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a b s t r a c t

The 2009 influenza pandemic originated from a swine-origin H1N1 virus, which, although less patho-
genic than anticipated, may acquire additional virulence-associated mutations in the future. To estimate
the potential risk, we sequentially passaged the isolate A/Hamburg/04/2009 in A549 human lung epi-
thelial cells. After passage 6, we observed a 100-fold increased replication rate. High-throughput
sequencing of viral gene segments identified five dominant mutations, whose contribution to the
enhanced growth was analyzed by reverse genetics. The increased replication rate was pinpointed to two
mutations within the hemagglutinin (HA) gene segment (HA1 D130E, HA2 I91L), near the receptor
binding site and the stem domain. The adapted virus also replicated more efficiently in mice in vivo.
Enhanced replication rate correlated with increased fusion pH of the HA protein and a decrease in
receptor affinity. Our data might be relevant for surveillance of pre-pandemic strains and development of
high titer cell culture strains for vaccine production.
& 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

In 2009, there was a pandemic outbreak of a new H1N1
influenza A virus (IAV) originating in Mexico. The pandemic virus
consisted of a unique combination of gene segments, that is not
present in any other IAV isolate. Based on genetic sequence
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analyses, this pandemic virus was found to originate from multiple
reassortments of avian, swine, and human viruses and probably
circulated in the North American swine population for over a
decade (Smith et al., 2009). The initial pandemic H1N1 2009 virus
revealed no virulence markers, simply because the adaptation to
the human system had not taken place (Garten et al., 2009).
Therefore, it is expected that such adaptive mutations will occur
and manifest in the human 2009-pandemic H1N1 lineage in the
future. Indeed, several studies reported occurrence of such adap-
tive mutations (Pan et al., 2010; Otte et al., 2015; Jimenez-Alberto
et al., 2013; Elderfield et al., 2014; de Vries et al., 2013).

The most efficient clinical countermeasure against the threat of
impending pandemic IAV infections is vaccination. Classically,
influenza vaccines have been produced in embryonated chicken
eggs but several cell culture-based systems are also available,
which possess certain advantages over egg-based production
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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systems, such as faster scalability (Genzel et al., 2006), potentially
higher antigenicity (Katz and Webster, 1992), and lack of egg-
derived allergens (James et al., 1998). Unfortunately, cell culture-
based systems often provide lower titers than egg-based systems
(Feng et al., 2011). Thus, there is also a strong need to optimize cell
culture-based vaccine production.

In our hands, an early 2009-pandemic H1N1 virus isolated in
Europe, A/Hamburg/04/2009 (HH/04), grew inefficiently in cell
culture compared to lab-adapted strains such as A/WSN/1933 or A/
Puerto Rico/08/1934. We serially passaged HH/04 in A549 cells,
the standard cell culture model for IAV research, to identify
determinants of adaptation to these cells. Indeed, after six pas-
sages we noticed an abrupt rise in the virus titer. Deep sequencing
analysis and use of reverse genetics systems enabled us to pin-
point the improved virus replication down to two mutations in the
HA gene segment. Importantly, the mutated virus not only repli-
cated more efficiently in cell culture systems, but also in lungs of
infected mice. Follow-up analyses revealed that these two muta-
tions improve replication due to different receptor affinity and
altered pH during HA-mediated fusion with the host cell mem-
brane. Our findings are relevant to both influenza surveillance and
cell culture-based vaccine production.
Materials and methods

Cell lines

All cell lines were cultivated at 37 °C and 5% CO2. Madin Darby
Canine Kidney (MDCK) cells (ATCC CCL-34) were grown in Dul-
beccos's Modified Eagle Medium (DMEM, Invitrogen) supple-
mented with 10% fetal calf serum (FCS, Biochrome), 2 mM L-glu-
tamine and 100 U/ml penicillin–streptomycin (P/S). Human
alveolar basal epithelial cells (A549, ATCC CCL-185) and human
embryonic kidney (HEK-293T) cells (ATCC CRL-11268) were grown
in DMEM supplemented with 10% FCS, 2 mM L-glutamine, 1 mM
sodium pyruvate and 100 U/ml P/S. Mouse lung epithelial (MLE-
12) cells (ATCC CRL-2110) were grown in DMEM/F-12 supple-
mented with 2% FCS, 5 mg/ml insulin, 50 nM hydrocortisone and
100 U/ml P/S. Chinese hamster ovary (CHO) cells (ATCC CCL-61)
were grown in DMEM supplemented with 10% FCS, 2 mM L-glu-
tamine and 100 U/ml P/S. For transfection experiments medium
was used without P/S.

Virus strains

Influenza virus strain A/WSN/33 (H1N1) was propagated in 11-
day old embryonated chicken eggs for 2 days. The allantoic fluid
was harvested and subjected to plaque assay and indirect immu-
nofluorescence microscopy (IIFM) to quantify viral titer. The
influenza wild type virus strain A/Hamburg/04/2009 (H1N1) (HH/
04) was provided by Stephan Becker (University Marburg, Ger-
many) and propagated in MDCK cells as described previously
(Karlas et al., 2010). The A549-adapted variant HH/04-P6 was
derived by serial passaging of HH/04 in A549 cells. To this end,
A549 cells were initially infected with an MOI of 0.1 of the wild
type virus, and 25% of the culture volume was transferred onto
new A549 cells, each, after 2–6 days. Concentration of virus in the
supernatants was quantified by plaque assay.

Next generation sequencing

Isolation of viral RNA from HH/04 P6 was done using Trizol LS
(Life Technologies) following the standard protocol as described
below. To remove DNA residues the Ambion DNA Treatment &
Removal DNA-free Kit (Life Technologies) was used. The isolated
viral RNAwas then sent to the Max Planck Genome Centre Cologne
where the genome of the mutated virus was sequenced on the
Illumina HiSeq2000. The raw data was then subjected to different
bioinformatical analyses. The initial quality control of the raw
sequencing reads was performed using ‘FastQC’ (http://www.
bioinformatics.babraham.ac.uk/projects/fastqc/). No significant
problems with the data were revealed. Short reads were then
aligned to the influenza HH/04 reference sequence (Genbank IDs:
GQ166207, GQ166209, GQ166211, GQ166213, GQ166215,
GQ166217, GQ166219, GQ166221) using ‘Bowtie2’ (Langmead and
Salzberg, 2012). The resulting alignment was then analyzed by the
tool ‘Qualimap’ in order to evaluate the mapping quality (Garcia-
Alcalde et al., 2012). Qualimap reported a high duplication rate,
which is expected due to extremely high coverage (around
50,000x per sequencing lane). To fix this problem, the alignment
was refined using the ‘GATK toolkit’ (McKenna et al., 2010).
Duplicates were removed and quality values were recalculated.
The ‘FreeBayes’ software (Garrison E, 2012) was applied to dis-
cover the SNPs and short indels. The mutation rates for H1N1 virus
variations were computed using Needle alignment tool (Rice et al.,
2000).

Cloning of the recombinant influenza plasmids

Infectious culture supernatant from MDCK cells containing HH/
04 wt and HH/04 P6 were used for isolation of viral RNA from virus
particles. RNA was isolated using Trizol LS following the standard
protocol. To remove DNA residues, the Ambion DNA Treatment &
Removal DNA-free Kit (Life Technologies) was used. The isolated
viral genome was translated into cDNA using RevertAid Premium
First Strand cDNA Synthesis Kit (Thermo Scientific) according to
the manufacturer's protocol, using the Uni12 primer (5'-
AGCAAAAGCAGG-3') and 100 ng viral RNA. For cloning of recom-
binant influenza virus plasmids, gene segment specific primers
were used to amplify the specific gene segments as previously
described (Hoffmann et al., 2001). The PCR products amplified
with the Pfu Turbo DNA-polymerase (Agilent) were purified and
cloned into the recipient plasmid pHW2000 (Hoffmann et al.,
2001) using the restriction enzyme BsmBI (Fermentas) according
to the manufacturer's protocol. Due to the presence of the BsmBI
and BsaI recognition sites within the polymerase acidic protein
(PA) and nucleoprotein (NP) gene segments, the cloning strategy
had to be modified and blunt ended PA and NP PCR products
treated with the T4 polynucleotide kinase (Fermentas) were liga-
ted with the pHW2000 plasmid, which was previously digested
with BsmBI and treated with the T4 DNA Polymerase (NEB) to
achieve compatible blunt ends. After successful cloning, all plas-
mids were sequenced by Sanger sequencing.

Site-directed mutagenesis

To be able to characterize each individual mutation within the
HA gene segment separately, the HA plasmid sequence was
mutated using the Quick change II Site-Directed Mutagenesis Kit
(Stratagene) according to manufacturer's protocol. The following
oligonucleotides were used: HA-a464c: 5'-CAAGTTCATGGCC-
CAATCATGACTCGAACAAAGGTGTAA-3'; HA-a464c_as: 5'-TTA-
CACCTTTGTTCGAGTCATGATTGGGCCATGAACTTG-3'; HA-c1335a:
5'-GATGATGGTTTCCTGGACATTTGGACTTACAATGCCG-3'; HA-c13-
35a_as: 5'-CGGCATTGTAAGTCCAAATGTCCAGGAAACCATCATC-3'.
All plasmids were verified by Sanger sequencing.

Generation of recombinant viruses

For transfections, HEK-293T cells were cultured in tissue cul-
ture flasks with the appropriate medium (see above). After 24 h
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confluent cells were transfected with eight different plasmids
encoding the eight different influenza gene segments by using
Lipofectamines LTX & Plus Reagent (Life Technologies) according
to manufacturer’s protocol. To increase the amount of virus par-
ticles MDCK cells were added 6 h post-transfection (p.t.) to the
transfected HEK-293T cells. After 24 h at 37 °C and 5% CO2 HEK-
293T and MDCK cells were washed with DPBS (Invitrogen) and
medium was replaced with infection medium (standard culture
medium with replacement of FCS with 0.2% BSA) containing TPCK-
treated trypsin (1 mg/ml). Subsequently, the cells were incubated
at 37 °C for an additional 48 or 72 h. To determine the virus titer,
supernatants were titrated onto MDCK cells by standard plaque
assay using agarose overlay medium.

Infection-growth kinetics

A549 cells or MLE-12 cells were infected with the indicated
recombinant viruses for growth kinetics. 50,000 cells were cul-
tured in the appropriate medium in 6-well plates the day before.
The medium was removed and cells washed with DPBS. Virus was
diluted into infection buffer containing DPBS, 0.2% BSA, CaCl2
(492 mM) and MgCl2 (901 mM) to achieve the indicated MOI, and
500 ml transferred onto cells and incubated at RT for 1 h. Medium
was then replaced with 2 ml infection medium (standard culture
medium with 0.2% BSA instead of FCS) containing TPCK-treated
trypsin (1 mg/ml). Infected cells were incubated at 37 °C and 5%
CO2 for 48 or 72 h. At indicated time points 600 ml of supernatant
was harvested and replaced by fresh infection medium. The
supernatants were centrifuged for 10 min at 1500g and 4 °C and
transferred to MDCK cells to determine viral titers by standard
plaque assay.

Animal experiments

Animals were housed and bred under pathogen-free conditions
in biosafety level 2, according to the German Animal Protection
Law (Tierschutzgesetz TierSchG). The animal experiments were
approved by the local authorities (Landesamt für Gesundheit und
Soziales Berlin LAGeSo: Reference number G0096/14). BALB/c mice
were provided by Charles River (Sulzfeld, Germany). Mice aged
between 7 and 15 weeks were intranasally infected with the
recombinant HH/04 wt influenza virus and its derivates
(5.0�104 PFU in 50 ml). Two days later, animals were euthanized
and their lungs isolated and homogenized, followed by cen-
trifugation at 800g for 8 min at 4 °C. The amount of infectious
viruses in the supernatant was quantified using the standard
plaque assay.

Fusion assay

CHO cells were transfected with the individual HA plasmid
using TurboFect (Thermo Scientific). Concentrate of human ery-
throcytes in additive solution was provided by the local blood
bank (DRK-ITM Berlin, Germany). Red blood cells (RBCs) were
washed three times with PBS at 4 °C. To check the ability of the HA
mutants to fuse with membranes at different pH levels, RBCs were
stained with calcein AM (Sigma) and octadecyl rhodamine B
chloride (R18, Thermo Scientific) as described previously (Morris
et al., 1989; Mair et al., 2014). For activation of the HA the trans-
fected CHO cells were incubated in PBS containing 0.5 U neur-
aminidase (neuraminidase from Clostridium perfringens (C. welchii,
Sigma-Aldrich) and 4 mg/ml TPCK-trypsin on ice for 5 min followed
by addition of serum containing medium. Subsequently, the
stained RBCs were added to transfected CHO cells and incubated at
RT for 1 h while gently shaking. After washing with PBS every
sample was imaged to exclude pH-independent fusion.
Subsequently, samples were incubated with the fusion buffer
containing 10 mM 2-[4-(2-Hydroxyethyl)-1-piperarzine)-1-yl]
ethanesulfonic acid (HEPES), 10 mM 2-(N-Morpholino)ethane-
sulfonic acid and 100 mM sodium chloride in water to start the
fusion process. The fusion buffer remained on the cells for an
incubation of 5 min at 37 °C. Afterwards, the buffer was replaced
with PBS at neutral pH and the sample stored for 2–5 min at 37 °C.
Finally, the sample was imaged under a confocal microscope
(Olympus FluoView FV 1000), the cells were identified manually
and the mean calcein intensities for the regions of interest (ROI)
were calculated and normalized based on the minimal and max-
imal intensities.

Single-virus force spectroscopy (SVFS)

AFM tip chemistry
Commercially available AFM cantilevers (MSCT, Bruker) were

amine functionalized by using the room-temperature method for
reaction with APTES (Rankl et al., 2008). A heterobifunctional PEG
linker, acetal–PEG800–NHS (N-hydroxysuccinimide), was attached
by incubating the tip for 1.5–2 h in 0.5 ml of chloroform containing
2 mg/ml acetal–PEG–NHS and 8 ml triethylamine, resulting in
acylation of surface-linked APTES by the NHS group (Wildling
et al., 2011). The terminal acetal group was converted into an
amine-reactive aldehyde by incubation in 1% citric acid as
described previously (Rankl et al., 2008). After rinsing three times
with water, once with ethanol and drying under a stream of
nitrogen, the tips were incubated in a mixture of 19–25 μl of
approximately 0.6–1.6 mg/ml influenza A virus in PBS (without
Caþ þ) and 1–2 μl of 1 M NaCNBH3 (freshly prepared by dissolving
32 mg of solid NaCNBH3 in 500 μl of 10 mM NaOH) for 60 min. The
tips were then washed in 3 ml PBS for 3 times and stored in PBS at
4 °C. All other chemicals and reagents were purchased from dif-
ferent commercial sources in the highest purity grade available.

SVFS measurement

AFM-based force spectroscopy was performed with an Agilent
5500 AFM. The Petri dish with cells was mounted with the AFM,
which was put on the optical microscope through a specially
designed XY stage. Before force measurements, the cantilever with
a nominal spring constant of 10 pN/m functionalized with influ-
enza A virus was incubated in 5 mg/ml BSA for 30 min in order to
minimize the nonspecific interaction between the cantilever tip
and the cell surface. Measurements were performed in PBS buffer
at room temperature. After the cantilever tip approached to the
cell surface, force distance curves were repeatedly measured with
Z-scanning range of 2 μm, cycle duration of 0.5–8 s, 500 data
points per curve, and typical force limit of about 40–70 pN. The
spring constants of the cantilevers were determined by using the
thermal noise method (Hinterdorfer et al., 1996).

Fitting of SVFS data

Similar to single molecule force spectroscopy (SMFS), also in
SVFS studies, several hundred force distance cycles are recorded in
a dynamic range of increasing loading rates under identical con-
ditions. For each of these force curves showing unbinding events,
the unbinding force Fi and the effective spring constant keff (slope
at rupture) were determined. The loading rates r were determined
by multiplying the pulling velocity v with the effective spring
constant keff (i.e. r¼ v � keff ). Additionally, a rupture force prob-
ability density function (pdf) was calculated and a Gaussian dis-
tribution was fitted to the main peak of the pdf. Subsequently,
all unbinding events within μ7σ of the fit have been selected
to create a loading rate dependence scatter plot for further
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calculations of koff and xu. Generally, the loading rate r is constant
for a fixed pulling speed, which implies, that the effective spring
constant keff does not vary significantly. However, for force spec-
troscopy measurements on living cells it is known that keff could
show a broadened distribution caused by local variations of the
spring constant of the cell surface, leading to a convolution of the
rupture force distribution and further influences the calculations
for the dissociation rate constant, koff ; and the separation of the
receptor-bound state to the energy barrier, xu. To circumvent this
influence, we applied a maximum likelihood routine to fit the
SVFS data to the Evans-model (Wildling et al., 2012), in order to
obtain koff and xu.

According to the single energy barrier binding model, the
probability p that the complex breaks at a certain force, F, is given
as (Evans and Ritchie, 1997):

p Fð Þ ¼ koff
rkBT

exp
Fxu
kBT

�koff
rxu

exp
Fxu
kBT

�1
� �� �

ð1Þ

The parameters xu and koffwere determined by applying a
maximum likelihood approach, in which the negative log like-
lihood nll was minimized by modifying koff and xu, with p based on
Eq. (1) defined in the single barrier model (Evans and Ritchie,
1997):

nll¼ �
X

t
logpðkoff ; xu; Ft ; rtÞ ð2Þ

Binding assay

Equal copy numbers of recombinant HH/04 wt and HH/04 HA1

D130EþHA2 I91L viruses were either directly lysed with Trizol LS
(input control) or incubated at 4 °C for 1 h together with A549
cells seeded the day before. Subsequently, the cells were lysed
with Trizol LS and the RNAs of the input control and the infected
cells were isolated. To be able to adjust different RNA yields during
the RNA isolation, the input controls and the cell lysates were
spiked with a defined amount of lentiviral particles encoding the
enhanced green fluorescent protein (EGFP). The amount of applied
(input control) and attached viruses was determined by quanti-
tative RT-PCR using NP specific oligonucleotides (NP_for: 5'-CCA-
CAAGAGGGGTCCAGATT-3', NP_rev: 5'- GCACTGA-
GAATGTAGGCTGC-3') in consideration of the amount of isolated
RNA quantified by EGFP specific oligonucleotides (EGFP_for: 5'-
ACGTAAACGGCCACAAGTTC-3', EGFP_rev: 5'- AAGTCGTGCTGCTT-
CATGTG-3').

Electron microscopy

Cells were seeded into an ibidi m-slide 18 well (ibidi GmbH,
Planegg, Martinsried), infected with recombinant HH/04 wt and
HH/04 HA1 D130EþHA2 I91L viruses (MOI 7) and fixed at 16 h p.i.
with 2.5% glutardialdehyde. Cells were post-fixed with osmium-
tetroxide, contrasted with tannic acid and dehydrated using an
ascending ethanol series. After critical point drying, the specimen
was coated with 3 nm platinum/carbon and analyzed in a Leo 1550
field emission scanning EM.

Glycan array

Glycan array preparation was performed as described pre-
viously (Pereira et al., 2015). Briefly, glycans containing a primary
amino linker were dissolved at a concentration of 0.1 mM in
printing buffer (50 mM sodium phosphate, pH 8.5) and printed on
N-hydroxysuccinimide activated glass slides (CodeLink slides,
Surmodics, Edina, MN, USA) using an S3 robotic microarray spotter
(Scienion, Berlin, Germany). Slides were incubated overnight in a
humidity saturated chamber and remaining reactive groups were
quenched by incubating with 100 mM ethanolamine, 50 mM
sodium phosphate at pH 9.0 for 1 h at room temperature. Slides
were washed with water, dried by centrifugation and stored at
4 °C until use. Before loading, the array was washed with DPBS.
Virus was diluted as indicated into sterile binding buffer con-
taining 1% BSA, 0.05% Tween 20 (MERCK), CaCl2 (492 mM) and
MgCl2 (901 mM) at pH 7.0. 30 ml of diluted virus was pipetted in
each well and the array was incubated in a moist chamber for 24 h
at 4 °C. Each well was then washed three times with washing
buffer containing DPBS and 0.1% Tween 20 (DPBS-T). Subsequently,
wells were blocked with DPBS containing 1% BSA for 2 h at 4 °C
and permeabilized using DPBS-T containing 0.3% Triton-X100. To
stain the bound virus the array was incubated with a primary
monoclonal antibody against the viral NP protein (1:1000, clone
AA5H, AbD Serotec, Oxford, UK) at 4 °C overnight. Primary anti-
body was removed and wells were washed three times with DPBS-
T. Secondary Cy3-coupled goat anti-mouse IgG (1:100, product-
code: 115-165-146, Jackson ImmunoResearch Laboratories, West
Grove, PA, USA) was added and incubated at RT for 1 h. The array
was washed three times with DPBS-T and dipped into distilled
water before scanning. Glycan array fluorescence images were
obtained using a GenePix 4300A microarray scanner (Molecular
Devices, Sunnyvale, CA, USA). Fluorescence intensities of spots
were evaluated with GenePix Pro 7.2 (Molecular Devices).
Results

Adaption of the H1N1 virus to human cells

To investigate the potential of HH/04 wt to adapt to human
cells, we serially passaged the virus in A549 human lung epithelial
cells and recorded the virus titer in the supernatants starting at
passage 4 (Fig. 1A). We observed a sudden increase of the titer
after passage 6 (Fig. 1B). Interestingly, both HH/04 wt and HH/04
P6 (and the lab adapted strain A/WSN/1933) infect A549 cells with
similar efficiencies, however, HH/04 P6 grows to 10- to 100-fold
higher virus titers compared to HH/04 wt in A549 cells (Fig. 1C
and D).

Next generation sequencing identification of mutations acquired by
HH/04 P6

To detect mutations in the genome of the adapted H1N1 virus
(HH/04 P6) that lead to the improved replication rates in A549
cells, the genome of the mutant was subjected to next generation
sequencing. To this end, RNA from these viruses was isolated and
sequenced using the Illumina platform. Due to the small genome
of influenza viruses, all gene segments could be sequenced with a
high coverage thereby increasing the precision of sequence ana-
lysis and enabling detection of mutations that are only present in a
small percentage of the virus genome. To exclude false positive
mutations, which might potentially result from technical difficul-
ties during the sequencing procedure, we focused on mutations
with a frequency of more than 20%. All mutations identified by this
procedure are shown in Fig. 2A. Interestingly, the processed data
illustrate that some gene segments like the HA gene show higher
variability than others. Cleavage of the HA full length protein (HA0)
by cellular proteases leading to HA1 and HA2 is required to allow
fusion with the host cell membrane and therefore represents an
essential step during IAV replication (Peitsch et al., 2014; Klenk
et al., 1975; Steinhauer, 1999). Remarkably, we identified a total of
5 mutations with a frequency of more than 20% located in both
HA1 and HA2.

After examining the different mutations on the RNA level, we
analyzed whether they also have an impact on the amino acid
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Fig. 1. Adaptation of A/Hamburg/04/2009 (wt) to A549 cells and infection characteristics of the adapted virus. (A) HH/04 was serially passaged six times in A549 cells to
generate the HH/04 P6 virus. (B) Virus titers in supernatants generated as depicted in (A) were determined by plaque assay from passage 4, onwards. After passage 6, no
further increase in virus titer was observed. (C) Representative indirect immunofluorescence microscopy (IIFM) images to compare the virus infection rates of wt and P6
viruses. A549 cells were infected at MOI 0.5 with A/WSN/1933, HH/04 wt and HH/04 P6 viruses for 24 h in TPCK-trypsin-free medium (upper panel). At 48 h p.i. supernatants
were transferred onto MDCK cells for 7 h in TPCK-trypsin containing medium (lower panel), before labeling DNA (blue) and viral nucleoprotein (red). (D) A549 cells were
cultivated for 48 h and, infected with HH/04 wt and HH/04 P6 at indicated MOIs. At 24 or 48 h, culture supernatants were transferred to MDCK cells to quantify virus titer via
FFA. The HH/04 P6 virus exhibits a 10- to 100- fold higher virus titer compared to wt in A549 cells. Results represent the meanþSD for the technical replicates of one
experiment. Φ: no SD was determined.
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Fig. 2. Overview of identified mutations in the gene segments of the HH/04 P6 genome. The analysis of mutations in different gene segments detected by Next Generation
Sequencing was performed using the software package Unipro UGENE (Okonechnikov et al., 2012). (A) The Circos plot (Krzywinski et al., 2009) shows (i) coverage rate of
Illumina sequencing reads (green background) (ii) the genetic variability of each gene segment based on all available human p2009 H1N1 viruses (NIAID Influenza Genome
Sequencing Project) (red background) and (iii) mutations on RNA level based on the available A/Hamburg/04/2009 virus sequence information (Genbank IDs: GQ166207,
GQ166209, GQ166211, GQ166213, GQ166215, GQ166217, GQ166219, GQ166221). Mutations represented in 420% or 450% of the specific gene segment are depictured in
black and red, respectively. Mutations leading to a change in the amino acid sequence of the coded protein are underlined. (B) Frequency of identified mutations in (i) human
pandemic H1N1 viruses isolated from patients between 2009 and 2015, (ii) human IAVs and (iii) all IAVs isolated from various species. (C) Frequency of HA1 D130E mutation
in human pandemic H1N1 viruses isolated from patients between 2009 and 2014.
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sequence of the corresponding viral proteins. Furthermore, we
assumed that mutations leading to significantly enhanced virus
replication manifest in the viral quasispecies after several pas-
sages. Thus, we focused on mutations that occur at a frequency of
more than 50%. Interestingly, nearly all mutations that are present
with a frequency above 20% in the mutant virus quasispecies lead
to an amino acid change with exception of the mutation in PB2 at
position 655 bp and in HA at position 1560 bp.

Next, we compared the amino acid sequence of the HH/04 wt
and the adapted HH/04 P6 viruses to sequences of (i) other 2009-



Fig. 3. Characterization of the newly generated recombinant viruses by reverse
genetics. (A and B) Growth curves of recombinant viruses in two different cell lines.
A549 cells (A) or MLE-12 cells (B) were infected at MOI 0.01 with indicated
recombinant viruses for 72 h in TPCK-trypsin-containing medium. At the indicated
time points culture supernatant was transferred to MDCK cells to quantify virus
titer via plaque assay. The results represent the meanþSD for two experiments. ϕ:
no SD was determined. (C) Seven mice were intranasally inoculated with 30 ml
containing 7.3�103 PFU of each indicated recombinant virus for 48 h. Mouse lungs
were isolated, homogenized and viral loads quantified via plaque assay. The results
represent the mean7SD. Statistical analysis was performed by unpaired t-test:
*po 0.05, **po 0.01.
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pandemic H1N1, (ii) all human influenza A (including e.g. H3N2)
and (iii) all influenza A viruses derived from any host species,
based on the dataset provided by the NIAID Influenza Genome
Sequencing Project (http://www.ncbi.nlm.nih.gov/genomes/FLU/
FLU.html). In general, this comparison revealed that some of the
detected mutations are present in other H1N1 pandemic viruses
from 2009 to 2015 (Fig. 2B). However, the mutations detected by
us are in general underrepresented in comparison to all published
sequences, with the exception of one mutation in the NA gene
segment (NA T32I) which is present in nearly all pandemic 2009
H1N1 viruses. Remarkably, the mutation HA1 D130E is only rarely
present in pandemic H1N1 viruses in the years 2009 and 2010
(0.14%, each), but significantly increases during subsequent years
to up to 2.80% (Fig. 2C). The mutation HA2 I91L, however, could
only be found within a few swine IAVs and a single human
influenza virus from 2006 (A/Gholestan/215/2006).

In vitro analysis of reverse genetics chimeras of HH/04 wt
and HH/04 P6

To identify those mutations that contribute the most to the
improved replication rate of the adapted virus, we used a reverse
genetics system to clone all influenza gene segments of the HH/04
wt and HH/04 P6 virus (Hoffmann et al., 2001). Here, we focused
on the four most abundant mutations that cause a change of the
amino acid sequence of the HH/04 P6 virus and one mutation
within NA which was highly frequent in pandemic-2009 H1N1
viruses (Fig. 2B). To be able to test every single gene segment
separately, we combined the individual gene segments with seven
plasmids encoding gene segments of the influenza virus strain A/
WSN/1933 and analyzed replication of the chimeras, as described
previously (Hoffmann et al., 2000). All generated plasmids led to
production of infectious viruses, but with notable variation (Sup-
plementary Fig. S1). Interestingly, the chimera containing the HA
segment of HH/04 wt displayed a strongly reduced virus titer
compared to the adapted counterpart. Based on these initial
experiments, we confirmed that all generated plasmids are cap-
able of producing replication-competent viruses. To identify which
of the mutations are causative to the enhancement of virus
growth, recombinant viruses were produced and replication rates
recorded for 72 h (Fig. 3A). As expected, the HH/04 P6 virus
(containing all five mutations) replicated to the highest titers,
whereas the wild type virus showed a two-log lower final titer.
The wild type virus containing only the two mutations in the HA
segment (HA1 D130EþHA2 I91L, Supplementary Fig. S2) showed
similar growth characteristics as HH/04 P6, and both mutations
contribute to this effect. In contrast, none of the other three
mutations led to a significant improvement of virus replication.

Characterization of the recombinant viruses in vivo

Although HH/04 had been adapted to human A549 cells, we
tested whether the mutations HA1 D130E and HA2 I91L also
enhance virus replication in other species, using the mouse as a
model. First, we examined viral replication in MLE 12 murine lung
epithelial cells. Indeed, both mutations, either separately or in
combination, led to enhanced replication (Fig. 3B). Subsequently,
we infected mice either with the HH/04 wt, the single mutants
(HA1 D130E, HA2 I91L) or the double mutant (HA1 D130EþHA2

I91L). To ensure comparability, 7.3�103 PFU, i.e. the maximum
titer achieved for the virus that replicated least efficiently (HH/04),
was applied for all virus variants intranasally in a volume of 30 ml
and lungs harvested already 48 h later, to prevent loss of animals
due to adverse effects associated with the infection. Indeed, those
viruses that harbor either one or both mutations led to a sig-
nificantly increased virus titer in the murine lung compared to the
wt virus (Fig. 3C). The mutation HA1 D130E seemed to be more
important, leading to higher titers than mutation HA2 I91L. Future
experiments will show if the survival rate of those animals
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infected with the adapted virus is also reduced compared to those
infected with the wild type virus.

Comparison of the structure of the HA surface protein of HH/04 wt
and HH/04 P6

Based on the crystal structure of a reference pandemic H1N1
2009 isolate (Xu et al., 2012), we were able to determine the
position of HA1 D130E and HA2 I91L in the HA trimer. Interestingly,
HA1 D130E is located within the globular head domain of the HA1

subunit, a position potentially relevant to the receptor specificity
(Fig. 4A and B). HA2 I91L, on the other hand, is located in the long
α-helix of the HA stem and may influence the stability of the HA
trimer and could therefore lead to altered fusion properties
(Fig. 4A–C). As expected, both mutations changed neither virion
morphology (Fig. 4D and E) nor the ratio of spherical to fila-
mentous particles (data not shown), as indicated by electron
microscopy.

Functional analysis of HA1 D130E and HA2 I91L

To investigate whether mutations HA1 D130E and HA2I91L
exhibit altered receptor specificity, we analyzed both virus strains
using glycan arrays containing 15 different glycans typically found
in mammalian cells. Unexpectedly, we did not detect significantly
different binding profiles to the individual SAs between any of the
virions tested (Supplementary Fig. S3), neither in the binding
prevalence for α2,3Gal- or α2,6Gal-linked SAs, nor in the overall
binding capacity to SAs. The highest affinity among all viruses we
tested was observed for sialyl-LewisX (Neu5Acα2,3Galβ1,4
(Fucα1,3)GlcNAc-R), which is highly abundant on mammalian cells
(Vainer et al., 1998).

While glycan arrays are an excellent tool for screening large
numbers of structurally different receptors, they deviate greatly
from a living cell surface. The local concentration and orientation
of sialylated receptors are not well controllable and have been
shown to influence virus binding (Papp et al., 2011). Single-virus
force spectroscopy (SVFS) allows measuring virus-cell specificity at
the level of individual viruses on living cells, i.e. conditions that
mimic the natural situation very closely (Herrmann and Sieben,
2015). Here we used atomic force microscopy (AFM)-based SVFS
(Supplementary Fig. S4). Briefly, AFM cantilevers are functiona-
lized with purified influenza A viruses using specific attachment
protocols (Rankl et al., 2008; Sieben et al., 2012). After lowering
the cantilever onto a suitable living cell until touching the cell
surface (Supplementary Fig. S4B and C), the cantilever is retracted,
while interaction forces are detected with single-molecule reso-
lution. Force–distance cycles are then recorded at various pulling
speeds to infer the dissociation rate koff, a parameter that can be
used to compare the strength of cell binding between different
virus strains (Sieben et al., 2012). To investigate whether muta-
tions HA1 D130E and HA2 I91L exhibit altered cell binding char-
acteristics, we compared the binding of HH/04 wt and HH/04 P6 to
human A549 cells (α2,6-linked SAs4α2,3-linked SAs) and Chi-
nese Hamster Ovary (CHO) cells (α2,3-linked SAs only (Takeuchi
et al., 1988) (Supplementary Fig. S5). Since CHO cells do not
express α2,3-linked SAs (Xu et al., 2011), we used this cell line in
comparison to A549 to be able to identify differences in cell spe-
cificity. As evident from the elevated dissociation rates (Fig. 4F),
the mutated virus (HA1 D130EþHA2 I91L) bound more weakly to
both cell types than HH/04 wt. While the effect on CHO binding
was not particularly strong (1.5 fold increased koff), the binding
strength to A549 cells was reduced by �8-fold.

To obtain further evidence, we incubated the different virus
variants, including the viruses containing only a single mutation,
with A549 cells at 4 °C and quantified the amount of bound virus
by quantitative RT-PCR. In line with the SVFS data, nearly the
entire inoculum (86%) of the wild type virus bound to the cells,
while adherence of the mutant virus was significantly lower (20%)
(Fig. 4G). The virus variants containing single mutations revealed a
reduced binding capacity to A549 cells compared to the wild type
virus. However, none of these viruses reached the low adherence
level of the mutant virus (HA1 D130EþHA2I91L).

It has been shown previously that mutations in the HA stem
loop influence the pH of HA-mediated membrane fusion (Gallo-
way et al., 2013). Since the HA2 I91L mutation is localized in this
domain, we determined whether one or both of the acquired
mutations in HA affect the pH at which fusion can occur. Indeed,
the HA2 I91L virus revealed a fusion pH increased by 0.2 units
(Fig. 5A and B). In contrast, the mutation HA1 D130E virus exhib-
ited the same fusion pH as HH/04 wt. Interestingly, the double
mutant showed an intermediate effect, indicating that HA1 D130E
counteracts the effect of HA2 I91L.
Discussion

In the present study, we adapted a 2009-pandemic H1N1 IAV
(HH/04) to growth in A549 cells by serial passaging, and analyzed
the adaptive mutations by next-generation sequencing. Our
insights surpass those gained using bulk Sanger sequencing or
Sanger sequencing of individual plasmid clones. We observed four
dominant non-synonymous mutations in the A549-adapted virus
compared to the wild type strain. Surprisingly, only two adaptive
mutations, both located in HA, mediated the enhanced growth.

The HA2 I91L mutation increased the pH at which HA-mediated
fusion with the host cell membrane can occur and presumably
contributes-together with the HA1 D130E mutation-to a reduced
affinity for α2,6- and α2,3-linked SAs, as well as for A549 cells.
Although it seems more logical that the mutation HA1 D130E,
which is located close to the receptor binding site, is solely
responsible for differences in virus adherence, our data suggest,
that both mutations contribute to the reduced binding capacity.
SVFS unraveled weaker binding of the mutant virus to A549 cells
(expressing both α2,6- and α2,3-linked SAs), while binding to CHO
(only α2,3-linked SAs) was almost unchanged. This result suggests
that viruses have adapted towards less affine binding, particularly
to A549 cells, which correlates with enhanced growth. Interest-
ingly, the glycan specificity, as tested with glycan array binding,
remained conserved. It should also be noted that this effect is not
NA-related, since we used viruses carrying only mutations in HA.
Changes in SA affinity during an adaptation process have been
reported previously. Decreasing as well as increasing affinities
have been observed, depending on the virus and model system
(Kaverin et al., 1998; Imai et al., 2012; Hughes et al., 2000; Herfst
et al., 2012; Gen et al., 2013; Bantia et al., 1998). Such mutations
are required to optimize the interplay for a given host/model of HA
(which binds SAs) and NA (which cleaves SAs) (Wagner et al.,
2002). Similarly, changes in HA stability have also been reported
when adapting influenza A viruses to a different system (Nar-
asaraju et al., 2009; Murakami et al., 2012; Lin et al., 1997; Keleta
et al., 2008). The stability optimum for the HA trimer appears to
depend on factors such as the environmental pH (e.g. airway
epithelium versus cell culture) or the cell-type-specific endosomal
pH kinetics (Mair et al., 2014). Nonetheless, it remains obscure
why an isoleucine to leucine mutation results in reduced pH sta-
bility, and why the aspartic acid to glutamic acid mutation con-
tributes to a reduced SA affinity. Typically, mutations of isoleucine
to leucine and aspartic acid to glutamic acid are considered con-
servative mutations that do not affect structure and function of the
protein. However, evidence has been provided that even con-
servative mutations could be of significant consequence for
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Fig. 5. pH-dependent membrane fusion properties of HA derived fromwt and P6. CHO cells were transfected as indicated with plasmids containing the HA gene sequence of
HH/04 wt, HA1 D130EþHA2 I91L or each mutation separately. 24 h after transfection the HA presented on the surface of CHO cells was activated using neuraminidase and
TPCK-trypsin. RBCs stained with calcein (lumen) and R18 (membrane) were added and allowed to bind. After removal of unbound RBCs, membrane fusion with CHO cells
was triggered by adding the fusion buffer at the indicated pH. (A) Representative images for indicated HAs at variable pH values. Transfer of calcein to CHO cells indicates
successful cell–cell fusion. (B) Quantification of HA induced membrane fusion of red blood cells and CHO cells as depicted in A. The results represent the mean7SEM for at
least two experiments.

Fig. 4. Functional characterization of acquired mutations in HA gene segment. (A–C) Localization of the identified mutations within the hemagglutinin protein. Apical
(A) and lateral (B) view of the HA trimer with the identified mutations in the stem loop (yellow arrows) and the receptor binding site (red arrows) (Gamblin et al., 2004;
Sriwilaijaroen and Suzuki, 2012). (C) Apical view illustrating the position of the stem loop mutation (HA2 I91L) in detail. The structure of HAwas taken from the PDB database
(PDB-ID 3UBE). (DþE) A549 cells were infected with HH/04 wt (D) or HH/04 HA1 D130EþHA2 I91L (E) at MOI 5 for 16 h, fixed and processed for electron microscopy. Scale
bar¼100 nm. (F) Live-cell binding characteristics of wt or HH/04 HA1 D130EþHA2 I91L to A549 and CHO cells as detected by SVFS. Influenza A virions were covalently
attached to the AFM cantilevers using an acetal-PEG800-NHS crosslinker and force traces of virus-cell interactions were recorded at different pulling speeds (see Methods).
Shown are the kinetic off-rate constants (koff(s�1)), meaning that smaller values indicate stronger binding to the cells. (G) Binding capacity of wt, HA1 D130E, HA2 I91L or HH/
04 HA1 D130EþHA2 I91L viruses to A549 cells. The amount of attached virus after 1 h incubation at 4 °C were quantified using quantitative RT-PCR normalized to the total
amount of added virus (input). The results represent the mean7SEM of at least of three independent experiments. One-way Anova was used to calculate the significance of
individual virus variants versus the wt virus (*po0.05, ns pZ0.05).
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structure and function of a protein. Recently, it was shown that
isoleucine to leucine mutation causes a large change in con-
formation and temperature sensitivity of a DNA polymerase (Wu
et al., 2015). Furthermore, very different spatial preferences for
glutamic acid and aspartic acid have been reported (Jonson and
Petersen, 2001).

The wildtype 2009-pandemic H1N1 IAV tested here appears to
be well-suited for replication in A549 cells in tissue culture – apart
from suboptimal receptor affinity and HA stability. These findings
can be applied to the production of recombinant high-growth
strains for vaccine production. However, antigenicity between a
given parental strain and a high-growth strain with optimized
receptor affinity and HA stability would have to be assessed. Fur-
thermore, A549 cells are not approved as a vaccine production
system, and the relevance of our findings for approved cell
culture-based influenza vaccine production systems still needs to
be demonstrated. In line with our results, decreased HA stability of
influenza virus strain A/Puerto Rico/08/1934 was indeed corre-
lated with increased replication efficiency in Vero cells, which is
such a production line (Murakami et al., 2012).

Although we adapted HH/04 for growth in the human cell line
A549, the two mutations in the HA gene segment also improved
replication kinetics in murine cell culture and even in mice in vivo.
Interestingly, a study comparing two A/Puerto Rico/08/1934 sub-
strains, one replicating highly efficient and one replicating with
low efficiency in mice, also identified differences in the HA gene.
In line with our findings, the high growth strain showed decreased
binding of α2,3-linked SAs and decreased trimer stability. How-
ever, in contrast to our observations, the highly efficient replicat-
ing strain also had an increased affinity to α2,6-linked sialic acids
(Koerner et al., 2012). Our study emphasizes the role of receptor
affinity and HA trimer stability, especially the two mutations in the
HA segment identified here (HA1 D130E, HA2 I91L), as virulence
factors of influenza viruses.

We also investigated the frequency of amino acids HA1 E130
and HA2 L91 in 2009-pandemic H1N1 viruses and all influenza A
viruses from 2009 until 2014. While HA2 L91 was not detected in
the human population, the frequency of 2009-pandemic H1N1
isolates containing HA1 E130 increased approximately 10-fold
between 2009 and 2012. Although this amino acid was still only
present in 2.8% of pandemic H1N1 isolates in 2012, it should be
included in influenza surveillance due to its association with
virulence in the mouse model.

In conclusion, deep sequencing combined with reverse genetics
reveals that just two mutations (both in the HA gene segment)
account for the difference between a wild type 2009-pandemic
H1N1 virus and a cell culture-adapted high-growth strain. The
mutations in the HA gene caused decreased receptor binding and
HA trimer stability and were used to create a reverse genetics high
titer strain that could be used for production of cell culture-based
influenza virus vaccines.
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