positive approximant for the environment
of the left full tensor via a diagonalization of the Hermitian approximant ÑL :=
(NL + N†

L)/2 = UΣU†, in which, then, the negative eigenvalues are discarded in
Σ+, and, finally, the environment is written as X̃LX̃†

L in terms of its square root
X̃L := U

√
Σ+. (c) We perform three independent QR decompositions on X̃L. (d)

After equally having carried out the previous steps (a) to (c) with the right full
tensor, we have six different matrices R. Their inverses are contracted with the
corresponding tensors of the boundary MPO.

All the methods benefit from initial variables that are already close to the final
solution. A sensible numerical approach to purification approximations can then
be implemented in two steps: firstly, the computation of the optimal purification
via the SL algorithm [43], and secondly, the further optimization of that purifica-
tion via the Newton method.

2.6.2 Gauge Fixing for the Full Tensors

When the environment is non-separable, and the update of the full tensors is con-
sidered, gauge transformations can be efficiently computed in such a way that an
eigendecomposition of the D6 × D6 dimensional norm environment of the pair is
not necessary. Instead, the D4 ×D4 dimensional environments of the left (NL) and
right (NR) tensor are independently computed (figure 2.16 (a)) and replaced by
their positive approximants (figure 2.16 (b)) like in previous cases. Their square
roots are used to obtain the desired gauge transformations for each of the virtual
bonds of the pair (figure 2.16 (c)). On each virtual bond we then insert the corre-
sponding product R−1R and absorb the R matrices in the full tensors and their
inverses in the environment (figure 2.16 (d)).

The update of the full tensor pair proceeds in the way explained in figure 2.17,
analogously to the reduced tensor update. As in the latter context, if the environ-
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Model Positive approximant Gauge fixing
B = 1.0 Ising (2± 3) · 109 1.3± 0.2
B = 3.0 Ising (2± 2) · 104 2.9± 0.7
Heisenberg (1.3± 0.8) · 103 1.15± 0.05

Table 2.2: We show the mean condition number of the norm matrix with its stan-
dard deviation in the full tensor update, for D = 2 and the setting of table 2.1.

ment is separable, the tensor initialization figure 2.17 (a) to (c) already minimizes
the cost function, while, if the environment is close to separable, we can expect a
significant decrease of the cost function. In general, we can anticipate good starting
tensors for the following ALS sweeping.

Table 2.2 contains typical condition numbers of the norm matrix in the full ten-
sor update without our gauge fixing, using only the positive approximant, and
with our gauge fixing. Our gauge fixing improves the condition number drasti-
cally.

2.6.3 Finite PEPS Energies

Here we collect some precise energy values obtained with the PEPS ground state
approximations considered in this chapter.

In the case of the Heisenberg model, we compare our results to energies from
the quantum Monte Carlo loop algorithm of the ALPS library [84–86], summarized
in table 2.3. The presented values and errors correspond to temperature T = 10−4,
and they agree with the ones corresponding to T = 10−3 within the error bars.

10× 10 14× 14 16× 16 20× 20
-0.628656(2) -0.639939(2) -0.643531(2) -0.648607(1)

Table 2.3: Energy per site of the Heisenberg model on square lattices of various
sizes from quantum Monte Carlo, computed with the ALPS library [84–86].

D 10× 10 14× 14
2 -0.61310(2) -0.62631(1)
3 -0.61999(1) -0.63246(1)
4 -0.62637(2) -0.63832(3)
5 -0.62739(1) -0.63901(1)
6 -0.62774(1) -0.63930(1)

Table 2.4: Energy per site of PEPS Heisenberg ground state approximations from
the FU.
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Figure 2.17: Like in the reduced case of figure 2.9, the update of the full tensor pair
also consists of the three stages initialization, optimization, and final form. The op-
timization is the standard ALS sweeping, in which each full tensor is gauged after
its update in the standard way, i.e. the left tensor is QR decomposed along its right
virtual bond and the right tensor is LQ decomposed along its left virtual bond. (a)
Initialization I: Firstly, we contract the gauge transformations from figure 2.16 with
the full tensors, and split off their reduced parts. (b) Initialization II: Secondly, we
construct new reduced tensors from a SVD on the tensor pair and the Trotter gate,
equally sharing the D largest singular values between the left and right tensor. (c)
Initialization III: We recover the full tensors AL and AR, which are now the initial
tensors for the optimization via ALS sweeping. (d) Final form: After convergence
of the sweeping, we put the two tensors on the same footing.
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D 10× 10 14× 14 16× 16 20× 20
2 -0.61281(1) -0.62115(1) -0.62719(2) -0.63519(2)
3 -0.61846(2) -0.62977(1) -0.63433(1) -0.64056(2)
4 -0.62382(1) -0.63587(1) -0.63985(1) -0.64549(2)
5 -0.62520(2) -0.63713(2) -0.64106(1) -0.64659(2)
6 -0.62541(2) -0.63738(2) -0.64129(2) -0.64676(2)

Table 2.5: Energy per site of PEPS Heisenberg ground state approximations from
the SU.

D 2.0 2.5 2.8
2 -2.40075(1) -2.74230(2) -2.98947(5)
3 -2.40076(1) -2.74243(1) -2.99094(2)
4 -2.40076(1) -2.74243(1) -2.99099(1)

D 2.9 3.0 3.1
2 -3.07945(5) -3.17128(4) -3.26400(4)
3 -3.08071(1) -3.17210(1) -3.26457(1)
4 -3.08073(1) -3.17210(1) -3.26457(1)

D 3.2 3.5 4.0
2 -3.35744(4) -3.64097(3) -4.12064(2)
3 -3.35785(1) -3.64116(1) -4.12071(1)
4 -3.35785(1) -3.64116(1) -4.12071(1)

Table 2.6: Energy per site of 11× 11 PEPS Ising ground state approximations from
the FU for different transverse fields B.

D 2.0 2.5 2.8
2 -2.45219(1) -2.77340(2) -3.00705(4)
3 -2.45219(1) -2.77346(1) -3.00737(1)
4 -2.45219(1) -2.77346(1) -3.00737(1)

D 2.9 3.0 3.1
2 -3.09228(5) -3.18128(6) -3.27326(4)
3 -3.09287(1) -3.18242(1) -3.27406(1)
4 -3.09287(1) -3.18243(1) -3.27406(1)

D 3.2 3.5 4.0
2 -3.36617(4) -3.64849(3) -4.12685(2)
3 -3.36672(1) -3.64873(1) -4.12694(1)
4 -3.36672(1) -3.64873(1) -4.12694(1)

Table 2.7: Energy per site of 21× 21 PEPS Ising ground state approximations from
the FU for different transverse fields B.
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D 3.0
2 -3.1792(4)
3 -3.1806(4)
4 -3.1807(4)
5 -3.1812(5)
6 -3.1812(4)
7 -3.1814(5)

Table 2.8: Energy per site of 21× 21 PEPS Ising ground state approximations from
the SU for transverse field B = 3.0.
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Chapter 3

Density Functional Theory
Beyond the Local Density
Approximation

This chapter describes a completely different problem in which TNS tech-
niques can serve as a fundamental tool. In the context of density functional the-
ory (DFT), we develop a novel ansatz for the universal functional of Hohenberg
and Kohn [3] that can go beyond the local density approximation (LDA) in a sys-
tematic way. This is achieved by parametrizing the functional via increasingly
non-local terms. We describe a method that allows the determination of the op-
timal parameters for a set of ground state densities, and discuss its performance
for several Hubbard and Coulomb models in one dimension. The usage of MPS
enables us to exactly solve the chosen training set of problems before perform-
ing the optimization. While our analysis mainly aims at assessing the capability
of our ansatz to approximate the universal functional in different scenarios and
therefore mostly assumes already known exact ground state densities, we also
move one step further and demonstrate how our ansatz can be applied within
DFT to compute such densities. This chapter presents work in progress [106].

3.1 Introduction

Density functional theory (DFT) tackles interacting electron problems via the den-
sities instead of the wave functions. This is possible thanks to the fundamental
Hohenberg-Kohn theorem [3] which proves that for ground states of a large class of
interesting Hamiltonians the density determines the wave function. Ground state
observables that are naturally functions of the wave function are then expressed
as functions of the density, i.e., as density functionals. This concept has led to al-
gorithms that bridge the gap between the microscopic and the macroscopic and
allow the quantum mechanical analysis of realistic systems ranging from atoms
and molecules to solids and even plasmas [107, 108]. The Nobel Prize in Chem-
istry in 1998 was awarded for the development of DFT and related computational
methods [109], and the two initial publications [3] and [4] are the two most cited in
the history of Physical Review from 1893 to 2003 [110], each of them having over
15000 citations at the time of this writing in June 2014.

A central ingredient of DFT and its algorithms is the energy functional whose
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minimization gives the ground state energy and density [3]. It consists of two
parts: one that it is universal for all problems (with the same kinetic and inter-
action term in their Hamiltonians) and another that is special for the particular
problem at hand (and defined by the external potential term in its Hamiltonian).
While the second part takes on a simple form that is known, the first part captures
the entire complexity of the considered physical systems. In general, this first part,
called universal functional, is non-local as it depends on the density at all positions
in space, its precise form is not known and finding it is QMA-hard [111].

Therefore, in practical calculations efficient approximations of the universal
functional have to be used. The most famous of these is the local density approxima-
tion (LDA), in which the functional depends only on the density at the position co-
ordinate where it is evaluated. DFT has been enormously successful with the LDA
derived from the homogeneous electron gas. This system is defined in the thermody-
namic limit as the ground state of a uniform density of electrons with Coulomb
interactions whose negative charge is neutralized by a positively charged back-
ground. Because the density is the same at each point in space, the LDA leads to
an exact energy functional for this system. Such a LDA functional can also be ap-
plied to an inhomogeneous density, by evaluating its energy pointwise in space,
and this procedure works extremely well in many cases, what justifies the method
a posteriori. The final error of a LDA calculation, however, cannot be estimated
within the algorithm but necessitates a comparison with other methods or with
an experiment. Although there are many approaches that improve upon the LDA
(s., e.g., references [46–49, 112] and the review article [50] and references therein),
to the best of our knowledge, there exists no general scheme with a systematic
improvement and error estimates.

This chapter aims at such a scheme and is motivated by our knowledge about
Tensor Network States (TNS), which, typically, allow to systematically improve
results and estimate errors. In TNS methods, the accuracy of the approximation
can be increased by including more correlations in the ansatz, which is achieved
by increasing the dimensions of tensors. We want to investigate if TNS concepts
can be useful for DFT, and if a similar scheme can be devised where the non-local
contributions to the functional, that escape the LDA, can be gradually included.

Our analysis is carried out in a discretized one-dimensional space where exact
ground state energies and densities can be computed with Matrix Product State
(MPS) algorithms. Throughout this study we focus on the universal functional. We
first investigate its exact form for shorter Hubbard chains and, in that context, we
study the non-locality of the functional via a MPS approximation. Having larger
system sizes in mind for which the exact universal functional is not feasible, we
propose an efficient ansatz for its approximation that includes and goes beyond
the LDA. We first explain how our ansatz can be optimally determined when the
exact functional is known for discrete density values on a predefined density grid
and demonstrate its performance for short Hubbard chains. We then discuss how
our ansatz has to be modified for continuous density values by means of both
general polynomials as well as interpolating splines, and we show how both can
be optimally fitted to an arbitrary set of training densities. This constitutes the
basis of our general algorithm that we then apply to several paradigmatic larger
Coulomb problems. Finally, we show how our ansatz can be used to obtain ground
state densities, and we discuss potential improvements.
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3.1.1 Reader’s Guide

This chapter is organized as follows. Section 3.2 presents the necessary background
for this analysis, namely the DFT basics and the considered Hamiltonians. We be-
gin our discussion of different approximations for the universal functional in sec-
tion 3.3, first for shorter Hubbard chains and then for larger Coulomb problems.
The applicability of our functional ansatz to typical DFT problems is demonstrated
in section 3.4. Finally, section 3.5 summarizes our results and discusses possible re-
finements of our algorithm.

3.2 Background

3.2.1 DFT on a Lattice

In this section, the necessary DFT background for this chapter is presented in a
concise way. More comprehensive presentations can be found in reference [113]
for DFT in general and in reference [114] for DFT on a lattice.

Although DFT is widely used for realistic three-dimensional systems in the
continuum, we restrict ourselves here to a one-dimensional setting on a discrete
lattice, where we can obtain accurate ground state energies and densities for large
strongly correlated quantum many-body systems via our MPS algorithms. In this
scenario, we consider a system of fermions on a lattice of size L. The density is then
a function of the lattice site l, where l ∈ {1, 2, . . . , L}, and we simply write it as vec-
tor ~n := (n1, n2, . . . , nL)

t such that all density functionals are simply functions of
this vector.

Key functionals in DFT are the energy and the universal functional [3]. For their
derivation we assume a Hamiltonian

Ĥ = Ĥ0 + ∑
l

vl n̂l (3.1)

where Ĥ0 comprises the kinetic and interaction energy and the vl denote an exter-
nal local potential, and thus we have separated a part Ĥ0 that is the same for all
problems, with the same kinetic and interaction term, from a part that specifies the
considered problem. The precise form of Ĥ0 as well as of the occupation number
operator n̂l is not relevant for the general discussion here and will be defined for
the problems of this chapter in the next section. Denoting by |ψ~n〉 a wave func-
tion |ψ〉 having density ~n such that nl = 〈ψ|n̂l |ψ〉 holds for all components of the
density vector, the ground state energy E can be found via a minimization over
densities:

E = min
|ψ〉
〈ψ|Ĥ|ψ〉

= min
~n

(
min
|ψ~n〉
〈ψ~n|Ĥ|ψ~n〉

)
= min

~n

(
min
|ψ~n〉
〈ψ~n|Ĥ0 + ∑

l
vl n̂l |ψ~n〉

)
= min

~n

(
min
|ψ~n〉
〈ψ~n|Ĥ0|ψ~n〉+ ∑

l
vlnl

)
=: min

~n

(
F(~n) + ∑

l
vlnl

)
.
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Throughout this chapter, we assume that all wave functions are normalized to 1
(in particular, the preceding minimization was performed under this constraint).
So the energy functional

E(~n) := F(~n) + ∑
l

vlnl (3.2)

is defined in terms of the universal functional

F(~n) := min
|ψ~n〉
〈ψ~n|Ĥ0|ψ~n〉 (3.3)

in such a way that its minimization for a specific external potential ~v :=
(v1, v2, . . . , vL)

t gives the corresponding ground state density~n0 and energy E(~n0),
and

∂F
∂nl

∣∣∣
~n0

= −vl(~n0) (3.4)

holds (∀l ∈ {1, 2, . . . , L}).
An alternative to the direct minimization of the energy functional (3.2) is pro-

vided by the Kohn-Sham method [4]. The Kohn-Sham method maps the intractable
interacting quantum many-body problem of equation (3.1) to a tractable non-
interacting Kohn-Sham system:

ĤKS = T̂ + ∑
l

vKS
l n̂l , (3.5)

where the Kohn-Sham potential vKS
l is chosen to produce a ground state density

~n0 that coincides with the one of the interacting system. Assuming that such a
potential exists [113, 115], both the energy functional of the interacting, EI(~n) =
FI(~n) + ∑l vlnl , and of the non-interacting problem, ENI(~n) = FNI(~n) + ∑l vKS

l nl ,
are minimal at the same density ~n0, i.e., (∂EI/∂nl)|~n0

= 0 = (∂ENI/∂nl)|~n0
, and

thus:

∂FI

∂nl

∣∣∣
~n0

+ vl(~n0) = 0 =
∂FNI

∂nl

∣∣∣
~n0

+ vKS
l (~n0) .

We now introduce the functional

W(~n) := FI(~n)− FNI(~n) (3.6)

and conclude that the Kohn-Sham potential fulfills:

vKS
l (~n0) =

∂W
∂nl

∣∣∣
~n0

+ vl(~n0) . (3.7)

This potential generates the ground state density of the interacting problem, while
the ground state energy follows from:

EI(~n) = ENI(~n) + W(~n)−∑
l

∂W
∂nl

nl . (3.8)

So far, the developed DFT formalism is impractical because, in general, neither
F(~n) nor W(~n) is known exactly. Practical DFT algorithms are based on good ap-
proximations of these quantities. Because for many interesting applications better
approximations could be found for W(~n) than for F(~n), the Kohn-Sham algorithms
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are currently more widely used than the so-called orbital free methods whose goal
is a direct minimization of the energy functional (3.2). It is also important to realize
that when a problem is non-interacting and thus efficiently solvable, a Kohn-Sham
procedure immediately becomes exact, as can be appreciated from equations (3.7)
and (3.8), while an orbital free method unnecessarily complicates this situation as
it still requires a proper ansatz for FNI(~n). Nevertheless, we will henceforth study
approximations of both F(~n) and W(~n).

The famous LDA actually approximates the exchange-correlation energy
Exc(~n) := W(~n) − EH(~n) where EH(~n) denotes the known Hartree contribution
to the interaction. Here one hopes that a subtraction of all known terms finally
leads to a small remainder to be approximated such that its approximation error
has only a small effect on the final result. While the mean-field part EH can be
expected to play an important role in higher dimensions, this is not so clear for
the one-dimensional systems studied here, and thus we will not subtract it in our
approximations. The term W(~n) is called Hartree-exchange-correlation energy in the
literature and we adopt this notion in the following. The LDA ansatz takes on the
form

WLDA(~n) = ∑
l

w(nl) (3.9)

where w(n) comes from the exact ground state solution of the homogeneous elec-
tron gas in the thermodynamic limit for which this ansatz is exact.

3.2.2 Hamiltonians

In this analysis, we consider two paradigmatic models for interacting electrons,
namely a Hubbard Hamiltonian

Ĥ = −t ∑
l,σ
(c†

l,σcl+1,σ + c†
l+1,σcl,σ) + U ∑

l
n̂l,↑n̂l,↓ + ∑

l
vl n̂l (3.10)

and a Coulomb Hamiltonian

Ĥ = −t ∑
l,σ
(c†

l,σcl+1,σ + c†
l+1,σcl,σ) + U ∑

l≤m

n̂l n̂m√
(l −m)2 + 1

+ ∑
l

vl n̂l . (3.11)

They shall describe two species of fermions, σ ∈ {↑, ↓}, on a lattice of length L,
with lattice site index l ∈ {1, 2, . . . , L}, and with operators for annihilation, cl,σ,
creation, c†

l,σ, and number, n̂l,σ = c†
l,σcl,σ and n̂l = n̂l,↑ + n̂l,↓. The fermions can hop

from one lattice site to a neighboring one via the tunneling element t, interact via
interaction U, and they experience an external potential via the vl .

These Hamiltonians are very often used for the theoretical analysis of realistic
systems of Coulomb interacting electrons. The Hubbard model assumes local in-
teractions, which might be justified for materials in which the screening effect is
very strong. In the Coulomb model, a soft-Coulomb, ∝ 1/

√
(l −m)2 + 1, replaces

the true Coulomb interaction, ∝ 1/
√
(l −m)2, in order to circumvent any prob-

lems related to the singularity at l = m.
We will compute ground states with the help of MPS algorithms and thus re-

strict ourselves to one dimension and open boundary conditions. In our computa-
tions, the desired total particle number is obtained by adjusting a chemical poten-
tial term−µ ∑l n̂l that is also part of the above Hamiltonians and that we implicitly
included in the external potential. All the following discussion will be based upon
the density operator n̂l = n̂l,↑+ n̂l,↓ corresponding to the total density, and we will
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not resolve its individual components n̂l,↑ and n̂l,↓ (s., e.g., reference [116] on the
role of spin in DFT).

3.3 Searching for Approximations Beyond the LDA

The universal functional F(~n) (3.3) and the Hartree-exchange-correlation energy
W(~n) (3.6) are functions of the density vector ~n which has L entries n1, n2, . . . ,
nL where nl is the density at lattice site l. We can see both density functionals as
tensors with L indices that take on continuous values, i.e., as objects of the form F~n
and W~n.

We will first look at shorter Hubbard chains which allow an exact computation
of F~n and W~n for discretized density values in a wide range. This enables us to
investigate an approximation by MPS. We then propose a functional ansatz for
continuous density values and large systems. After showing how the optimal form
of this ansatz is fitted when the exact density functional tensors are known, we
move on to larger Coulomb problems and demonstrate how that optimal fitting is
performed when only an arbitrary set of training densities is provided.

3.3.1 Shorter Hubbard Chains

In this section, we first construct the exact density functional tensors F~n and W~n
for equations (3.3) and (3.6), and then study different approximations for them.
We focus on shorter Hubbard chains, Hamiltonian (3.10), for which we compute
exact ground states by means of Lanczos. Because we approach this problem and
compute ground states numerically, we can only take into account a finite total
number of ground state densities in the construction of F~n and W~n. We thus define
a discrete density by values nmin and nmax and R such that the interval [nmin, nmax]
is divided into R− 1 intervals.

In this section, we choose these R points such that they lie equidistantly to
each other. Imposing the same density grid at each lattice site l yields RL possible
density vectors ~n of which, however, only those leading to integer total particle
number N = ∑l nl are relevant here. We store the corresponding < RL values
of the universal functional and the Hartree-exchange-correlation energy in the RL

dimensional tensors F~n and W~n.

Inversion

For a given density vector ~n, the corresponding value W(~n), equation (3.6), fol-
lows from the two independent values of the universal functional for the interact-
ing, FI(~n), and non-interacting system, FNI(~n). For either system, we extract the
corresponding value F(~n) from the energy functional (3.2) via subtraction of the
potential energy:

F(~n) = E(~n)−∑
l

vlnl . (3.12)

For given~n we have to find the external potential~v(~n) that gives rise to this ground
state density. The corresponding ground state energy is the value E(~n). Since the
tools we have at hand (exact diagonalization, MPS) allow us to solve the direct
problem, i.e., given an external potential, to find the density and energy of the
corresponding ground state, we need to perform an inversion [117]. The existence
of such a potential ~v(~n), although not guaranteed for all~n, can be expected for the
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physically motivated densities considered here. In fact, for each considered target
density, we checked explicitly that the obtained corresponding potential leads to a
ground state density close to the target within machine precision.

We use an inversion procedure similar to the one proposed in [118]. Given a
target density ~ntarget, we find the corresponding potential iteratively, such that in
iteration i the ground state density ~n(i) of the potential ~v(i) determines the next
potential

~v(i + 1) = ~v(i) + α(i)(~n(i)−~ntarget)

where α(i) > 0 is a function that accelerates the convergence in the following way:
In each iteration i we compute the ground state for α(i) = q · α(i − 1) and for
α(i) = α(i − 1)/q for an initially specified q > 0, and then we take the α(i) and
following density~n(i) that give the smaller density error ||~n(i)−~ntarget||. We tried
several values of q and of the initial α(0), and the choice q = 0.9 and α(0) = 0.5
performed best. In all results discussed here, the density error is guaranteed to be
below 10−14, and convergence to this value was typically achieved within ≈ 100
iterations.

In the following, we determine the exact tensors F~n and W~n for half-filled Hub-
bard chains of on-site interaction U = 0.0, 0.1, and 1.0. To access a possible de-
pendence on lattice size and density grid, we consider two different system sizes
and for each system size we analyze two different density grids. We study a sys-
tem of length L = 4 and particle number N = 4 with R = 13 on the intervals
nl ∈ [0.8, 1.2] and ∈ [0.4, 1.6], and a L = 6 = N system with R = 5 on the in-
tervals nl ∈ [0.8, 1.2] and ∈ [0.6, 1.4]. These intervals are chosen to mimic both
the situation of very smooth potentials, i.e. nl ∈ [0.8, 1.2], and the situation of less
smooth potentials, i.e. nl ∈ [0.4, 1.6] and nl ∈ [0.6, 1.4]. After having obtained the
exact tensors F~n and W~n, we investigate several approximations for them that we
denote by G~n for F~n and H~n for W~n. The respective relative approximation errors
read εF := ∑~n |G(~n)− F(~n)|/ ∑~n |F(~n)| and εW := ∑~n |H(~n)−W(~n)|/ ∑~n |W(~n)|.

MPS Approximation

A MPS with a bond dimension D growing at most polynomially with the system
size represents an efficiently storable tensor network, in which the complexity cor-
responds to increasing non-locality. The exact density functional tensors F~n and
W~n are not efficiently storable since their number of entries RL grows exponen-
tially with the lattice size. But we can ask ourselves if these tensors could be well
approximated by MPS of small bond dimension, i.e., if the non-locality in F~n and
W~n has the right pattern so that their information has an efficient approximated
encoding.

We obtain the optimal MPS approximation of bond dimension D for the ten-
sors F~n and W~n by means of successive truncated singular value decompositions
[119, 120]. Figure 3.1 shows the relative errors εF and εW for MPS approximations
as a function of their bond dimension, for a selection of analyzed cases. In all an-
alyzed cases, we could always make out two separate regimes for D: For small D,
the approximation error is independent of the interaction strength U and decreases
slower than exponentially, and for large D, the error depends on U and decreases
exponentially. Moreover, for large D, the relative error is always greater for greater
values of U, and, for a given value of U, εW is always smaller than εF. The two
regimes are separated at a specific value of the bond dimension that seems to de-
pend only on R. For fixed R = 5, we can compare figure 3.1(c) for L = 4 = N
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Figure 3.1: Relative errors εF and εW for MPS approximations as a function of the
MPS bond dimension D. We consider a grid of R = 5 values of nl ∈ [0.8, 1.2] for
L = 6 = N (a), nl ∈ [0.6, 1.4] for L = 6 = N (b), and nl ∈ [0.6, 1.4] for L = 4 = N
(c). The interaction strengths are U = 10.0 (solid line), U = 0.1 (dashed line), and
U = 0 (dotted line).

with figure 3.1(b) for L = 6 = N and conclude that a given value of D leads to
very similar approximation errors for both system sizes. These results have to be
compared to the largest bond dimensions possible for these cases, RL/2, namely
125 and 25. We observe that a relative error below 10−3 is attained from D ≥ 15
in both cases. This points out the possibility of an efficient MPS approximation for
the exact functionals, although a scaling study with larger chains would be needed
for a rigorous statement.

Our construction of the MPS approximation for F~n and W~n via successive trun-
cated singular value decompositions becomes more difficult when the system size
increases. In fact, the computational cost of the initial singular value decompo-
sitions in this procedure grows exponentially with the number of lattice sites L.
Reference [120] presents an algorithm that constructs a MPS approximation of a
black-box tensor, i.e., which can be efficiently evaluated for any values of its pos-
sibly large number of indices. Because both F~n and W~n are such black-box tensors
which can be calculated efficiently for any density vector ~n by means of the in-
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version procedure described above, we tried an open-source Matlab implemen-
tation of the scheme [120] which is accessible online [121]. We observed that the
code [121] performed extremely well when we searched for a MPS approximation
of a black-box tensor having MPS form. However, when our considered black-box
tensor deviated from an exact MPS, the computations ran much longer and we
were not able to obtain MPS approximations for large L within reasonable amounts
of time.

Our Ansatz

Therefore, we now propose an alternative approximation ansatz that allows us to
include non-local correlations in a controlled way, namely

G(~n) =
X

∑
x=0

L−x

∑
l=1

gx,l(nl , nl+x) (3.13)

for the functional F(~n) and similarly H(~n) in terms of hx,l(nl , nl+x) for W(~n). Our
ansatz in equation (3.13) comprises terms of different range x, starting at x = 0
and stopping at the maximal range x = X which can be at most X = L− 1. The
local terms for x = 0, gx=0,l(nl), are in the spirit of the LDA while the non-local
terms for x > 0, gx>0,l(nl , nl+x), extend beyond the LDA and shall capture more
non-locality of the true density functional. At the same time, our ansatz is efficient,
as its defining tensor gx,l(nl , nl+x) = gnl ,nl+x

x,l always has less than R2L2 entries.
We want to analyze the performance of our ansatz as a function of the maximal

range X. For that we have to find the optimal tensor gx,l(nl , nl+x) = gnl ,nl+x
x,l that

minimizes the distance ∑~n |F~n − ∑x,l gnl ,nl+x
x,l |2. This least squares problem can be

recast into a system of linear equations C~g = ~F, where ~g results from vectorizing
all N < R2L2 components of gnl ,nl+x

x,l , ~F from vectorizing all M < RL non-zero
elements of F~n, and C is aM×N dimensional matrix whose non-vanishing entries
all have the value 1 and establish the correct correspondence between the left-
and right-hand side of the linear equations. Under the assumption M ≥ N our
problem is solved by ~g = C−1~F with the help of the pseudoinverse C−1.

We first focus on the smooth training densities for nl ∈ [0.8, 1.2]. Tables 3.1
and 3.2 show the approximation errors of our ansatz with different values of the
maximal range X for different interaction strengths U. For given U, both εF and εW
decrease rapidly with increasing X until X = 2 is reached, beyond which no sub-
stantial improvement occurs anymore. For given X, both relative errors increase
when the interaction strength U increases. For fixed values of X and U, εW is al-
ways smaller than εF. The local terms alone, i.e., X = 0, lead to a relative error
εF ≈ 10−2 for G(~n) that varies only slightly for different U, while they give a rel-
ative error εW ≈ 10−3 for H(~n) when U = 1.0 and εW ≈ 10−4 when U = 0.1.
Including the long-range terms, i.e., X > 0, improves all approximation errors by
at least an order of magnitude when X = 2. Since these statements hold equally
for both system sizes L = 4 = N and L = 6 = N, we can hope that our ansatz in
equation (3.13) provides an efficient approximation for the true tensors F~n and W~n
when the system size increases.

We can additionally look at the functional form of our solution by plotting the
obtained tensor elements, gnl ,nl+x

x,l , for different values of x and l as functions of nl

and nl+x, gx,l(nl , nl+x). Here, we consider the tensor gnl ,nl+x
x,l resulting from a fit of

our ansatz in equation (3.13) with X = L− 1, i.e., including all terms of all possible
ranges x. The local terms for x = 0 are shown in figure 3.2 for L = 4 = N. We
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(a) X U = 0.0 U = 0.1 U = 1.0
0 8.8 · 10−3 9.0 · 10−3 1.2 · 10−2

1 3.7 · 10−5 3.8 · 10−5 5.8 · 10−5

2 6.3 · 10−6 6.4 · 10−6 9.7 · 10−6

3 6.1 · 10−6 6.3 · 10−6 9.4 · 10−6

(b) X U = 0.1 U = 1.0
0 9.8 · 10−5 1.8 · 10−3

1 4.0 · 10−6 4.3 · 10−5

2 6.3 · 10−7 6.6 · 10−6

3 6.1 · 10−7 6.4 · 10−6

Table 3.1: Relative error εF (a) and εW (b) for L = 4 = N and our ansatz with
different values of the maximal range X on a grid of R = 13 values of nl ∈ [0.8, 1.2].

(a) X U = 0.0 U = 0.1 U = 1.0
0 7.0 · 10−3 7.2 · 10−3 9.2 · 10−3

1 1.8 · 10−3 1.8 · 10−3 2.1 · 10−3

2 4.4 · 10−4 4.5 · 10−4 5.5 · 10−4

5 4.3 · 10−4 4.4 · 10−4 5.5 · 10−4

(b) X U = 0.1 U = 1.0
0 1.3 · 10−4 2.0 · 10−3

1 5.5 · 10−5 5.5 · 10−4

2 1.8 · 10−5 1.9 · 10−4

5 1.8 · 10−5 1.9 · 10−4

Table 3.2: Relative error εF (a) and εW (b) for L = 6 = N and our ansatz with
different values of the maximal range X on a grid of R = 5 values of nl ∈ [0.8, 1.2].

observe that they all feature the same functional behavior ∝ (nl − 1)2. Figure 3.3
shows examples of non-local terms for x > 0 when L = 4 = N. While the non-
local terms of G(~n) behave as gx,l(nl , nl+x) ∝ (nl − 1)(nl+x − 1), the ones of H(~n)
behave as hx,l(nl , nl+x) ∝ −(nl − 1)(nl+x − 1). This holds for all non-local terms,
as we checked explicitly. We similarly carried out this analysis for L = 6 = N and
obtained exactly the same functional forms as for L = 4 = N.

The observed functional behavior can be very well understood taking into ac-
count that, so far, we have only considered smooth training densities for L = N
where nl ∈ [0.8, 1.2]. In this case, every training density departs only slightly from
the homogeneous situation for L = N where nl = 1 on every site l. If we denote
the latter homogeneous density by~n0 = (1, 1, . . . , 1)t, a second-order Taylor series
expansion of the universal functional F(~n) around~n0 gives

F(~n) ≈ F(~n0) + ∑
l

∂F
∂nl

∣∣∣
~n0
(nl − 1) +

1
2 ∑

l,m

∂2F
∂nl∂nm

∣∣∣
~n0
(nl − 1)(nm − 1)

≈ F(~n0)−∑
l

vl(~n0)(nl − 1) +
1
2 ∑

l,m

∂2F
∂nl∂nm

∣∣∣
~n0
(nl − 1)(nm − 1)

where we have used the fact that (∂F/∂nl)|~n0
= −vl(~n0) from equation (3.4).

Since the dependence ∝ (nl − 1) is not visible in our solutions, we conjecture that
vl(~n0) ≈ 0 for the Hubbard model with L = N.

We now consider the less smooth training densities for nl ∈ [0.4, 1.6] in the
L = 4 = N case and for nl ∈ [0.6, 1.4] in the L = 6 = N case. The approxi-
mation errors of our ansatz are collected in the tables 3.3 and 3.4. Compared to
the smooth training densities, qualitatively, our results here lead to the same con-
clusions, while quantitatively, the errors here are slightly larger. In particular, the
significant improvement with increasing X, and the low values εF ≈ 0.004 and
εW ≈ 0.001 attained for X = 2 in all cases at least, support the validity of our
ansatz.

The functional form of our solution for the less smooth training densities re-
veals deviations from the second-order Taylor series expansion that well describes
our solution for the smooth training densities. This can be seen in figure 3.4 for



3.3 Searching for Approximations Beyond the LDA 73

0,8 0,9 1 1,1 1,2

-1

-0,8

-0,6

-0,4

-0,2

0

0,8 0,9 1 1,1 1,2

-1

-0,8

-0,6

-0,4

-0,2

0

0,8 0,9 1 1,1 1,2
0

0,1

0,2

0,3

0,8 0,9 1 1,1 1,2
0

0,1

0,2

0,3

Figure 3.2: gx=0,l(nl) and hx=0,l(nl) for lattice sites l = 1, 2, and L = 4 = N,
obtained from a grid of R = 13 values of nl ∈ [0.8, 1.2]. The considered interaction
strengths are U = 1.0 (solid line), U = 0.1 (dashed line), and U = 0 (dotted line).
The curves for lattice sites l = 3 and 4 (not shown) coincide with the ones for l = 2
and 1 respectively.

(a) X U = 0.0 U = 0.1 U = 1.0
0 4.7 · 10−2 4.8 · 10−2 6.2 · 10−2

1 1.9 · 10−3 1.9 · 10−3 2.8 · 10−3

2 5.1 · 10−4 5.2 · 10−4 7.1 · 10−4

3 5.0 · 10−4 5.2 · 10−4 7.0 · 10−4

(b) X U = 0.1 U = 1.0
0 1.1 · 10−3 7.2 · 10−3

1 1.6 · 10−4 9.2 · 10−4

2 1.9 · 10−5 1.9 · 10−4

3 1.3 · 10−5 1.4 · 10−4

Table 3.3: Relative error εF (a) and εW (b) for L = 4 = N and our ansatz on a grid
of R = 13 values of nl ∈ [0.4, 1.6].

(a) X U = 0.0 U = 0.1 U = 1.0
0 2.1 · 10−2 2.1 · 10−2 2.6 · 10−2

1 5.8 · 10−3 6.0 · 10−3 7.2 · 10−3

2 3.5 · 10−3 3.6 · 10−3 4.4 · 10−3

5 3.5 · 10−3 3.6 · 10−3 4.4 · 10−3

(b) X U = 0.1 U = 1.0
0 4.0 · 10−4 2.9 · 10−3

1 2.4 · 10−4 1.8 · 10−3

2 1.4 · 10−4 1.3 · 10−3

5 1.4 · 10−4 1.2 · 10−3

Table 3.4: Relative error εF (a) and εW (b) for L = 6 = N and our ansatz on a grid
of R = 5 values of nl ∈ [0.6, 1.4].



74 DFT Beyond the LDA

-0.09

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

-0.09
-0.08
-0.07
-0.06
-0.05
-0.04
-0.03
-0.02

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

Figure 3.3: gx=1,l=2(n2, n3) and hx=1,l=2(n2, n3) for L = 4 = N and U = 1.0,
obtained from a grid of R = 13 values of nl ∈ [0.8, 1.2].
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Figure 3.4: gx=0,l(nl) and hx=0,l(nl) for lattice sites l = 1, 2, and L = 4 = N,
obtained from a grid of R = 13 values of nl ∈ [0.4, 1.6]. The considered interaction
strengths are U = 1.0 (solid line), U = 0.1 (dashed line), and U = 0 (dotted line).
The curves for lattice sites l = 3 and 4 (not shown) coincide with the ones for l = 2
and 1 respectively.

x = 0 and in figure 3.5 for x > 0, for a selection of L = 4 = N results. We ob-
serve that in the central region of nl close to 1, all terms behave like the ones from
the smooth training densities, while in the boundary region of nl close to nmin or
nmax, the terms deviate from the second-order Taylor series expansion. Again, we
equally analyzed the L = 6 = N case which lead to the same conclusions as the
L = 4 = N case.

Polynomial Interpolation

Up to now, we considered our ansatz in equation (3.13) to be a tensor gnl ,nl+x
x,l with

four indices labelled by x, l, nl , and nl+x. Since such indices can only take on dis-
crete values, our tensor ansatz can only be optimally determined for training den-
sities ~n on a predefined density grid and applied to target densities on the same
density grid. Obviously, it would be desirable to have a functional form of our
ansatz that would enable us to evaluate our ansatz at target densities having a
continuous range of values. Moreover, a differentiable form of our ansatz would
be especially helpful, because both orbital free and Kohn-Sham methods benefit
from well-defined and computable derivatives.

These desired properties are fulfilled by a polynomial ansatz in equation (3.13),
in which the local terms are general polynomials of degree γ0,

gx=0,l(nl) :=
γ0

∑
sl=0

gsl
x=0,ln

sl
l , (3.14)
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Figure 3.5: gx=1,l=2(n2, n3) and hx=1,l=2(n2, n3) for L = 4 = N and U = 1.0,
obtained from a grid of R = 13 values of nl ∈ [0.4, 1.6].
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and the nonlocal terms are general polynomials of degree γ1,

gx>0,l(nl , nl+x) :=
γ1

∑
sl ,sl+x=0

gsl ,sl+x
x>0,l nsl

l nsl+x
l+x . (3.15)

Assuming this ansatz, we have to determine the optimal tensors gsl
x=0,l and gsl ,sl+x

x>0,l
such that the distance ∑~n |F~n − ∑l(∑sl

gsl
x=0,ln

sl
l + ∑x>0 ∑sl ,sl+x

gsl ,sl+x
x>0,l nsl

l nsl+x
l+x |

2 is
minimal. Again, we reformulate this least squares problem as a system of linear
equations C~g = ~F, where ~g is a vector of all N possible values of the coefficient
tensors gsl

x=0,l and gsl ,sl+x
x>0,l , ~F is a vector of allM values of F~n corresponding to the

considered M training densities, and C is a M×N dimensional matrix whose
non-vanishing entries are the values of nsl

l and of nsl
l nsl+x

l+x evaluated for the train-
ing densities.

In order to assess the usefulness of such a polynomial ansatz, we now analyze
its approximation of the exact tensor F~n corresponding to L = 4 = N, U = 0.1, and
a grid of R = 13 values of nl ∈ [0.8, 1.2]. We can understand the restrictions of our
polynomial ansatz if we compare our results here to the ones that we previously
obtained when our ansatz was a general tensor. We find that, for a fixed value
of X, when γ0 and γ1 increase, the relative error εF always quickly approaches
the minimum error reached for our ansatz without polynomial constraints. E.g.,
already with γ0 = 4 and γ1 = 4, we get εF(X = 0) = 8.9673335 · 10−3, εF(X = 1) =
6 · 10−5, εF(X = 3) = 4 · 10−5, where the corresponding results obtained without
polynomial constraints read εF(X = 0) = 8.9673328 · 10−3, εF(X = 1) = 4 · 10−5,
εF(X = 3) = 6 · 10−6. However, the functional form does not converge to the one
obtained without polynomial constraints.

The latter aspect can be fixed if we restrict the general polynomial ansatz of
equations (3.14) and (3.15) to the form of the above Taylor series expansion, such
that the local terms satisfy

gx=0,l(nl) :=
γ0

∑
sl=0

gsl
x=0,l(nl − 1)sl (3.16)

with sl ∈ {0, 2, 4, . . . , γ0} and the nonlocal terms satisfy

gx>0,l(nl , nl+x) :=
γ1

∑
sl ,sl+x=1

gsl ,sl+x
x>0,l (nl − 1)sl (nl+x − 1)sl+x (3.17)

with sl + sl+x ∈ {2, 4, . . . , 2γ1}. Running sl and sl + sl+x only over even num-
bers guarantees that we recover the above second-order Taylor series expansion
for γ0 = 2 and γ1 = 1. Given a set of training densities, the optimal tensors
gsl

x=0,l and gsl ,sl+x
x>0,l follow from the same procedure as used above for the general

polynomial ansatz. As in this case, we consider an approximation of the exact ten-
sor F~n corresponding to L = 4 = N, U = 0.1, and a grid of R = 13 values of
nl ∈ [0.8, 1.2]. We observe that the approximation errors basically coincide with
the ones attained above for the general polynomial ansatz. However, now the
functional form converges to the desired best one obtained without polynomial
constraints, s. figure 3.6 for a L = 4 = N example.

3.3.2 Larger Coulomb Problems

In order to move on to more realistic problems, this section departs from the sce-
nario of the previous section in two respects. On the one hand, we now investi-
gate fermions with a Coulomb interaction, Hamiltonian (3.11), which represents
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Figure 3.6: gx=0,l(nl) for lattice sites l = 1 and 2. We compare the exact solution
(thick solid line), obtained without polynomial constraints, to the polynomial solu-
tions for X = 0 and γ0 = 2 (dotted line), 4 (dashed-doubledotted line), 6 (dashed-
dotted line), and 100 (dashed line). Our polynomial solutions all lie on top of each
other. The curves for lattice sites l = 3 and 4 (not shown) coincide with the ones
for l = 2 and 1 respectively.

the typical situation of DFT calculations. On the other hand, we now aim at larger
lattices and compute (quasi) exact ground states with our MPS algorithms. The
ultimate motivation for our analysis of larger system sizes comes from the fact
that DFT commonly treats continuous space, which we can approximate via dis-
cretization with a fine grid, leading to a Hamiltonian (3.11) defined on a large lat-
tice. Consequently, in the following, we do not have access to the exact tensors
F~n and W~n for all possible training densities ~n anymore, but, rather, a limited set
of solutions F(~n) and W(~n) for training densities ~n arising from a certain class of
physically relevant problems. For such given training set, we recover the optimal
parameters for an ansatz of the form (3.13). As in the previous section, the func-
tionals are required to provide energies for continuous values of the density in the
allowed range and hence an interpolation scheme is needed. In the following, we
describe the splines method we have used to this end, which is more general than
the polynomial ansatz.

Spline Interpolation

In the preceding section, we argued that our ansatz (3.13) should be defined and
differentiable for a continuous range of density values. We have seen that a poly-
nomial interpolation satisfies these criteria, but, in general, does not lead to the
correct functional form. While we could correct that for smooth training densities,
for which we knew the correct polynomial form from a Taylor series expansion,
such kind of correction is not feasible when the correct polynomial form is not
known a priori, which is the case, in general, for less smooth training densities. It
is well-known that an interpolation by a polynomial of high degree often does not
recover the true form of the fitted function and that, in this regard, an interpolation
by splines can perform better. Thus, from now on, we formulate and analyze our
ansatz (3.13) in terms of splines.

The standard spline approach. In order to introduce the standard definition of
cubic splines considered here as well as the corresponding fitting and evaluation
procedure [122], we first describe the procedure for a univariate function g̃(n),
which could correspond, e.g., to each of the local terms in our ansatz, gx=0,l(nl).
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Assuming that the value of g̃(n) is known at R grid points nmin := n1 < n2 <
. . . < nR =: nmax, i.e., g̃(n) takes on known values yi at the grid points ni, then a
spline interpolation has the form:

g(n) =


g1(n), if n1 ≤ n < n2

g2(n), if n2 ≤ n < n3
...

gR−1(n), if nR−1 ≤ n ≤ nR ,

(3.18)

where each gi(n) = ai,0 + ai,1(n− ni) + ai,2(n− ni)
2 + ai,3(n− ni)

3 is a polynomial
of degree three for the cubic splines considered here. The parameters of the spline,
ai,j, have to be such that g(ni) = yi at the grid points ni and the function, g(n), and
its first and second derivative, g′(n) and g′′(n), are continuous in the complete
range of allowed values of n ∈ [nmin, nmax]. It turns out that a cubic splines inter-
polation is uniquely defined when all values of yi and additionally the two values
of g′′(n) at n1 and nR are specified. A common choice is to set g′′(n1) = 0 = g′′(nR),
in which case the function behaves like a straight line at its endpoints n1 and nR,
and we will only discuss this so-called natural spline in the following.1

After vectorizing the desired parameters ai,j in~a := (a1,0, a1,1, a1,2, a1,3, a2,0,
a2,1, . . . , aR−1,3)

t and the given values yi in ~y := (y1, y2, . . . , yR)
t, we can express

the solution of our splines interpolation as a matrix vector multiplication:

~a = (C1 + C2C−1
3 C4)~y . (3.19)

The non-vanishing entries of the four matrices C1 to C4 depend only on the grid
spacings hi := ni+1 − ni in the following way:

(C1)(i,j) := δi,4(j−1)+1 −
1
hj

δi,4(j−1)+2 +
1

hj−1
δi,4(j−2)+2

(C2)(i,j) := −
hj+1

3
δi,4j+2 −

hj

6
δi,4(j−1)+2 +

1
2

δi,4j+3 −

1
6hj+1

δi,4j+4 +
1

6hj
δi,4(j−1)+4

(C3)(i,j) := hiδi,j+1 + 2(hi + hi+1)δi,j + hi+1δi,j−1

(C4)(i,j) :=
6
hi

δi,j − 6(
1
hi

+
1

hi+1
)δi,j−1 +

6
hi+1

δi,j−2 ,

where the dimension of C1 is 4(R − 1) × R, C2 is 4(R − 1) × (R − 2), C3 is (R −
2)× (R− 2), and C4 is (R− 2)× R.

Having calculated the spline coefficients ~a, we can evaluate our solution g(n)
of equation (3.18) at an arbitrary density value n in [nmin, nmax]. For that, we have
to find the interval i enclosed by grid points ni and ni+1 such that ni ≤ n < ni+1.
The cubic polynomial corresponding to this interval i is defined by the coefficients
ai,0, ai,1, ai,2, and ai,3, which are listed in~a on positions 4(i− 1) + 1 to 4(i− 1) + 4 in
this consecutive order. If we introduce a vector ~ni of the same dimension 4(R− 1)
as~a and with zero entries everywhere but on positions 4(i− 1) + 1 to 4(i− 1) + 4
where its elements are 1, n− ni, (n− ni)

2, and (n− ni)
3 in this sequence, then the

value g(n) of our spline solution at density n takes on the form

g(n) = ~nt
i ·~a . (3.20)

1An adaptation of our discussion to the two alternative choices [122] that we have also implemented,
namely, g′′(n1) = g′′(n2) and g′′(nR) = g′′(nR−1) (parabolic runout spline), and g′′(n1) = 2g′′(n2) −
g′′(n3) and g′′(nR) = 2g′′(nR−1)− g′′(nR−2) (cubic runout spline), is straightforward.
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Our spline approach for the local terms. The form of equation (3.20) provides an
alternative approach for fitting a splines function that will become the basis of our
fit when the ansatz (3.13) is formulated in terms of splines. In this alternative ap-
proach, we consider an arbitrary function f (n) of which we know the values f (nk)
forM training densities nk, and we want to determine the optimal splines function
g(n) of equation (3.18) that minimizes the distance ∑Mk=1 | f (nk)− g(nk)|2. Here, for
g(n), both the number of grid points, R, and their positions, n1 < n2 < . . . < nR,
are parameters of choice in our ansatz, independent of the training densities nk.
For a choice of the density grid, we will be searching theN = 4(R− 1) parameters
~a of the optimal g(n). As in our previous fits (s. discussion after equation (3.13) as
well as after equations (3.14) and (3.15)), we vectorize the known function values
~f := ( f (n1), f (n2), . . . , f (nM))t and replace the least squares problem by a sys-
tem of linear equations C~a = ~f , where theM×N dimensional matrix C holds in
row k the transposed vector ~nt

k of equation (3.20) corresponding to training den-
sity nk. ForM ≥ N , the minimum of the least squares problem is attained when
~a = C−1~f , by means of the pseudoinverse C−1.

This procedure can be directly generalized to fit our ansatz (3.13) for X = 0, i.e.,
consisting of the sum of L local terms gx=0,l(nl) only, and we can drop the index
x here. In that case, different vectors ~al of spline coefficients define the different
functions gl(nl), and, for simplicity, we impose the same grid on each lattice site
l. Notice, nevertheless, that the density values do not need to be uniformly dis-
tributed in the given interval. We concatenate all the vectors ~al for l = 1, 2, . . . , L
in the 4(R− 1)L dimensional vector~a := (~at

1,~at
2, . . . ,~at

L)
t. Our goal is to determine

the elements of~a such that, givenM training densities~n for which F(~n) is known,
the distance ∑Mi=1 |F(~n) − ∑L

l=0 gl(nl)|2 is minimized. As before, we vectorize the
M known values F(~n) in ~F and substitute the least squares problem by a system
of linear equations C~a = ~F. TheM×N dimensional matrix C now stores in row
i the 4(R− 1)L dimensional transposed vector~nt

i,l , which is a concatenation of the
L transposed vectors ~nt

l of the form (3.20) for l = 1, 2, . . . , L, where ~nt
l corresponds

to the lth entry nl of the ith training density ~n. By providing enough training den-
sities, we ensure thatM ≥ N = 4(R− 1)L and then obtain the desired solution
~a = C−1~F via the pseudoinverse C−1.

Our spline approach for the nonlocal terms. In the previous paragraphs, we dealt
with the interpolation and fitting of the local terms, which are univariate functions
of the local density values. The non-local ansatz of equation (3.13) includes also
functions of two density values, for which a recursive spline scheme can be used,
which is described in the following.

Let us consider a function of two continuous values, g(nx, ny). For simplicity,
we impose the same grid n1 < n2 < . . . < nR on both density axes nx and ny,
such that g(nx, ny) is defined for nx ∈ [n1, nR] and ny ∈ [n1, nR]. To evaluate the
function at a point (nl , nm) that does not belong to the grid, we proceed in three
steps. First, we determine the R values g(nx = nl , ny = ni) at the grid points ni of
ny and the final nx = nl coordinate. These are given by the known R splines gi(nx)
at the position nx = nl . Second, we interpolate the R values gi(nx = nl) by a spline
function gy(ny). Third, we compute the spline function gy(ny) at ny = nm. Figure
3.7 illustrates this method when R = 5.

The evaluation of our two-dimensional spline g(nx, ny) can be written in a com-
pact form similar to equation (3.20). Since g(nx, ny) is uniquely defined by the R
vectors~ai each of dimension 4(R− 1), we summarize these in a 4(R− 1)R dimen-
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Figure 3.7: As explained in the text, we evaluate a single nonlocal term g(nx, ny)
at nx = nl and ny = nm (filled circle) via a spline interpolation of the R values
g(nx = nl , ny = ni) at the grid points ni of ny (crosses).

sional vector ~A := (~at
1,~at

2, . . . ,~at
R)

t. Assuming nx = nl is located in interval l, we
can construct a R× 4(R− 1)R dimensional matrix Cnl , such that gi(nx = nl) is the
ith entry of a vector ~gy := Cnl

~A. For that, the ith row of the matrix Cnl contains the
4(R− 1)R dimensional transposed vector~nt

i,l which is zero everywhere but on the
positions 4(R− 1) · (i− 1)+ 1 to 4(R− 1) · i where the elements of~nt

l from equation
(3.20) are stored. Multiplication of the matrix Cy := C1 + C2C−1

3 C4 from equation
(3.19) with the vector ~gy gives the coefficients~ay := Cy~gy of the spline gy(ny). As-
suming ny = nm is located in the interval m, multiplying the transposed vector~nt

m
of the form (3.20) with ~ay leads to the solution g(nx = nl , ny = nm) = ~nt

m~ay. In
summary, the analog of equation (3.20) for our nonlocal term takes on the form:

g(nl , nm) = ~nt
mCyCnl

~A . (3.21)

Equation (3.21) enables us to fit an arbitrary two-dimensional function
f (nx, ny), known at M training densities ~nk, by our two-dimensional spline
g(nx, ny), defined via N = 4(R− 1)R coefficients ~A, by minimizing the distance
∑Mk=1 | f (nx, ny)− g(nx, ny)|2. The spline function g(nx, ny) may be based upon an
arbitrary density grid of R grid points n1 < n2 < . . . < nR, but we assume here,
for simplicity, that the same density grid is imposed in nx as well as ny direction.
As before, listing the known values f (~nk) in ~f := ( f (~n1), f (~n2), . . . , f (~nM))t, we
recast the least squares problem into a system of linear equations C~A = ~f , where
the kth row of the matrix C is given by the transposed vector ~nt

mCyCnl of equation
(3.21) corresponding to training density ~nk = (nl , nm)t. Having generated a num-
ber of training densitiesM no less than there are parameters N , our least squares
problem is minimized when ~A = C−1~f via the pseudoinverse C−1.

Our spline approach for our complete ansatz. Thanks to the above developed
methods, it is now straightforward to fit our ansatz (3.13) in its most general
form, i.e., for an arbitrary value of the maximal range X. Because a particular term
gx,l(nl , nl+x) is uniquely identified by the values of its indices x and l, the corre-
sponding vectors of spline coefficients ~ax,l carry these same indices. Each vector
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~ax,l is defined according to the previous discussion. We concatenate all vectors
of spline coefficients for all possible values of x and l in a single vector ~A. This
allows us, again, to find the minimum of the least squares problem ∑k |F(~n) −
∑x,l gx,l(nl , nl+x)|2 by solving the linear equations C~A = ~F where ~F comprises the
M known values F(~nk) at training densities ~nk of the function F to be fitted. The
matrix C isM×N dimensional, whereN = 4(R− 1)L + 4(R− 1)R ∑X

x=1(L− x),
and its ith row follows from proper concatenation of the vectors ~nt

l of the form
(3.20) and ~nt

mCyCnl of the form (3.21) which are derived from the entries nl and
nm of the ith training density ~n. As before, we have to guaranteeM ≥ N and, in
general, use the pseudoinverse C−1 in order to get the solution ~A = C−1~F.

Particular Details of Our Spline Fit. Before we can conclude this discussion on
the spline interpolation of our ansatz (3.13), final technical comments regarding
our implementation are still in order:

• Although the above discussion explains the computation of the optimal
spline coefficients, in our code, we instead find the function values of the
terms gx,l(nl , nl+x) at all grid points. The spline coefficients can always be de-
rived uniquely from these function values at the grid points, s., e.g., equation
(3.19). We make use of this fact because it reduces the number of variational
parameters N such that fewer training densitiesM≥ N suffice.

• We impose a physically motivated constraint on our ansatz (3.13). Since the
considered Hamiltonian (3.11) is reflection-symmetric, our ansatz also has
that property. Notice that this additionally reduces the number of variational
parameters and, thus, of necessary training densities.

• In order to better assess the magnitude of nonlocality of the function F(~n) to
be fitted, we determine the gx,l(nl , nl+x) with increasing x one after another.
This means that, given a certain maximal range X, we first fit the known func-
tion values ~F by our ansatz (3.13) including only the x = 0 terms (C0 ~A0 = ~F),
then the remainder ~F − C0 ~A0 by our ansatz including only the x = 1 terms
(C1 ~A1 = ~F − C0 ~A0), then ~F − C0 ~A0 − C1 ~A1 by only the x = 2 terms, etc.,
until we are done with the fit of the x = X terms.

Performance of Splines

Having thoroughly described how our ansatz (3.13) is formulated and fitted in
terms of spline functions, we are ready to analyze its performance. Equation (3.13)
allows a free choice of the maximal range X as well as of the number of grid points
R and their positions. We want to find out how these parameters of our ansatz
affect its performance. Similar to the preceding performance analyses, carried out
for tensors and polynomials, we are interested in both the approximation error and
the functional form of the optimal spline interpolation.

Notice that now our training densities are not obtained by means of inversion
anymore. Instead, we choose a set of training scenarios, corresponding to certain
types of external potentials. Here, we consider three scenarios that we call kink,
barrier, and well, and whose parameters are illustrated in figure 3.8. Our training
densities are the various ground state densities emerging in each training scenario
when its parameters are varied in small steps within a wide range. The correspond-
ing external potentials shall model, as simply as possible, physically relevant situ-
ations.2

2We remark that, for the considered Hamiltonian (3.11), the ground state density in a certain training
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Figure 3.8: External potentials of training scenario kink (a), barrier (b), and well (c).
Each scenario is defined by the set of potentials that arise when the corresponding
free parameters, indicated by arrows, are varied in small steps within a wide range.

Clearly, for each training potential, we still have to specify the total number
of particles. We are able to compute the ground states of Hamiltonian (3.11) for
large numbers of fermions on long lattices: in the noninteracting case, U = 0, via
exact diagonalization of 2L× 2L dimensional matrices and in the interacting case,
U 6= 0, via our MPS algorithms. The spline fit might certainly depend on the total
particle numbers of the considered training densities. Therefore we distinguish
here the two simplest extremes, namely, firstly, training with exactly two particles
and, secondly, training with all possible particle numbers within a certain range.

Before we can begin to investigate these two cases, some technical details still
need to be discussed. From the various parameter choices possible in our analysis,
we use the following, if not stated otherwise. In the considered Hamiltonian (3.11),
we set the tunneling element to t = 1/2, and we refer to the noninteracting case
when U = 0, and we speak of the interacting case when U = 1. The standard lat-
tice size we are concerned with is L = 21. This choice of t = 1/2 and L = 21 allows
us to understand Hamiltonian (3.11) as arising from discretizing continuous space
of length 20 via a discretization of ∆ = 1. We compared results from lattice sizes
L = 11, 21, and 41, and found that L = 21 captures the essential physics we are in-
terested in here. At the same time, this rather small lattice size enables us to quickly
compute many training densities even in the interacting case using our MPS code,
with which we always checked convergence with bond dimension D. Regarding
our spline fit, for the positions of the R density grid points, we always choose
n1 = nmin = 0 and nR = nmax = 2 such that our spline interpolations are defined
for all possible density values n ∈ [0, 2] on each lattice site. Furthermore, for each
value of R, we always perform a fit for two density grids, one with equal spacing
between the R grid points and another with unequal spacing between them, where
the unequal spacing is chosen from several random trials as the spacing leading to
the smallest approximation error. If we do not explicitly mention the spacing of
the density grid, equal spacing is assumed. We use natural splines throughout this
work and solve all encountered linear equations by means of pseudoinverses cal-
culated with a cutoff 10−6, which turned out to be the best cutoff value between
10−2 and 10−14 as we have checked for a wide range of problems.

Fixed Total Particle Number N = 2. For a fixed total particle number N = 2, we
consider all three training scenarios kink, barrier, and well, and obtain a set of
58302 training densities for U = 0 and of 65298 training densities for U = 1. These
two training sets are the basis of the following analysis.

We first fix the maximal range to X = 0, such that our ansatz (3.13) consists
of the local terms only. In this case, we can study the effect of the number of grid

potential has the same value of the Hohenberg-Kohn functional as the reflected density, corresponding
to the ground state of the reflected potential, s. equation (3.12). Therefore, if a certain training potential
is not reflection-symmetric already, we always include both the ground state density and its reflected
counterpart with the same value of F in our training set.
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Figure 3.9: Local terms gx=0,l(nl) on lattice sites l = 1 (dashed), l = 4 (dash-
doubledotted), l = 7 (dash-dotted), l = 8 (dotted), and l = 11 (solid), for L =
21, U = 0 and R = 3 grid points {0, 1, 2} (a), U = 0 and R = 5 grid points
{0, 0.5, 1, 1.5, 2} (b), U = 1 and R = 3 grid points {0, 1, 2} (c), and U = 1 and R = 7
grid points {0, 0.3, 0.7, 1, 1.3, 1.7, 2} (d).

points R as well as of their positions. For U = 0, our mean relative error reads
≈ 0.03 when R = 3 and decreases to ≈ 0.01 when R = 7. The effect of different
grid spacing can be significant, e.g., for R = 5, the equally spaced density grid
gives an error ≈ 0.017 while the unequally spaced grid gives ≈ 0.014. For U = 1,
our mean relative error reads ≈ 0.4 when R = 3 and reduces to ≈ 0.09 when
R = 7. Again, the grid spacing affects the error, e.g., for R = 7, the grid with
unequal spacing gives ≈ 0.08.

We observe that both the number of grid points R and the grid spacing affect
the functional form of the local terms. With growing value of R, the spline interpo-
lations always feature stronger oscillations. Figure 3.9 illustrates this behavior for
the non-interacting and interacting cases.

When we take into account the first nonlocal terms in our ansatz, i.e., X = 1,
the mean relative error for R = 3 reads ≈ 0.015 when U = 0 and ≈ 0.05 when
U = 1. For R = 5, we obtain a mean relative error ≈ 0.005 when U = 0 and ≈ 0.04
when U = 1. The convergence of the error as a function of the number of training
densities occurs very fast, namely, within the first 10000 to 20000 training densities
for all cases considered here.

Many Different Particle Numbers. We extend our training based on a single total
particle number now to include many different particle numbers. Our training set
comprises all training densities resulting from the kink scenario with total particle
numbers N = 1, 2, . . . , 30. This gives a total number of training densities 25200 for
U = 0 and 25186 for U = 1.

With these new training sets, we continue the performance analysis of our
ansatz (3.13) for larger values of the maximal range X. For U = 0, our results are
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Figure 3.10: Mean relative error εF as a function of the maximal range X, for L =
21, U = 0 (a), U = 1 (b), and several values of R density grid points, namely
R = 4 (solid), R = 5 (dashed), R = 6 (dash-dotted), and R = 8 (dotted). The
density grids are given by {0, 0.65, 1.35, 2} when R = 4 (a), {0, 0.8, 1.2, 2} when
R = 4 (b), {0, 0.8, 1, 1.2, 2} when R = 5, {0, 0.7, 0.9, 1.1, 1.3, 2} when R = 6, and
{0, 0.2, 0.8, 0.95, 1.05, 1.2, 1.8, 2} when R = 8.

shown in figure 3.10(a). Initially, when X = 0, the mean relative error is ≈ 0.026
independent of the number of grid points R = 3, 4, 5, 6, and 8. This is different
from the previous training sets where R had a clear effect on the approximation
error. The mean relative error improves substantially when X = 1 and it saturates
beyond X = 1, which indicates that the long-range terms gx,l(nl , nl+x) with x > 1
are not particularly helpful for this training set of noninteracting fermions. The
improvement for X = 1 depends on R again, such that with a finer grid we get
smaller errors. Our results for U = 1 are shown in figure 3.10(b). In this case, we
consider the two values R = 4 and 6. When X = 0, the mean relative error is
roughly the same for both R and reads ≈ 1.3. A substantial improvement with in-
creasing X is visible until X = 4. Beyond X = 4, the error still decreases slightly for
R = 6 and oscillates for R = 4, which can only be due to numerical inaccuracies.

Just like the corresponding approximation error, the functional form of our
ansatz (3.13) with X = 0 features no strong dependence on R. This is true both
in the noninteracting case, U = 0, and in the interacting case, U = 1. In partic-
ular, the terms gx=0,l(nl) on the central lattice sites l can all be described by the
same function of nl , possibly shifted by a constant value, s. figure 3.11(a) for U = 0
and figure 3.11(b) for U = 1. For U = 0, this function has a form similar to the
one obtained previously when our ansatz (3.13) was formulated in terms of gen-
eral tensors. The functional form of the non-local terms, in general, depends on R,
similar to the mean relative approximation error when X ≥ 1. The various spline
functions gx>0,l(nl , nl+x) for fixed range x > 0 obtained on different central lattice
sites l can have the same form, and we have observed that for U = 0 as well as for
U = 1 and for both x = 1 and x = 2.

When fitted with the previous training set of varying total particle numbers,
our ansatz (3.13) with X = 0 produces local terms that converge on the central
lattice sites to a specific functional form, which appears also in the calculation of
the exact LDA. The latter is derived from the ground state energies of a homo-
geneous system, i.e., having the same density everywhere, in the thermodynamic
limit [113]. We can take a look at this quantity for finite systems. Because the den-
sity is the same on each lattice site, the Hohenberg-Kohn functional, F(~n), and the
exchange-correlation energy functional, W(~n), are simply functions of only a single
parameter n = N/L that is determined by the total particle number N for a given
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Figure 3.11: Local terms gx=0,l(nl) on central lattice sites l = 7 (dotted), l = 8
(dash-doubledotted), l = 9 (dash-dotted) l = 10 (dashed), and l = 11 (solid),
for L = 21, R = 3, U = 0 (a), and U = 1 (b). We also show the exact values
of F for exactly homogeneous densities (thick solid yellow) (see figure 3.12 and
corresponding discussion).
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Figure 3.12: Exact F(n) for U = 0 (a), for U = 1 (b), and exact W(n) for U = 1 (inset
in (b)), for exactly homogeneous densities n = N/L on lattices of sizes L = 11
(solid), L = 21 (dashed), L = 51 (dash-dotted), L = 101 (dash-doubledotted), and
L = 201 (dotted).

system size L. For a fixed lattice size L, we define these functions F(n) and W(n) by
tabulating the values of F, equations (3.3) and (3.12), and W, equation (3.6), for all
possible particle numbers N. For each N, we make use of the inversion procedure
to find the external potential that gives rise to the homogeneous ground state den-
sity n = N/L. Our results are shown in figure 3.12. The solution corresponding to
U = 0 (figure 3.12(a)) converges faster to the thermodynamic limit with increasing
system size than the one corresponding to U = 1 (figure 3.12(b)), which suggests
that the long-range Coulomb interaction amplifies the finite-size effects. Accord-
ing to equation (3.4), F(n) must have a minimum at the particular ground state
density n that is obtained without external potential and, as expected, this mini-
mum is located at n = 1 for the noninteracting fermions and moves to n < 1 in the
presence of interactions. In the following, we refer to the exact F(n) of figure 3.12
as our exact LDA. Notice that the widely used LDA is not defined for F but for the
slightly different quantity Exc, see section 3.2.1.

3.4 Applications Beyond the LDA

In the previous section, we investigated different approximations of the universal
functional F(~n) (3.3) as well as of the Hartree-exchange-correlation energy W(~n)
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(3.6). We proposed the ansatz (3.13) that contains local terms depending on local
density values only, in the spirit of the LDA, and nonlocal terms depending on
distant density values, extending beyond the LDA. We found that a formulation of
equation (3.13) in terms of spline functions simplifies both its fit and its evaluation.

We have developed a comprehensive software library that determines the op-
timal form of our ansatz (3.13) for an arbitrary set of training densities. The next
step is to study the performance of our ansatz in scenarios where DFT is applied.

In a reasonable scenario the target problem to be solved will be different from
the set of training problems used to fit the ansatz. This scenario is the basis of the
first part of this section, where we will study the performance of our algorithms in
two settings, namely, a simpler setting of fermions without external potential and a
more demanding setting of the dissociation of H2. For these two problems, we will
again focus on the question how well the exact F(~n), i.e., E(~n), gets reproduced
by our approximation (3.13), and we will again assume that the exact ground state
densities are known.

A typical DFT calculation goes one step further and produces also approximate
ground state densities. In the second part of this section, we will therefore concen-
trate on the question how well exact densities are obtained by our approximation
(3.13) when it is applied in standard self-consistent Kohn-Sham cycles. We will fit
(3.13) with the various training sets that were used in the previous section and
benchmark the resulting (3.13) with the simplest possible target densities.

The following analysis is also carried out with the Coulomb Hamiltonian (3.11).
We will use the same parameters as before, i.e., system size L = 21, tunneling
element t = 1/2, etc.

3.4.1 Energies

In this section, we analyze the performance of our ansatz (3.13) when it is applied
to a set of target densities that is different from the set of training densities used
in the fit. We will discuss two scenarios: a simpler one of fermions without exter-
nal potential, in which we choose the training closer to the target set, and a more
demanding one of H2 dissociation, in which we compare several different training
sets. As in the preceding analysis, we assume that all considered densities ~n are
known exactly and we study the approximation error of our ansatz G(~n) for the
universal functional F(~n) under this assumption. This assumption allows to assess
the limitations of the specific form (3.13) for the approximation of the generally
nonlocal F(~n) in the clearest possible way.

Fermions Without External Potential

The target densities for the first setting of our analysis are given by a system of
possibly interacting fermions that are otherwise free in the sense that there is no
external potential present. Since our lattice of L = 21 sites can be filled with to-
tal particle numbers N = 1, 2, . . . , 42, our target set contains 42 different ground
state densities and values of the universal functional. We want to train our ansatz
with densities that are similar to the target densities but still differ from them. This
is accomplished by a training set comprising exactly homogeneous densities and
densities that vary slightly from being exactly homogeneous. We construct these
ground state densities by means of the above explained inversion procedure, in
which we aim at the exactly homogeneous densities ~nhom and, during the itera-
tion of the inversion, include all those densities ~n in our training set for which the
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Figure 3.13: Mean relative error εF as a function of the maximal range X, for our
ansatz (3.13) fitted with the homogeneous training set and applied to the target set
of fermions without external potential (dashed), for U = 0 (a), and for U = 1 (b).
We also show the error of our exact LDA (from figure 3.12) for this target set (dot-
ted). Additionally, we show the error obtained for the training set, by our ansatz
(solid), and by our exact LDA (dash-dotted). The fit of our ansatz was performed
for a density grid of R = 3 equidistant points {0, 1, 2}.

distance ||~n−~nhom|| is smaller than a certain threshold.
Our results are shown in figure 3.13(a) for noninteracting fermions and in fig-

ure 3.13(b) for interacting fermions. We plot the relative error both of the exact
LDA (figures 3.12(a) and 3.12(b)) and of our ansatz (3.13) when they are applied to
the target set as well as to the training set. Our spline fit is performed for a den-
sity grid of R = 3 equidistant points {0, 1, 2}. The exact LDA achieves roughly the
same error for both sets of densities, which reads ≈ 0.02 when U = 0 and ≈ 0.4
when U = 1. Our ansatz with X = 0 improves this error more or less by an order
of magnitude, as it gives ≈ 0.002 for the training set and ≈ 0.005 for the target
set when U = 0, and it gives ≈ 0.02 for both sets of densities when U = 1. In all
cases, our ansatz with X ≥ 1 shows a drastic improvement when X = 1 and then
further improves our results with increasing X. While this is the expected behavior
for the error of the training set, this behavior is not obvious for the target set. More
precisely, when U = 0, the error improves from ≈ 0.0002 for X = 1 to ≈ 0.0001 for
X = 10 for the training set, and it improves from ≈ 0.002 for X = 1 to ≈ 0.0006 for
X = 10 for the target set. When U = 1, the error improves from ≈ 0.001 for X = 1
to ≈ 0.0005 for X = 10 for the training set, and it improves from ≈ 0.004 for X = 1
to ≈ 0.001 for X = 10 for the target set.

H2 Dissociation

DFT calculations based on the LDA alone are not able to correctly describe the
dissociation of the H2 molecule, neither in three spatial dimensions [123] nor in one
spatial dimension [124, 125]. Due to this fact, molecular dissociation has become a
widely used testbed for novel DFT approaches that go beyond the LDA.

We consider here a simplified one-dimensional H2 dissociation problem: two
electrons in the external potential of two fixed nuclei separated by a distance R,
where each nucleus has the positive charge equivalent to one electron, we assume
soft-Coulomb interaction between all particles, and we approximate continuous
space via discretization. These several simplifications still keep the essential dis-
sociation physics [124, 125] and, at the same time, make the dissociation problem
tractable for our numerical algorithms. For discretization ∆ = 1, the corresponding
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Figure 3.14: Dissociation curves taken from reference [125]. The considered system
size is large enough and the spatial discretization is small enough such that these
parameters do not affect the shown results anymore. Only the singlet curves are
relevant here: The LDA solution (solid with dots) is compared to the one from
exact diagonalization (solid).

model is described by the Hamiltonian (3.11) with t = 1/2, U = 1, and external
potential

vl = − 1√
(l +R/2)2 + 1

− 1√
(l −R/2)2 + 1

.

To the ground state energy of this Hamiltonian, for a given separation R, we still
have to add the constant term 1/

√
R2 + 1 from the nucleus-nucleus repulsion in

order to obtain the total energy of the system.
This total energy, as a function of the separationR, is shown in figure 3.14, after

convergence was achieved with increasing system size and decreasing discretiza-
tion width. Figure 3.14 compares the exact dissociation curve, from exact diago-
nalization, to the one computed via the one-dimensional LDA of reference [125].
For small separationsR, the LDA curve is close to the exact solution and also pre-
dicts the position of the energy minimum well (and thus can roughly predict the
equilibrium bond length of the one-dimensional H2 molecule). However, for large
separations R, the LDA curve departs from the exact solution (and features a fi-
nite slope, indicating an attractive force between the two atoms, while no slope
is present in the exact case, and thus the atoms are already free). Our simplified
model of system size L = 21 and discretization ∆ = 1 has the exact dissociation
curve shown in figure 3.15. The oscillations, visible for larger R, are due to the
finite size and discretization.

First, we train our ansatz (3.13) with the dissociation densities. When we now
apply our ansatz to the dissociation problem, the mean relative error reads ≈ 10−4

for X = 0, ≈ 8 · 10−8 for X = 1, and ≈ 6 · 10−8 for X = 2. As we can gather from
figure 3.15, all resulting dissociation curves lie on top of each other. The excellent
agreement achieved with X = 0 even for large separations R is remarkable, given
that exact LDA calculations have difficulties with largeR as described previously.
Nevertheless, the accuracy achieved in the energy value is not enough to conclude
that the functional can be used in a more general setting. On the one hand, we do
not find convergence of the functional form of the local and non-local terms with
the chosen density grid. On the other hand, when the training set is different, we
do not get such a precision.



90 DFT Beyond the LDA

0 4 8 12 16 20

-3.2

-3.3

-3.4

-3.5

Figure 3.15: Exact dissociation curve for our model defined in the text (solid),
and the dissociation curves obtained from our ansatz (3.13) with X = 0 (crosses), 1
(stars), and 2 (squares), when it is trained with the dissociation densities. All curves
lie on top of each other. The mean relative errors εF obtained with our ansatz are
εF ≈ 10−4 for X = 0, εF ≈ 8 · 10−8 for X = 1, and εF ≈ 6 · 10−8 for X = 2.
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Figure 3.16: We compare the exact dissociation curve of the model defined in the
text (solid) to the one obtained from our exact LDA (crosses in (a)) and to the one
obtained from an average of several central local terms of our ansatz trained with
the dissociation densities (crosses in (b)).

We have observed that this situation improves if we include more physical in-
formation in the fit. Indeed, because the different terms enter the functional (and
hence the fit) in given combinations, they are not uniquely determined by the train-
ing sets, independent of how large these are. This is partly fixed in the case of local
terms by imposing that each term acquires the correct known values at the extreme
densities n = 0 and n = 2. Another way of removing this indeterminacy of the in-
dividual terms is to impose some invariance, e.g., by taking the average of several
local terms. We can compare the result obtained in this way, in figure 3.16(b), with
that of our exact LDA for this particular system, in figure 3.16(a). These results indi-
cate that the training with exact energies and densities needs to be complemented
with all the physical constraints we can impose in the ansatz.

3.4.2 Densities From Kohn-Sham

The complete preceding analysis dealt with the question how well our ansatz G of
equation (3.13) approximates the universal functional F. After we had fitted G with
a certain set of training densities, for a given target density~n with known F(~n), we
always compared the value G(~n) to the value F(~n), where both functionals were
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evaluated with the same exact ground state density~n. In this section, we want to go
one step further and use our functional G also for the computation of approximate
ground state densities. This is actually the normal use of a DFT functional in a self-
consistent Kohn-Sham cycle. In our case, we can test the usability of our ansatz
in this fashion by obtaining an approximate density ~n′ from G and we can then
compare G(~n′) with F(~n). Clearly, in general, this error should be larger than the
previously considered one because, now, additionally the density ~n′ in G(~n′) has
an error.

If the ground state of an interacting system in a certain external potential is
sought, then the Kohn-Sham method finds the ground state of a noninteract-
ing system in the Kohn-Sham potential (3.7) that produces the same density as
the interacting ground state. Having obtained the desired density, the ground
state energy of the interacting system can be calculated with the help of equa-
tion (3.8). This procedure requires the Hartree exchange-correlation energy (3.6),
W(~n) := FI(~n)− FNI(~n), and its derivatives. In the following analysis, we will fit
our approximation GI of FI independently from our approximation GNI of FNI,
and we will then construct our approximation W̃ of W from the difference of these
two functionals, i.e., W̃ := GI − GNI. Thanks to the formulation of our ansatz
(3.13) for GI and for GNI in terms of spline interpolations, the construction of W̃
can proceed via subtraction of the individual spline functions gI

x,l and gNI
x,l for

all possible index pairs {x, l} one after another. In this way, for each index pair
{x, l}, the function wx,l := gI

x,l − gNI
x,l has the same spline form as gx,l , and, thus,

our complete approximation W̃ takes on the same form of our ansatz (3.13), i.e.,
W̃(~n) = ∑x,l wx,l(nl , nl+x), in terms of the same kind of spline interpolations as G.
Due to the spline form, the computation of derivatives is straightforward.

We will distinguish two different tests for the computation of the Kohn-Sham
density. Our first test consists in computing the Kohn-Sham potential produced by
our ansatz for the exact ground state density. The corresponding non-interacting
problem can then be solved, and we evaluate the error in the density. Our second
test regards the more realistic scenario, in which the exact ground state density is
not known. Hence we also apply our functional to the self-consistent solution of
equations (3.7) and (3.5), as in standard Kohn-Sham calculations.

For each of the two tests, we will consider the two training sets from the second
part of section 3.3.2. The first training set contains all training densities correspond-
ing to scenarios kink, barrier, and well, for a total number of particles N = 2. And
the second training set comprises all training densities corresponding to scenario
kink for total particle numbers N = 1, 2, . . . , 30. The resulting approximation W̃
will then be applied to the computation of ground state densities for N = 2, 5, and
10 interacting fermions, for simplicity, without any external potential.

Direct Calculation of the Kohn-Sham Density

If we know the exact ground state density for a given interacting problem, we
can compute the corresponding Kohn-Sham potential (3.7) via our approximate W̃
directly. The noninteracting ground state of the Kohn-Sham Hamiltonian (3.5) with
that potential would have the same density as the considered interacting system if
W̃ would be exact.

We fit our ansatz with the N = 2 training densities from scenarios kink, barrier,
and well, and apply it to a N = 2 target density of interacting fermions without
external potential. Figure 3.17 shows the exact target density as well as the non-
interacting ground state densities of the Kohn-Sham potentials obtained from our
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Figure 3.17: Exact density (solid) and corresponding Kohn-Sham densities from
our ansatz with X = 0 (dashed) and X = 1 (dotted), for a a density grid of R = 3
values {0, 1, 2}.

ansatz, for R = 3, X = 0 and X = 1. While the X = 0 solution is close to the target
density, the X = 1 solution is quite different. With increasing R or X, we could not
observe a systematic improvement of our Kohn-Sham density. Such a systematic
improvement does also not appear for the other target densities of N = 5 and
N = 10 fermions. We obtain the same conclusions when our ansatz is fitted with
the second training set.

Self-Consistent Calculation of the Kohn-Sham Density

We now assume that the exact interacting ground state density is not known and
we solve equations (3.7) and (3.5) via our approximate W̃ self-consistently. For that,
we will always perform the following iteration. We start from a homogeneous den-
sity~n(0) := (n, n, . . . , n)t where n := N/L is given by the considered total particle
number N and system size L. That density ~n(0) enters equation (3.7) with our
approximation W̃ and gives the first Kohn-Sham potential ~vKS(1). This potential
~vKS(1) enters the Kohn-Sham Hamiltonian (3.5) whose ground state gives the first
Kohn-Sham density ~n(1). The density ~n(1) gives the second Kohn-Sham poten-
tial ~vKS(2) via equation (3.7), which gives the second Kohn-Sham density ~n(2) via
the ground state of Hamiltonian (3.5), which gives the third Kohn-Sham potential
~vKS(3) via equation (3.7), and so on. Convergence of this scheme can be defined
when the distance d(i) := ||~n(i) −~n(i − 1)|| is below a small enough threshold.
In general, for an approximate W, convergence is not guaranteed3 and, in order to
improve convergence, several density mixing algorithms have been proposed, e.g.,
in references [127–130], of which we will implement the simplest: In each iteration
i, we modify our previous solution ~n(i − 1) by adding the Kohn-Sham density
~nKS(i) with a weight α, i.e., ~n(i) := (1− α)~n(i− 1) + α~nKS(i). We will run all our
calculations both with α = 1 and with α = 0.1, and we always present our results
for the value of α corresponding to the better final density.

For a target density of N = 2 interacting fermions without external potential,
when the training set contains our training densities with total particle number
N = 2 from scenarios kink, barrier, and well, a relatively good approximation of
the true ground state density is achieved with X = 0 and R = 3, shown in figure
3.18(a). That approximation, however, does not improve when we increase X to
X = 1, as we can gather from figure 3.18(b). As in the preceding section, we do

3When the exact functional is known, guaranteed convergence of the Kohn-Sham method can be
proven under certain circumstances [126].
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Figure 3.18: Target density (solid) and Kohn-Sham densities from our ansatz with
X = 0 (a) and X = 1 (b) during the self-consistency cycle after iteration 1 (dotted),
2 (dash-doubledotted), 5 (dash-dotted), and 10 (dashed). The self-consistency cycle
was run with α = 1 and started from a homogeneous initial density, with nl = N/L
on all lattice sites l. We used a density grid of R = 3 equidistant values {0, 1, 2}.

not observe a systematic improvement with increasing X or R. This holds also for
the other target densities as well as for the second training set. Interestingly, we
observed that our exact LDA typically produced good approximations to the true
ground state densities, and a particularly good match can be seen in figure 3.19.

3.5 Conclusions and Outlook

In summary, in the first half of this chapter, we compared approximations of the
universal functional F by several ansatzes, that were inspired by TNS concepts
and had a parameter to systematically increase their nonlocality, modifying the
ansatz from a local form in the spirit of the LDA to a nonlocal form going beyond
the LDA. The two key questions in the comparison of the various ansatzes were,
firstly, how the ansatz is optimally determined for a set of training densities and,
secondly, how the ansatz is applied to a set of target densities. Having realistic
DFT problems as a goal and, therefore, requiring an optimal fit of our ansatz for
training densities on large lattices, we concluded with a specific ansatz for the
approximation of the universal functional. Our ansatz consists of local terms, that,
in the spirit of the LDA, each depend only on the density value of a single lattice
site, and of nonlocal terms, that, extending beyond the LDA, each depend on the
density values of two lattice sites separated by a distance x. We define our ansatz
by a maximal range X such that it contains all terms with x ≤ X, and then the
idea underlying our ansatz is that its nonlocality can be systematically increased
by increasing X, hopefully, leading to a systematically improved approximation of
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Figure 3.19: Target density (solid) and Kohn-Sham density from our exact LDA
(dashed) after convergence of the self-consistency cycle. As in figure 3.18, the cycle
was initialized with a homogeneous density and then run with α = 1. The density
converged within 10 iterations.

F. The necessity of being able to apply our ansatz to arbitrary target densities led
to a continuous formulation in terms of spline functions.

We then extensively analyzed the performance of our ansatz as a function of its
parameters for different training densities. In this analysis, for each set of param-
eters, we always determined the optimal form of our ansatz for certain training
densities and then calculated the mean relative error of F for the same densities,
i.e., the training densities were always the same as the target densities. Because
our optimal fit minimizes a quantity very similar to this mean relative error of F,
the errors discussed in the first half of this chapter are close to the lowest possible
that can be achieved with our ansatz for the considered parameters and training
densities.

In particular, this implies that one can only expect larger errors when the target
densities differ from the training densities. We convinced ourselves of the correct-
ness of this expectation in the first part of the second half of this chapter, where
we considered target densities different from the training densities. When the tar-
get densities were chosen close to the training densities, qualitatively the target
errors behaved like the training errors, although quantitatively the target errors
were larger than the training errors. When the target densities were chosen differ-
ent from the training densities, as in our considered H2 dissociation problem, we
were unable to get good target results.

So far, in our analysis, we always evaluated our ansatz for the exact ground
state densities, i.e., we did not yet use our ansatz to compute approximate ground
state densities, as done in typical DFT calculations. We want to emphasize that we
can only expect larger errors when not only our ansatz is an approximation of F
but also the density with which it is evaluated is only approximate. This situation
was analyzed in the second part of the second half of this chapter, where we con-
sidered the approximate computation of ground state densities with our ansatz.
We found that, often our ansatz with X = 0 and with few spline grid points gave
a good ground state density approximation, that, however, could not be improved
systematically by increasing the number of spline grid points or the maximal range
X.

This chapter contains a comprehensive performance analysis of our ansatz,
when it is used as an approximation for the universal functional F, and when it
is optimally determined by minimization of its error in F. We conclude this chap-
ter with a discussion of alternative ideas as well as of possible refinements of our
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algorithms that might improve our results.

• The nonlocal terms in our proposed ansatz depend on the density of two
lattice sites separated at most by a distance X. We saw that our achieved
approximation error saturates already for relatively small values of X. A fur-
ther improvement should therefore be gained by including nonlocal terms
depending on the density of more than two separated lattice sites. The op-
timal fit as well as the evaluation of such an ansatz is quickly implemented
when its formulation is done in terms of general polynomials (although it is
also feasible, but requires more implementation effort, for spline functions).

• Our exact LDA, constructed by tabulating the values of F for exactly homoge-
neous ground state densities, performed remarkably well for many different
target densities, regarding both its approximation error in F and its result-
ing Kohn-Sham densities. A generalization of this construction by tabulating
the values of F for exactly two-periodic ground state densities gives a func-
tion that depends on two density values. Then, three-periodic ground state
densities give an exact function of three density values, and so on. Because
the exactly homogeneous densities are contained in the set of higher-periodic
ground state densities, the generalized constructions include our exact LDA.
Therefore, it would be interesting to find out if these functions improve the
results obtained previously with our exact LDA.

• In general, for an arbitrary training set, the fit of our ansatz, via minimiza-
tion of its error in the values of F, leaves a lot of freedom for the resulting
functional form of our local and nonlocal terms. This can be understood by
looking at a training set of exactly homogeneous densities, i.e., having the
same density value n = N/L on every lattice site. The corresponding val-
ues of the universal functional define a function F(n) and a minimization of
the error of our X = 0 ansatz GX=0(~n) = ∑l gx=0,l(nl) with respect to F(n)
clearly gives a vanishing approximation error. However, for each value of n,
the local terms gx=0,l(n) on the different lattice sites l can take on arbitrary
values as long as their sum adds up correctly to F(n) = ∑l gx=0,l(n). We also
checked that, when our ansatz was trained with many more homogeneous
densities, namely, exactly homogeneous and slight deviations thereof, the re-
sulting local and nonlocal terms were still different on all the lattice sites. As
a consequence, it makes sense to average all terms with the same x over all
lattice sites and apply that average to the considered target densities.

• Related to the previous point are the difficulties we encountered when our
ansatz was used for the computation of approximate ground state densi-
ties. For that, we employed the Kohn-Sham method, in which the desired
density follows from the noninteracting ground state in a Kohn-Sham po-
tential, which we obtained from derivatives of our ansatz. However, since
our fit leaves a lot of freedom to the functional form of our ansatz, the same
is true for its derivatives. One way out might be to impose our ansatz as
an approximation for the Kohn-Sham potentials and determine its optimal
form for these potentials instead of for the universal functional. In this case,
we would have to enforce the constraint ∂vl/∂nm = ∂vm/∂nl (equivalent
to ∂W/(∂nl∂nm) = ∂W/(∂nm∂nl)) in our fit. Additionally, the energy, see
equation (3.8), would have to be calculated via numerical integration of the
approximate potentials, leading to an approximate W, or via an independent
fit of our ansatz as approximation of W = FI − FNI as before.
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• Alternative to the previous point, we could keep our ansatz as an approxima-
tion of F and additionally include derivative information of F in our fit, since
we know our training potentials and thus the derivatives of F for the corre-
sponding training densities. Then the constraint ∂vl/∂nm = ∂vm/∂nl would
be naturally fulfilled as well as the energy would be directly calculated from
our approximate F as before.

• A difficulty, in this and the preceding point, might arise from the fact that
each training potential is well-defined only up to a constant offset, i.e., up to
an arbitrary value of the chemical potential. This means that arbitrarily sim-
ilar training densities can have arbitrarily different training potentials and,
thus, derivatives entering the fit of our ansatz. Therefore, on at least one lat-
tice site, the value of the external potential has to be fixed a priori, and then
kept for all training densities. However, a fixed value of the external potential
implies a fixed value of the derivative on that lattice site, independent of the
density, which might then lead to a trivial and inconsistent local term on that
lattice site in the fit of our ansatz. The possible inconsistency of such a local
term is most easily seen for a training set of exactly homogeneous densities in
a system with periodic boundary conditions. Because each training density
could be computed in the same zero external potential, it would contribute
the same zero derivative to our fit, for all density values, which would have
to give constant local terms resulting from our fit. But we can tabulate the
exact values of F for these densities in F(n) and then know the optimal local
term exactly, and that term in general depends on the density. It might make
sense to tackle this problem by specifying lattice sites, e.g., the ones on the
boundaries, where both the external potential and the density has to be zero
for all training densities. Then, the optimal local terms on these boundary
lattice sites can be constantly zero, consistent with all training densities.

• Additional to derivative information, we can include known values of F as
constraints in our fit, e.g., its value for no density at all and its value for
maximal density.

• When we directly approximate F by our ansatz, we could also replace the
Kohn-Sham procedure by an orbital-free method. In such an orbital-free
method, we would minimize our energy functional, resulting from our ap-
proximation of F, directly, and this minimization might be more efficient than
the self-consistent Kohn-Sham calculations. A particularly simple orbital-free
algorithm arises if we formulate our ansatz G in terms of low-order polyno-
mials in such a way that the local terms depend at most quadratically and
the nonlocal terms depend at most linearly on the density. In this case, the
derivative of G with respect to the density on a specific lattice site is a linear
function of the density and, thus, the energy minimization becomes an eas-
ily solvable linear problem. For higher-order polynomials as well as for our
spline interpolations, the energy minimization becomes a nonlinear problem
in general, that we might be able to tackle efficiently with the help of Conju-
gate Gradient or Newton methods.

• It might make sense to impose our ansatz as an approximation of the
exchange-correlation energy Exc = W − EH = FI − FNI − EH, such that both
the efficiently computable FNI (via noninteracting inversion) and the known
Hartree term EH (meanfield-like contribution) are subtracted before the fit. In
fact, the standard LDA of DFT approximates Exc. The Hartree contribution
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EH is defined as U ∑l〈n̂l,↑〉〈n̂l,↓〉 for the Hubbard Hamiltonian (3.10) and as
U ∑l≤m〈n̂l〉〈n̂m〉/

√
(l −m)2 + 1 for the soft-Coulomb Hamiltonian (3.11). A

first attempt of fitting FI − EH instead of FI gave promising results for the
dissociation curve.



98 DFT Beyond the LDA



Part II

Quantum Simulations of
Quantum Many-Body Systems





Chapter 4

Adiabatic Preparation of a
Heisenberg Antiferromagnet
Using an Optical Superlattice

Our MPS and PEPS algorithms allow us to simulate and investigate large quan-
tum many-body systems. One scenario particularly apt for their application is
that of ultracold atoms in optical lattices. In this context, TNS techniques can
play a significant role for the design and validation of new quantum simula-
tion algorithms. This chapter presents an example of such a successful applica-
tion. We analyze the possibility to prepare a Heisenberg antiferromagnet with
cold fermions in optical lattices, starting from a band insulator and adiabati-
cally changing the lattice potential. The numerical simulation of the dynamics
in 1D allows us to identify the conditions for success, and to study the influ-
ence that the presence of holes in the initial state may have on the protocol. We
also extend our results to two-dimensional systems. This chapter is published
in reference [52].

4.1 Introduction

Ultracold atoms trapped in optical lattices offer a unique possibility to experimen-
tally explore strongly correlated states of quantum matter. Currently, one of the
main experimental challenges in this field is the preparation of a Heisenberg an-
tiferromagnet (AFM), which represents the necessary next experimental step to-
wards a true quantum simulator of the fermionic Hubbard model [32].

Although the creation of a fermionic Mott insulator (MI) has recently been re-
ported [36,37], the realization of antiferromagnetic order requires temperature and
entropy significantly lower than presently achieved [131, 132], despite many exist-
ing proposals for direct cooling within the lattice [133]. An alternative to the direct
generation is to use an adiabatic protocol [134, 135]. In such a scheme, it is desir-
able to tune interactions initially to give a ground state with very low entropy.
Then, they are changed slowly, until the Heisenberg Hamiltonian is realized at the
end. If the process is adiabatic, the entropy will stay low and the final state will
be the desired AFM. The following questions immediately arise: What are the con-
ditions to achieve adiabaticity? What occurs if these conditions are too restrictive
and cannot be met? And, how will the protocol be affected by a finite temperature
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and the presence of a harmonic trap?
In this chapter, we propose a specific adiabatic scheme and analyze these is-

sues. Our adiabatic protocol is the first to attain an AFM with ultracold fermions
within feasible timescales, even in the presence of experimental imperfections. Ad-
ditionally, we show that it is possible to realize antiferromagnetic order on a part
of the sample in a shorter time than required for the whole system. Finally, we
simulate the dynamics of holes to demonstrate their destructive effect on the AFM
and devise a strategy to control them.

The initial ground state of our protocol is a band insulator (BI), which is trans-
formed first to an array of decoupled singlets and finally to the AFM, by adiabat-
ically changing the depth of two superimposed optical lattices. A BI is easier to
prepare with low entropy than a MI for two reasons. On the one hand, its energy
gap is given by the band gap, which is much larger than the interaction energy (MI
gap) and favors a redistribution of the entropy towards the surrounding metallic
shell [136]. On the other hand, the preparation can be done using weakly or non-
interacting atoms, thereby avoiding the long timescales associated with mass and
entropy transport at higher interactions [137, 138].

For the one-dimensional case, we simulate the fermionic t− J model with Ma-
trix Product States (MPS).1 We first identify the adiabatic conditions that allow the
preparation of the antiferromagnetic state in an ideal case with no defects. Second,
we study how these conditions are relaxed if one imposes that antiferromagnetic
order is only obtained on a subset of fermions around the center of the sample.
We observe that, when restricted to a middle sublattice, adiabaticity is determined
by an effective gap related to this sublattice and not by the gap of the total sys-
tem. Third, we include the presence of holes in the initial state, expected to occur
in real experiments due to the finite temperature. The large initial energy of the
holes can in principle destroy the AFM as they delocalize inside the sample. We
find that, if the holes are initially located at the outer part of the sample, as ex-
pected in an experiment, a tradeoff can be reached between the degree of adia-
baticity of the process and the distance the holes travel inside the chain, so that the
antiferromagnetic order is still produced in the center. Moreover, we show that a
harmonic trap can prevent the destructive effect of holes by confining them to the
outside of the sample. Finally, via Projected Entangled Pair States (PEPS) [11, 61],
we complement our analysis with a simulation of the two-dimensional t− J model
of hardcore bosons with antiferromagnetic interaction. This setting is easier to in-
vestigate numerically than the corresponding 2D fermionic system and provides
evidence that the physics studied in the one-dimensional case can be extrapolated
to understand the conditions of an equivalent scheme in 2D.

4.1.1 Reader’s Guide

This chapter is organized as follows. We specify the Hamiltonian, our adiabatic
protocol, and the considered observables in section 4.2. The one-dimensional anal-
ysis is carried out in section 4.3, first for an idealized scenario without holes, then
with holes, and then additionally with the harmonic trap. Section 4.4 contains our
results for two dimensions. Finally, a brief discussion of our conclusions is pre-
sented in section 4.5. The appendix in section 4.6 provides supplemental material.

1Instead of the initial method [8], we use the scheme introduced in reference [12].
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Figure 4.1: The proposed adiabatic protocol. First, a BI in a lattice with depth V1
(a) is transformed to a product of singlets |φ〉 (b) by slowly switching on a second
lattice with depth V2 and half the original wave length. Then, by lowering the
barrier V1 → 0, the system turns into an AFM (c).

4.2 Model

In the following, unless stated otherwise, we will focus on the one-dimensional
case and consider a two component Fermi gas in an optical lattice. The physical
setting consists of two adiabatic stages, depicted in figure 4.1. The first transition
has already been realized experimentally [139–141] and can be straightforwardly
described, so that we can focus on the second one and take figure 4.1(b) as the
initial state for our theoretical study. In this situation, the system is governed by a
one-band t− J model. This model emerges in the limit of strong interactions from
the Hubbard model, which describes ultracold atoms in optical lattices [34]. We
consider a bipartite t− J Hamiltonian with different couplings for even and odd
links, Ĥ = Ĥe + Ĥo, where

Ĥ` = −t` ∑
k∈`, σ=↑,↓

(c†
k,σck+1,σ + H.c.) (4.1)

+J` ∑
k∈`

(
~Sk · ~Sk+1 −

n̂kn̂k+1
4

)
, ` = e, o.

The superexchange interaction J` and the tunneling parameter t` are related
through the on-site interaction U as J` = 4t2

`/U. We fix the couplings on the even
links, te = t and Je = J, and choose a linear ramping of the superexchange inter-
action on the odd links, over total ramping time T so that Jo(τ) = J · τ/T and
to(τ) = t ·

√
τ/T, for 0 ≤ τ ≤ T.2 In the following, we set J = 1. A harmonic trap

is included by adding a term Vt ∑k(k− k0)
2n̂k to equation (4.1).

The ramping time from figure 4.1(b) to 4.1(c) needs to be long enough such
that the final state is close to the true AFM. The required time to ensure a certain
degree of adiabaticity can be seen to scale as T ∝ 1/∆2 [142], where ∆ is the min-
imum gap between the ground and the first excited state during the evolution. A
closer look at the relevant energy levels reveals that in this adiabatic transition the
gap decreases monotonically from J to the Heisenberg gap, which vanishes in the
thermodynamic limit, and there is no phase transition occurring in between [143].

2Other ramping schemes Jo(τ) = J(τ/T)x for different values of x give qualitatively similar results.
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The adiabaticity of the evolution and the final antiferromagnetic order can be
probed by two experimentally accessible observables. The first one, the squared
staggered magnetization, M2

stag = 1
N2 ∑N

l,m=1(−1)l+m〈~Sl · ~Sm〉, is the antiferromag-
netic order parameter and can be determined by noise correlations [144]. The sec-

ond one is the double well singlet fraction, P0 = 2
N ∑k∈e

(
1
4 − 〈~Sk · ~Sk+1〉

)
. Since

the initial state, figure 4.1(b), has a pure singlet in each double well, measuring
P0 6= 1 at the end indicates a change in the state. The generation and detection of
singlet and triplet dimers in double well lattices has been recently reported [141].
Whereas the squared staggered magnetization is experimentally detected over the
whole sample and captures information on long-range correlations, the singlet
fraction can be determined in situ and hence allows us to probe parts of the sam-
ple. For the Heisenberg antiferromagnetic chain in the thermodynamic limit, these
observables take on the values M2

stag,TD = 0 and P0,TD ≈ 0.693 [145], while in 2D
M2

stag,TD ≈ 0.0945 and P0,TD ≈ 0.585 [146]. Notice that for the finite 1D systems
considered in this work, M2

stag does not vanish, but has a sizable value, compara-
ble to the 2D thermodynamic limit, s. section 4.6.

4.3 One-Dimensional Case

4.3.1 Absence of Holes

Using the numerical simulation of the chain dynamics with MPS, we investi-
gate the state at the end of the protocol for varying ramping time. To charac-
terize the antiferromagnetic order independently of the system size, we define
the relative quantities m2(T) := M2

stag(T)/M2
stag,AFM, p0(T) := P0(T)/P0,AFM, and

espin(T) := Espin(T)/Espin,AFM, where the denominator is the expectation value of
the observable in the true AFM for a given lattice, s. section 4.6. For the last quan-
tity, Espin is the expectation value of the spin term in the total Hamiltonian of equa-
tion (4.1).

Figure 4.2 shows our results for an ideal case with no holes in the initial state,
with all relative quantities converging to 1, as expected, in the limit of large T
[figures 4.2(a),(b)]. The ramping time necessary to reach a certain relative magne-
tization m2 grows with the system size. If we study, given T, which is the largest
system for which a fixed value m2 can be achieved [figure 4.2(a) inset], we find
N2 ∝ T, which is consistent with the adiabaticity condition for a gap closing like
∆ ∝ 1/N [147].

For very long chains, the required T might not be experimentally feasible. Re-
markably, this does not exclude the preparation of antiferromagnetic order on large
systems. We may evaluate the magnetization over a sublattice in the center of the
sample. If, given T and N, we ask for the largest sublattice size L for which the
magnetization reaches a fixed value [figure 4.2(c)], we find a scaling T ∝ L2, as
governed by an effective local gap, and not by the gap of the total system. In con-
trast to m2, the observables p0 and espin do not depend on L [figure 4.2(d)]. This
can be understood from the fact that p0 and espin are determined by a two-site
observable ~Sk · ~Sk+1 averaged over a sublattice of length L, whereas m2 is a true L-
site observable, and thus effectively probes the adiabaticity on the sublattice. The
experimental consequence is that with a large sample, high values of m2 can be
obtained in short ramping times T on small parts of the system, L ∝

√
T.
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Figure 4.2: Absence of holes. (a), (b) m2, p0, and espin as functions of the ramping
time T, for chain length N = 22 (solid blue lines), 42 (dashed red lines), 62 (dash-
dotted green lines), and 82 (dash double-dotted brown lines). The inset of (a) shows
the squared size N2 of the longest chain reaching a fixed m2 = 0.85 at ramping time
T, and reveals the scaling T ∝ N2. (c), (d) Same quantities as above, evaluated on
sublattices of length L = 22 (solid blue lines), 42 (dashed red lines), and 62 (dash-
dotted green lines) for N = 82. Now, the inset of (c) shows the squared size L2 of
the largest sublattice reaching m2 = 0.85 at ramping time T, and reveals the scaling
T ∝ L2. All results were obtained with MPS of bond dimension D = 60 and Trotter
step δt = 0.02 (s. section 4.6).
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Figure 4.3: Effect of holes and harmonic trap. (a) m2 as a function of the ramping
time T, evaluated on a sublattice of length L = 42 for N = 86, without holes (thin
solid line), and with initially 2 holes at each boundary (thick solid line), and t = 2.
The inset shows the largest sublattice size L reaching m2 = 0.85 at ramping time T,
for the two cases of the main plot, and the size of the hole-free region (dashed red
line). (b) m2 evaluated on a middle sublattice of length L = 82 for N = 102, with
no holes (thin solid line), and with initially 10 holes at each boundary and a har-
monic trap of strength Vt = 0.004 (dash-dotted green line), 0.006 (dashed red line),
and 0.02 (solid blue line), and t = 3. For Vt = 0.2 (not shown) the exact behavior
of the ideal case is recovered. Again, the inset shows the largest sublattice size L
reaching m2 = 0.85 at ramping time T, for the cases of the main plot. All results
were obtained with MPS of bond dimension D = 60 and Trotter step δt = 0.02 (s.
section 4.6).

4.3.2 Effect of Holes

In a real experiment, the finite temperature causes the sample to be in a thermal
mixture. As a consequence, localized holes will be present in the initial state, fig-
ure 4.1(b). Since the double wells are decoupled, the wave function of a hole will be
an equal superposition of being in the left and in the right side of a single double
well. Our simulation reveals that holes have a highly destructive effect on mag-
netic order. As seen in figure 4.3(a), a few holes initially located on the boundary
of the sample are enough to cause a dramatic reduction of the final staggered mag-
netization.

We observe that the dynamics of holes can be qualitatively well understood
using a simplified picture, in which the spreading of an initially localized hole,
propagating in an antiferromagnetic background, is modeled by a free particle.
This picture is accurate in the limit t� J, when the spin term in equation (4.1)
is negligible. We checked that it is also valid in the whole experimentally reason-
able parameter regime by comparing the behavior of single holes to that of free
particles with the same initial wave function: for the relevant range of times and
tunneling values, 2 ≤ t ≤ 8, the hole spreads like a free particle with a maximal
velocity v = 2t. In the case of small t = 2, a hole with higher initial energy causes a
higher spin excitation, while for a large t = 8, the hole excites the spin background
by ∆Espin ≈ 0.5 in the beginning, independent of its initial kinetic energy. This can
be understood by assuming a simple classical Néel background, where the delo-
calization of a hole, initially positioned at a boundary, breaks up exactly one an-
tiferromagnetic bond. This assumption should become a good approximation for
the hole dynamics in the regime t� J, where the timescale of the delocalization
is much faster than the timescale of the reacting spin background. In all cases, the
squared staggered magnetization is reduced substantially during propagation of
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the hole until it reaches a minimum after the hole has travelled once over the whole
sample. We found that the magnetization reduction depends only weakly on the
initial kinetic energy, and on t, but it depends strongly on the number of holes in
the sample.

The simplified free particle picture allows us to interpret the results from fig-
ure 4.3(a). In particular, the strong magnetization drop around T ≈ 8 indicates the
arrival of holes at the middle sublattice. We can roughly predict this arrival time
from the spreading of a free particle wave function, which, after time T, will have
covered 4

3 t · T sites, taking the ramping of the lattice into account. We observe that
the magnetization for a given sublattice L behaves like in figure 4.2(c) only for
short ramping times, while the region is hole-free, until the holes reach the sublat-
tice [figure 4.3(a) inset].

4.3.3 Harmonic Trap

The simplified picture described above points out that the negative effect of holes
can be controlled by the presence of a trap. An external potential changes sign for
a hole and effectively turns into an inverse trap, capable of confining the holes to
the outer parts of the chain. The trap strength should be chosen as large as pos-
sible without exceeding the on-site interaction U, what would destroy the MI fig-
ure 4.1(c).

The results of the dynamics within the harmonic trap are shown in figure 4.3(b).
From energy considerations, a hole delocalizes at most by ±2t, s. section 4.6. As
the trap strength is increased, the holes get more localized on the outside. As a
consequence, the magnetization of the total sample increases, and the behavior of
the hole-free case is recovered.

4.4 Two-Dimensional Case

For the 2D case, the adiabatic setting consists of an array of initially decoupled
chains like figure 4.1(b), connected by a transverse lattice with the time-dependent
couplings Jo and to. Different to the 1D case, this system exhibits a phase transition
in the thermodynamic limit at Jo ≈ 0.5 [143].

Although the numerical simulation of the 2D setting is much more demanding
than the one for chains, we can relatively easily obtain results for hardcore bosons
on lattices of moderate size. In the absence of holes, the bosonic and fermionic
t− J models are equivalent, and our simulations serve to test our protocol on a 2D
system. Similarities between both models under inclusion of holes are a subject of
current research [148], but our simulations can still provide a qualitative indication
of the controlling effect of the trap. It is worth noticing that the AFM can also be
realized with ultracold bosons.3

In the ideal case of no holes, we observe [figure 4.4(a)] that, whereas the energy
converges quickly, the magnetization does not, and thus we cannot claim conver-
gence to the true AFM within the numerically accessible ramping times studied
here. Remarkably enough, we find that for a 10× 10 lattice, a significant magneti-
zation value m2 is obtained in times of the same order of magnitude as for a chain
of length 10, suggesting that the generation of antiferromagnetic order on much
larger 2D lattices will be experimentally possible within reasonable timescales.

3The hardcore bosonic system has a ferromagnetic interaction, but the antiferromagnet can be ob-
tained as the highest excited state [135, 149].
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Figure 4.4: Performance in 2D. (a) m2 and espin as functions of the ramping time
T, for systems of size N = 4× 4 (solid blue line), 6× 6 (dashed red line), 8× 8
(dash-dotted green line), and 10× 10 (dash double-dotted brown line). (b) m2 for
N = 8× 8, with initially 4 holes at the boundary and no harmonic trap (dash-
dotted green line), and with a trap of strength Vt = 0.25 (dashed red line), and
2.5 (solid blue line), and t = 2.5. The results were obtained with PEPS of bond di-
mension D = 4 (a) and D = 2 (b) and Trotter step δt = 0.03 (s. section 4.6).

Upon hole injection, a similarly dramatic magnetization reduction is observed [fig-
ure 4.4(b)] which can be controlled by the presence of a harmonic trap, as in the 1D
case.

4.5 Conclusions

We have proposed and analyzed an adiabatic protocol, suitable to prepare an an-
tiferromagnetically ordered state in an optical lattice, even from an initial state
containing defects. The timescales for the finite systems studied in this work lie
well within the range of current experiments. Furthermore, we have observed that
antiferromagnetic order can be produced in a sublattice in times governed only by
its size.

This scheme offers several advantages over other proposals. First, starting from
a BI simplifies the preparation of a sufficiently low entropy initial state. Addition-
ally, the initial ground state in figure 4.1(b) already features the final SU(2) symme-
try of the AFM, so that the number of excited states to which the evolution couples
is minimum, as compared with an alternative proposal [135] with only U(1) initial
symmetry. Moreover, since hole doping is experimentally feasible, the same proce-
dure can possibly be used to prepare the ground state with varying hole densities.
This would open the door to the experimental exploration of open questions in
condensed matter theory, ultimately the existence of d-wave superconductivity in
the t− J model.

4.6 Appendix

In this appendix, we describe the numerical method used in our article, provide
absolute values of experimental observables and discuss the numerical errors.

4.6.1 Numerical Method

We use MPS in one dimension and PEPS in two dimensions for the computation of
ground state approximations and the simulation of time evolution. For the defini-
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tion of MPS and PEPS, we refer to section 1.2. From the many possible algorithms
(see chapters 1 and 2 for examples in the context of PEPS), we chose the variational
search (explained, e.g., in references [13, 41]) to compute ground state approxima-
tions and the algorithm based on references [8, 12] to simulate time evolution.

In the variational search for ground states, the numerical error comes from lim-
iting the bond dimension to a certain maximum value. Comparing the results with
those obtained after running the search with a larger D gives an estimation of the
magnitude of this truncation error. Typically, the algorithm is run repeatedly with
increasing bond dimension until convergence is achieved within the desired nu-
merical precision.

The simulation of time evolution of MPS (or PEPS) is based on a Suzuki-Trotter
decomposition of the evolution operator [8]. This introduces another source of nu-
merical error, in addition to the truncation of the bond dimension. The magnitude
of this Trotter error can be controlled by decreasing the size of the time step, δt, or
using a higher order decomposition of the exponential. In particular, we use a sec-
ond order Trotter decomposition in the case of one-dimensional simulations, while
a first order decomposition is used in 2D. For each time step, the evolution oper-
ator for δt is applied and an optimal MPS or PEPS approximation to the evolved
state is found as described in [12]. The magnitude of the Trotter error is controlled
by comparing results for various values of δt, and the truncation error, as in the
ground state search, is estimated from the comparison of results for different D.

4.6.2 Absolute Values of Experimental Observables

The relative quantities presented in the main text result from normalizing the com-
puted expectation values at the end of the evolution to the corresponding values in
the true AFM ground state. For completeness, we provide in this section the actual
absolute values obtained for each observable, as well as the reference AFM values,
and discuss the convergence of the numerical results.

As explained in the main text, we model our system by a bipartite t− J Hamil-
tonian, that, in 1D, reads:

Ĥ = −te ∑
k∈e, σ

(c†
k,σck+1,σ + H.c.) + Je ∑

k∈e

(
~Sk · ~Sk+1 −

n̂kn̂k+1
4

)
−to ∑

k∈o, σ

(c†
k,σck+1,σ + H.c.) + Jo ∑

k∈o

(
~Sk · ~Sk+1 −

n̂kn̂k+1
4

)
,

where the subscripts e and o denote even and odd sites and double occupancy
of sites is forbidden, as implicitly assumed for the t− J model. The couplings on
even links are constant, te = t and Je = J, while the time-dependent odd cou-
plings are increased from 0 to their final values, t and J, during a total ramping
time T, according to to(τ) = t ·

√
τ/T and Jo(τ) = J · τ/T. We set J = 1. The two-

dimensional system consists of several such chains, coupled in the transverse di-
rection by to(τ), Jo(τ).

Reference Values in the AFM Ground State

We use the algorithms described above to compute numerically the true AFM
ground state for various lattices, as shown in table 4.1 (for chains of lengths
N = 22 − 82). The numerical convergence is checked by comparing the values
obtained using bond dimensions D = 80 and 100. As can be seen from the values
in the table, the maximum relative error is of the order 10−5 for the magnetization.
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N M2
stag(D = 80) M2

stag(D = 100) P0(D = 80) P0(D = 100)
22 0.139654861 0.139654869 0.807121935 0.807121935
42 0.086355374 0.086355479 0.775723907 0.775723906
62 0.064239765 0.064240095 0.760657976 0.760657965
82 0.051802233 0.051803243 0.751408114 0.751408046

N Espin(D = 80) Espin(D = 100)
22 -0.434912540 -0.434912540
42 -0.438751679 -0.438751679
62 -0.440148665 -0.440148665
82 -0.440871682 -0.440871683

Table 4.1: Squared staggered magnetization M2
stag, mean singlet fraction per dou-

ble well P0, and mean spin energy per site Espin, for the AFM of total length N
obtained from ground state computation with MPS of bond dimension D = 80
and D = 100.

L M2
stag(D = 80) M2

stag(D = 100)
22 0.141157103 0.141157444
42 0.088248385 0.088248984
62 0.065508481 0.065509337

Table 4.2: Squared staggered magnetization M2
stag for middle sublattices of length

L = 22, 42, and 62, for an AFM of total length N = 82 obtained from ground state
computation with MPS of bond dimension D = 80 and D = 100.

Note that the energy is correct up to 10−9. We use these values as the reference for
adiabaticity of the total chain of length N.

As discussed in the main text, for long enough chains, we observe that antifer-
romagnetic order develops in a middle sublattice faster than on the total chain. We
find that the timescales for observables measured on the sublattice are controlled
by the range of the observable itself, as far as finite size effects can be ignored.
Therefore, in order to quantify this observation, we need to compare the observ-
ables in the evolved sublattice with the corresponding AFM values for a sublattice
of the same size in an infinite chain. The thermodynamic mean singlet fraction
P0,TD = ln(2) ≈ 0.693 and mean spin energy Espin,TD = 1/4− ln(2) ≈ −0.44315
are well known [145]. The squared staggered magnetization on a finite sublattice,
however, cannot be computed exactly, so that we approximate the reference value
by the numerical estimation in a long chain (N = 82), shown in table 4.2. Increas-
ing the chain length, the reference values do not change significantly, as one can
see in table 4.3 for N = 142.

L M2
stag(D = 80) M2

stag(D = 100)
22 0.141068047 0.141069522
42 0.088395582 0.088397878
62 0.065999995 0.066003287

Table 4.3: Squared staggered magnetization M2
stag for middle sublattices of length

L = 22, 42, and 62, for an AFM of total length N = 142 obtained from ground state
computation with MPS of bond dimension D = 80 and D = 100.
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Figure 4.5: M2
stag, P0, and Espin, as functions of the ramping time T, for chains of

length N = 22 (solid blue), 42 (dashed red), 62 (dash-dotted green), and 82 (dash
double-dotted brown). The results were obtained with MPS of bond dimension
D = 60 and Trotter step δt = 0.02 (lines), D = 40 and δt = 0.02 (circles), D = 40
and δt = 0.005 (crosses), and D = 60 and δt = 0.005 (squares).

In 2D, the corresponding values of the AFM were obtained with quantum
Monte Carlo by means of the ALPS library [85].

Adiabatically Evolved States

In the following, we present the absolute values of our observables for the state
obtained at the end of the adiabatic ramping, in the same sequence as they appear
in the main text.

Figures 4.5 and 4.6 show the computed expectation values at the end of the pro-
tocol, as a function of the total ramping time, for the case of no holes. Convergence
of the numerical results is checked by comparing the results for bond dimension
D = 40 and 60 and for Trotter steps δt = 0.02 and 0.005. The largest relative error
found (for the largest system and the longest ramping time) is of the order of 10−4,
which ensures enough precision for our analysis.

Injecting holes into the sample results in a substantial drop of the squared stag-
gered magnetization, and an increase in the energy (figure 4.7). The latter implies
that the system gets excited and the numerical simulation via MPS becomes more
demanding. Now, the relative error after the longest ramping time, T = 30, for the
case of 4 holes on N = 82 sites shown in the main text, is of the order of 0.01− 0.1,
but it becomes significantly smaller for shorter times. This worst-case error does
not affect our conclusions, since the main effect we observe, the drop of the mag-
netization value upon hole arrival, is much larger (≈ 30%) and occurs already at
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Figure 4.6: Same quantities as in figure 4.5, evaluated on sublattices of length L =
22 (solid blue), 42 (dashed red), and 62 (dash-dotted green), of a total lattice of
length N = 82.

much shorter times (T ≈ 20), for which the numerical error is only of the order of
10−3. The figure also shows that 2 holes on 42 sites are more dramatic than on 82
sites, and that the negative effect of holes increases with their number.

By including a harmonic trap Vt ∑k(k− k0)
2n̂k, the holes can be confined out-

side of the sample. We consider 10 holes left and 10 holes right of a sample of size
82, and successively increase the trap strength, as shown in figure 4.8. Consistent
with the results in the previous paragraph, our simulation is most demanding for
the weakest trap, when holes can still enter the sample and excite the system. The
largest relative error in that case is of the order of 0.01− 0.1, but it decreases signif-
icantly if the trap strength is increased. Again, this worst-case error does not affect
any of our conclusions.

In 2D, the time evolution is done with PEPS of bond dimension D = 2, D = 3
and D = 4, and the largest relative error is of the order of 10−2, for the largest sys-
tem in figure 4.9. Our results suggest that qualitative insight can already be gained
from PEPS with D = 2. Therefore, figure 4.10 shows the effect of holes and har-
monic trap for D = 2 without convergence check. Just as in 1D [figure 4.7(a)], the
staggered magnetization decreases significantly with increasing number of holes,
and the harmonic trap confines the holes on the outside.
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Figure 4.7: M2
stag, P0, and Espin, as functions of the ramping time T, evaluated on

the middle L = 42 site sublattice, for 2 (solid) and 4 holes (dashed) on N = 82 sites
(thick blue) and N = 42 sites (thin red), and the holes are initially located at the
boundaries, and t = 2. The results correspond to D = 60 and Trotter step δt = 0.02
(lines), D = 40 and δt = 0.02 (circles), D = 40 and δt = 0.005 (crosses), and D = 60
and δt = 0.005 (squares).
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Figure 4.8: M2
stag, P0, and Espin, as functions of the ramping time T, evaluated

on the middle L = 82 site sublattice, for 10 holes initially on each boundary
of 82 fermions, with a harmonic trap of strength Vt = 0.004 (dash-dotted green),
Vt = 0.006 (dashed red), and Vt = 0.02 (solid blue), and t = 3. The inset in (b)
shows the occupation n of lattice site l after ramping time T = 30, and we find
that the holes delocalize precisely ±2t at the boundaries of the trap. Again, the re-
sults correspond to D = 60 and Trotter step δt = 0.02 (lines), D = 40 and δt = 0.02
(circles), D = 40 and δt = 0.005 (crosses), and D = 60 and δt = 0.005 (squares).
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Figure 4.9: M2
stag, P0, and Espin, as functions of the ramping time T, for N = 4× 4

(solid blue), 6 × 6 (dashed red), 8 × 8 (dash-dotted green), and 10 × 10 (dash
double-dotted brown). The results were obtained with PEPS of bond dimension
D = 4 and Trotter step δt = 0.03 (lines), D = 2 (circles), and D = 3 (crosses).
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Figure 4.10: (a) M2
stag as a function of the ramping time T, for N = 8× 8 without

holes (solid blue), with 1 hole (dashed red), and 2 holes (dash-dotted green), where
the holes are initially localized at the boundary, and t = 2.5. (b) N = 8× 8 with
4 holes initially distributed at the boundary, with no harmonic trap (dash-dotted
green), and with a trap of strength Vt = 0.25 (dashed red), and Vt = 2.5 (solid blue),
and again t = 2.5. The results correspond to D = 2 and Trotter step δt = 0.03.
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Chapter 5

Dynamical Enhancement of
Spatial Entanglement in
Massive Particles

In the field of quantum many-body simulations, one topic of interest is the gen-
eration of highly entangled states. These can be of fundamental interest, but
also find applications in quantum information processing. However, entangle-
ment is not always easy to generate in a given setup. In this chapter, we discuss
dynamical enhancement of entanglement in a driven Bose-Hubbard model and
find an enhancement of two orders of magnitude from the ground state value
which is robust against fluctuations in experimental parameters. This chapter is
published in reference [54].

5.1 Introduction

Quantum coherence is often thought to be found only in very small systems or
under artificial laboratory conditions, since otherwise unavoidable environment
coupling results in rapid loss of coherence. Whereas this holds quite generally, it
holds in particular for many-body coherence and entanglement. As recent experi-
mental [150,151] and theoretical [152–157] evidence suggests, however, exceptions
to this general rule exist. In particular coherent driving can compensate for the
environment-induced loss of coherence and, thereby, stabilize entanglement under
conditions under which a static system would be completely separable [158–163].

Such dynamically induced entanglement does not only hold the potential to
influence macroscopically observable properties [164], but certainly also opens
up new paths towards scalable quantum information processing which other-
wise is limited through the unfavorably scaling dephasing times with the system
size [53, 165]. However, our current understanding of dynamical enhancement of
entanglement is still in its infancy.

In this chapter, we consider ultracold bosonic atoms stored in an optical lattice
and investigate the dynamical enhancement of entanglement in the atoms’ spatial
degree of freedom. The feasibility of the setup we have in mind has already been
proven experimentally for spectroscopic measurements [166], however, its poten-
tial for the creation of many-body entangled states has not been addressed [167].
The spatial degree of freedom as carrier of entanglement is advantageous since re-
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quirements on cooling are much less stringent than in the case of the spin degree
of freedom [31]. Since one-dimensional systems ranging from 10 to 100 sites, with
one to three atoms per site, and beyond, are experimental routine (see e.g. refer-
ences [38, 39, 168, 169]), the presently discussed mechanism permits the creation of
highly entangled states in a scalable fashion.

5.1.1 Reader’s Guide

The structure of this chapter is the following. Section 5.2 introduces the precise
model for our problem, and section 5.3 demonstrates that entanglement in its
ground and thermal states is very low. Subsequently section 5.4 shows that co-
herent driving substantially increases entanglement, to a value close to maximal
entanglement. In particular, this enhancement is very robust against experimen-
tal imperfections, as discussed in section 5.5. Section 5.6 briefly summarizes our
conclusions.

5.2 Model

The optical lattice is created by two counterpropagating laser beams of wave
length λ and amplitude V0 in one direction, and a tight perpendicular confine-
ment of strength V⊥ in the other two directions, restricting the motion of the atoms
to one dimension. In the deep lattice limit V0 � ER, where ER = h̄2k2/2m (with
k = 2π/λ) is the recoil energy, and at sufficiently low temperatures, this system
can be well described [34, 35, 170] in terms of the Bose-Hubbard Hamiltonian

Ĥ = −J
L−1

∑
l=1

(a†
l al+1 + a†

l+1al) +
U
2

L

∑
l=1

n̂l(n̂l − 1) , (5.1)

where the creation operator a†
l creates and the annihilation operator al annihilates

a boson at lattice site l. The tunneling parameter J and the on-site interaction U
depend on the lattice parameters approximately [31, 171] via

J/ER =
4√
π
(V0/ER)

3
4 e−2

√
V0/ER , (5.2)

U/ER =

√
8
π

kas(V0V2
⊥/E3

R)
1
4 . (5.3)

Whereas the lattice depth V0 is typically time-independent, we will compare here
the dynamics of such an autonomous system with its driven version [166], where
V0 is modulated temporally:

V0(t) = V
(

1 + dV sin(ωt)
)

, (5.4)

around its initial height V with relative amplitude dV and frequency ω. As we
will show, the temporal modulation of the tunneling parameter J and the on-site
interaction U that results from this lattice depth modulation drives the atoms into
a spatially strongly correlated, i.e., entangled state. For the verification of the en-
tanglement properties, we envision a rapid separation of the many-body system
into two parts, what can be realized by ramping up a potential barrier as depicted
in figure 5.1.
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a) b)

J
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Figure 5.1: a) The system is prepared in an entangled state. b) The system is split
into two halves by raising the intermediate barrier. J is the kinetic term and U the
on-site interaction in the Bose-Hubbard model (5.1).

This spatial separation effectively switches off the interaction between the
two subsystems what freezes the entanglement dynamics. However, it also en-
tails that each subsystem will typically not have a well-defined particle number.
Whereas correlations in the particle number formally may imply entanglement,
its experimental verification will be technically impossible because this would re-
quire the measurement of coherent superpositions of states with different num-
bers of massive particles [172–175]. We, therefore, consider states after projection
onto well-defined local particle number. Experimentally, this can be realized via
post-selection, i.e., rejection of data corresponding to undesired local particle num-
bers, as routinely done in experiments with entangled photons [176–179]; but,
given the advances in spatially resolved detection of ultracold atoms in optical lat-
tices [38, 39], it is also becoming feasible to detect the local particle number while
leaving spatial coherence within each subsystem intact. We will focus in particu-
lar on those cases in which particles are split evenly between the two subsystems,
since this is the case that occurs with highest probability, and this is also the case in
which the highest entanglement can be achieved. Doing so, we obtain a clean no-
tion of entanglement between the two separated halves of the optical lattice where
each half is filled with a fixed number of particles and can be addressed individu-
ally.

In the following we quantify the entanglement of the postselected states with
the entropy of entanglement [53, 180] in the case of pure states and the nega-
tivity [181] in the case of mixed states. The entropy of entanglement is given
by the von Neumann entropy of the reduced density matrix ρr that is obtained
through the partial trace over one subsystem of the entire many-body state, i.e.,
E(|ψ〉) = −tr(ρr log2(ρr)). The negativity N(ρ) = (||ρPT||1 − 1)/2 of a mixed state
ρ is defined in terms of the trace norm of the partially transposed density matrix
ρPT.

5.3 Ground and Thermal State

Figure 5.2a) depicts the ground state entanglement properties for the exemplary
case of L = 6 wells filled with N = 6, 3 and 2 bosons, respectively. The qualitative
and quantitative features of the system with N = 4 bosons are very similar to the
N = 2 system, and both N = 5 and N = 7 are similar to N = 6; more generally, we
found that the behavior of N + mL bosons (with integer m) is essentially identical
to that of N bosons. In all these cases, the amount of entanglement in the ground
state does not exceed the value of E ≈ 0.05. The qualitative dependence of E on the
parameter U/J is as expected: If the tunneling dominates the system dynamics,
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Figure 5.2: a) Entropy of entanglement E and probability for successful postselec-
tion of evenly distributed number of bosons between the right and the left part
of a L = 6 well Bose-Hubbard system. The overall particle number is N = 6 (solid
blue), N = 3 (dashed red) and N = 2 (dash-dotted green). b) Negativity N of the
thermal state and corresponding probability at temperature T = 0 nK (thick line)
and T = 80 nK (thin line) for some systems of the left panel.

i.e., if U/J ' 0, the bosons populate the same single-particle states such that after
postselection of local particle number the system is separable. For finite interac-
tion U the bosons repel each other and establish correlations; therefore, E typically
increases with U/J. There are, however, exceptions, like the case of unit filling
(depicted in blue), where a separable, perfect Mott insulator [31, 34, 35, 170, 171]
develops for U/J → ∞. This is also reflected in the fact that in this limit the bosons
will always be separated in a balanced fashion between the left and right half of
the system, whereas typically the probability for this is smaller than unity.

Assuming perfect ground state cooling is certainly a theoretical idealization,
but also thermal excitation cannot enhance the entanglement as shown in fig-
ure 5.2b), where the negativity of the thermal state ρth = exp(−Ĥ/kBT)/Z is
shown. The probability of finding the bosons split evenly into left and right half
decreases with increasing temperature, and the entanglement is always lower than
for T = 0, independent of the filling N/L.

5.4 Driven System

As we will see in the following, the ground state entanglement is highly enhanced
when the system is coherently driven in resonance. The driving is given by a
periodic modulation of the lattice, equation (5.4), around the initial height V by
a relative amplitude dV with frequency ω. The resulting time-dependent lattice
height V0(t) causes time-dependent parameters kinetic term J(t) and on-site inter-
action U(t) according to equations (5.2) and (3), and thus a time-dependent Bose-
Hubbard Hamiltonian

Ĥ(t) = −J(t)
L−1

∑
l=1

(a†
l al+1 + a†

l+1al) +
U(t)

2

L

∑
l=1

n̂l(n̂l − 1) .
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For our subsequent analysis we initialize the system in the ground (pure) state
|ψ(t = 0)〉 of Ĥ(t = 0) that we find with the help of the Lanczos algorithm. We then
propagate that state with the above time-dependent Bose-Hubbard Hamiltonian
according to the Schrödinger equation

∂|ψ(t)〉
∂t

= − i
h̄

Ĥ(t)|ψ(t)〉 ,

with the fourth-order Runge-Kutta scheme with adaptive stepsize, explained, e.g.,
in [182]. This algorithm guarantees an error ε per time evolution step by adjust-
ing the stepsize. All shown results were obtained with ε = 10−12, and their cor-
rectness was confirmed by comparing results obtained with ε = 10−6, ε = 10−9,
and ε = 10−12. In other words, our numerical results are accurate to a precision
much better than resolvable in our observables shown in the figures below. To
be specific, we consider the experimental parameters V = 10 ER and V⊥ = 30 ER
as lattice depths, dV = 0.2 as lattice depth modulation, λ = 842 nm as the wave
length of the laser, as = 5.45 nm as the scattering length and m = 86.909 u as
the mass of rubidium-87 [183–185]. For these parameters the system is Mott-
insulating (U/J ≈ 27.8), and the initial ground state has essentially vanishing en-
tropy of entanglement, as can be seen in figure 5.2a). As driving frequency, we
chose ω = U/h̄ = 12862 Hz, what corresponds to resonant driving in the Mott-
insulating regime.

Figure 5.3 shows the dynamical enhancement of entanglement caused by the
coherent driving. We start with the ground state of the static system. After 100 ms
the driving is switched off and after t = 150 ms the lattice depth is increased to
V0 = 30 ER in order to freeze the entanglement dynamics completely. As we con-
clude from figure 5.3, resonant driving enhances the initial ground state entangle-
ment from a vanishingly small value at time t = 0 to a value almost of a maximally
entangled state. By comparison with figure 5.2, we conclude an enhancement of
two orders of magnitude.

Apparently, entanglement grows rather quickly once the driving is switched
on. After about 10 to 20 ms the increase slows down a bit, until entanglement
saturates after t ≈ 50 ms. From that time on, entanglement fluctuates around an
average value due to the finite interactions in the system. Figure 5.3 shows how
these remaining fluctuations smooth out with growing system size. Once entan-
glement is saturated, the coherent driving can be switched off as it is done at
t = 100 ms in our specific case. In the subsequent interval 100 ms < t < 150 ms the
system evolves under the static Hamiltonian. The entanglement dynamics reduced
to small fluctuations that, in particular, decrease with growing system size as it can
be seen in figure 5.3. This gives once more evidence that the static interactions on
their own have virtually negligible impact on entanglement. For the purpose of
verifying entanglement it is nevertheless desirable to freeze the entanglement dy-
namics completely. This can be achieved by ramping up the lattice depth as done
at t = 150 ms in figure 5.3. Finally, by increasing the potential barrier as depicted
in figure 5.1, the two separated, individually addressable atomic ensembles are
obtained.

In the Mott-insulating regime the eigenstates of the static Hamiltonian are es-
sentially completely separable. Modulating the lattice depth drives the system into
a coherent superposition over several eigenstates of the static system, what is ac-
companied by an increase of entanglement. Accordingly, one would expect the
saturation time T to depend crucially on the lattice depth modulation, and, in-
deed, it scales approximately like T ∝ dV−1. The saturation time also depends
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Figure 5.3: Entropy of entanglement E and probability of successful postselec-
tion for the driven Bose-Hubbard Hamiltonian (5.4) with L = 8 = N (solid blue),
L = 6 = N (dashed red) and L = 4 = N (dash-dotted green). At t = 100 ms the co-
herent driving is stopped and at t = 150 ms the lattice depth is increased in order
to freeze the entanglement dynamics.

on the system size, as can be seen in figure 5.3, where the L = 4 = N system
reaches its largest value before the L = 6 = N system, which saturates before the
L = 8 = N system. But this dependence is much weaker than the one on the lat-
tice depth modulation, such that a large system can be entangled as fast as a small
system by choosing a larger value of dV. Since the maximally attainable entangle-
ment, however, is limited by the number of separable states that can be coherently
superposed, it depends on the system size (as can be seen in figure 5.3a)) but is in-
dependent of the driving strength as we explicitly confirmed. Thus, a larger mod-
ulation of the lattice depth can accelerate the entanglement generation; however,
even very weak coherent driving can yield the same enhancement of entanglement
as strong driving. A properly chosen frequency of the driving, on the other hand,
is essential for coherently superposing many product states, and, in agreement
with [166, 183], we find generation of strongly entangled states only for driving
frequencies h̄ω = xU with x = 1/2, x = 1 and x = 2.1

With increasing number of atoms, also the number of possible distributions of
atoms between the two subsystems is growing, so that the probability to find an
even distribution might decrease. This decrease is apparent in figure 5.3b), where
the probability of an even distribution drops from p = 0.42 for 4 atoms to p = 0.29
for 6 atoms. For larger atom numbers, however, this decrease essentially stops and
finding 8 atoms evenly distributed is essentially as likely as for 6 atoms. This re-
flects that the probability for even splitting becomes largely independent of the
particle number for large N. Thus, one can expect to find evenly distributed par-
ticle numbers with substantial probability also in an experiment with significantly
more bosons than a numerical simulation can handle.

When the system gets excited, higher bands might get populated, so that it is

1We checked this relation on a lattice with L = 4 sites by increasing the boson number from N = 2
to N = 12. The peaks for x = 1/2 and x = 1 are always there independent of the filling. For x = 2 a
resonance is found only for incommensurate filling starting at N = 5.
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Figure 5.4: a) Fidelity f (t, ∆t) at t = 100 ms for state preparation with imperfect
timing. b) Negativity N of the mixed state (5.5) resulting from the measurement of
the driven Bose-Hubbard Hamiltonian with L = 6 = N at t0 = 100 ms.

not immediately evident that the one-band description remains valid. The gap be-
tween the lowest and the first band can be estimated as ∆E = h̄ω/ER = 2

√
V0/ER

[31, 171], which, in our case, becomes ∆E ≈ 10U. On the other hand, we numer-
ically find the highest energies Emax ≈ 4U (in the largest system with L = 8 = N
and for a driving up to 100 ms), what clearly demonstrates that states associated
with higher bands are not being populated.

5.5 Robustness

In an experiment, certainly also the timing will be crucial. As figure 5.3 shows,
the system evolves rapidly, and fluctuations in the durations of coherent driving
or ramping up the barrier that are comparable to system time scales will result in
the generation of a mixed state which typically has reduced entanglement. The rel-
evant time scale can be obtained from the fidelity f (t, ∆t) = |〈ψ(t)|ψ(t + ∆t)〉|2,
where |ψ(t)〉 is the postselected system state after driving of duration t. The fidelity
f is depicted in figure 5.4 for the exemplary case of N = 6 particles in a L = 6 site
lattice. The width of the central peak (full width at half maximum) that determines
the minimal required experimental precision reads in this case ∆tm = 0.1 ms. In a
similar fashion, we can also estimate the required precision for all other experimen-
tal parameters, such as the potential V (∆Vm = 0.08 ER), the perpendicular confine-
ment V⊥ (∆V⊥,m = 0.12 ER), the amplitude of the driving dV (∆dVm = 0.016) and
the driving frequency ω (∆ωm = 14.5 Hz).

To estimate the impact of fluctuations of these parameters on the attainable
entanglement, we have to consider the mixed state that is obtained with many
repetitions of the experiment with the fluctuating parameter taking different val-
ues at each repetition. To be specific, we focus on the inaccuracy in the duration of
driving, and we assume that these durations are distributed according to a Gaus-
sian centered around t0 = 100 ms with a standard deviation τ. This gives rise to
the mixed state

ρ(τ) =
1

τ
√

2π

∫ ∞

−∞
dt e−

(t−t0)
2

2τ2 |ψ(t)〉〈ψ(t)| . (5.5)

The negativity of this mixed state is depicted in figure 5.4b) as function of the
inaccuracy τ of the duration of driving. For τ = 0 ms, the situation reduces to the
case of pure state entanglement as discussed above; but for finite τ, entanglement
is reduced significantly, what is a very generic feature of mixed states. Besides this
expected behavior, there are two features that should be stressed.
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1. At τ = 0 ms the first derivative of N(τ) vanishes, so that entanglement turns
out to be insensitive to small timing errors. The second-order Taylor expan-
sion reads N(τ) ≈ 3.064− 900(τ/ms)2. That is, timing errors below 0.01 ms
imply a change in negativity of less than 3 %.

2. Even in the presence of significantly larger timing errors there is still rather
strong entanglement with N(τ) ' 1, c.f. the high saturation value in fig-
ure 5.4b) for τ > 0.15 ms.

In particular, this astonishing robustness against experimental fluctuations under-
pins that potential that coherent driving offers as means to create entanglement as
compared to engineered interactions.

5.6 Conclusions

As recent investigations on driven spin systems suggest [162, 163], the feature of
dynamical enhancement of entanglement is not particular to the Bose-Hubbard
system, but is a rather generic feature, which is largely independent of detailed
system properties. An advantage of the present bosonic system compared to many
spin systems is that particle numbers can easily be varied in an experiment, which
provides the means to study the generation of entanglement in the entire regime
from rather small systems, through the mesoscopic domain, up to the semiclassical
regime. In particular, observing the rise and decay of entanglement with increas-
ing particle number will provide us with valuable insight into the emergence of
classical behavior in large quantum systems.

Whereas we would like to stress that creating highly entangled states should
not be taken as synonymous to attempting to process quantum information, it
should also be noted that states in spatial degrees of freedom as considered here
have an equally justified footing in quantum information science as spin states,
either for direct encoding of quantum information [30, 186, 187] or as a means of
communication between distant spins [188].
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Chapter 6

Detection of Avoided Crossings
by Fidelity

Some of the problems considered in the previous chapters can feature quantum
chaos that manifests itself in the presence of avoided crossings in their energy
spectra. In this chapter, we propose the fidelity, defined as overlap of eigenstates
of two slightly different Hamiltonians, as an efficient detector of avoided cross-
ings in the energy spectrum. This new application of fidelity is motivated for
model systems, and its value for analyzing complex quantum spectra is under-
lined by applying it to a random matrix model and a tilted Bose-Hubbard sys-
tem. This chapter is published in reference [56].

6.1 Introduction

As already mentioned in the previous chapters, the progress in cooling and ma-
nipulating ultracold atomic gases in recent years has opened new perspectives on
interacting many-body models from condensed matter physics [30, 31, 189]. It led
to questions and opportunities beyond conventional solid-state physics, e.g., the
direct experimental study of quantum phase transitions [30, 31], the role and engi-
neering of genuine quantum correlations [30, 31, 54, 190], and the phenomenon of
quantum chaos in systems that consist of indistinguishable particles [191–197]. In
this context, it is possible to detect a quantum phase transition by the change of
fidelity (modulus of the overlap between eigenstates of slightly different Hamilto-
nians) [55, 198, 199], since the ground state of a quantum system changes dramati-
cally at a critical parameter [200].

Up to now, the temporal change of fidelity – as the overlap of the same initial
states evolved by different Hamiltonians [201, 202] – has been measured exper-
imentally in wave billiards [203, 204], but also in systems of cold atoms subject
to optical potentials [205–209]. Similar techniques may be applied to measure the
evolving overlap of two eigenstates where time is substituted by the change of
some tunable control parameter. Often a quantum phase transition may be viewed,
for finite-size realizations of a system, as an avoided crossing (AC) in parameter
space which closes in the thermodynamic limit [200]. A scenario of many ACs with
a broad distribution of widths [210–212], as a manifestation of a strong coupling of
many energy levels, is naturally found in quantum chaotic systems [210]. The dy-
namical evolution of these systems is determined by the number and distribution
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of ACs present in the spectrum. The question then arises whether the applicability
of fidelity can be lifted from pure ground-state analysis [213] to detect and charac-
terize ACs in the entire spectrum of a complex quantum system. In this chapter we
propose to use the fidelity as a new tool to detect and characterize ACs in quan-
tum spectra [167, 214]. This is corroborated by analytical and numerical results for
exemplary quantum systems.

6.1.1 Reader’s Guide

This chapter has the following structure. In section 6.2, the considered fidelity
measure is defined and illustrated for simplified two- and three-level models. Sec-
tion 6.3 goes beyond these idealized models and applies our fidelity to more real-
istic quantum chaotic systems, namely, a random matrix theory model as well as a
Bose-Hubbard Hamiltonian. Brief conclusions are given in section 6.4.

6.2 The Fidelity Measure

Given some parameter depending Hamiltonian Ĥ(λ) = Ĥ1 + λĤ2, the fi-
delity [201, 202] between the n-th eigenstates, denoted by |n〉, of two slightly dif-
ferent Hamiltonians Ĥ(λ) and Ĥ(λ + δλ) is defined as fn(λ, δλ) ≡ |〈n(λ)|n(λ +
δλ)〉|. In complex quantum systems with many degrees of freedom, many of the
levels of the system are coupled to each other leading to ACs in the spectrum of
the Hamiltonian when the parameter λ is changed [210]. To simplify the discus-
sion, we assume a finite size Hilbert space H, where all energy levels are never
exactly degenerate. To detect and characterize an AC for a given quantum level n
we study the fidelity change [55, 198, 199]

Sn(λ, δλ) ≡ 1− fn(λ, δλ)

(δλ)2 (6.1)

which measures the change of the state |n〉. For δλ � 1, it is independent of δλ,
i.e. Sn(λ, δλ) ≈ Sn(λ), and vanishingly small everywhere except in the vicinity of
an AC. The independence of δλ arises from the fact that the first non-vanishing
contribution to fn in the expansion of the changed state |n(λ + δλ)〉 is of second
order in δλ [214, 215]. The fidelity measure (6.1) also has the advantage of being
applicable locally in the spectrum, where one follows a certain state |n(λ)〉 and its
neighbors over a range of parameter values λ to study the ACs they encounter. In
addition, it is well-suited for numerical computations, since λ is the only relevant
parameter as long as δλ is sufficiently small. The different limit of large δλ and
hence the coupling over a broad energy band was the focus of a recent work using
another generalized fidelity [216]. In contrast, our interest here is the detection and
characterization of ACs as local couplings in energy space.

6.2.1 Two-State Model

Let us first discuss an isolated AC which can locally be described in nearly-
degenerate perturbation theory as an effective two-level system. It is then repre-
sented by a Hamiltonian Ĥ(λ) = λσZ + gσX, with a real coupling g between the
levels (σX and σZ denote Pauli matrices), showing an AC at λ = 0 of width c = 2g.
The eigenstates are easily found [210, 217] and from them we calculate the fidelity
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for the two-level system:

f±(λ, δλ) =

g2 + λ(λ̄− λ) + λ2 + λ̄
√

g2 + λ2 + λ
√

g2 + λ̄2 +
√
[g2 + λ2][g2 + λ̄2]

2

√[
g2 + λ

(
λ±

√
g2 + λ2

)] [
g2 + λ̄

(
λ̄±

√
g2 + λ̄2

)] ,

where we used the shorthand notation λ̄ ≡ λ + δλ. To obtain the fidelity change in
the limit δλ� 1, we need to expand the expression for the fidelity in a power series
for δλ and keep only the leading term proportional to (δλ)2. The final expression
is the same for both eigenstates (indexed by ±) and has the simple form:

S±(λ) =
1
8

(
g

g2 + λ2

)2
. (6.2)

This is the square of a Lorentzian and differs significantly from zero only near the
AC at λ = 0. This formula already allows us a good understanding of isolated ACs,
as, for example, the peak width is easily computed as σFWHM = 2g

√√
2− 1. On

the other hand an AC can be characterized by the ratio between the local energy
level curvature and the distance between the two repelling energy levels. We call
the absolute value of this ratio renormalized curvature Cn(λ) and find

C±(λ) ≡
∣∣∣∣ 1
∆(λ)

∂2E±(λ)
∂λ2

∣∣∣∣ = 4S±(λ) (6.3)

for the two-level system. For higher-dimensional systems we expand the wave
function |n(λ + δλ)〉 in second order in δλ and find

Sn(λ) =
1
2 ∑

m 6=n

|〈m(λ)|Ĥ2|n(λ)〉|2
[En − Em]2

≈ |〈n
′(λ)|Ĥ2|n(λ)〉|2
2 [En − En′ ]2

,

where we reduced the sum near an isolated AC to the nearest neighboring level n′.
Similarly, one obtains for the renormalized curvature [218]

Cn(λ) =

∣∣∣∣ 2
∆(λ) ∑

m 6=n

|〈m(λ)|Ĥ2|n(λ)〉|2
En − Em

∣∣∣∣
≈ 2
|〈n′(λ)|Ĥ2|n(λ)〉|2

[En − En′ ]2
= 4Sn(λ) . (6.4)

The relation Cn ≈ 4Sn thus holds as long as the effect of other levels can be ne-
glected close to a single AC.

6.2.2 Beyond the Two-Level Approximation

ACs in higher dimensional systems are not totally isolated, but other levels can
contribute to the evolution of a quantum state as the parameter λ is varied. Con-
sider two energy levels approaching each other as λ → 0, and a third level being
well separated by a distance ε in energy and weakly coupled to the first two levels.
A Hamiltonian model for such a situation reads

Ĥ(λ) =

 −λ g g13
g λ g23

g13 g23 ε

 , gij, ε ∈ R , (6.5)
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where we limited ourselves to real couplings. Since the first two levels become
nearly degenerate and are well-separated from the third one, we can write this in
degenerate perturbation theory1 close to the crossing as

ĤPT(λ) =

(
−λ +

g2
13
ε g +

g13g23
ε

g +
g13g23

ε λ +
g2

23
ε

)
+O(ε−2) . (6.6)

This reduces the three-level system to an effective two-level system taking the ef-
fect of the distant level perturbatively into account. The same procedure can be ap-
plied, in principal, to higher dimensional systems. The minimal distance c between
the two levels of equation (6.6) is thus changed by the influence of the distant third
level in first order to

cPT = 2|g|

√(
1 + g13g23

2gε

)2
+

(
g2

23−g2
13

2gε

)2
≈ 2|g|

(
1 +

g13g23
2gε

)
, (6.7)

where we kept only the leading order behavior. The minimal distance in an iso-
lated AC is accordingly only slightly changed, provided that the coupling to the
third level is not much larger than between the two encountering levels and that
the third level is well-separated from them. We need to compute the eigenstates
|E±(λ + δλ, ε)〉 of equation (6.6) and then take their overlap for slightly differ-
ent parameter values to obtain the fidelity, i.e., f±(λ, δλ, ε) = |〈E±(λ, ε)|E±(λ +
δλ, ε)〉|. The fidelity change can be computed by taking the second derivative of
the fidelity at δλ = 0. The full expression is very long and difficult to grasp. Ex-
panding it in inverse powers of ε and including just the first order correction to the
simple two-level system, the fidelity change under the influence of a third not too
close level is then given by

SPT
± (λ, ε) =

1
8

g2

(g2 + λ2)
2

[
1− 2

ε

(
gg13 + λg23

)(
gg23 − λg13

)
g(g2 + λ2)

+O
(

ε−2
)]

.

The correction due to the third level is also λ-dependent and changes the peak
height at λ = 0. Let us also include the second order correction to the fidelity
change at λ = 0 here

SPT
± (λ = 0, ε) =

1
8g2

[
1− 2

ε

g13g23
g
− 1

2ε2
g4

13 − 8g2
13g2

23 + g4
23

g2 +O(ε−3)

]
.

If all off-diagonal matrix elements are of similar magnitude, the effect of the third
level is characterized by its inverse distance to the AC. This underlines our claim
that the effect of a third level on an AC is not too strong, provided that the level is
not very close. But the latter does not take place when three levels undergo a joint
AC, i.e., if there were no off-diagonal matrix elements coupling the levels they
would all cross in one point. Such a situation cannot be reduced to an effective
two-level system. We will in the following also study numerically the behavior of
the fidelity change in exactly this case, where the third level cannot be considered
a simple perturbation to the two-level system, i.e., when the approximation of an
isolated AC breaks down.

Three crossing levels can be generated, e.g., by the following real symmetric
Hamiltonian

Ĥ(λ) =

 −λ a b
a 0 c
b c λ

 , (6.8)

1An excellent overview on this topic gives, e.g., reference [219].
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Figure 6.1: (a) Energy spectrum of equation (6.8) for a = 0, b = 2, c = 3. All levels
are coupled and the spectrum shows two close ACs; (b) fidelity change Sn(λ) and
(c) renormalized curvature Cn(λ) for the energy levels of (a). (d) Energy spectrum
for a = 1, b = 2, c = 3. All three levels are now directly coupled and the spectrum
shows two close ACs. (e) Sn(λ) and (f) Cn(λ) for the energy levels of (d).

which generalizes the above 2×2-model. Figure 6.1 shows that the fidelity change,
defined in equation (6.1), is able to detect and to distinguish two nearby ACs in this
system. Furthermore it reflects specific features of an AC in the shape of its peak,
i.e., depending on the coupling g, Sn(λ) shows a narrow peak of height S(λ =
0) = 1/(8g2).

We see already in this simple example that the renormalized curvature captures
the form of the fidelity change Sn(λ) close to an AC, with deviations arising from
the admixture of a further level, which first and foremost affects the local curva-
ture, i.e., the numerator in equation (6.3). But it also demonstrates that the fidelity
change S(λ) itself is still effective in detecting and characterizing the ACs.

6.3 Application to Complex Systems

6.3.1 Quantum Chaos Model

A highly dense spectrum with many and possibly overlapping ACs is encountered
in quantum chaotic systems as described by Random Matrix Theory (RMT) [210].
A prime example having such a dense complex spectrum is the combination of
two random matrices drawn from the Gaussian orthogonal ensemble (GOE) [210]

H(λ) = cos(λ)H1 + sin(λ)H2 , H1, H2 ∈ GOE . (6.9)

The distribution of minimal distances c at the ACs (normalized to unit mean) is
then given by a Gaussian distribution P(c) = (2/π) exp [−c2/π] [211]. Using our
fidelity measure, we can directly detect the ACs in this system (by a numerical
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Figure 6.2: Cumulative distribution of ACs determined from the fidelity change
maxima for the RMT model of equation (6.9) with dim H1,2 = 1024 and λ ∈ [0, π[
showing ca. 30,000 ACs: the numerical distribution (solid line) in excellent agree-
ment with the RMT prediction CDF(c) = erf(c/

√
π) (dashed line). Inset: Distribu-

tion of widths of the ACs P(c) (histogram) and the RMT prediction (dashed line).

search for maxima of the S-function) and estimate also their widths. In the vicinity
of a local maximum, the S-function has a Lorentzian shape as in equation (6.2) even
in very dense quantum chaotic spectra. Under this assumption, we can thus extract
the width of the AC as c = 2g = 1/

√
2Smax, c.f. equation (6.2), from the local

maximum Smax. Averaging over many ACs, the fidelity allows the verification of
the RMT prediction with high accuracy. This is demonstrated in figure 6.2 for large
random matrices.

6.3.2 Bose-Hubbard System

To further exemplify the value of our fidelity measure, we apply it to a one-
dimensional Bose-Hubbard Hamiltonian with additional Stark force [193,196,197,
220]. This example of a many-body Wannier-Stark system can be realized with
ultracold atoms in optical lattices and the relevant parameters may be changed
using well-known experimental techniques [30, 31]. This model describes N par-
ticles on L lattice sites, with hopping between adjacent sites and a local on-site
interaction. As exemplified in [193, 196, 197], a gauge transformation into the force
accelerated frame of reference turns a constant Stark force into a time-dependent
phase exp(±iFt) with periodicity TB = 2π/F (the Bloch period). The correspond-
ing Hamiltonian reads

Ĥ(t) = − J
2

L

∑
l=1

(eiFta†
l+1al + H.c.) +

U
2

L

∑
l=1

n̂l(n̂l − 1) , (6.10)

where a†
l (al) creates (annihilates) a boson at site l and n̂l = a†

l al is the number
of bosons at site l. The parameter J is the hopping matrix element, U the interac-
tion energy for two atoms occupying the same site, and F the Stark force. Periodic
boundary conditions are imposed for Ĥ(t), such that the Hamiltonian and the one-
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Figure 6.3: Density of ACs ρAC in the quasienergy spectrum of the Floquet oper-
ator of our Bose-Hubbard model for varying F and fixed J = 0.038, U = 0.032,
N = L = 6. The number of ACs as detected by the fidelity change increases with
1/F and saturates around 1/F ≈ 20 to an average value which is shown by the
dashed line. Inset: Magnification of the region marked by the box on logarithmic
scale with a comparison to a χ2 test (with small values for good Wigner-Dyson
statistics [196, 197]).

period Floquet operator ÛF(TB) = T exp
(
−i
∫ TB

0 Ĥ(t)dt
)

(where T denotes time-
ordering) decompose into a sum of operators for specific quasimomenta κ [193]. In
the following, we use F as a control parameter. For J ≈ U � F the quasienergy
spectrum (eigenphases of ÛF(TB)) is dominated by the force F and the system is
regular. Decreasing the force to J ≈ U & F the quasienergy spectrum reorders
and the coupling between the levels becomes more important. For fillings of or-
der unity, e.g. N/L ≈ 1, the system is quantum chaotic in this regime and the
spectrum obeys Wigner-Dyson statistics [193,196,197]. As F is varied one observes
an increasing number of ACs as the spectrum is changing and additionally many
broad ACs once the quantum chaotic region is reached.

To illustrate the crossover between regions with few and many ACs, we study
the density of ACs as detected by the fidelity change Sn, when changing the sys-
tem parameter λ. In a histogram, the density ρAC(λ) is defined via ρAC(λ) · dλ ≡
NAC(λ)/dimH, comparing the number of ACs NAC(λ) in the interval [λ, λ + dλ]
to the total number of energy levels dimH. This is shown in the main part of fig-
ure 6.3 where we observe no ACs at large F, i.e., small values of 1/F, and an in-
creasing number of ACs for larger values of 1/F that saturates around 1/F ≈ 20.

The mentioned transition between regular and chaotic spectral properties for
J ≈ U & F and approximately integer filling in the tilted system can be visualized
by comparing the actual level spacing distribution to a Wigner-Dyson distribution
using a standard statistical χ2 test [196, 197]. This is displayed in the inset of fig-
ure 6.3 along with the density of ACs in figure 6.3. The fidelity change S(1/F) de-
tects ACs and shows the same qualitative behavior as the spectral statistics along
the crossover from regular to chaotic dynamics: in regions of good Wigner-Dyson
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Figure 6.4: Cumulative distribution of ACs determined from the fidelity change
maxima for the system of equation (6.10). Shown are the numerical distribution
(solid line), the best fit for a mixed RMT spectrum (thick dashed line, chaotic part
γ ≈ 0.94), and the RMT prediction for a purely chaotic spectrum (thin dashed-
dotted line). Parameters: N = 6, L = 7, J = 0.038, U = 0.032, F = 1/39 . . . 1/35.
Inset: Distribution of widths of ACs for the same model (histogram) and equa-
tion (6.11) with γ ≈ 0.94 (dashed line). The enhancement close to c = 0 arises from
regular “solitonic” states [221] in the spectrum.

statistics we find a high density of ACs compared to a smaller number of ACs in
the regular regime. The crossover beginning for log(1/F) ≈ 2, where the density
of ACs rises above unity, i.e., on average each energy level undergoes more than
one AC in the unit interval. The transition is complete for log(1/F) ≈ 3 where
the χ2 test saturates around a low value. However, the density of ACs alone is not
able to distinguish regular from chaotic dynamics. Instead the ACs need to have a
broad distribution of widths which is reflected in the distribution P(c) introduced
above.

By using the fidelity change in order to detect and characterize ACs, we can
resolve further remarkable details in the full spectrum. With this method we are,
e.g., able to detect a small number of regular states [221] traversing the chaotic sea
of energy levels in the chaotic regime of the tilted Bose-Hubbard model. In this
case the distribution of widths of ACs is a mixture of regular and quantum chaotic
distributions:

P(c) = (1− γ)δ(c) +
2γ2

πc̄
exp

[
−γ2c2

πc̄2

]
, (6.11)

with a chaotic part of weight 0 ≤ γ ≤ 1 [222]. A finite regular component makes it-
self visible as a strong enhancement of P(c) close to zero, c.f., the inset of figure 6.4.

We are able to estimate the size of this component by analyzing the cumulative
distribution function CDF(c) = 1 − γ + γ erf

(
γc√

π

)
. The result is shown in the

main part of figure 6.4, where we plot the numerically obtained distribution and
the best χ2-fit including a finite regular component. We obtain a chaotic part of
γ ≈ 0.94, corresponding to ca. 6% of regular levels, in good agreement with count-
ing 7 regular levels out of 132 by direct inspection of the spectrum. Except for the
identification of single regular levels [221], this has so far not been detected in the
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tilted Bose-Hubbard model by other statistical measures. The reported results are
obtained for periodic boundary conditions applied to the Hamiltonian of equa-
tion (6.10), but we found a qualitatively similar picture for hard-wall boundary
conditions, as used in reference [221]. Our results underline the value of fidelity as
a measure for detecting ACs with high resolution in energy spectra.

6.4 Conclusions

We showed that quantum fidelity is perfectly suited to detect and characterize ACs
in the energy spectrum. It therefore connects information about the wave function
of a system with its spectrum, without direct reference to the energy levels by using
only the overlap of wave functions.2 This has been exemplified for simple mod-
els and for complex quantum systems showing many ACs. The fidelity, therefore,
proves very useful to study many-body systems, also beyond their ground-state
properties [55, 198, 199].

We expect a clear advantage of the fidelity change compared to spectral statis-
tics in the sense that it can be applied, in principle, also just locally in the spectrum.
This means that, if one is interested only in local spectral properties of a system,
it is sufficient to follow a small number of levels to characterize the behavior of a
system. For larger systems, computing the entire spectrum and all eigenstates is in
general difficult, but the fidelity allows an analysis of parts of the spectrum pro-
viding local spectral information. To make use of this advantage, one may resort
to numerical algorithms optimized to access just a subset of eigenstates, e.g., the
Lanczos algorithm [224, 225].

2A similar connection, yet in the deep semiclassical regime, between spectral properties and fidelity
is identified in reference [223].
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Appendix A

Generalized Householder
Transformations for the
Complex Symmetric
Eigenvalue Problem

In this appendix, we present results which are not directly related to this thesis.
They were nevertheless obtained during the Ph.D. and we include them here for
completeness.

Efficient diagonalization routines are of fundamental importance for the
analysis of quantum systems. In some cases, one encounters the necessity to
diagonalize non–Hermitian matrices for which algorithms provided by stan-
dard libraries are not optimal. Here, we develop an intuitive and scalable algo-
rithm for the diagonalization of complex symmetric matrices, which can arise
from the projection of pseudo–Hermitian and complex scaled Hamiltonians
onto a suitable basis set of “trial” states. The algorithm is based on generalized
Householder transformations and relies on iterative similarity transformations
T → T ′ = Qt T Q, where Q is a complex and orthogonal, but not unitary, matrix,
i.e, Qt = Q−1 but Q† 6= Q−1. We present numerical reference data to support the
scalability of the algorithm. We construct the generalized Householder transfor-
mations from the notion that the conserved scalar product of eigenstates Ψn and
Ψm of a pseudo–Hermitian quantum mechanical Hamiltonian can be reformu-
lated in terms of the generalized indefinite inner product

∫
dx Ψn(x, t)Ψm(x, t),

where the integrand is locally defined, and complex conjugation is avoided. A
few example calculations are described which illustrate the physical origin of
the ideas used in the construction of the algorithm. This chapter is published in
reference [57].

A.1 Introduction

Complex symmetric matrices A = At arise naturally from the projection of a com-
plex scaled (“resonance-generating”) Hamiltonian onto a basis of quantum me-
chanical “trial” states. For suitably chosen parameters, the diagonalization of a
matrix of this type leads to (accurate) approximations for the resonance energies,
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and the resonance eigenstates, of the complex scaled Hamiltonian [226–229]. The
resonance energies are manifestly complex; the width of the quantum state en-
ters the complex energy as E = Re E − i

2 Γ, where Γ is the width (we use nat-
ural units with h̄ = c = ε0 = 1 throughout this chapter). A paradigmatic ex-
ample [226] is the complex-scaled cubic anharmonic oscillator Hamiltonian h3 =
− 1

2 exp(−2iθ) ∂2
x +

1
2 exp(2iθ) x2 + G exp(3iθ) x3, where G is a coupling parame-

ter and 0 < θ < π/5 is a complex rotation angle.

However, complex scaled Hamiltonians are not the only source of complex
symmetric matrices in theoretical physics. For example, if one projects the pseudo–
Hermitian (PT -symmetric) anharmonic oscillator [230, 231] Hamiltonian H3 =
− 1

2 ∂2
x + 1

2 x2 + i G x3 with an imaginary cubic perturbation (G > 0) onto a ba-
sis of harmonic oscillator eigenstates, then one obtains a complex symmetric (but
not Hermitian) matrix, the eigenvalues of which are real.

As shown in references [227,232], the complex resonance energies of the “real”
cubic anharmonic oscillator h3 are connected with the real eigenenergies of the
imaginary cubic perturbation H3 via a dispersion relation. The same holds true for
all anharmonic oscillators of odd degree. Some of the numerical calculations were
instrumental in providing additional evidence for the generalization [227] of the
so-called Bender–Wu formulas [233, 234], which describe the large-order asymp-
totic growth of the perturbative coefficients of an arbitrary energy eigenvalue of an
even anharmonic oscillator, to odd anharmonic oscillators. Indeed, the conjectures
on nonperturbative quantization conditions, described in references [227,228] had
been checked against high-precision numerical data before the results were pre-
sented.

The purpose of this chapter is threefold: First, to illustrate the numerical proce-
dures underlying the numerical verification of the conjectured generalized quan-
tization conditions, second, to describe an intuitive and scalable (in terms of the
numerical precision) matrix diagonalization algorithm which seems to be particu-
larly suited for the treatment of complex symmetric matrices. Our algorithm has a
certain “twist” in the sense that it is based on generalized Householder transforma-
tions. The generalized Householder matrices Hv have manifestly complex entries
but are not Hermitian unlike the familiar formalism (see p. 225 of reference [235]).
Instead, they are orthogonal matrices with the property Hv Ht

v = 1. To the best of
our knowledge, these generalized Householder reflections have not appeared in
the standard literature [92, 236–239] on matrix diagonalization procedures before.

Finally, the third purpose of the chapter is to illustrate a few properties of
the eigenenergies of pseudo–Hermitian Hamiltonians, based on calculations done
with the algorithm presented here. Let us anticipate one of the observations made
in the course of the calculations. At face value, the conserved scalar product [240]
(under the time evolution governed by a pseudo–Hermitian anharmonic oscilla-
tor) is given as the integral

∫
dx Ψ∗n(−x, t)Ψm(x, t); this expression involves a non-

local integrand with function evaluations at x and −x. Typically, eigenstates of
complex symmetric matrices are orthogonal with regard to a conceptually much
simpler scalar product, namely, the indefinite inner product

∫
dx Ψn(x, t)Ψm(x, t),

where the integrand is locally defined, and complex conjugation is avoided. How-
ever, the two scalar products are related, as described in this chapter, and this ob-
servation has motivated the construction of the matrix diagonalization algorithm
presented here.
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A.1.1 Reader’s Guide

We thus proceed by describing the algorithm in section A.2 and the physical moti-
vation for its development in section A.3, together with a few example calculations.
Conclusions are reserved for section A.4.1

A.2 Complex Symmetric Eigenvalues and Eigenvec-
tors

The quantum mechanics considered here is formulated in an infinite-dimensional
vector space (Hilbert space) of functions. However, once a numerical evaluation
of eigenvalues of a particular Hamiltonian is pursued, the quantum mechanical
Hamiltonian needs to be projected onto a suitable basis set of wave functions, lead-
ing to a finite-dimensional matrix.

When a pseudo–Hermitian Hamiltonian such as the imaginary cubic oscilla-
tor is projected onto a basis set consisting of harmonic-oscillator eigenfunctions,
one obtains a complex symmetric (not Hermitian!) matrix. Typically, the general-
ized indefinite inner product [241–243] naturally emerges as a tool in the analysis
of pseudo–Hermitian quantum mechanics, and one would thus naturally assume
that the indefinite inner product might be useful in the development of a suitable
matrix diagonalization algorithm. Indeed, the approximate calculation of eigen-
values of quantum mechanical Hamiltonians naturally emerges as a task in the
analysis of the quantum dynamics induced by the pseudo–Hermitian time evolu-
tion.

Such an algorithm will be described in the following; it essentially relies on two
steps: In the first, the complex symmetric input matrix is transformed to tridiago-
nal form, and in the second step, the tridiagonal matrix is diagonalized to machine
accuracy. The first step uses the concept of the complex inner product in an abso-
lutely essential manner; it is based on generalized Householder reflection matrices.
The complex symmetric input matrix is transformed to tridiagonal form in a sin-
gle computation whose computational cost is of order n2 (here, “tridiagonal form”
refers to a form where the diagonal, as well as the sub- and superdiagonal entries
of the matrix are nonzero). For the second step, one has a number of methods avail-
able; we shall briefly outline a method based on iterative QL decompositions with
implicit (Wilkinson) shifts.

A.2.1 Tridiagonalization

We first define the indefinite inner product for finite-dimensional n-vectors as fol-
lows,

〈x, y〉∗ =
n

∑
i=1

xi yi = xt · y , (A.1)

where xt is a row vector, whereas y is a column vector. Note that the entries of
x and y may be complex numbers, but complex conjugation of either x or y is
avoided. We use generalized Householder reflection matrices Hv, which have the

1Notice that matrices and vectors are bold here for better readability.
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properties,

Hv = 1− 2
〈v, v〉∗

v⊗ vt , Hv x = x− 2u 〈u, x〉∗ , u =
v
|v|∗

, |v|∗ =
√
〈v, v〉∗ .

(A.2)

Here, the dyadic product of a column and a row vector is denoted by the symbol
⊗, and the branch cut of the square root function in the calculation of |v|∗ is along
the negative real axis.

The generalized Householder reflection matrix Hv is symmetric, i.e., Hv = Ht
v.

Furthermore, the Householder reflections are square roots of the unit matrix,

H2
v = Hv Ht

v = Ht
v Hv = 1− 4u⊗ ut + 4 u⊗ ut 〈u, u〉∗ = 1. (A.3)

A characteristic property of the Householder reflections is that the parameter vec-
tor v can be adjusted so that the input vector x is projected onto a particular axis,
upon the calculation of Hv y. We set

v = y + |y|∗ ên , (A.4)

where ên is the “last” unit vector in the n-dimensional space, and we verify that

Hv y = y− 2
〈v, v〉∗

〈v, y〉∗ v = y−
2
(
yt + |y|∗ êt

n
)
· y

(yt + |y|∗ êt
n) · (y + |y|∗ ên)

v

= y−
2
(
|y|2∗ + |y|∗yn

)
2|y|2∗ + 2|y|∗yn

v = y− v = −|y|∗ ên . (A.5)

Furthermore,
ytHv = (Hvy)t = −|y|∗ êt

n . (A.6)

The results from equations (A.5) and (A.6) are useful in the tridiagonalization pro-
cedure. Let A be the matrix we want to tridiagonalize. In the first step, we choose
the column vector yn−1 to consist of the first n− 1 elements of the last column of
A,

yn−1 =


A1 n
A2 n

...
An−1 n

 . (A.7)

By defining Bn−1 as an (n− 1)× (n− 1) matrix where Bij = Aij, for i, j = 1, . . . , n−
1, we can write A as

A =


Bn−1 yn−1

yt
n−1 Ann

 . (A.8)

In the spirit of the Householder reflection, we set

vn−1 = yn−1 + |yn−1|∗ ên−1 . (A.9)

We can then construct Hvn−1 , which will be a Householder matrix of rank n − 1.
The complex n× n matrix Hn−1 is defined as

Hn−1 =


Hvn−1 0

0t 1

 . (A.10)



A.2 Complex Symmetric Eigenvalues and Eigenvectors 141

Then,

A′ = Hn−1 A Hn−1 =

 Hvn−1 Bn−1Hvn−1 Hvn−1 yn−1

yt
n−1Hvn−1 Ann

 . (A.11)

Using equation (A.5) and (A.6), this can be reduced to

A′ =


0

B′n−1
...

−|yn−1|∗
0 · · · −|yn−1|∗ Ann

 , (A.12)

where
B′n−1 = Hvn−1 Bn−1Hvn−1 . (A.13)

For the second step we choose yn−2 to be the first n− 2 elements of the second to
last column of A′,

yn−2 =


A′1 n−1
A′2 n−1

...
A′n−2 n−1

 , vn−2 = yn−2 + |yn−2|∗ ên−2 . (A.14)

The Householder matrix Hvn−2 is of rank n− 2, and Hn−2 is defined as

Hn−2 =


Hvn−2 0

0t 12×2

 . (A.15)

We write A′ as follows,

A′ =


Bn−2 yn−2 0

yt
n−2 A′n−1 n−1 −|yn−1|∗

0t −|yn−1|∗ A′nn


, (A.16)

where we observe that A′nn = Ann. We then calculate A′′ using the similarity trans-
formation

A′′ = Hn−2 A′ Hn−2 . (A.17)

The result is

A′′ =



0

B′n−2
... 0

−|yn−2|∗
0 · · · −|yn−2|∗ a′n−1 n−1 −|yn−1|∗

0t −|yn−1|∗ A′nn


, (A.18)
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where
B′n−2 = Hvn−2 Bn−2 Hvn−2 . (A.19)

A total of n− 2 iterations of this process leads to a tridiagonal matrix T , where

T = Z−1 A Z , (A.20)

with

Z = Hn−1 Hn−2 . . . H2 , Z−1 = Zt = H2 H3 . . . Hn−1 . (A.21a)

In order to write a computationally efficient algorithm, it is helpful to observe that
the explicit calculation of the Z matrix actually is unnecessary. Obviously, the only
computationally nontrivial step in the iteration of the Householder transforma-
tions consists in the calculation of the matrix

B′ =Hv B Hv =

(
1− 2

v⊗ vt

|v|2∗

)
B
(
1− 2

v⊗ vt

|v|2∗

)
=B− v⊗ ut − u⊗ vt + 2q v⊗ vt = B− v⊗wt −w⊗ vt , (A.22)

where we skip a few algebraic steps in the derivation and use the definitions

p =
1
2
|v|2∗ , u =

B v
p

, q =
vt · u

2p
, w = u− qv . (A.23)

It is advantageous to calculate, for each iteration, the vector v, then p, u, q, w and
finally B′.

A.2.2 Diagonalization

The tridiagonal matrix T obtained in equation (A.20) is sparsely populated; the
only nonvanishing entries are on the diagonal, the superdiagonal and the subdi-
agonal. It can be written in the form

T =



D1 E1
E1 D2 E2

E2
. . . . . .
. . . Dn−1 En−1

En−1 Dn

 . (A.24)

In principle, a number of methods are available for the diagonalization of such
sparsely populated matrices. One of these is based on QL factorization. In its most
basic version [244,245], the QL factorization implements the similarity transforma-
tions by first calculating the decomposition of a symmetric triangular input matrix
T , as given by T = Q L where Q is an orthogonal matrix (Qt = Q−1), and L is
a lower diagonal matrix. One then implements the similarity transformations by
simply calculating T ′ = L Q = Q−1 T Q. This corresponds to an iterative simi-
larity transformation T = Q T ′Q−1 = Q Q′ T ′′Q′−1Q−1 and so on. The plain QL
factorization is known to be an efficient algorithm for wide classes of input matri-
ces [92, 238]. If the input matrix is triangular, one can show [236, 246] that the rate
of convergence in the Kth iteration goes as (λi/λi+1)

K, for an ordered sequence of
eigenvalues |λ1| < |λ2| < · · · < |λn| of an n× n input matrix. When the matrix
T is diagonalized to machine accuracy, a fixed point of the similarity transforma-
tion is reached. For complex input matrices [239,247], the common form of the QL
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decomposition calls for Q to be unitary (Q−1 = Q†) rather than complex and sym-
metric (Q−1 = Qt). Our Q matrices have the latter property and represent a slight
generalization of the commonly accepted version of the QL decomposition.

We use a so-called Wilkinson shift in order to enhance the rate of convergence,
as described in section 8.13 of reference [238]. The “implicit shift” involves a guess
σ for a specific eigenvalue of T , and the ensuing implementation of the similar-
ity transformation T → T ′ is known as “chasing the bulge”. One performs the
decomposition on a matrix shifted by the guess for the eigenvalue,

T − σ 1n×n = Q L , (A.25a)

and uses the fact that

T ′ = L Q + σ 1n×n = Q−1 T Q . (A.25b)

Indeed, in a computationally efficient algorithm, neither Q nor L are ever explic-
itly computed. One takes advantage of the fact that the similarity transforma-
tion (A.25) is equivalent to a series of Jacobi [248] and Givens [249] rotations, as
described in the following.

In the first step, the implicit “Wilkinson” shift σ is calculated [236, 246] from
one of the eigenvalues of the 2× 2 matrix in the upper left corner of (A.24),(

D1 E1
E1 D2

)
. (A.26)

It reads as follows,

σ =
D2 + D1

2
±

√(
D2 − D1

2

)2
+ E2

1 . (A.27)

The± sign is chosen such as to minimize the complex modulus |σ−D1| of the dif-
ference of σ and the diagonal entry D1. The guess for the eigenvalue is calculated
for the upper left corner of the input matrix, while, in the QL decomposition, the
implicitly shifted Jacobi rotation J is a complex orthogonal (but not unitary) matrix
which rotates the lower right corner of the tridiagonal input matrix as follows,

J =


1

. . .
1

c s
−s c

 , Jt J = 1n×n , (A.28)

with manifestly complex entries c2 + s2 = 1 (but in general |c|2 + |s|2 6= 1),

c =
Dn − σ√

(Dn − σ)2 + E2
n−1

, s =
En−1√

(Dn − σ)2 + E2
n−1

. (A.29)

The transformed matrix T ′ = Jt T J has the form

T ′ =



. . . . . .

. . . D′n−3 E′n−3
E′n−3 D′n−2 E′n−2 F′

E′n−2 D′n−1 E′n−1
F′ E′n−1 D′n

 (A.30)
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with an obvious “bulge” (entry F) at the elements T′n−2 n = T′n n−2 6= 0. The bulge
can be “chased upward” using a generalized (complex and symmetric, but not
Hermitian) Givens rotation,

G =



1
. . .

1
c s
−s c

1


, Gt G = 1n×n , (A.31)

where again c2 + s2 = 1, and

c =
E′n−1√

E′2n−1 + T′2n n−2

, s =
T′nn−2√

E′2n−1 + T′2n n−2

. (A.32)

The second transformation leads to T ′′ = Gt T ′ G with

T ′′ =



. . . . . .

. . . D′′n−3 E′′n−3 F′′

E′′n−3 D′′n−2 E′′n−2
F′′ E′′n−2 D′′n−1 E′′n−1

E′′n−1 D′′n

 . (A.33)

Upon a Givens rotation, one updates the entries on the diagonal and sub-(super-
)diagonal of the tridiagonal matrix T → T ′ → T ′′. The additional element of the
“bulge” can be stored as a single variable. After n− 2 (Givens) Gj rotations with
j = n− 2, . . . 1, starting from Gn−2 ≡ G and continuing to G1, the bulge has disap-
peared, and T again assumes a tridiagonal form. The orthogonal transformation Q
from equation (A.25b) is identified as

Q = J Gn−2 Gn−3 · · ·G1 . (A.34)

In general, the convergence toward the eigenvalues in the Kth iteration is im-
proved [236,246] to [(λi− σ)/(λi+1− σ)]K, again for an ordered sequence of eigen-
values |λ1| < |λ2| < · · · < |λn|. The similarity transformations are iterated un-
til the off-diagonal element E1 is zeroed to machine accuracy. One then repeats
the process for the lower right (n − 1) × (n − 1) submatrix of T , then, for the
(n− 2)× (n− 2) submatrix of T , each time zeroing the first off-diagonal element,
until T is diagonalized to machine accuracy.

A.2.3 Numerical Reference Data

The algorithmic procedure described above leads to a matrix diagonalization al-
gorithm for complex symmetric matrices, which can find both the eigenvalues
and eigenvectors of the original input matrix A. We have checked numerical re-
sults obtained for wide classes of PT -symmetric anharmonic oscillators against
numerous published data. An example of an interesting alternative procedure for
the calculation of the eigenenergies is given by the moment method [250–252],
which relies on a Fourier transformation of the Schrödinger equation and is based
on a recursive calculation of the moments which define the series expansion of
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the wave function in momentum space. Applied to the positive-definite measure
S(x) = |ψ(x)|2, the method has been shown to generate numerical approxima-
tions for the discrete states of the −i x3 non–Hermitian potential [253], as well as a
potential proportional to i x3 + i α x, which induces PT -symmetry breaking, man-
ifestly complex eigenvalues [254,255]. The wave functions of eigenstates have also
been studied, including Stokes and Anti-Stokes lines, for both the imaginary cu-
bic oscillator [256] as well as generalized (i x)N-potentials [257]. Furthermore, we
have used the algorithm for the calculation of resonance and anti-resonance ener-
gies of the “real” cubic perturbation (potential proportional to x3) and other odd
anharmonic oscillators. We note that the eigenvalues of the PT -symmetric imag-
inary cubic perturbation and the Hermitian, but not essentially self-adjoint real
cubic oscillator are related by a dispersion relation [227, 232].

For reference, let us consider the two Hamiltonians

h3 = − 1
2

e−2iθ ∂2
x +

1
2

e2iθ x2 + e3iθ x3 , 0 < θ <
π

5
, (A.35a)

H3 = − 1
2

∂2
x +

1
2

x2 + i x3 . (A.35b)

The first of these involves a complex scaling transformation, which gives rise to
manifestly complex resonance energy eigenvalues. The complex scaling transfor-
mation is “dual” to the resummation of the perturbation series to the complex
resonance energies, which has been discussed in references [258–260]. Using a
multi-precision arithmetic implementation [261] of the algorithm described in sec-
tion A.2, we easily obtain the first two resonance energy eigenvalues of h3 as fol-
lows,

ε0 = 0.61288 84333 07754 62425 88175 01988 65141 37333 39788 30718 29420 66181

−0.40859 26669 32267 28315 94988 68767 16051 62709 74834 43840 39990 97532 i ,
(A.36a)

ε1 = 2.18041 38375 36348 77123 01619 63541 74113 12471 72136 83505 89744 59041

−1.52620 76556 93032 51000 68539 46967 49562 44459 06099 84880 44103 55220 i .
(A.36b)

All of the given decimals are significant; the 60-figure precision is obtained in a ba-
sis of roughly 1000 harmonic oscillator eigenstates and can be enhanced if desired.
The ground-state energy of the Hamiltonian H3 and its first-excited-state energy
read as follows,

E0 = 0.79734 26075 08906 18903 90809 60791 01316 30972 44534 48033 11575 78578 ,
(A.37a)

E1 = 2.77352 49851 95379 71540 58170 00015 53014 23108 48902 82968 52057 22959 .
(A.37b)

We again reemphasize that the precision of these results can be easily enhanced,
as it was necessary to test some of the conjectured generalized quantization con-
ditions for anharmonic oscillators presented in references [226–229]. For typi-
cal double-precision (16 decimals) and quadruple-precision (32 decimals) calcu-
lations, we observe that the timings for matrix diagonalization using our algo-
rithm are comparable to those using the routine ZGEEVX built into the LAPACK
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library [239]. Using a dedicated, concise implementation of the algorithm dis-
cussed in sections A.2.1 and A.2.2, we were even able to obtain timings which
exceed the speed of LAPACK’s by up to 50% for typical applications (matrices of
rank 500× 500); however, the speed-up may be compiler-specific (we were using
gfortran version 4.7.2).2

A.3 Pseudo–Hermitian Quantum Mechanics

Let us try to explore the physical motivation for the construction of the matrix diag-
onalization algorithm presented in section A.2, on the basis of pseudo–Hermitian
(PT -symmetric) quantum mechanics. A PT -symmetric Hamilton operator H ful-
fills the relation

H = P T H T P = P H† P , (A.38)

where H† is obtained [240] from H by the replacement i→ −i, which is the same as
the Hermitian adjoint if all other terms in the Hamiltonian are explicitly real (rather
than complex). The parity and time reversal are denoted as P and T , respectively.
If a Hamiltonian H fulfills a relation of the type H = η−1 H† η, then H is said to be
pseudo–Hermitian [262]. PT -symmetry can thus be interpreted as a special case
of pseudo-Hermiticity (η = P), even if there is a certain “clash” with the original
definition from reference [262], where it was assumed that η is a positive-definite
operator. By contrast, P may have the negative eigenvalue −1.

For reference, we continue our analysis with the well-known imaginary cubic
perturbation [226–231], which we had already employed in section A.2.3. It is de-
scribed by the Hamiltonian

H3 = −1
2

∂2
x +

1
2

x2 + i G x3 , G > 0 , (A.39)

which for G = 1 reduces to equation (A.35b). The eigenfunctions of H3 are mani-
festly complex, in contrast to those of the quartic anharmonic oscillator,

H4 = −1
2

∂2
x +

1
2

x2 + g x4 , g > 0 , (A.40)

where the eigenstate wave functions can be chosen as purely real. For a PT -
symmetric system, the scalar product

〈ψ(t)|φ(t)〉PT ≡
∫

dx ψ∗(x, t)Pφ(x, t) (A.41)

is conserved under time evolution if both ψ and φ fulfill the time-dependent
Schrödinger equation i∂tψ(t) = H3ψ(t), and i∂tφ(t) = H3φ(t). However, the in-
tegrand in equation (A.41) is manifestly “nonlocal” because ψ∗(x, t)Pφ(x, t) =
ψ∗(x, t)φ(−x, t); it depends on function evaluations at x and −x. This is in con-
trast to the ordinary scalar product

〈ψ(t)|φ(t)〉 ≡
∫

dx ψ∗(x, t) φ(x, t) , (A.42)

where the first argument is complex conjugated, and the (generalized) indefinite
inner product

〈ψ(t)|φ(t)〉∗ ≡
∫

dx ψ(x, t) φ(x, t) , (A.43)

2The gfortran compiler is available at http://hpc.sourceforge.net.
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where none of the arguments are complex conjugated. The Hamiltonian H3 given
in equation (A.39) involves a manifestly complex potential, which we denote as
W(x),

W(x) =
1
2

x2 + i G x3 = V(x) ei arg(V(x)) , (A.44a)

V(x) = |W(x)| =
√

1
4 x4 + G2 x6 . (A.44b)

The modulus V(x) = |W(x)| tends to infinity as x → ±∞. For purely real po-
tentials like the “confining” quartic oscillator given in equation (A.40), intuition
suggests that the “bulk” of the probability density of the eigenstate wave function
should be concentrated in the “classically allowed” region, i.e., in the region where
the eigenenergy E is greater than the potential, i.e., E > V(x) [where V(x) ∈ R].
For a manifestly complex potential, the condition E > W(x) [with W(x) ∈ C] can-
not be applied because the complex numbers are not ordered. In the following, we
consider a few example calculations of energy eigenvalues of the imaginary cu-
bic perturbation (A.39), which illustrate these observations. All of these have been
accomplished using the algorithm presented in section A.2.

A.3.1 Example Calculations

We can formally split the Hamiltonian H3 into a “real part” and an “imaginary
part” as follows,

Re H3 = − 1
2 ∂2

x +
1
2 x2 , Im H3 = i G x3 . (A.45)

Likewise, we can also split the eigenstate wave function ψn(x) into real and imag-
inary parts,

ψn(x) = Re ψn(x) + i Im ψn(x) . (A.46)

Based on the decomposition (A.45), one can show that if Re ψn(x) is even under
parity and ψn(x) is an eigenstate of H3 with real eigenvalue of εn, then Im ψn(x)
has to be parity-odd, and vice versa. Also, if Re ψn(x) is odd under parity, then
Im ψn(x) has to be even under parity. Because the parity operator P does not com-
mute with the Hamiltonian H3, the eigenstates of H3 are not eigenstates of parity.
Furthermore, because the potential is manifestly complex, so are the wave func-
tions. Yet, numerical evidence drawn from figure A.1 suggests that if the global
phase of the wave function is appropriately chosen, both real as well as imaginary
parts of the eigenstates are eigenstates of parity, individually. These eigenstates are
naturally obtained if one diagonalizes an approximation to the cubic Hamiltonian
obtained by projection onto a suitably large basis set of harmonic oscillator eigen-
states.

The antilinear PT operator commutes with the Hamiltonian, and the eigen-
functions of H3 are also PT eigenstates [240]. The precise eigenvalue of PT may,
however, depend on the phase assigned to ψn(x) because T is an antilinear opera-
tor. Let us first investigate the phase conventions used in figure A.1, where the real
and imaginary parts of the wave function are, alternatingly, even and odd under
parity as we proceed to higher excited states. The appropriate eigenvalues are thus

PT ψn(x) = ψ∗n(−x) = (−1)n ψ(x) . (A.47)

However, the eigenvalue of the wave functions Ψn(x) = (−i)nψn(x) with respect
to the PT operator is unity,

PT [(−i)n ψn(x)] = in ψ∗n(−x) = [(−i)n ψ(x)] . (A.48)
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Figure A.1: Figure (a) displays the ground-state wave function of the imaginary
cubic Hamiltonian (A.39) for G = 1.0. This wave function is manifestly complex.
The real part Re ψ0(x) (even under parity) is plotted using solid lines, and the
dashed curve corresponds to the parity-odd imaginary part Im ψ0(x). For the first
excited state (still, G = 1.0), the real part is odd, while the imaginary part is even
under parity [see figure (b)]. The second excited state [figure (c)] has an even real
part, while its imaginary part is odd. The global complex phase of the wave func-
tion is chosen so that the real part Re ψn=0,1,2(x) of the wave functions has the
same qualitative behavior as the eigenstate wave function of the quartic oscillator
displayed in figure A.2(a).

For two eigenstates of the PT -symmetric system, the conserved PT -symmetric
scalar product simply is the indefinite inner product, as defined in equation (2.4.2)
of reference [242],

〈Ψn|Ψm〉PT =
∫

dx Ψ∗n(x)PΨm(x) =
∫

dx (PT Ψn) (x)Ψm(x)

=
∫

dx Ψn(x)Ψm(x) = 〈Ψn|Ψm〉∗ . (A.49)

The integrand in equation (A.49) is “local” in the sense that it depends only on
wave functions at x, not −x. The non-local character of the integrand in equa-
tion (A.41) has otherwise been called into question and has given rise to rather
sophisticated attempts at finding an alternative, appropriate interpretation [263].
The natural normalization condition for eigenstates of complex, symmetric matri-
ces (including infinite-dimensional matrices) is given by [242]

〈ψn|ψm〉∗ = δnm , 〈Ψn|Ψm〉∗ = (−1)n δnm , (A.50)

and involves the indefinite inner product defined in equation (A.43). The equiva-
lence shown in equation (A.49) and the orthogonality properties (A.50) provide the
main motivation for the construction of the generalized Householder transforma-
tion (A.2); indeed, the generalized inner product (A.49) reduces to (A.1) for finite-
dimensional vector spaces. “Half” of the Ψn eigenstates acquire a negative PT -
symmetric norm, as described by the prefactor (−1)n. For two time-dependent
states of the PT -symmetric system, given as

χ(t) = ∑
n

an(t) |Ψn〉 , ρ(t) = ∑
m

bm(t) |Ψm〉 , (A.51)

with an = (−1)n 〈Ψn|χ〉, and bn = (−1)n 〈Ψn|ρ〉, the PT -symmetric scalar prod-
uct is calculated as follows,

〈χ(t)|ρ(t)〉PT = ∑
nm

a∗n(t) bm(t)
∫

dx Ψ∗n(x)PΨm(x) = ∑
nm

a∗n(t) bm(t)
∫

dx Ψn(x)Ψm(x)

= ∑
n
(−1)n a∗n(t) bn(t) = 〈~a(t)|~b(t)〉even − 〈~a(t)|~b(t)〉odd . (A.52)
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Figure A.2: In figure (a), we plot the probability density ρ = |ψ(x)|2 of the quar-
tic oscillator’s ground state and first two excited states, in a potential V(x) =
1
2 x2 + g x4 with g = 1.0. Although the wave functions of the quartic potential
are purely real, we use a modulus-phase plot for the real wave functions in fig-
ure (a). A sign change then corresponds to a jump in the complex phase from
zero (for a positive real number) to −π (for a negative real number). In figure (b),
we give a modulus-phase plot of the eigenstate wave functions of the imagi-
nary cubic perturbation, where the complex phase of the wave function is dis-
played in the shaded region. The complex phase θ = θ(x) in the decomposition
(−i)n ψn(x) = |ψn(x)| exp[i θ(x)] covers the interval [−π, π). Here, the ψn are the
wave functions of figure A.1, multiplied by a phase factor (−i)n [see also equa-
tion (A.48)].

with an obvious identification of 〈~a(t)|~b(t)〉even and 〈~a(t)|~b(t)〉odd. Note that one
cannot suppress the factor (−1)n in the second-to-last line of equation (A.52) by a
change in the global phase factor of the wave functions. The factor either occurs
because of the PT -symmetric eigenvalue of the ψn, or because of the alternating
sign of the norm of the Ψn. The PT -symmetric time evolution is separately unitary
in the space of the coefficients an(t), bn(t) with (i) even n and (ii) odd n, as denoted
by an appropriate subscript in equation (A.52). In some sense, the PT -symmetric
time evolution leads to a natural “splitting” of the Hilbert space into two sub-
spaces, those of the function with negative PT -symmetric norm and those with
positive norm, according to the second equality in equation (A.50). The same pat-
tern has recently been observed in a field-theoretical context [264, 265]: Half of the
states of the generalized Dirac equation with a pseudo-scalar mass term acquire a
negative Fock-space norm.

From ordinary, Hermitian, quantum mechanics, it is known that the L2(R)
eigenfunctions of a Hermitian operator are in some sense confined to spatial re-
gions where the eigenenergy En is larger than the local value of the potential,
E > V(x). An intuitive understanding can be obtained if we interpret the po-
tential in terms of a modulus and a phase, according to equation (A.44a). We use
the rationale of accompanying a plot of the modulus of a function by a grey band
to convey complex phase information in figures A.2 and A.3, where the complex
eigenstate wave functions shown previously in figure A.1 are plotted in terms of
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Figure A.3: Illustration of the confinement mechanism for the imaginary cubic po-
tential described by the Hamiltonian (A.39), for the ground and the first excited
state. The bulk of the modulus square of the wave function is centered in the “al-
lowed” region where the (real rather than complex) energy E > V(x) = V(G, x) =
|W(G, x)|. The potential is plotted in green (the “trough”-like structure), whereas
the moduli of the wave functions are plotted in red (the “wave-like structures”).
The squares of the moduli of the wave functions either have a single maximum
(ground state), or two maxima (first excited state). The ground state wave func-
tion has a modulus square |ψ0(x)|2 = |ψ0(G, x)|2 as a function of G and x. As G
increases, the bound-state energy (which is equal to the base line of the wave func-
tion curve at any given value of G) increases, and the modulus of the potential
forms a more narrow trough to which the ground-state wave function is confined.
The same is true for the first excited state. The central minimum of the modulus
square of the first-excited state wave function is clearly visible.
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the decomposition
ψn(x) = |ψn(x)| ei arg(ψn(x)) . (A.53)

The curves in figures A.2 and A.3 show that indeed, the wave functions of the PT -
symmetric oscillator are concentrated [in the sense of a large absolute value of the
integrand in equation (A.49)] to a region where En > V(x) = |W(x)|, where W(x)
is the complex-valued PT -symmetric potential (A.44a). In figure A.3, we illustrate
that the “confinement” mechanism holds for all values in the range 0 < G < 1. The
interlacing of zeros in complex Sturm–Liouville problems for PT -eigenfunctions,
has been discussed in reference [266]. In agreement with the conclusions of refer-
ence [266], we find that both the real as well as imaginary parts of the complex
eigenfunctions have an infinite number of zeros, individually, when the argument
x of the wave function covers the real numbers. Furthermore, this statement even
holds for an infinitesimally small, but nonvanishing coupling G in the imaginary
cubic perturbation i G x3.

A.4 Conclusions

In section A.2, we have presented an efficient algorithm for the calculation of eigen-
values of complex symmetric (not Hermitian) matrices. The algorithm is scalable
in terms of the desired numerical accuracy and relies on generalized Householder
reflections which “depopulate” the input matrix by projecting the entries onto the
sub- and super-diagonals, using the generalized inner product which avoids the
complex conjugation of the first argument. We find that a subsequent diagonal-
ization of the tridiagonal matrix obtained from the Householder transformations,
using generalized Jacobi and Givens rotation matrices (which are again complex
and symmetric but not unitary) leads to an efficient eigenvalue solver. Numeri-
cal reference data are provided in section A.2.3, and we reemphasize that many
of the previously reported numerical tests of generalized quantization conditions
for anharmonic oscillators [226–229] rely on the numerical methods described in
this chapter. The indefinite inner product can indeed be useful in numerical algo-
rithms; in reference [243], the indefinite inner product had been used previously
in a reformulation of the Rayleigh quotient, within an adaptation of the Jacobi–
Davidson method for complex symmetric matrices (which has nothing to do with
the Jacobi rotations used in our algorithm). We might add that in contrast to the
Jacobi–Davidson method, our algorithm does not require a Gram–Schmidt orthog-
onalization step and is based on a generalized inner product which draws its in-
spiration from physics.

We would like to illustrate and comment on the algorithm by pointing out a
few possible modifications and intricacies of the methods used. The above version
of the algorithm described in section A.2 is based on the QL rather than QR decom-
position. In the (shifted) iterated QL decomposition, one starts the calculation of
the eigenvalue guess from the upper left corner of the input matrix but calculates
the Givens and Jacobi rotations from the lower right, i.e., one “chases the bulge
upward”. In that case, the “uppermost” eigenvalue of the input matrix converges
first; the guess σ approximates the true eigenvalue to machine accuracy. If the com-
plex symmetric Hamiltonian is obtained from a basis set of “trial” quantum states
the first of which approximates the state of lowest energy of the perturbed system,
then the QL decomposition as opposed to the QR decomposition ensures that the
“ground-state energy converges first”. Still, it is an instructive exercise to modify
the algorithm so that the “eigenvalue guess” σ is first calculated for the “lower
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rightmost” eigenvalue. One then calculates the Jacobi and Givens rotations which
“chase the bulge” from the upper left to the lower right of the tridiagonal matrix.
In that case, the “lower rightmost” eigenvalue converges first. This may be useful
in particular cases where the “highest” eigenvalue is of particular interest.

One has a few options for controlling the convergence of the algorithm: For ex-
ample, in many applications, the element Di may be declared to have “converged”
if Di + Ei equals Di to machine accuracy, but this criterion may be too restrictive in
some cases, especially, when multi-precision arithmetic is being used. In that case,
it should be replaced by a criterion which states that |Ei/Di| is less than a specific,
predefined accuracy, say 10−64 (for so-called “octuple precision” arithmetic, with
64 decimals).

Our QL factorization involves manifestly complex symmetric Q matrices. Typ-
ically, routines built into modern computer algebra system use a unitary matrix
Q for such decompositions. These routines use manifestly different matrices than
those employed in the approach described above and therefore cannot be used,
say, in a meaningful comparison to an implementation of the above algorithm.

In the iterated, shifted QL decomposition of the tridiagonal matrix T , the most
common pitfall consists in a “premature zero”, i.e., in an entry on the sub- or super-
diagonal Ej which becomes zero to machine accuracy before the “target element”
Ei<j for which the current guess σ is calculated has converged to the desired accu-
racy. In that case, the tridiagonal matrix naturally divides into two matrices (two
“irreducible representations”) which have to be considered separately. Typically,
this phenomenon occurs when the entries in the original input matrix A have a
somewhat irregular pattern (e.g., random matrices). The necessity to partition the
tridiagonal matrix upon the occurrence of premature zeroes is described rather
scarcely in the literature; some lecture notes on the matter can be found in section
11.4 of [267] and near the end of section 3.6.2 of reference [268]. The division into
two matrices is called “partitioning” in section 4.7 of [269]. For matrices obtained
from regularly distributed, trial basis states, which typically occur in theoretical
physics, we have not observed this phenomenon.

As a final remark, we would like to mention that a plain iterated QL or QR
decomposition leads to a rather efficient, but not optimized, convergence of the
eigenvalue problem, especially for regular input entries in the matrix A. The QL
and QR decompositions of the input matrix A can be calculated using general-
ized Householder reflections: For QL, one starts from the rightmost column vector
of A and projects it onto its last element; for QR, on starts from the leftmost col-
umn vector of A and projects it onto its first element; the subsequent Householder
reflections are constructed from the “deflated” (n − 1) × (n − 1) submatrices, in
either direction [92, 238]. Skipping the tridiagonalization step, one can thus con-
struct generalized QL and QR factorization-based matrix diagonalization routines
where Q is manifestly complex and symmetric, but not unitary. Otherwise, the im-
plicit shift (A.25) leads to improved convergence to numerical approximations of
the eigenvalues.

The usefulness of the generalized Householder reflections used in the algo-
rithm has a connection to the underlying physics. Indeed, we find that the most
natural interpretation of the conserved scalar product in the PT -symmetric time
evolution is in terms of the generalized indefinite inner product defined for finite-
dimensional vectors in equation (A.1) and for Hilbert space vectors in equa-
tion (A.43). This inner product is linear in both arguments and avoids complex
conjugation. Attempts at finding an alternative, appropriate interpretation [263]
seem too complicated to take precedence over the immediate identification of the
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PT -symmetric scalar product of eigenvectors in terms of the indefinite inner prod-
uct. The integrand immediately becomes “local” and one avoids integrations over
eigenfunctions evaluated at the (possibly very distant) points x and −x. We reem-
phasize that the indefinite inner product is crucial in the analysis of resonance
eigenvectors [242] for the “real” cubic perturbation, and that the eigenvalues of
the “real” and “imaginary” cubic perturbation are related by a dispersion rela-
tion [227,232]. So, in some sense, the importance of the indefinite inner product for
the analysis of the imaginary cubic Hamiltonian had to be expected, and the emer-
gence of an efficient matrix diagonalization algorithm for such matrices is only
natural (see section A.3).

It has been stressed in the literature that the scalar product 〈ψ(t)|φ(t)〉PT as
defined in equation (A.41) is not positive definite. This has been used as an ar-
gument against the viability of PT -symmetric Hamiltonians for the description
of natural phenomena. However, one may counter argue that the same problem
persists with regard to the relativistic Klein-Gordon equation where the time-like
component of the conserved Noether current can become negative (see chapter 2
of reference [270]). The Klein-Gordon equation is assumed to describe a charged
scalar field like the charged component of the Higgs (doublet) field [271] (the lat-
ter is usually assumed to vanish under a gauge transformation, and the remaining
neutral component of the Higgs doublet is expanded about its vacuum expecta-
tion value). Strictly speaking, one has to reinterpret the timelike component of the
conserved Noether current as a charge density, not a probability density. Analo-
gously, the timelike component of the conserved Noether current of the pseudo–
Hermitian, generalized Dirac Hamiltonian (with a pseudo-scalar mass term) may
naturally be interpreted as a non-positive definite “weak-interaction density” (see
reference [265]). Equation (A.52) suggests that the Hilbert space, under the PT -
symmetric time evolution, is split into two “halves”, one of which entails nega-
tive PT -symmetric norm (analogous to the “right-handed neutrinos”), and the
other has positive PT -symmetric norm (analogous to the “left-handed neutrinos”
within the model proposed in reference [265]). We recall that “half” of the Ψn eigen-
states acquire a negative PT -symmetric norm under a very natural choice of the
global complex phase [see equation (A.51)]. The PT -symmetric norm, in turn, can
be formulated in terms of the generalized indefinite inner product, on which this
chapter is based.
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