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Abstract

This article presents semi-analytical solutions and temporal moments of the general rate

model of chromatography with a focus on evaluating the effect of finite rates for the adsorp-

tion and desorption steps, typically considered to be in equilibrium. The model equations

are analytically solved in the Laplace domain and numerical Laplace inversion is applied

to get back solutions in the actual time domain. The expression of first four temporal

moments are derived from the analytical solutions in the Laplace domain. The derived

analytical solutions and moments are helpful tools to predict dynamic behaviors inside

the column and to evaluate the influence of model parameters on the elution profiles, in

particular the effect of finite rates of the intrinsic adsorption and desorption steps. The

correctness of analytical solutions are verified through the numerical solutions of a high

resolution finite volume scheme. Several case studies are considered to quantify effects

of the rate constants for adsorption and desorption, axial dispersion, film mass transfer

resistance, intraparticle diffusion resistance, and inlet boundary conditions on the elution

profiles.
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1. Introduction

Chromatography is known as one of the powerful separation and purification techniques

used in petrochemical, fine chemical, pharmaceutical, biotechnical and food industries.

For instance, this technique is applied to separate chiral molecules, enzymes, sugar and to

purify proteins or to produce insulin. It has capability to rapidly produce milligrams to tons

of purified products. In particular, this technology is highly effective within those process

industries where because of physicochemical limitations traditional separation operations

such as distillation, solvent extraction, crystallization, evaporation are not applicable. In

the last few decades, this technique has achieved considerable industrial popularity, see

e.g. Ruthven (1984); Guiochon and Lin (2003); Guiochon et al. (2006).

Chromatographic techniques are based on selective adsorption of mixture compounds on a

solid phase (or liquid phase) with high surface area. In liquid-solid column chromatography,

a mobile (liquid) phase, carrying mixture components is passed through a tabular column

containing the stationary (solid) phase. During migration, each component of the mixture

interact to varying degrees with the stationary phase. Thus, components of the mixture are

continuously partitioned between solid (adsorbent) and mobile phases. Components having

strong interaction with the stationary phase propagate slowly along the column compared

to the weakly interacting components. A complete separation of the components can be

achieved if the column length is long enough Ruthven (1984); Guiochon et al. (2006). Other

applications of adsorption phenomena can be found in Lemlikchi et al. (2015); Kitous et

al. (2016).

Mathematical modeling plays an important role in the design, understanding, and op-

timization of several chemical engineering processes. Modeling of the chromatographic

columns are helpful to understand the transport mechanism and to approximate chemical-

physical parameters from the analysis of experimental data. It offers a technique for

predicting the dynamic behaviors of the solute in the columns without carrying out expen-

sive and time-consuming experiments in the laboratories. The numerical tools are often

more valuable than the conventional experimental methods in terms of providing more
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profound insights and complete information that cannot be directly measured or observed,

see Guiochon et al. (2006); Schmidt-Traub et al. (2012). A common practice in the math-

ematical modeling of chromatographic system is to consider a column packed with mono

dispersed spherical particles and to write unsteady-state mass balances of both the mobile

and the stationary phases and to impose some simplifying assumptions incompliance with

the physics of the system. This leads to a system of partial differential equations (PDEs)

coupled with some algebraic and/or differential equations.

In the literature, a number of dynamic models have been introduced to simulate the chro-

matographic process, see for example Ruthven (1984); Guiochon and Lin (2003); Guiochon

et al. (2006). Each model considers a different level of complexity to describe the process.

The most important to mention are the equilibrium dispersive model (EDM), the lumped

kinetic model (LKM), and the general rate model (GRM). The general rate model (GRM)

is regarded as the most comprehensive model for the simulation of fixed-bed adsorbers. In

this model, the axial dispersion and all the mass-transfer resistances are taken into account,

such as the external mass transfer of adsorbate from the bulk phase to the external sur-

face of the adsorbent, the diffusion transport through the pores of the adsorbent, and the

adsorption-desorption kinetics at the active sites. Herby, the latter aspect is studied less

frequently. In most models applied to simulate chromatographic processes, permanently

established adsorption equilibria are assumed. The GRM can be used to study the effects

of different mass-transfer kinetics on the elution profiles. Either analytical or numerical

solution techniques can be used to solve the model equations, depending on the degree of

tractability of the governing system of equations.

The analytical solutions of the packed-beds for mono-dispersed solid spherical particles

dates back to the pioneering works of Hougen and Marshal (1947), Thomas (1948, 1951),

and Rosen et al. (1952). Afterwards, several other researchers presented analytical solutions

of different models for fixed-bed absorber, see e.g. Rasmuson (1985); Carta (1988); Li et

al. (2003, 2004); Guiochon et al. (2006); Shams (2014) and references therein.

The analytical solutions of different chromatographic models in the Laplace domain have

been recently derived considering the assumption of a linear isotherm, see e.g. Felinger and
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Guiochon (2004); Javeed et al. (2013); Miyabe (2014); Qamar et al. (2014, 2015). When

the Laplace transform is applied in terms of time variable, a function of time is transformed

into a function of complex frequency. Now, the phenomenon is converted to the Laplace

domain in which certain operations can be carried out, for example temporal moments

can be found using the Laplace transformed function. After deriving the solution in the

Laplace domain, it requires a back transformation to the actual time domain. However, the

analytical back transformation is not possible in all situations, for example in the current

situation of GRM. Thus, the numerical Laplace inversion is applied in such a scenario, see

Rice et al. (1995).

The temporal moment analysis is a useful technique to extract information about the

retention equilibrium and the mass transfer kinetics in the column. It provides accu-

rate information about band broadening caused by several mass transfer kinetic processes.

The technique has been comprehensively discussed in the literature, see instance Kubin

(1965a,b); Kucera (1965); Schneider and Smith (1968); Suzuki (1973); Wolff et al. (1979,

1980); Ruthven (1984); Lenhoff (1987); Gengliang and Zhide (1996); Antos (2003); Guio-

chon et al. (2006), Miyabe et al. (2003, 2007, 2009)

This study extends our previous analysis of general rate model from quasi-stationary sorp-

tion model to dynamic linear sorption kinetic model, see Qamar et al. (2014). The previous

model is a limiting case of the current model when the adsorption rate constant is very

large. Analytical solutions are derived for the two sets of boundary conditions (BCs), i.e.

the Dirichlet and Danckwers BCs. For further analysis, the first four temporal moments

are derived from the Laplace transformed solutions. The analytical expressions of height

equivalent to theoretical plate (HETP) are derived for both sets of BCs. The influences of

adsorption and desorption rates, axial dispersion, film mass transfer resistance, intraparti-

cle diffusion resistance, and inlet boundary conditions on the elution profiles are discussed

and analyzed.

The current study also extends and generalizes the recent work of Miyabe (2014) who

already analyzed GRM with finite adsorption and desorption rates. The major novelty

of this article include: (a) the derivation of analytical solutions for both Dirichlet and
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Danckwerts BCs considering pulse injections of finite widths, (b) the derivation of analytical

expressions for the first four temporal moments and equations of HETP curve for the

considered two sets of boundary conditions, (d) consideration of different case studies to

quantify effects of the rate constants for adsorption and desorption, axial dispersion, film

mass transfer resistance, intraparticle diffusion resistance, and inlet boundary conditions

on the elution profiles, (c) Correction of Eq. (3) of Miyabe (2014) by incorporating the

pore and surface diffusions in appropriate manner, see Eq. (2) of this manuscript.

2. The GRM with finite adsorption and desorption rates

This study considers an isothermal adsorption column packed with porous particles. Con-

centration pulses of an adsorbate are periodically injected to a flowing stream passing

through the column. The adsorption column is subjected to axial dispersion, external

mass-transfer resistance, intraparticle diffusion resistance, and adsorption-desorption ki-

netics.

Based on the aforementioned assumptions, the mass balance for the bulk phase is given as

∂Cb

∂t
+ u

∂Cb

∂z
= Db

∂2Cb

∂z2
−

3Fkext
Rp

(

Cb − Cp|r=Rp

)

. (1)

In the above equation, Cb and Cp are the concentrations of a solute in the bulk of the fluid

and in particle pores, respectively. The phase ratio F is defined as F = (1− ǫe)/ǫe, where

ǫ is the external porosity. Moreover, u is the interstitial velocity, Db represents the axial

dispersion coefficient, kext is the external mass transfer coefficient, Rp is the radius of the

adsorbent, and t and z denote time and axial coordinate of the column. In addition, r

denotes the radial coordinate

The mass balance equation for the solute in the stationary phase can be expressed assuming

two mechanisms of intraparticle transport, namely pore and surface diffusions:

ǫp
∂Cp

∂t
+ (1− ǫp)

∂Qp

∂t
=

1

r2
∂

∂r

(

r2
[

ǫpDp
∂Cp

∂r
+ (1− ǫp)Ds

∂Qp

∂r

])

, (2)

where Qp is the non-equilibrium concentration of the solute in the stationary phase, ǫp is

the internal porosity, Dp is the pore diffusivity, and Ds is the surface diffusivity.
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In this study, linear adsorption kinetics of finite rate are assumed. The following mass

balance for the amount of the solute adsorbed on the stationary phase is used

∂Qp

∂t
= Kd (aCp −Qp) , (3)

where the well-known Henry’s constant a, used in linear equilibrium models, is defined as

a =
Ka

Kd

. (4)

In the above equations, Ka and Kd denote the adsorption and desorption rate constants,

respectively. Eq. (3) is a simplified adsorption-desorption kinetic expression assuming that

solute loading is sufficiently low at all times so that the number of available sites for

adsorption does not change as the solute moves through the column. For rapid desorption

(and adsorption) steps, i.e. Kd → ∞, Eq. (3) gives Qp = aCp. In that case, the current

model reduces to the linear GRM recently analyzed by Qamar et al. (2014).

In the context of this work, we will study in particular the impact of finite Kd-values on

the course of elution profiles. Eqs. (1) and (2) are connected at r = Rp via the following

expression that quantifies the temporal change of the average loading of the particles:

[

ǫpDp
∂Cp

∂r
+ (1− ǫp)Ds

∂Qp

∂r

]

r=Rp

= kext(Cb − Cp|r=Rp
). (5)

To simply the notations and reduce the number of variables, the following dimensionless

quantities are introduced:

cb =
Cb

Cinj

, cp =
Cp

Cinj

, qp =
Qp

aCinj

τ =
ut

L
, ρ = r/Rp, x =

z

L
, Pe =

Lu

Db

, ηp =
DpL

uR2
p

,

ηs =
DsL

uR2
p

, Bip =
kextRp

Dp

, Bis =
kextRp

Ds

, ξ = 3F
kext
Rp

L

u
. (6a)

Moreover, a dimensionless desorption rate is expressed as

kd =
KdL

u
. (6b)

In Eq. (6a), Cinj denotes the non-zero injected bulk concentration, Pe is the Peclet number

based on column length, Bi represents modified Biot number, and ηp and ηs describe
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the ratio of space time and interaparticle diffusion times. Using the above dimensionless

variables, the model Eqs. (1) to (3) can be rewritten as

∂cb
∂τ

+
∂cb
∂x

=
1

Pe

∂2cb
∂x2

− ξ (cb − cp|ρ=1) , (7)

ǫp
∂cp
∂τ

+ (1− ǫp)a
∂qp
∂τ

=
1

ρ2
∂

∂r

(

ρ2
[

ǫpηp
∂cp
∂ρ

+ (1− ǫp)aηs
∂qp
∂r

])

, (8)

and

∂qp
∂τ

= kd(cp − qp). (9)

The Eqs. (7)-(9) are also subjected to the initial and boundary conditions.

The initial conditions for an initially regenerated column are given as

cb(0, x) = 0 , cp(0, x, γ) = 0 , qp(0, x) = 0 , ∀ x, γ ∈ (0, 1). (10)

For Eq. (8), the following boundary conditions at ρ = 0 and ρ = 1 are assumed:

∂cp
∂ρ

∣

∣

∣

∣

ρ=0

= 0 ,
ǫp
Bip

∂cp
∂ρ

+
1− ǫp
Bis

a
∂qp
∂ρ

∣

∣

∣

∣

ρ=1

= cb − cp|ρ=1. (11)

Appropriate inlet and outlet BCs are required for Eqs. (7). The following two sets of BCs

are considered.

Boundary conditions of type I: Dirichlet inlet BCs

As a first choice, the simpler Dirichlet boundary conditions could be applied at the column

inlet

cb|x=0 =







1 , if 0 < τ ≤ τinj ,

0 , τ > τinj ,
(12a)

where τinj is the dimensionless time of injection. The following Neumann boundary condi-

tion is applied at the outlet of a column of hypothetically infinite length, x = ∞

∂cb(τ,∞)

∂x
= 0 . (12b)

For sufficiently small dispersion coefficient, for example Db ≤ 10−5 m2/s, this Dirichlet

inlet boundary condition is well applicable.
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Boundary conditions of type II: Danckwerts (or Robin) type inlet BCs

Alternatively, the Danckwerts (or Robin) type boundary condition could be applied at the

column inlet (e.g. Danckwerts (1953))

−
1

Pe

∂cb
∂x

+ cb

∣

∣

∣

∣

x=0

=







1 , if 0 < τ ≤ τinj ,

0 , τ > τinj .
(13a)

At the outlet of the column of finite length (i.e. at x = 1), the following Neumann outflow

boundary condition is applied:

∂cb(1, τ)

∂x
= 0 . (13b)

3. Analytical solutions

In this section, semi-analytical solutions of the linear GRM are presented for Dirichlet (Eq.

(12a)) and Danckwerts (Eq. (13a)) inlet boundary conditions. The current model can

conveniently be solved by means of Laplace transformation. The Laplace transformation

is defined as

c̄(s, x) =

∞
∫

0

e−sτ (τ, x)dτ, τ ≥ 0.

By applying the above Laplace definition on Eq. (7), we obtain

sc̄b =
1

Pe

∂2c̄b
dx2

−
∂c̄b
dx

− ξ(c̄b − c̄p|ρ=1). (14)

The Laplace transformation of Eqs. (8) is expressed as

ǫpsc̄p + (1− ǫp)asq̄p =
1

ρ2
∂

∂ρ

(

ρ2
[

ǫpηp
∂c̄p
∂ρ

+ (1− ǫp)aηs
∂q̄p
∂r

])

. (15)

Moreover, the Laplace transformation of Eqs. (9) is given as

q̄ =
kdc̄p
s+ kd

. (16)

On using Eq. (16) in (15), we obtain

∂2c̄p
∂ρ2

+
2

ρ

∂c̄p
∂ρ

= A(s)c̄p , (17)
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where

A(s) = s
ǫp + (1− ǫp)

akd
s+kd

ǫpηp + (1− ǫp)ηs
akd
s+kd

. (18)

The general solution of (17) is given as

c̄p(s, x) =
1

ρ
[k1 cosh

√

A(s)ρ+ k2 sinh
√

A(s)ρ]. (19)

Using the Laplace transformation of the outlet boundary condition (BC) in Eq. (11), i.e.

∂c̄p
∂ρ

|ρ=0, Eq. (19) gives k1 = 0. Thus, we obtain

c̄p(s, x) =
k2
ρ
sinh

√

A(s)ρ. (20)

Now, taking the Laplace transformation of the inlet BC in Eq. (11), we obtain

1

B(s)

∂c̄p
∂ρ

∣

∣

∣

∣

ρ=1

= c̄p − c̄p|ρ=1 , (21)

where

B(s) =
BipBis

Bisǫp + (1− ǫp)Bip
akd
s+kd

. (22)

On using Eq. (20) in Eq. (21), we obtain

k2 =
B(s)c̄b

(B(s)− 1) sinh(
√

A(s)) +
√

A(s) cosh(
√

A(s))
. (23)

Thus, Eq. (20) at ρ = 1 gives

c̄p(s, x)|ρ=1 =
B(s)

B(s)− 1 +
√

A(s) coth(
√

A(s))
c̄b = f(s)c̄b, (24)

where

f(s) =
B(s)

B(s)− 1 +
√

A(s) coth(
√

A(s))
. (25)

On using Eq. (24) in Eq. (14), we get

∂2c̄b
∂x2

− Pe
∂c̄b
∂x

− φ(s)Pec̄b = 0 , (26)
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where

φ(s) = s+ ξ(1− f(s)) . (27)

The general solution of Eq. (26) is given as

c̄b(s, x) = A1e
λ1x +B1e

λ2x, (28)

where

λ1,2(s) =
Pe

2

(

1∓

√

1 +
4φ(s)

Pe

)

. (29)

The integration constants A1 and B1 can be obtained by using BCs either in Eqs. (12a)

and (12b) or in Eqs. (13a) and (13b).

Boundary conditions of type I: Dirichlet BCs

Here, we consider the boundary conditions given by Eqs. (12a) and (12b). Their Laplace

transformations are given as

c̄b(s, 0) =
(1− e−sτinj)

s
,

dc̄b
dx

(s,∞) = 0 . (30)

Using Eq. (30) in Eq. (28), the values of A1 and B1 come out to be

A1 =
(1− e−sτinj)

s
, B1 = 0 . (31)

On plugging these values of A1 and B1 in Eq. (28), we get

c̄b(s, x) =
(1− e−sτinj)

s
eλ1x , (32)

where, λ1(s) is given by Eq. (29) for the upper sign. When τinj → ∞, the injection causes

a complete breakthrough curve. For this case, the solution in Eq. (32) reduces to the

following form

c̄b(s, x) =
1

s
eλ1x . (33)
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Boundary conditions of type II: Danckwerts (or Robin) type BCs

The Laplace transformation of the inlet Danckwerts BC in Eq. (13a) gives

c̄b(s, 0) =
1

s

(

1− e−sτinj
)

+
1

Pe

dc̄b
dx

∣

∣

∣

∣

x=0

. (34)

Similarly, the Laplace transformation of the outlet BC in Eq. (13b) gives

dc̄b(s, x)

dx

∣

∣

∣

∣

x=1

= 0 . (35)

Using Eqs. (34) and (35) in Eq. (28), the values of A1 and B1 are obtained as

A1 =
(1− e−sτinj)

s

λ2e
λ2

(1− λ1

Pe
)λ2eλ2 − (1− λ2

Pe
)λ1eλ1

, (36)

B1 = −
(1− e−sτinj)

s

λ1e
λ1

(1− λ1

Pe
)λ2eλ2 − (1− λ2

Pe
)λ1eλ1

. (37)

At x = 1, the complete solution has the following simple form:

c̄b(s, x) =
(1− e−sτinj)

s

λ2e
λ1+λ2 − λ1 eλ1+λ2

(1− λ1

Pe
)λ2eλ2 − (1− λ2

Pe
)λ1 eλ1

. (38)

When τinj → ∞, the injection again causes a breakthrough curve. In such a situation, Eq.

(38) reduces to

c̄b(s, x) =
1

s

λ2e
λ1+λ2 − λ1 eλ1+λ2

(1− λ1

Pe
)λ2eλ2 − (1− λ2

Pe
)λ1 eλ1

. (39)

This completes the discussion of analytical solutions for the single component linear GRM

in the Laplace domain.

There is no possibility to analytically transform back the Laplace domain solution in the

actual time domain. The numerical Laplace inversion can be applied to obtain a discrete

solution in time. In this technique, the integral of inverse Laplace transformation is ap-

proximated by Fourier series, see for example Rice et al. (1995). However, this solution

is not helpful for the parameters estimation from experimental data. For that purpose,

temporal moments are derived in the next section.
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4. Moment analysis

Moment analysis is an effective technique for extracting important information about the

retention and mass transfer processes in chromatographic columns, see e.g. Kucera (1965);

Schneider and Smith (1968); Ruthven (1984); Guiochon et al. (2006); Miyabe et al. (2007,

2009). The Laplace domain solutions can be used to obtain moments. In this section, the

temporal moments up to fourth order for the GRM are derived. The following moment

generating property of the Laplace transform is exploited (e.g. Van der Laan (1958))

µ0 = lim
s→0

(c̄(s, x = 1)) , µn = (−1)n
1

µ0
lim
s→0

dn(c̄(s, x = 1))

dsn
, n = 1, 2, 3, · · · . (40)

The second, third and fourth central moments can be obtained as

µ′

2 = µ2 − µ2
1 , µ′

3 = µ3 − 3µ1µ2 + 2µ3
1 , µ′

4 = µ4 − 4µ1µ3 + 6µ2
1µ2 − 3µ4

1 . (41)

It is well known that the zeroth moment µ0 gives the mass (or peak area), the first moment

µ1 corresponds to the retention time τR. The effects of longitudinal diffusion are not sig-

nificant with respect to retention time or first moment. The second central moment µ′

2, i.e.

the variance of the elution profile, provides information about the rates of the mass transfer

processes in the column. The third central moment µ
′

3 quantifies the front asymmetries.

Lastly, the fourth central moment µ
′

4 measures the kurtosis. The complete derivations of

moments are presented using the considered two types of boundary conditions.

Boundary conditions of type I: Dirichlet BCs

The final solution for Dirichlet BCs (c.f. Eq. (30)) is given by Eq. (33). The moments of

this solution are given as follows.

Zeroth moment: The zeroth moment for rectangular profiles is given as

µ0 = lim
s→0

(c̄b(s, x = 1)) = τinj . (42)

The zeroth moment for continuous breakthrough curves is simply µ0 = 1 .

First moment: The first temporal moment for rectangular profiles is given as (c.f. Eq.

(40))

µ1 =
τinj
2

+ 1 + a∗F , (43)
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where

a∗ = ǫp + (1− ǫp)a . (44)

For continuous breakthrough curves, the first term on the right hand side of Eq. (43) in is

zero, i.e.

µ1 = 1 + a∗F , (45)

Second central moment: For a rectangular profile it is given as

µ′

2 =
τ 2inj
12

+
2

Pe
(1 + a∗F )2 + F

(

2Fa∗2

ξ
+

2a∗2

15η

)

+ 2
F (a∗ − ǫp)

kd
, (46)

where

η = L
ǫpDp + (1− ǫp)aDs

uR2
p

. (47)

For breakthrough curves the first term on the right hand side of Eq. (46) is zero, i.e.

µ′

2 =
2

Pe
(1 + a∗F )2 + F

(

2Fa∗2

ξ
+

2a∗2

15η

)

+ 2
F (a∗ − ǫp)

kd
. (48)

The first and second central moments can be used to obtain a relation for the flowrate

dependent Height Equivalent to Theoretical Plate (HETP) number. To derive the classical

HETP-curve, let us consider for the sake of simplicity a Dirac injection, i.e. τinj = 0. Then,

Eqs. (43), and (46) gives (e.g. Guiochon et al. (2006); Van Deemter et al. (1956))

HETPDiric(u) =
Lµ′

2

µ2
1

=
2Db

u
+

2LF

u(1 + a∗F )2

[

Fa∗2

ξ
+

a∗2

15η
+

(a∗ − ǫp)

kd

]

u. (49)

In the above equation, the first term captures the band broadening by dispersion, the sec-

ond term describes the contribution of external mass transfer, and the third term provides

the contribution of diffusive migration of sample molecules inside the stationary phase, and

the last term represents the contribution of desorption rate constant. The first term is fre-

quently splitted using the following simplifying expression (e.g. Ruthven (1984); Guiochon

et al. (2006))

Db = γ12Rpu+ γ2Dmol . (50)
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Here, Dmol is the molecular diffusivity of the solute in the solvent, while γ1 and γ2 rep-

resent weight factors for the relative impact of the particle size/flow rate dependent and

the molecular diffusion based contributions to band broadening. Thus, Eq. (49) can be

rewritten as

HETPDiric(u) = 4γ1Rp +
2γ2Dmol

u
+ Ccoreu = A+

B

u
+ Cu , (51)

where

A = 4γ1Rp, B = 2γ2Dmol, C =
2LF

u(1 + a∗F )2

[

Fa∗2

ξ
+

a∗2

15η
+

(a∗ − ǫp)

kd

]

. (52)

Third central moment: The third central moment is calculated as (c.f. Eq. (40))

µ′

3 =
12

Pe2
(1 + a∗F )3 +

6(1 + a∗F )F

Pe

(

2Fa∗2

ξ
+

2a∗2

15η

)

+ Fa∗3
(

4

105η2
+

4F

5ξη
+

6F 2

ξ2

)

+ 12
aF (1− ǫp)

kd

[

1 + a∗F

Pe
+

a∗F

ξ
+

a∗

15η
+

1

2kd

]

. (53)

Moreover, µ′

3 is the same for rectangular and continuous breakthrough curves.

The second and third central moments can be used to calculate the skewness that measures

the degree of asymmetry of elution profiles. It can be evaluated as

δskew =
µ

′

3

(µ
′

2)
3/2

. (54)

This relation is useful to quantify deviations from Gaussian peak shapes. As Eq. (54)

indicates, chromatographic peaks corresponding to GRM have some degree of asymmetry.

Thus, their front and rare parts have not the same shape.
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Fourth central moment: The fourth temporal moment is obtained as (c.f. Eq. (40))

µ4 =
12 (1 + a∗F )4

Pe3
(Pe+ 10) +

24(1 + a∗F )2F

Pe2

(

Fa∗2

ξ
+

a∗2

15η

)

(6 + Pe)

+
48F 3a∗3

ξ2Pe
+

48F 4a∗4

ξ2Pe
+

48F 3a∗4

5ξηPe
+

32F 2a∗3

5ξηPe
+

32Fa∗3

105η2Pe
+

72F 2a∗4

175η2Pe

+
12F 4a∗4

ξ2
+

24F 4a∗4

ξ3
+

24F 3a∗4

5ηξ2
+

72F 2a∗4

175ξη2
+

8F 3a∗4

5ξη
+

4aF 2a∗4

75η2

−24F (ǫp − 1) + 12(F (ǫp − 1))2 + 8F ((ǫp−1))2

Biη
+ 8F ((ǫp−1))2

5η

k3
d

−16aFa∗(ǫp − 1)

Biηk2
d

−
16aFa∗(ǫp − 1)

5ηk2
d

−
8aF 2a∗2(ǫp − 1)

5ηkd
−

16aFa∗2(ǫp − 1)

5Biη2kd

−
8aF 2a∗2(ǫp − 1)

Biηkd
−

8aFa∗2(ǫp − 1)

kdBi2η2
−

16aFa∗2(ǫp − 1)

35ηkd

+
τ 4inj
80

+ τ 2inj
(1 + a∗F )2

Pe
+ τ 2injF

[

Fa∗2

ξ
+

a∗2

15η

]

, (55)

where

Bi =
BipBis

Bisǫp + (1− ǫp)aBip
. (56)

For breakthrough curves all terms in µ′

4 containing τinj are zero. The fourth central moment

can be utilized to calculate kurtosis which measures the profiles peakedness or flatness

relative to a normal distribution. In general, the kurtosis is a descriptor of the shape of a

probability distribution. It is instructive to use an adjusted version of Pearson’s kurtosis,

the excess kurtosis, (see DeCarlo (1997)). The excess kurtosis compares the shape of

a given distribution to that of the normal distribution. Distributions with negative or

positive excess kurtosis are called platykurtic distributions or leptokurtic distributions,

respectively. The following definition quantifies the excess kurtosis

γ =
µ

′

4

(µ
′

2)
2
− 3 . (57)

A high kurtosis distribution has a sharper peak and a broader tails than the normal dis-

tribution, while a low kurtosis distribution has a more rounded peak and thinner tails.

Distributions with zero excess kurtosis, as the normal distribution, are called mesokurtic.
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The above moments were presented in terms of the dimensionless time coordinate τ . How-

ever, they can be easily expressed in term of the actual time coordinate t := Lτ/u as

follows:

µ0(t) =
L

u
µ0(τ) , µi(t) =

(

L

u

)i

µi(τ) , i = 1, 2, 3. (58)

Boundary conditions of type II: Danckwerts (or Robin) type BCs

In this case, the BCs given by Eqs. (34) and (35) are considered. The final solution is given

by Eq. (38). The moments of this solution are given below.

Zeroth moment: The zeroth moment for rectangular profiles is given as

µ0 = τinj . (59)

First moment: The first temporal moment using Eq. (40) is calculated as

µ1 =
τinj
2

+ 1 + a∗F (60)

Second central moment: It is given as

µ′

2 =
τ 2inj
12

+
2 (1 + a∗F )2

Pe

[

1 +
1

Pe
(e−Pe − 1)

]

+ F

[

2Fa∗2

ξ
+

2a∗2

15η

]

+
2F (a∗ − ǫp)

kd
, (61)

In this case the expression in Eqs. (60) and (61) can be used to calculate HETP-curve for

the Danckwerts BCs. Thus, we finally obtain

HETPDanck(u) =
Lµ′

2

µ2
1

= 4γ1Rp +
2γ2Dmol

u
+ Cu = Ã+

B̃

u
+ Cu , (62)

where C is given by Eq. (52) and Ã and B̃ are given as

Ã = 4γ1Rp

[

1 +
1

Pe
(e−Pe − 1)

]

, B̃ = 2γ2Dmol

[

1 +
1

Pe
(e−Pe − 1)

]

. (63)

Third central moment: It is expressed as

µ′

3 =
12

Pe2
(1 + a∗F )3

[(

1 +
2

Pe

)

e−Pe +

(

1−
2

Pe

)]

+
6(1 + a∗F )F

Pe

(

2Fa∗2

ξ
+

2a∗2

15η

)[

1

Pe
(e−Pe − 1) + 1

]

+ Fa∗3
(

4

105η2
+

4F

5ξη
+

6F 2

ξ2

)

+ 12
aF (1− ǫp)

kd

(

1 + a∗F

Pe

[

1

Pe
(e−Pe − 1) + 1

]

+
a∗F

ξ
+

a∗

15η
+

1

2kd

)

. (64)

The expression of µ′

4 was very large for Danckwarts BCs. Therefore, only plots of that

moment are presented.
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5. Numerical test problems

In this section, at first the effect of Kd, i.e. the desorption rate, is analyzed. Then, the

effects of Pe, η (c.f. Eq. (47)) and Bi (c.f. Eq. (56)), characterizing the axial dispersion,

intraparticle diffusion resistance and film mass transfer resistance, on the concentration

profiles and moments are investigated. Moreover, effects of external mass transfer coef-

ficient kext, as well as pore and surface diffusivities (Dp and Ds) on elution profiles are

analyzed. A second-order accurate finite volume scheme (FVS) is chosen to numerically

approximate the model equations for verifying the correctness of derived analytical results,

see Javeed et al. (2011). All parameters used in the test problems are given in Table 1.

Figures 1a shows a comparison of the concentration profiles for different values of the

Kd. As Kd increases from 0.1 to 104 sec−1, the elution profiles become narrow, tall and

symmetric. Thus, the column has better efficiency for large value of Kd and is more

useful for purification and separation of multi-component mixtures. Beyond Kd = 104, the

remaining dispersion is due to the other kinetic effects being active in the GRM and the

adsorption equilibrium is permanently fulfilled. Since, there are typically no precise data

regarding the system specific rate of adsorption and desorption available, a more general

evaluation of the border value for Kd and an independent validation are not easy and out

of the scope of our paper. Here, we essentially illustrate just the possibility to quantify

the consequences of the effect. Figures 1b sows that analytical and numerical solutions of

the finite volume scheme (FVS) are in good agreement with each other for all values of

Kd. This is an indication of the accuracy of proposed numerical algorithm and the derived

analytical solutions.

The effects of model parameters Pe, Bi, η, and the considered two sets of BCs on the

elution curves are shown in Figure 2. It is evident that if axial dispersion or film mass

transfer resistance is important, the peak becomes wider and time corresponding to the

peak maximum is slightly lower. The effect of Kd is same as in Figure 1. For small values of

Bi and η, the diffusion rate is very slow and fluid retention time is large. The breakthrough

time becomes shorter due to the limitation of the intraparticle diffusion resistance. For low
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efficient columns, i.e. small Pe numbers (low flowrates, short columns, large back-mixing

effects), the selection of boundary conditions influences the results and the more realistic

Danckwerts BC and the corresponding solutions should be applied (c.f. Figure 2d). If Pe

is very large Eq. (63) converges into Eq. (52).

The elution profiles for different values of external mass transfer coefficient are shown in

Figure 3a. Here, Kd = 10 sec−1 is fixed. It is interesting that the band broadening decreases

significantly when kext increases from 10−6 cm/sec to 10−4 cm/sec, but when kext increases

to 10−1 cm/sec, the decrease of band broadening is not remarkable and for 10−4 cm/sec

and 10−1 cm/sec the calculated profiles can hardly be distinguished. The result suggests

us that the effect of the external mass transfer resistance can be neglected when the value

of kext is more than 10−1 cm/sec. The effect of Dp = Ds on the eluted band profile is shown

in Figure 3a for Kd = 10 sec−1. The figure indicates that the band broadening is sensitive

to the values of Dp = Ds. It can be seen that on increasing Dp = Ds, the band broadening

decreases.

Figure 4 displays the first four dimensional temporal moments (c.f. Eq. (58)) which endorse

all observations of Figure 1. Eqs. (43) and (44) indicate that retention time of the solute

molecules is not correlated with Kd. Thus, as required, the retention time (i.e. µ1) was not

effected on changing the value of Kd. However, the variance µ′

2, the third central moment

µ′

3, and the fourth central moment µ′

4 were reduced in different ways on increasing the

value of Kd. Obviously, the results are very similar for Kd = 103 and 104. Thus, for values

of Kd larger then 104 the adsorption equilibrium is more or less established and the reduced

GRM can be used.

Figure 5 displays the skewness (c.f. Eq. (54)) and excess kurtosis (c.f. Eq. (57)) as functions

of velocity for different values of Kd. It can be observed that the concentration profile is

more asymmetrical for small values of velocity u and Kd (see also Figures 1). Moreover,

the excess kurtosis or flatness of the profile increases on increasing Kd. Once again, it is

visible that for Kd = 104 the equilibrium is reached.

Figure 6a shows the plots of plate heights HETP (c.f. Eqs. (51) and (52)) as functions

of the velocity u. The illustrating calculations were done for the Danckwerts BC and
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different values of Kd. It can be seen that HETP-values become smaller with an increase

in Kd. Figure 6b illustrates differences in the HETP of considered two types of boundary

conditions. HETP is smaller for the Dankweets BCs due to the joint effects of the different

inlet and out boundary conditions (Eqs. (12a) and (12b) vs Eqs. (13a) and (13b)).

6. Conclusion

Semi-analytical solutions and temporal moments of the GRM were derived considering

dynamic linear sorption kinetics and two different sets of boundary conditions. The model

equations were analytically solved in the Laplace domain and numerical Laplace inversion

was applied to get back solutions in the actual time domain. Analytical expression of the

first four temporal moments were derived from solutions in the Laplace domain. The de-

rived solutions and moments were used to analyze the effect of finite adsorption-desorption

rates, axial dispersion, film mass transfer resistance and intraparticle diffusion resistance

on the elution curves. In the parametric calculations carried out, using the solutions de-

rived, emphasis was put on providing insight in the effect of finite desorption rate. The

results showed that a small value of Kd produces spreading in the elution profiles and the

profiles become more asymmetric, causing reduction in the efficiency of the column. The

analytical results were validated against the numerical results of second order finite volume

scheme. Good agreements between analytically and numerically determined results verified

the correctness of analytical solutions and accuracy of the suggested numerical scheme.
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Table 1: Parameters of the problems.

Parameters values

Column length L = 15 cm

Stationary phase particle radius Rp = 5× 10−6 cm

External porosity ǫ = 0.4

Geometrical constant γ1 = 0.5

Geometrical constant γ2 = 1.0

Internal porosity ǫp = 0.333

Interstitial velocity u = 0.4 cm/sec

Axial dispersion coefficient Db = 10−3 cm2/sec

Molecular diffusivity Dmol = 10−5 cm2/sec

Pore diffusivity Dp = 10−6 cm2/sec

Surface diffusivity Ds = 10−6 cm2/sec

Henry’s constant a = 2.5

Desorption rate constant Kd = 0 to 104 sec−1

External mass transfer coefficient kext = 1.0 cm/sec

Initial concentration c(0, z) = 0 g/l

Initial concentration cp(0, z) = 0 g/l

Concentration at inlet cinj = 1.0 g/l

Injection time tinj = 20 sec

24



0 50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
(a)

t [sec]

C
b [g

/l]

 

 

K
d
=0.1 sec−1

K
d
=1.0 sec−1

K
d
=102 sec−1

K
d
=103 sec−1

K
d
=104 sec−1

155 160 165
0.9

0.92

0.94

0.96

0.98

1

 

 

0 50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
(b)

t [sec]

C
b [g

/l]

 

 

K
d
=0.1 sec−1

K
d
=1.0 sec−1

K
d
=102 sec−1

Lines: Analytical
Symbols: Numerical

Figure 1: Effect of Kd on the concentration profiles. All parameters are given in Table 1.
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Figure 2: Effect of Pe, Bi and η, and BCs on the concentration profiles for fixed Kd = 10 sec−1. Other

parameters are given in Table 1.
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Figure 3: Effect of kext and Dp = Ds on the concentration profiles for fixed Kd = 10 sec−1. Other

parameters are given in Table 1.
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Figure 4: Effect of Kd on temporal moments. Other parameters are given in Table 1.
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Figure 5: Effect of Kd on the skewness and kurtosis. Other parameters are given in Table 1.
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Figure 6: (a) Effect of Kd on the HETP curve, (b) effect of BCs on the HETP curve. Other parameters

are given in Table 1.
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