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Abstract

Sanskrit sources from Aryabhata to Bhaskara Il have a standard formulation of
the rule of three. However, it is clear that mathematics must also have been spoken
of and performed during this period (and before) in vernacular environments,
and that the two levels must have interacted — not least because the erudite
astronomer-mathematicians use commercial arithmetic as the introduction to
mathematics. But we have no surviving vernacular texts.

From Brahmagupta onward, however, the standard Sanskrit formulation is
supplemented by the observation that two of the known magnitudes are similar
in kind, and the third dissimilar. This could be an innovation made within the
Sanskrit tradition, but comparison with Arabic and Italian medieval sources seems
to rule this out. Instead, it must have been current in the commercial community
spanning the Indian Ocean and the mediterranean — but since the Sanskrit scholars
are not likely to have borrowed from Arabic traders, also in vernacular commercial
arithmetic as practised within India.

So far, the story seems simple and coherent. However, if Latin twelfth-
thirteenth-century writings and sources from the late medieval Ibero-Provencal
area are taken into account, loose ends turn up that show the simple story not
to be the whole story.
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An introductory observation

Let me start with a necessary observation on terminology: the “rule of three”

is a rule, not a problem type. It is a rule for solving linear problems of the type
if A corresponds to X, to what will B correspond?

The rule states in one way or the other (but with this order of the arithmetical

operations) that the answer is Y = (B x X)/A. Analysis of this “one way or the

other” will be my main tool in what follows.

There has been a tendency among historians of mathematics to conflate the
rule and the problem type, which has allowed them to find “the rule of three” in
ancient Mesopotamia, ancient Egypt, and in the arithmetical epigrams of the Greek
Anthology. The consequences of this can at best be understood through the folk
tale motif of painting white crosses on all the doors of the town once the door
of a suspect has been marked in that way: it ensures that the investigator will
find nothing. So, | shall stick to etymology and reserve the name “rule” for the
rule.

In consequence of this choice we do not find the rule of three in ancient
Mesopotamian, Egyptian or Greek mathematics (or in any of those traditions that
were directly derived from them before the Middle Ages). It belongs to ancient
and medieval India and China, and (derived from India, as we shall see) to the
medieval Arabic and Mediterranean world; from the Renaissance onward it also
rises to fame in central and western Europe.

India

From Aryabhata in the late fifth century Ce onward, Sanskrit mathematicians
use a standard terminology for the four magnitudes A, B, X, and Y - see, for
instance, [Elfering 1975: 140] (Aryabhata), [Rangacarya 1912: 86] (Mahavira) and
[Colebrooke 1817: 33, 283] (Bhaskara Il, Brahmagupta):*

A: pramana (“measure”) X: phala (“fruit”)

B: iccha (“wish™) Y: icchaphala (“fruit of wish”)

! The Bakhshall manuscript makes copious use of the rule (in particular for verifications)
and refers to it by the usual name trairasika; but the only time a partial terminology turns
up (X 25, ed. [Hayashi 1995: 358, cf. 439]) it is clearly different.



There is, however, a much earlier Sanskrit appearance of the rule, albeit not
making use of this terminology and therefore regarded by Sreeramula Rajeswara
Sarma [2002: 135] as only “a rudimentary form of the Rule of Three”. It is found
in both recensions of the Vedangajyotisa and may thus go back to c. 400 BCE
[Pingree 1978: 536]. It states that the “known result is to be multiplied by the
guantity for which the result is wanted, and divided by the quantity for which
the known result is given”, which as far as its arithmetic is concerned is not
rudimentary at all. As pointed out by Sarma, the descriptive terms used -
jAana(tayrasi, “the quantity that is known”, and jfieya-rasi, “the quantity that is to
be known” — also turn up in certain later texts.

All of these sources are written in Sanskrit — with the partial exception of
the Bakhshall manuscript, whose language “though intended to be Sanskrit, has
been affected to a considerable degree by a dialect or dialects not only on the
phonetic level but also on the morphologic level” [Hayashi 1995: 53], and which
also (as mentioned) has a deviating terminology for the rule (and uses a
standardized linear organization of the terms, which the Sanskrit sources may
hint at but do not always draw). Aryabhata as well as Brahmagupta present the
rule within the context of astronomical treatises, and Bhaskara | and Il were mainly
astronomers. The very fact that the mathematics they introduce while having an
astronomical purpose in mind is largely commercial or otherwise economical
shows clearly, however, that it is borrowed from social groups that were distinct
from that of the learned Brahmins and thus speakers of some Prakrit or other
vernacular.? Mahavira, as a Jaina, was already part of an environment engaged
in economical life [Thapar 1966: 65], and that exactly he would write a
mathematical treatise not asked for by astronomy (though in the solemn language)
fits the picture.® So does, finally, Bhaskara I's reference to “worldly practise
(lokavyavahara)” in connection with his discussion of the rule of three and
elsewhere [Keller 2006: I, 107, cf. 12].* Here, as generally, to quote [Sarma 2010:
202], “Sanskrit has [...] absorbed much from the local traditions. Anthropologists
recognize today that the so-called ‘Little Traditions’ played a significant role in
shaping the ‘Great Tradition’”

2 Since distinctions and precision in this domain is already difficult for the specialist — cf.
[Pollock 2006] - I, as a definite non-specialist, shall abstain from proposing any.

®That Mahavira was part of a distinct tradition is highlighted by the presence of several
layers of Near Eastern/Mediterranean influence in his geometrical chapter — cf. [Hayrup
2004].

*Cf. also the reference to “worldly computations (laukikaganita)” when a problem about
walking men is used to illustrate astronomical conjunction computation [Keller 2006: I,
127].



One thing is to deduct that vernacular mathematics must have existed.
Another thing is to conclude anything about how it looked. In India as in other
places where survival of (mathematical and other) texts relied on repeated copying,
non-prestigious written culture had no better survival possibility than oral
culture — that is, we depend almost exclusively on indirect evidence in the shape
of references and quotations in the prestigious texts.”

Returning to the standard Sanskrit presentations of the rule of three, one
feature may be a possible reference to vernacular ways (just barely possible when
seen in the Indian context in isolation — but as we shall see, opening of the
geographical horizon changes things). According to Brahmagupta [trans.
Colebrooke 1817: 283],

In the rule of three, argument, fruit and acquisition: the first and last terms must be
similar.

Bhaskara | gives a somewhat related explanation in his commentary to the
Aryabhatiya: not, however, when commenting upon Aryabhata’s text but only
in connection with the first example [ed., trans. Keller 2006: 1, 109f], (the examples
are Bhaskara’s own contribution, the Aryabhatiya gives nothing but rules). With
reference to the linear arrangement of the three known terms he states that

the two similar (sadr§a) (quantities) are at the beginning and the end. The dissimilar
guantity (asadr$a) is in the middle.

Mahavira [trans. Rangacarya 1912: 86] explains that

in the rule-of-three, Phala multiplied by Iccha and divided by Pramana, becomes the
[required] answer, when the Iccha and the Pramana are similar.

Bhaskara Il [trans. Colebrooke 1817: 33, Sanskrit terms added], finally, states that

® One might hope that the strong reliance on memorization in Indian culture would improve
the situation for the permanence of oral culture, but even memorization will probably have
been reserved for prestigious cultural items — or at least have been selective, as illustrated
by John Warren’s observation in c. 1825 of a Tamil calendar maker who computed “a lunar
eclipse by means of shells, placed on the ground, and from tables memorized ‘by means
of certain artificial words and syllables’ [Neugebauer 1952: 253]. It is next to certain that
ethnomathematical field work will still be able to find surviving sub-scientific mathematical
traditions (including their riddles), but the extent to which these are faithful in details to
their first-millennium ancestors will be impossible to decide unless they can be connected
to parallel sources, such as the “fragments of tables of multiplication, of squares and square
roots, and of cubes and cube roots [which] are in Prakrit and must have been in use in
the Andhra region at some time” in a Telugu commentary [Sarma 2010: 209] (tables agai,
we observe); Sarma relates in parallel that “in Uttar Pradesh, elderly people tell me that
they had memorized several multiplication tables of whole numbers and fractions in
Vrajbhasa or in Avadhi” (still languages which belong to the second millennium — and
perhaps in a form that belongs to the latest century).
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The first and last terms, which are the argument [Pramana] and requisition [lccha],
must be of like denomination; the fruit [Phala], which is of a different species, stands
between them

Aryabhata had given no corresponding explanation in terms of the similar
and the non-similar (nor does the Bakhshali manuscript, but it is anyhow outside
the main Sanskrit stream in terminology, as we have seen). It thus seems as if
the concepts have been adopted into the tradition around the onset of the seventh
century. The very different ways in which the Sanskrit authors insert the
observation shows that they do not copy, one from the other.

That similarity is mentioned by Mahavira is a first argument that the concern
with similarity originated in a vernacular environment (in economical transactions
its relevance is obvious, in astronomical pure-number calculations less so); that
Bhaskara | introduces the observation in connection with a (commercial) example
points in the same direction. Neither argument is more than a non-compulsory
hint, however; no wonder that those who have worked exclusively on Indian
material have never been taken aback by the seventh-century introduction of what
might be nothing but a reasonable mathematical observation.

Late medieval Italy

Things look different, however, if we take the Italian *“abbacus” school and
its mathematics into account. The abbacus school was a school mainly for
merchants’ and artisans’ sons, who frequented it for two years or less around the
age of 12, learning about calculation with Hindu-Arabic numerals and in general
about basic commercial arithmetic — not least about the rule of three. The earliest
references to the institution are from the 1260s, and the earliest textual witnesses
of its mathematics from the outgoing thirteenth century.

One of the earliest formulations — perhaps the earliest one — presents the “rules
of the three things”® as follows in literal translation [Arrighi 1989: 9, trans. JH]:

If some computation was said to us in which three things are proposed, then we shall
multiply the thing that we want to know with the one which is not of the same (kind),

®Le regole delle tre cose — plural because separate rules are given according to the absence
or presence of fractions.

The treatise in question is a Livero de I’abbecho, known from a fourteenth-century copy
in the manuscript Florence, Ricc. 2404 [ed. Arrighi 1989]. Because of misinterpretation of
copied internal evidence, the treatise has been wrongly dated to 1288-90. It is likely to
be somewhat but not very much later [Hayrup 2005: 27-28, 47].
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and divide in the other.’

Exactly the same formulation of the rule (except that multiplication is “against”,
not “with”) is found in an anonymous Liber habaci [ed. Arrighi 1987b: 111] which
can be dated to c. 1310.2 Already because this treatise uses no Hindu-Arabic but
only Roman numerals (and fractions written with words), we may be sure that
it is not derived from the Livero.

Two versions exist of Jacopo da Firenze’s Tractatus algorismi, originally written
in 1307 but known from three fifteenth-century copies. In one of these (Vatican,
Vat. lat 4826) the rule of three is slightly more elaborate [ed., trans. Hgyrup 2007:
236f, error corrected]:

If some computation should be given to us in which three things were proposed then
we should always multiply the thing that we want to know against the one which
is not similar, and divide in the third thing, that is, in the other that remains.®

The first example given runs as follows (tornesi are minted in Tours, parigini in

Paris):
I want to give you the example to the said rule, and | want to say thus, vii tornesi
are worth viiii parigini. Say me, how much will 20 tornesi be worth. Do thus, the thing
that you want to know is that which 20 tornesi will be worth. And the not similar is
that which vii tornesi are worth, that is, they are worth 9 parigini. And therefore we
should multiply 9 parigini times 20, they make 180 parigini, and divide in 7, which
is the third thing. Divide 180, from which results 25 and %. And 25 parigini and
7 will 20 tornesi be worth.*

The other two manuscripts (Milan, Trivulziana MS 90, and Florence, Riccardiana
MS 2236), probably representing a revised version [ed., trans. Hayrup 2007: ],
introduce the rule “If some computation should be said [deta] to us” (not “given”),
while the rule itself turns around the final phrase, which becomes “... divide in

" Se ce fosse dicta alchuna ragione ella quale se proponesse tre chose, si devemo moltiplicare
quilla chosa che noie volemo sapere con quella che non € de quilla medessma, a partire
nell’altra.

8 Gino Arrighi’s ascription to Paolo Gherardi (fl. 1328) is safely disregarded.

° Se ci fosse data alcuna ragione nela quale se proponesse tre cose, si debiamo multiplicare
sempre la cosa che noi vogliamo sapere contra a quella che non é simegliante,et parti nela
terza cosa, ciog, nell’altra che remane.

\ogliote dare I’exemplo ala dicta regola, et vo’ dire chosi, vij tornisi vagliono viiij parigini.
Dimmi quanto varranno 20 tornisi. Fa cosi, la cosa che tu voli sapere si & quello che
varranno 20 tornisi. Et la non simegliante si € quello che vale vij tornisi, cioé, vagliono
9 parigini. Et perd dobiamo multiplicare 9 parigini via 20, fanno 180 parigini, et parti in
7, che & la terza chosa. Parti 180, che ne viene 25 et %. Et 25 parigini et % varrano 20
tornesi.



the other, that is, in the third thing™;" their formulation of the example only
differs from that of the Vatican manuscript by using the phrase “the one which
is not of the same”*? (that of the Livero etc.) instead of “the one which is not
similar”.

Jacopo, an emigrated Florentine, wrote his treatise in Montpellier. Paolo
Gherardi wrote his Libro di ragioni in the same place in 1328. His formulation is
that of the Livero and of the Liber habaci. So is that of Giovanni de’ Danti’s Tractato
d I'algorisimo from 1370 [ed. Arrighi 1987a: 29], even though it copies much of
its general introduction (a general praise of knowledge) from Jacopo.*

The examples of all these treatises differ; their shared formulation of the rule
Is thus not the consequence of one author copying from the other; it must
represent a formulaic expression which was in general circulation. It remained
so for long — it is still found in the first printed commercial arithmetic (Larte de
labbaco, also known as the “Treviso arithmetic” from 1478'), while Luca Pacioli
presents us with a slight pedagogical expansion in the Summa de arithmetica [1494:
fol. 57", trans. JH], already present except for the words in {...} in his Perugia
manuscript from 1478 [ed. Calzoni & Gavazzoni 1996: 19f]:

The rule of 3 says that the thing which one wants to know is multiplied by that which
is not similar, and divided by the other {which is similar}, and that which results will
be of the nature of that which is not similar, and the divisor will always be of the
similitude of the thing which one wants to know."

In both cases an alternative follows:

The rule of 3 says that the thing which is mentioned twice [A and C in the above letter
formalism] should be looked for, of which the first is the divisor, and the second is
multiplied by the thing mentioned once [B], and this multiplication is divided by the
said divisor, and that which results from the said division will be of the nature of
the thing mentioned once, and so much will the thing be worth {precisely} which we

L .. partire nel’altra, cioé nella terza cossa.

2 quella che nonn’é di quella medesima.

Bt is of course possible that Jacopo copies from an unknown earlier source, which might
then just be shared by de’ Danti (and the many others who have the same introduction).
Given Jacopo’s early date this is not very likely (but anyhow unimportant for our
argument).

“ Unpaginated, at least in my digital facsimile; but pp. 61f if the title page is page 1. In
the end this treatise adds to the rule that the result will be of the nature of the non-similar
thing, while the divisor will be similar.

% La regola del 3 vol che se multiplichi la cosa che I’nomo vol saper per quella che non
e simigliante e partire per I’altra {che e simigliante} e quel che ne vene si ene de la natura
de quella che non é simigliante {e sira la valuta de la cosa che volemo inquirere}. E sempre
el partitor convien che sia de la similitudine de la chosa che I’homo vol sapere.
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try to know.'

Jacopo and Pacioli were not the only ones to insert pedagogical expansions.
Another example is found in Pietro Paolo Muscharello’s Algorismus, written in
Nola'” in 1478 [ed. Chiarini et al 1972: 59, trans. JH]:

This is the rule of 3, which is the fundament for all commercial computations. And
in order to find the divisor, always look for the similar thing, which is mentioned
twice, and one of these will be the divisor, and | say that it will be the one which is
not your request, and this your request you will get by multiplying with the other
not similar thing, and this multiplication [i.e., product] you will have to divide by
your divisor, and from it will come that which you will require.

As we see, Pacioli’s reference to “the thing which is mentioned twice” is inserted
here in the standard formula.

A last formulation to look at is found in Paolo dell’Abbaco’s mid-fourteenth-
century Regoluzze [ed. Arrighi 1966: 31, trans. JH], which does not formulate the
rule as a merely arithmetical algorithm but prescribes a 2 x 2 organization on

paper:

If you want to calculate, that is, to make computations of sale and purchase, write
the thing [materia] in front of its price, and the similar below the similar; and then
multiply these two numbers that are askew, and always divide by the number which
is beside.

As we see, not only the standard formula and its variations but also this practical
prescription all circle around the concepts of the dissimilar and the similar.

Before we leave the Italian corpus, one weird aspect of the standard formula
might be taken note of. The reference to C as “the thing that we want to know”
iIs misleading: C itself is known, and that which we want to know is its counterpart
(as made clear in the Vedangajyotisa). But it would be the perfect translation of
iccha or some corresponding vernacular Indian term; a linguistic loan is thus
possible, though not very likely.

'8 |Jdem sub aliis verbis. La regola del 3 vol che se guardi la cosa mentovata doi volte de
le quali la prima & partitore, e la seconda se moltiplica per la chosa mentoata una volta.
E quella tal multiplicatione se parta per ditto partitore. E quello che ne vien de ditto
partimento sira de la natura de la cosa mentovata una volta. E tanto varra la chosa che
cercamo sapere {aponto}.

In Campania, and thus outside the native ground of the abbacus school, which may be
the reason that it replaces the standard formula by an explanation.
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Arabic sources

A first impression of the earliest extant Arabic description of the rule of three -
the chapter on commercial transactions in al-Khwarizmi’s Algebra from c. 820 ce -
does not support any idea of transmission of formulations. It uses no name for
the rule which might correspond to the Sanskrit or Italian reference to three things
(actually, no name at all), and according to the best known translations it seems
to build on the theory of proportions of Elements VII.

Frederic Rosen [1831: 68] translates as follows:

You know that all mercantile transactions' of people, such as buying and selling,
exchange and hire, comprehend always two notions and four numbers, which are
stated by the enquirer; namely, measure and price, and quantity and sum. The number
which expresses the measure is inversely proportionate to the number which expresses
the sum, and the number of the price inversely proportionate to that of the quantity.
Three of these four numbers are always known, one is unknown, and this is implied
when the person inquiring says how much? and it is the object of the question. The
computation in such instances is this, that you try the three given numbers; two of
them must necessarily be inversely proportionate the one to the other. Then you
multiply these two proportionate numbers by each other, and you divide the product
by the third given number, the proportionate of which is unknown. The quotient of
this division is the unknown number, which the inquirer asked for; and it is inversely
proportionate to the divisor.

Roshdi Rashed agrees in his French translation [2007: 196] with Rosen that the
translation must be made in terms of proportion theory but disagrees with Rosen
in how to make the connection:

Sache que toutes les transactions entre les gens, de vente, d’achat, de change <de
monnaies>, de salaire, et toutes les autres, ont lieu selon deux modes, et d’aprés quatre
nombres prononcés par le demandeur, qui sont: quantité d’évaluation, taux, prix,
guantité évaluée.

Le nombre qui est la quantité d’évaluation n’est pas proportionnel a celui qui
est le prix. Le nombre qui est le taux n’est pas proportionnel au nombre de la quantité
évaluée, et, parmi ces quatre nombres, trois sont toujours évidents et connus, et I'un
d’eux est inconnu, qui, dans les termes de celui qui parle, est « combien », et qui est
I’objet du demandeur.

On I'infére ainsi ; tu examines les trois nombres évidents ; il est nécessaire que,
parmi eux, il y en ait deux, dont chacun n’est pas proportionnel a son associé. Tu
multiplies les deux nombres évidents non proportionnels I’'un par I'autre; tu divises
le produit par I'autre nombre évident, dont <I’associé> non proportionnel est inconnu ;
ce que tu obtiens est le nombre inconnu cherché par le demandeur, et qui n’est pas
proportionnel au nombre par lequel tu as divisé.

¥ The Arabic word is mu“amalat, referring to the economical transactions of social life in
general, not only trade.
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Where Rosen finds “inversely proportional”, Rashed thus sees “not proportional”.
Neither makes much sense mathematically. The third modern translation, made
by Boris Rozenfeld [1983: 45] therefore translates the critical term mubayin neither
as “not proportional” nor as “inversely proportional” but as protiv, “opposite”,
probably thinking of a graphical 2x2-scheme as described by Paolo dell’ Abbaco
(and as found above, p. 1). Both twelfth-century Latin translations, due respectively
to Robert of Chester [ed. Hughes 1989: 64] and Gerard of Cremona [ed. Hughes
1986: 255], do the same. In their time, indeed, this graphical scheme was well
known, as made obvious by its use in the Liber abbaci (see below, n. 25).

Unfortunately, nothing in al-Khwarizm1’s text suggests that he knew about
such a scheme - but fortunately, a much more meaningful translation of mubayin
can be given [Wehr 1985: 131] — namely “different (in kind)” (or “dissimilar’),
as also indicated by Mohamed Souissi [1968: 96], with reference to precisely this
passage. Al-Khwarizm1’s terminology is thus related both to what turns up in
India from Bhaskara | and Brahmagupta onward and to what we find in late
medieval Italy.

Quite a few later Arabic authors do refer to the Euclidean theory —sometimes
integrating it with the presentation of the rule of three, sometimes keeping the
two topics separate. Al-Karaji’s Kafi fi’l hisab (c. 1010 cE) is an example of separate
treatment [ed., trans. Hochheim 1878: Il, 15-17, English JH]:

Chapter XLII. Proportions. Of the four magnitudes of the proportion, the first relates
to the second as the third to the fourth. If you have found this correlation, then you
obtain through interchange of the members that the first relates to the third as the
second to the fourth. Further you also obtain, when combining, a proportion: the sum
of the first and the second member relates to the second member as the sum of the
third and the fourth member to the fourth. Further you may form differences [...].*°

If the first member is unknown, then you multiply the second by the third member
and divide by the fourth. Similarly, if the fourth member is unknown, you divide
this product by the first member. If the second or the third is unknown, then you
multiply the first by the fourth and divide the product by the known one of the other
two members.

If three numbers form a proportion [...]
Chapter XLIII. Commercial transactions. Know that in questions about commercial
transactions you must have four magnitudes, which are pairwise similar, the price,
the measure, the purchase amount and the quantity.?

The price is the value of a measuring unit that is used in trade [...].

[...] Of these four magnitudes, three are always known, and one is unknown. You
find the unknown magnitude by multiplying one of the known magnitudes, for

¥ The set of operations performed here presupposes that all four magnitudes are of the
same kind. Al-Karaji thus has the good reasons of a good mathematician to keep
proportions and rule of three apart.

2 Corresponding, respectively, to Rosen’s “price”, “measure”, “sum” and “quantity”.
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instance the sum or the quantity, by that which is dissimilar to it, namely the measure
or the price, and dividing the outcome by the magnitude which is of the same kind.
What comes from it is the result.

Or if you prefer, put one of the known magnitudes, for instance the quantity or
the sum [called the “purchase amount” a few lines earlier] in relation to the one that
is similar to it [i.e., find their ratio], and thereby search the relation of the non-similar
magnitude.?

It is clear already from the order of the four magnitudes involved (and
corroborated by the whole formulation) that al-Karaji does not copy from al-
Khwarizmi’s exposition. This corresponds well to the presentation of algebra later
in the treatise, which appears to draw on a pre-Khwarizmian form of that
technique.”

Ibn al-Banna’’s concise Talkhis (early 13th century CE) integrates the rule
in the presentation of proportions (translated from [Souissi 1969: 87f]):

The four proportional numbers are such that the first is to the second as the third
to the fourth.

The product of the first with the fourth is equal to the product of the second with
the third.

When multiplying the first by the fourth and dividing the product by the second,
one obtains the third. [...]

Whichever is unknown among these numbers can be obtained by this procedure
from the other three, known, numbers. The method consists in multiplying the isolated
given number, dissimilar from the two others, by that whose counterpart one ignores,
and dividing by the third known number. The unknown results.

While al-Karaji and ibn al-Banna® are usually counted as “mathematicians”, ibn
Thabat was primarily a legal scholar, and his Ghunyat al-Hussab (“Treasures of
the Calculators”, from around 1200 ck) is intended to teach the mathematics that
could serve legal purposes. Even here, proportion theory and rule of three are
integrated. The rule is stated thus (translated from [Rebstock 1993: 45]):

The fundament for all mu“amalat-computation is that you multiply a given magnitude

by one which is not of the same kind, and divide the outcome by the one which is
of the same kind.

' 1n our letter symbols, Y = (%,)-X. As we observe, this is not the rule of three but an
alternative, here and in other Arabic works (e.g., ibn Thabat, ed. [Rebstock 1993: 43]) called
“by nigba”, “by relation”. It has the advantage of being intuitively easier to grasp, but the
disadvantage of performing the division first, which will mostly increase rounding errors
or entail difficult multiplications of fractional quantities.

2 This follows in particular from his use of the key terms al-jabr and al-mugabalah, see
[Hayrup 2007: 157], cf. [Saliba 1972].
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This rule, as we see, coincides almost verbatim with the one that was taught in
the Italian abbacus school. However, it precedes the earliest abbacus treatises by
at least half a century, and in any case it is difficult to imagine that a scholar
teaching in the Baghdad madrasa should have direct access to what went on in
Italy. We may safely assume that the rule he knew was widespread in a
commercial community spanning at least the whole region from Iraq to ibn al-
Banna>’s Maghreb, and almost certainly also the traders of the Mediterranean
as well as the Indian Ocean. Everywhere, it tended to penetrate even erudite
presentations of the same subject-matter as a secondary explanation. However,
what penetrated the presentations of Brahmagupta, Mahavira and Bhaskara | and 11 can
hardly have been the language of Arabic traders; it must have been the ways of
autochthonous Indian merchants and public officials speaking a Prakrit.

Latin presentations

This part of my story — the one that may convey information about Indian
usages — turns out in the end to be, or at least to look, quite simple. However,
this simplicity results from disregard of those features of the process that point
away from it. Taking them into account will not refute the simple story, but they
will show that there is more to the matter.

As we have seen, the two Latin translations of al-Khwarizmi’s Algebra made
in Iberian area in the twelfth century both misunderstand his reference to the
similar and dissimilar, but apart from that they are faithful to the original. Two
other twelfth-century Latin works from the same area, the Liber mahamaleth [ed.
Vlasschaert 2010: 11, 185, trans. JH] and the so-called “Toledan Regule” [ed. Burnett,
Zhao & Lampe 2007: 155] have an approach which | know from nowhere else.?®
Of four numbers in proportion, the first and the fourth are declared “partners”
(socii), and so are the second and the third. If one is unknown, then its partner
shall divide any of the other two, and the outcome be multiplied by the third
number - that is, the nisba approach or the seemingly similar rule Y = (°Z,)-B.*
Afterwards, both specify differently (without observing that there is a difference),
namely in agreement with the naked rule of three,

% The two texts are generally related, see [Burnett, Zhao & Lampe 2007: 145]. Nothing forces
us to believe that this shared peculiarity of theirs reflects a widespread pattern.

Even though the title Liber mahamaleth clearly shows that the work is intended to
present the mu“amalat genre, this is not the only point where this treatise seems to explore
matters on its own.

#This rule, corresponding to what was done in Mesopotamia, in Ancient Egypt and in
Greek practical mathematics, will be in conflict with the Euclidean formulation in all
practical applications, since A and X will not be “similar”. It was therefore avoided by
those Arabic authors who wanted to base their calculations on Euclid.
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thus, if three are proposed and the fourth is unknown, multiply the second in the
third, and divide what results by the first, and what comes out will be the fourth.

After a new headline “Chapter on buying and selling”, the Liber mahamaleth [ed.
Vlasschaert 2010: 11, 186, trans. JH] repeats, but now recognizes that the methods
are alternatives:

When in buying or selling it is asked about something what is its price.

Do thus: Multiply the middle [number] by the last, and divide the product by
the first.

Or divide the middle by the first, and what comes out of it multiply by the last,
or divide the last by the first, and what comes out of it multiply by the middle. From
all these modes results the unknown that is asked for.

The presentation of the matter in Fibonacci’s Liber abbaci [ed. Boncompagni 1857:
83f, trans. JH] (from 1228, but at least this passage is likely to be close to the lost
1202 edition) looks like Fibonacci’s personal way to describe what he has seen
in use:

In all commercial exchanges [negotiationes — mu‘amalat?], four proportional numbers
are always found, of which three are known, but the remaining unknown. The first
of these three known numbers is the number of sale of any merchandise, be it number,
or weight, or measure [explanatory examples]. The second, however, is the price of
this sale [...]. The third, then, will be the sale of some quantity of this merchandise,
whose price, namely the fourth, unknown number, will not be known. Therefore, in
order to find the unknown number from those that are known, we give a universal
rule for all cases, namely, in the top of a board write the first number to the right,
namely the merchandise.”® Behind in the same line you posit the price of the same
merchandise, namely the second number. The third too, if it is the merchandise, write
it under the merchandise, that is, under the first, And if it is the price, write it under
the price, that is, under the second. In this way, as it is of the kind of that under which
it is written, thus it will also be of the quality or the quantity, whether in number,
in weight or in measure. This is, if the superior number, under which one is writing,
is a number [of rotuli®®], itself will also be rotuli, if pounds, pounds, [...]. When they
are described thus, it will be obvious that two of those that are posited will always
be contrary [ex adverso], which have to be multiplied together, and that if the outcome
of their multiplication is divided by the third number, the fourth, unknown, will
doubtlessly be found.

As we see, Fibonacci knows the reason for speaking of the similar and the
dissimilar, but it does not enter his prescription (which it would strain normal

®This prescription corresponds to inscription on an Arabic dust- or clayboard (takht
respectively lawha) — in agreement with the start from the right. Robert’s and Gerard’s
translation of mubayin as “opposite” shows that they think of the same scheme.

Comparing with Paolo’s Regoluzze (above, p. 7), we observe that rows and columns
are interchanged.

% A weight unit, see [Zupko 1981: 228].
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language to call a “rule”).

Much later in the work, namely within the long chapter 12 consisting of mixed
problems [ed. Boncompagni 1857: 170, trans. JH], we find a problem which is
solved by means of the rule of three but which prima facie seems to have nothing
to do with a general presentation of that rule:

If it is asked about 6, to which number it has the same ratio [proportio] as 3 to 5, you
do thus: Multiply 5 by 6, it will be 30; which divide by 3, 10 comes out of it, which
is the number asked for; because as 3 is to 5, thus 6 is to 10. To be sure, we usually
pose this question differently in our vernacular [ex usu nostri vulgaris]: namely that
if 3 were 5, what then would 6 be? And just as it was said, 5 is similarly multiplied
by 6, and the outcome divided by 3.

A similar problem follows, also given afterwards in “vernacular” terms. A total
listing of the occurrences of the terms vulgarisAulgariter in the work leaves no
doubt that it refers to the usage of the precursor-environment for the abbacus
school, the community of commercial calculators working around the Mediterra-
nean.

Iberia and Provence

This may seem strange: so far we have encountered nothing similar to this
presumed “vernacular” way. But this is only because we did not look at Ibero-
Provencal material apart from what was written in Latin during the twelfth
century, nor at what is probably the very earliest Italian abbacus book.

Disregarding chronology, let us start in 1482 with Francesc Santcliment’s
Catalan Suma de la art de arismetica. It introduces the regla de tres in these words
[ed. Malet 1998: 163, trans. JH]:

It is called properly the rule of three, since within the said species 3 things are
contained, of which two are similar and one is dissimilar. This said species is common
to all sorts of merchandise. There is indeed no problem nor question, however tough
it may be, which cannot be solved by it once it is well reduced.
And in our vernacular [nostre vulgar] the said species begins: If so much is worth
so much, what will so much be worth?
The solution of this rule is commonly said: Multiply by its contrary and divide
by its similar.
First, of course, we observe the reference to the “vernacular’” connected to almost
the same phrase (though no longer *“counterfactual”, one thing “being worth”
another one abstractly, not “being” a different thing). There are also references
to the “similar” and the *“dissimilar”, but the “common” formulation of the
solution “Multiply by its contrary and divide by its similar” does not coincide
precisely with the Italian standard abbacus rule. In spite of the shared reference
to the vernacular, everything remains so different from the text of the Liber abbaci
that any copying or direct inspiration from that work can be excluded.
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A thorough inspection of all known commercial arithmetics of abbacus type
written in lbero-Provengal area until 1500 will show that they share the
counterfactual or abstract “being-worth” formulation of the rule (now in
chronological order).

The earliest of these treatises is a Castilian Libro de arismética que es dicho
alguarismo, known from an early-sixteenth-century copy of an original written
in 1393. Some aspects call to mind the Liber mahamaleth, showing the Libro ... dicho
alguarismo to be partially rooted in an Iberian tradition going back to the Arabic
period — especially use of “ascending composite fractions” (¥, and Vp of 7, and
...). Most aspects, however, and in particular the presentation of the rule of three
[ed. Caunedo del Potro & Cdrdoba de la Llave 2000: 147, trans. JH] are wholly
different. This presentation combines the counterfactual with the abstract “being
worth”, and has no hint of a graphical organization in a 2x2-scheme (instead, the
same linear organization is used as in the Bakhshali manuscript, but this is too
close at hand to be taken as evidence of any link):

This is the 6th species, which begins “if so much is worth so much, what will so much
be worth”.

Know that according to what the art of algorism commands, to make any
calculation which begins in this way, “if so much was so much, what would so much
be?”, the art of algorism commands that you multiply the second by the third and
divide by the first, and that which comes out of the division, that is what you ask
for. As if somebody said, “if 3 were 4, what would 5 be?”, in order to do it, posit the
figures of the letters? as | say here, the 3 first and the 4 second and the 5 third, 3,
4, 5, and now multiply the 4, which is the second letter, with the 5, which is the third,
and say, 4 times 5 are 20, and divide this 20 by the 3, which stands first, and from
the division comes 6%, so that if they ask you, “if 3 were 4, what would 5 be?”, you
will say 6%, and by this rule all calculations of the world are made which are asked
in this way, whatever they be.

Next in time comes the “Pamiers Algorism” from c. 1430 [Sesiano 1984: 27].
Jacques Sesiano offers a partial edition only, for which reason | cannot quote the
whole introduction — but he does show [1984: 45] that it follows the pattern
“4%, is worth 7%, what is 13%, worth?”.

The anonymous mid-fifteenth-century Franco-Provencal Traicté de la praticque
d’algorisme also follows the same general pattern but is never so close to the others
that direct copying can be suspected. Its presentation of the rule of three [ed.
Lamassé 2007: 469, trans. JH] runs thus:

This rule is called rule of three for the reason that in the problems that are made by
this rule three numbers are always required, of which the first and the third should
always be similar by counting one thing. And from these three numbers result another
one, which is the problem and conclusion of that which one wants to know. And it

20n p. 134 the author explains “the letters of algorism” to be the Hindu-Arabic numerals.
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is always similar to the second number of the three. By some this rule is called the
golden rule and by others the rule of proportions. The problems and questions of this
rule are formed in this way: “If so much is worth so much, how much will so much
be worth?”. As for example, “if 6 are worth 18, what would 9 be worth?”. For the
making of such problems there is such a rule:

Multiply that which you want to know by its contrary and then divide by its
similar. Or multiply the third number by the second and then divide by the first.

As we see, this version emphasizes the similar and the dissimilar, and combines
the linear arrangement of the Castilian Libro de arismética with the formulation
we know from Santcliment.

Closely connected to this Traicté is Barthélemy de Romans’ Compendy de la
praticque des nombres.? It says about the rule of three [ed. Spiesser 2003: 255-257,
trans. JH] that it is “the most profitable of all”, and gives two rules, one for finding
Y from A, X and B, and one probably meant for finding B from A, X and Y,

Multiply that which you want to know by its contrary, and then divide by its similar,
and

Multiply that which you know by that which is wholly dissimilar to it, and then divide

by its similar,
after which it goes on with the composites rules. The first of these rules, we see,
is shared with the Traicté and with Santcliment; the second, by using the term
dissimilar (dissemblant) instead of contrary, looks as if it was of Italian inspiration
(it might thus simply bee an alternative formulation of the rule for finding Y from
A, X and B). The first example, however, is in purely Iberian tradition, “if 5 is
worth 7, what is 13 worth?”.

The final Ibero-Provencal treatise is Francés Pellos’s Compendion de I’abaco,
printed in Nice in 1492. It starts by a general introduction to the theme [ed. Lafont
& Tournerie 1967: 101-103, trans. JH], that does not look in detail like anything
else we have seen except in its last section, and which is likely to be Pellos’s own
description of the situation:

This is the way how you should say in matters that ask: if so much is worth so much,
how much is so much worth? In this way, you may understand more clearly in the
following examples.
The first number.

The first number is always the thing bought or sold, and you need to keep it
well in memory.
The second number.

Know that the second number shall always be the value or the price of that which
you have bought or sold.

% Probably written around 1467 but only known from a revision made by Mathieu Préhoude
in 1476.

- 15 -



The third example or number.

And the third number shall always be the thing that you want to know, that is
to say, the thing that you want to by.

Remember that the first and the third numbers are always the same thing.

And know further that the first number and the third shall always be one thing.
And if they are not certainly one thing, then you shall reduce them to a form where
they speak of one thing, or matter, for in no way on earth they must not be different,
as appears afterwards in the examples.

General rule to find every thing.

Always multiply the thing that you want to know by its contrary. And the
outcome of this multiplication you divide by its similar, and that which comes out
of such a division will be the value of the thing that you want to know.

The first examples that follow ask “if 4 are worth 9, what are 5 worth?”, “if 3 and
a half is worth 6, how much are 4 worth?”, etc. After six similar examples follows
a graphical scheme, deceptively similar to the one we know from Paolo
dell’Abbacho and Fibonacci but actually used for reducing rule-of-three-type
problems involving fractions into problems involving only integers (and too similar
to many other schemes used in abbacus manuscripts to be supposed with any

degree of certainty to be inspired by the traditional rule-of-three diagram).

Italy revisited

As we see, all Iberian and genuinely Procencal presentations of the rule use
the counterfactual or abstract being-worth formulation; from the mid-fifteenth
century Traicté onward they also know the notions of similar/dissimilar — whether
because of interaction with the Italian tradition or because of other inspirations
cannot be decided.

Many Italian abbacus treatises, on the other hand, also know the counterfactual
problem — and even “counterfactual calculations”, such as “If 9 is the 1/2 of 16,
| ask you what part 12 will be of 25”, found in Gherardi’s Libro di ragioni [ed.
Arrighi 1987b: 17, trans. JH]. But as was the case in the Liber abbaci (which by the
way also contains counterfactual calculations), counterfactual problems and
calculations are always found long after the presentation of the rule of three, or
as illustrations of the rule following after many examples of the ordinary
commercial kind.? Clearly, they are meant to be recreational, and do not belong
to the basic didactical stock (for which reason they are invariably counterfactual,
not of the abstract being-worth type).

There is one exception to this rule, namely the very earliest Italian abbacus
treatise, the “Columbia Algorism” [ed. Vogel 1977], the original of which is likely

»This is where Jacopo [ed. trans. Hgyrup 2007: 238] asks the question “if 5 times 5 would
make 26, say me how much would 7 times 7 make at this same rate”.
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to have been written around 1285-90 (what we have is a fourteenth-century
copy).® The rule of three is approached in two different ways.

On one hand, there is a general presentation of the rule, not mentioning the
name “rule of three” [ed. Vogel 1977: 39f, trans. JH]:

Remember, that you cannot state any computation where you do not mention three
things; and it is fitting that one of these things must be mentioned by name two times;
remember also that the first of the things that is mentioned two times by name must
be the divisor, and the other two things must be multiplied together.

This is followed by an example dealing with the exchange of money. Later this
formulation is used a couple of times [ed. Vogel 1977: 48, 50] in examples which
explicitly speaks of the “rule of the three things”. We recognize Pacioli’s second
formulation of the rule, which must thus have survived somewhere in the
intervening two hundred years, even though | have not noticed it in texts | have
looked at.

Mostly when the rule is used, however, a problem is reduced to a
counterfactual [ed. Vogel 1977: 31f, 57, 61, 64f, 70 83, 80, 83, 86, 90, 109, 111, 123f]
or an abstract being-worth [ed. Vogel 1977: 52, 112] formulation (“It is as if you
said, ‘if a were/is worth b, what ...””). At times [ed. Vogel 1977: 52, 57, 64, 83],
the rule is also mentioned by name in these connections.

Finally, a number of times the rule is called by name but without any reference
to either the “mentioned”, the counterfactual or the abstract being-worth
formulations [ed. Vogel 1977: 52, 54f, 58, 110].** All in all, it is fairly obvious that
the compiler of the treatise knows not only the Iberian “vernacular” way but also
the idea underlying what was to become the Italian standard formula, expressing
it however differently (the two “similar” things becoming that which is mentioned
“two times”).

The treatise stands at the very beginning of the Italian abbacus tradition, and
it is thus not strange that it draws on discordant sources. In other respects too
it has links to the Iberian tradition as we know it from the Libro de arismética que
es dicho alguarismo — cf. for instance [Hayrup 2007: 85]. At the same time it makes
use the Maghreb notation for ascending continued fractions (the Libro ... dicho
alguarismo knows the fraction type but not the Maghrreb notation).*> However,

% The dating of the treatise is discussed in [Hgyrup 2007: 31 n. 20].

*1 The first folios of the treatise are missing, and so is the folio preceding the general
introduction to the rule in “mentioned”-formulation. It is therefore impossible to exclude
that a general introduction to the rule in one of the Ibero-Provencal formulations was
present in the original. Nor must this necessarily have been the case, however.

¥ This notation was also used by Fibonacci, but Fibonacci is not a likely source. Firstly,
Fibonacci always writes these fractions from right to left, as do the Maghreb writers; the
writing direction in the Columbia algorism alternates. Secondly, the Columbia algorism
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there are few traces in later times of its idiosyncrasies: it was copied at some
moment during the fourteenth century; in 1344, Dardi of Pisa shares its (mis)use

of the notation for ascending continued fractions, writing % for “2 censi and Y2

of a censo” [Heyrup 2010b: 23]; as we have seen, finally, the “mentioned”
formulation of the rule of three turns up in two manuscripts from 1478 (Pacioli
and Muscharello); but that is all | have observed. In particular, no Italian treatise
I know of continued its use of the counterfactual or the abstract being-worth
structures as the basic representation of or model for the rule of three.

What is the origin of the Ibero-Provencal representation?

As we have seen, Fibonacci refers to the counterfactual structure as the
“vernacular” representation of the rule of three. Around 1200 it must hence have
been widespread at least in some part of the Mediterranean environment he knew.
Where?

We have no solids hints. For linguistic reasons, the counterfactual structure
can hardly be Arabic: since the copula is not expressed in Semitic languages, “a
is b, what is ¢?”” should correspond to the opaque *“a b, ¢ what?”. The abstract
being-worth formulation, on the other hand, is obviously possible in Arabic, and
we do have a couple of Arabic texts which come near to it. In the probably most
faithful version of al-Khwarizm1’s algebra — Gherardo’s translation [ed. Hughes
1986: 256] — the first example deals with a commercial problem, “10 gafiz are for
six dragmas, what do you get for four dragmas?”; the second, however, is abstract
“‘ten are for eight, how much is the price for four?”, or perhaps it is said, ‘four
of them are for which price’”. The words “perhaps it is said” suggest that al-
Khwarizmi quotes a common way of speaking — but we cannot be sure that this
refers precisely to the abstract aspect of the formulation.

However, Robert’s translation [ed. Hughes 1989: 65] as well as the extant
Arabic version [ed. Rashed 2007: 198] have even the first example in abstract
formulation. Both represent the text as it developed in use, and the change could
thus reflect common parlance. On the other hand, the step from concrete to
abstract formulation is easily made, and the very scattered occurrences of similar
wordings in Arabic texts (and their absence from the Liber mahamalet and the
“Toledan regule”) do not suggest that they represent a widespread vernacular.®

sometimes uses the notation when g is not a denominator but a metrological unit, a thing
Fibonacci would never do (he knows that a denominator is a divisor, not a denomination).
Thirdly, the Columbia algorism has nothing else in common with the Liber abbaci (not to
speak of Fibonacci’s more sophisticated works).

¥ |bn al-Khidr al-Qurasi (Damascus, mid-eleventh-century) explains [ed., trans. Rebstock
2001: 64, English JH] the foundation for “sale and purchase” to be the seventh book of

-18 -



The safest assumption is that the abstract being-worth shape and its counterfactual
variant were widespread at least somewhere in the Iberian world toward 1200;**
before that we do not know.

So, whereas the first part of my story had few loose ends, these abound in
the second part. Nobody should be surprised: loose ends are always there, and
we can only create a simple coherent story by disregarding them — which does
not make the coherent story untrue, only incomplete.

(And then | have not even touched at the presence of
the rule of three in China, another intriguing loose end.)
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