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Part 1: On the Books and the Handwritten Marginalia






Chapter 1
Introduction

Figure 1.1: Illustration of an equal-arms balance, both in equilibrium and
in a deflected position. From Piccolomini (1565).

1.1 On this book

Since ancient times, scales have symbolized justice and equilibrium. Bal-
ance and equilibrium in this wider sense are fundamental to the human
condition, but what about the real, physical balance and its equilibrium?
This book is not concerned with the balance between humanity and its
natural environment, or with an equilibrium of power or of the human
mind, but rather a seemingly innocent question concerning the real bal-
ance: the question of whether a balance in equilibrium, after having been
deflected from its normal horizontal position, remains in its deflected posi-
tion, returns to its original position, or tilts to the vertical. This question
is of no immediate practical relevance — although it may affect the relia-
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bility of a balance — and is certainly not of fundamental significance to the
human condition. Nevertheless, it captured the attention of philosophers,
scholars, engineers, and scientists for almost two millennia, from Greek an-
tiquity to the sixteenth century when this question became central among
scholars and the subject of what we call here the equilibrium controversy.
However, a conclusive answer was not found until the firm establishment
of classical physics, and even then there were still aspects that provoked
controversial discussions.

But why should anyone be interested in such a seemingly trivial and
irrelevant issue? One can hardly avoid the impression that scientific in-
vestigations — and historical scholarship in particular — dedicated to such
issues are inconsequential and detached from human endeavors. Today,
of course, science is surely not removed from the human condition, but
is actually critical for human survival. But this science is concerned with
the grand challenges of humanity such as deciphering and interpreting the
human genome, solving the energy problem, or overcoming the climate cri-
sis. On closer inspection, however, all such pursuits are rooted in scientific
knowledge that originated in intellectual concerns as remote from immedi-
ate practical applicability as the equilibrium controversy. There would be
no scientific understanding of energy without the pivotal role once played
by the balance and its equilibrium in understanding this concept.

The question of whether or not an equilibrated balance, deflected from
its standard position, would return to the horizontal position, appears to
be a typical textbook problem. In real life, most balances do return to their
original position, so clearly we must be talking about an idealized balance
that can be visualized, for instance, by an immaterial beam, suspended at
its center, with two equal weights attached to its ends. Or we may imagine
the more complex case in which the beam is extended, has itself weight,
and is suspended above or below its center. All such cases can be solved
with the techniques of classical mechanics, for instance, by introducing
the concept of center of gravity, by conceiving of one arm of a deflected
balance as an angular or bent lever, and by using the concept of torque in
order to establish the effects that the forces exerted by the weights have
in different positions along the balance.

Why then was it so difficult to resolve this question? Can a few simple
experiments not settle the issue? The answer to such elementary questions
about the progress of physics can only be found if we take into account the
role that the historical development of fundamental concepts such as force,
weight, center of gravity, and torque have played for the understanding
of seemingly simple physical problems, such as those that formed part
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of the equilibrium controversy. The nature of the historical evolution of
mechanical knowledge, as the subject of an historical epistemology, can
only be understood if one realizes that this evolution is not a linear process,
but rather involves extensive restructurations of knowledge accompanied
by concept development in the sciences that deal with this knowledge.

The fundamental concepts of mechanics have a very long history.
They have roots in antiquity and were — or so it seemed — definitively clari-
fied in the classical physics of the eighteenth and nineteenth centuries. But
then it turned out that in the course of the relativity and quantum revolu-
tions of the early twentieth century, even such apparently basic concepts
were subject to further profound modifications. Against the background of
these conceptual revisions, even a simple problem such as that of the bent
lever, for instance, could in fact once again become a challenging issue,
although it had apparently been firmly established in the course of the
equilibrium controversy of the sixteenth century. A genuine understand-
ing of the bent lever in relativity could not simply be accomplished with
the help of the classical concepts of force and torque, but actually necessi-
tated a reconceptualization of the relation between energy and momentum
from a relativistic perspective.!

Nevertheless, concepts with roots in antiquity such as force, weight,
center of gravity, and torque continue to serve as important points of refer-
ence, even for modern physics. How did these concepts emerge? Did they
perhaps result from the establishment of a definitive scientific method,
which is often associated with the Scientific Revolution, an era in which
the equilibrium controversy culminated and classical mechanics emerged?
But why then did these concepts undergo further changes in the subsequent
revolutions of physics? The present book aims to contribute to the un-
derstanding of the fundamental role of concept development for science by
focusing on one particular example, by providing some relevant historical
contexts, and by highlighting the specific role that scientific controversies
and challenging objects played in this development.

Classical mechanics is often considered to be the most pure, abstract,
and rational of the physical sciences.? It is hence natural to assume that its
historical development must also have been essentially a history of linear
progress, or at least of the steady accumulation of knowledge. This may
have suffered interruptions and aberrations, but it nevertheless tended to
reach clear conceptual foundations based on the consideration of idealized
objects such as the balance described above. One aspect that will be-

IFor historical discussion, see Janssen (1995).
2Truesdell (1968).
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come particularly evident in this book is the role historical contingencies
played for conceptual development at the heart of mechanics. There is,
first of all, the contingency of those aspects of the material culture that
become the object of scientific enquiry. These could include the balance,
the pendulum, an elixir, or even the shadow of a gnomon. Then there is
the contingency of the social and cultural conditions under which knowl-
edge is recorded, transmitted, and appropriated, including the losses and
transmutations occurring in such processes. Here we will show that such
losses and transmutations not only acted as disturbances in an otherwise
linear progress toward clarity, but that they also determined, to a large
extent, the very nature of concept development in mechanics. Naturally,
there is also the contingency inherent in the very processes of knowledge
generation as knowledge itself is characterized by a complex cognitive ar-
chitecture that gives rise to unpredictable twists in its development, as
is familiar from other aspects of cultural evolution. And finally, there is
the contingency that itself becomes the object of scientific reflection, for
instance, in the form of the question of which material processes can be
studied with scientific rigor and which must be excluded from the realm
of mechanics because they are not subject to precise mathematical laws.

No doubt, science is a deeply human affair, historical down to its very
core concepts. Perhaps there is no need for further study to illustrate that
nothing that is human is alien to science. But is not the question of how the
specific features that distinguish science from other social activities still a
challenging intellectual problem? In particular, how can science ensure the
long-term proliferation of knowledge while undergoing, at the same time,
profound conceptual transformations as we have indicated? What role is
played by the material culture underlying science as a social activity, and
what significance does the long-term transmission of theoretical traditions
have, and how is concept formation affected by different social and cultural
contexts? In order to answer such questions, we propose that it makes
sense to imitate science itself, that is, to start not necessarily from what
are perhaps the most interesting, complex, and advanced forms of the
phenomenon to be studied, but rather to take a simple but characteristic
model case, such as the concept development taking place in the context
of the equilibrium controversy.

Finally, a personal note: When Peter Damerow and I began to work
on this book some three years ago, questions such as these were pertinent,
but did not present the primary goal of our enterprise. Our principal aim
was rather to make available to a wider public an important new source
on the history of mechanics, a source that illuminates a critical phase of
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the equilibrium controversy: the handwritten marginal commentaries by
one important early modern author on the book of another contemporary
author. Our intention was to reserve theoretical issues of historical epis-
temology such as the questions listed above for a comprehensive study of
the evolution of mechanical knowledge. It was only in the course of our
efforts to understand the pre-history and contexts of the sources that the
equilibrium controversy presented itself as a perfect illustration of some of
the theoretical insights into the nature of the evolution of the knowledge
under consideration.

This book began as an edition of new historical sources, but was trans-
formed over time into a case study of the long-term history of mechanical
knowledge. Yet, in accordance with the scope of the series, the sources re-
main at center stage, while the theoretical passages take more the form of
commentaries and excursions than of systematic studies. Wherever feasi-
ble and useful, we have included quotations both in the original language
and in English translation. We furthermore extensively used, as in the
other volumes of this series, the digital library of the ECHO initiative,
which makes many of the relevant historical materials freely accessible on
the Web. We also included hitherto unpublished results of earlier work,
pursued in the context of the research project Mental Models in the History
of Mechanics at the Max Planck Institute for the History of Science.

As in other joint projects, Peter and I worked closely on every sentence
until the book was almost finished. Even when Peter’s struggle with his
illness became ever more hopeless, he continued to work with the greatest
intensity on this project. He carefully economized his last resources to be
able to make final revisions and improvements. I have never known anyone
so dedicated, so serene and cooperative, and so ingenious, even in the face
of death. His mind and heart were stronger than any bodily weakness.
He literally worked on this joint project until his very last moment and
it hurts to think how much he would have liked to see it completed. It
is therefore with the greatest respect for my friend and co-author that I
have tried to implement the final amendments as far as possible and rush
in making this, his last work, available in the open-access series that Peter
initiated.

This would not have been possible without the continuing support
of several colleagues. I am therefore particularly grateful to Lindy Di-
varci who looked after this project from the beginning, to Beatrice Gabriel
who kept encouraging us and carefully copy-edited the final version, to
Urs Schoepflin who helped to track down many of the sources, to Sabine
Bertram for her help with the ink analysis, as well as to the development
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team, including Jorg Kantel and Kai Surendorf, for realizing the online
version. Some of the transcriptions and translations have been corrobo-
rated by Eleonora Renn, Volkmar Schiiller, and Stefan Trzeciok. We are
particularly grateful to Antonio Becchi, Carlo Maccagni, and Pietro Daniel
Omodeo for their extensive help with checking transcriptions and trans-
lations and for acting as critical and helpful submitters and reviewers, to
Gideon Freudenthal for important suggestions on some of the theoretical
passages, to Alexander S. Blum for his help in presenting the physics, and
to Jochen Biittner, Peter McLaughlin, Matthias Schemmel, and Matteo
Valleriani for many discussions in the framework of our joint research on
the history of mechanics. Discussions with Horst Bredekamp always pro-
vided a strong motivation to see the project to its end. We would also like
to thank Martin Frank, Enrico Gamba, and Pier Daniele Napolitani for
many productive discussions of this material and for their collaboration
in the context of the project Archimede nel Rinascimento: Laboratorio
Urbino 1500. Parts of this work were written during a stay of one of us
(J. Renn) at the Einstein Papers Project at the California Institute of
Technology in Pasadena. We especially acknowledge the constant support
of Rivka Feldhay and Paolo Galluzzi as members of the Scientific Advisory
Board of the Max Planck Institute for the History of Science, and also the
support received by the German Israeli Foundation (GIF) in the frame-
work of the Project From Knowledge and Faith to Science and Religion:
The Jesuit Way to Modernity. And finally we gladly acknowledge the
stimulating context that the Collaborative Research Center Transforma-
tions of Antiquity under the direction of Hartmut Bohme and the project
TOPOI - The Formation and Transformation of Space and Knowledge in
Ancient Civilizations have provided for this work.

Jirgen Renn, December 2011

1.2 A first glimpse at a new document

In 2006 the library of the Max Planck Institute for the History of Science
acquired a copy of the first edition of Giovanni Battista Benedetti’s® Di-
versarum speculationum mathematicarum et physicarum liber.* The book

3Giovanni Battista Benedetti, 1530-1590.
4Benedetti (1585).
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was purchased from an American bookseller who had acquired it at auction
somewhere in Europe.®

Benedetti’s book comprises six treatises: on arithmetical theorems,
on perspective,” on mechanics,® on certain opinions of Aristotle’ (in par-
ticular concerning his theory of motion),'? on the fifth book of Euclid’s!?
Elements,'?> and on physical and mathematical problems dealt with in
letter form.'®> The mathematical part concerns arithmetical principles,
proving them geometrically; it also includes a discussion of perspective.
The mechanical part contains a critique of sections of the Aristotelian
Mechanical Problems'* and also investigates issues of hydrostatics.

While Benedetti’s book is itself an important source for understand-
ing the struggles of early modern engineer-scientists with the ancient her-
itage of mechanical knowledge due to Aristotle, Archimedes'® and others,
this specific copy is of special value since it contains handwritten marginal
notes by the leading expert on mechanics of the generation before Galileo, '
Guidobaldo del Monte,'” himself the author of the most influential Renais-
sance text on mechanics, the Mechanicorum liber.'8

6

5We would like to warmly thank Enrico Giusti for bringing our attention to the possibil-
ity of purchasing this work for the library of the Max Planck Institute for the History
of Science in Berlin and Urs Schoepflin, its director, for pursuing the acquisition so
efficiently.

6Benedetti (1585, 1-118).

"Benedetti (1585, 119-140).

8Benedetti (1585, 141-167), pages 329-355 in the present edition.

9 Aristotle, 384-322 BCE.

10Benedetti (1585, 168-197).

HEuclid of Alexandria, fl. ca. 300 BCE.

12Benedetti (1585, 198-203).

13Benedetti (1585, 204-426), partly reproduced on pages 356-376 in the present edition.
M Aristotle (1980). The attribution of this work to Aristotle is controversial. While in
the early modern period it was widely considered to be an original work of Aristotle,
later philologists have questioned his authorship, ascribing it to one of his immedi-
ate followers; see Krafft (1970) and Rose and Drake (1971, 72). For more extensive
discussions, see section 3.4.1.

15 Archimedes, around 287-212 BCE.

16Galileo Galilei, 1564-1642.

17Guidobaldo del Monte, 1545-1607; often formerly referred to as Guido Ubaldo.
8DelMonte (1577), see the first volume of the present series (Renn and Damerow, 2010).
The volume contains a complete facsimile reproduction of Guidobaldo’s publication.
Guidobaldo’s authorship of the marginal notes is indubitably evidenced not only by the
style of handwriting, but also by some references in the notes to his own publications.
The indications in the notes, which allow the identification of Guidobaldo as their
author, were listed in the description of the book in the auction catalog (Martayan
Lan Catalogue 38). This description is based on work by Anthony Grafton, who also
provided a transcription of some key passages.
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Part 3 of this book presents facsimile images of those chapters of
Benedetti’s work that contain the handwritten marginal notes by Guidobal-
do del Monte. Similar marginal notes by Guidobaldo have been identified
by Martin Frank in a copy of the first printed edition of a work by Jor-
danus de Nemore,'? the Liber de ponderibus®® edited by Petrus Apianus;2!
these notes are reproduced in Part 2. With two exceptions the notes in
Benedetti’s book were written in the margins of the chapter on mechan-
ics, covering 26 of the 428 pages of the whole book. The two remaining
notes are added to two letters contained in a later part of the book. The
second of these letters again deals with mechanics. This shows clearly
that Guidobaldo was interested mainly in Benedetti’s theory of mechan-
ics. The contents of the notes indicate a strong criticism of Benedetti’s
theory, which is evidently related to objections raised by Guidobaldo also
against Jordanus’ work.

This criticism in Guidobaldo’s notes concerns the central question of
the equilibrium controversy: Does an equilibrated balance, if deflected into
an oblique position of its beam, spontaneously return to the horizontal or
does it remain in the deflected position? It will be shown, however, that
this controversy only scratched the surface of a deeper-going conceptual
crisis, indicated by the introduction — based on medieval sources — of a new,
but ambiguous concept, the concept of positional heaviness. This crisis of
the conceptual foundations of mechanics helped establish fundamental in-
sights on which Galileo eventually built his theory of mechanics, as well
as his theory of motion. More precisely, they concern the various contro-
versial attempts to replace the ancient concepts of force and heaviness in
the context of the causal interpretation of motion by modified concepts
which were used to address the more complex technical experiences of
the early modern period. We will show that the controversial opinions of
Guidobaldo and Benedetti — as reflected in Guidobaldo’s marginal notes
on Benedetti’s systematic treatment of the concepts of force and heaviness
— concern core issues dealing with the problem of reorganizing the con-
ceptual framework of ancient mechanics. In particular, Galileo’s theory of
motion along inclined planes, as well as many other of his characteristic
themes, such as the motion of a pendulum, projectile motion, the motion
of fall, and even his Copernicanism, were, as we shall argue, directly or
indirectly related to this equilibrium controversy. In fact, Galileo’s new
science of motion would probably not have developed as it did without the

19Jordanus de Nemore (also Jordanus Nemorarius), fl. early thirteenth century.
20de Nemore (1533).
21Petrus Apianus, 1495-1552.
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insights he gained from Benedetti, or rather, from the conflictual encounter
between Benedetti’s and Guidobaldo’s perspectives on mechanics.

The conceptual and historical background of the controversy will be
extensively presented and analyzed in Part 1 of this volume. It will be
shown that the equilibrium controversy was part of a long-term devel-
opment which can only be understood against the background of the
multi-layered architecture of human knowledge. In the case of mechan-
ical knowledge, this architecture comprises first basic intuitive insights
gained from everyday experience of the behavior of material bodies. Sec-
ond, this knowledge architecture comprises the knowledge of practitioners
who use, elaborate, and improve mechanical devices, thus extending the
general intuitive mechanical knowledge by developing specific professional
skills. Third, it comprises scholarly expertise represented by written man-
uals, innovative constructions, and scientific theories. Moreover, a pro-
found analysis of the long-term development, from antiquity to the early
modern period, of the basic concepts of mechanics involved in this con-
troversy requires the exploration of the mechanisms of the synchronic and
diachronic transmission of knowledge with regard to the different layers
of its architecture. In the case of mechanics, an exploration of this kind
reveals substantial differences between these layers regarding the condi-
tions and the outcome of the knowledge transfer. While the basic intuitive
mechanical knowledge depends on general environmental challenges and
is thus widely available, practical knowledge requires transmission using
historically created and reproduced mechanical instruments and devices.
In turn, theoretical knowledge requires the transmission of external rep-
resentations and the reflective reconstruction of their meaning by stable
scholarly communities, which are thus often fragile due to contingent social
conditions.

The analysis of the equilibrium controversy offers an opportunity to
study the interaction of various components of mechanical knowledge, such
as the Archimedean theory of the center of gravity and Aristotelian dynam-
ics, and to investigate the consequences of the incomplete transmission of
this knowledge through various transmission paths, from antiquity to the
Arabic and Latin Middle Ages, and finally to the early modern period.??

1.3 Scientific controversies and challenging objects

Scientific controversies are ubiquitous; the field that is sometimes called
rational mechanics is no exception. A famous example is the so-called vis

22The timeline in chapter 9 provides an overview of this long-term development.
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viva controversy which arose toward the end of the seventeenth century
and was concerned with the question of which agent produces certain me-
chanical effects and which physical magnitude is conserved in mechanical
interactions. This debate eventually helped to arrive at the insight that
there are conservation laws for both energy and momentum. But what
exactly is a scientific controversy??® At first glance, it may seem that
a scientific controversy does not distinguish itself substantially from any
other controversy, for instance, in politics or in religion. On closer in-
spection, however, the very existence of scientific controversies may seem
a puzzling but perhaps irrelevant fact. If science essentially concerns the
pursuit of truth, based on solid facts and guided by logical principles, then
scientific controversies should arise only in unfortunate circumstances or
when errors and misunderstandings occur. Ultimately, one if not all of the
positions defended in the controversy would then be simply erroneous. In
other words, scientific controversies may seem to reflect only the human
aspect of science and its function as a social activity, undertaken by be-
ings that do not always follow rational procedures. In this understanding,
controversies in science are simply an accident of rationality, or even an
indication that the alleged rationality of science does not exist at all and
that science can be better understood without even making reference to
it.

In view of the fact that controversies in science are so common and
so closely related to its conceptual development, it seems, however, more
plausible to assume that they are not simply a social or psychological
phenomenon, but rather constitute an essential epistemic element of sci-
ence and a medium of its historically developing rationality. A scientific
controversy is understood here, using a definition proposed by Gideon
Freudenthal, as a persistent antagonistic disagreement concerning a sub-
stantial scientific issue that cannot be resolved by the standard means
available to science in the given period. In such a situation, the partic-
ipants of the controversy attempt to defend their positions by showing
that their understanding agrees with widely accepted explanations, that it
allows them to explain certain challenging problems that may be objects
of the controversy and to extend their interpretation to novel situations,
hence broadening the empirical range of their approach. On the other

23Here we closely follow the arguments and the definition of a scientific controversy
suggested by Gideon Freudenthal in the context of a jointly developed epistemological
framework, see Freudenthal (2000, 2002). His contributions also offer relevant examples
from the history of mechanics as well as comments on the literature about scientific
controversies; for the jointly developed epistemological framework, see Damerow et al.
(2004).
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hand, they attempt to show that their adversaries fail on some or all of
these accounts. In reality, we may also encounter controversies that are
not marked by an ongoing exchange between two antagonistic positions,
but rather by a chain of criticisms among different protagonists or by
a complex interaction involving different partners, issues and arguments.
Nevertheless, the essential features emphasized in the following apply to
these cases as well.

Scientific controversies are often triggered by challenging objects.?*
These are artifacts or other parts of the material culture that confront
existing theoretical frameworks with explanatory tasks that cannot be
accomplished with the available conceptual means, thus triggering their
further development and ultimately their transformation. They typically
embody other forms of knowledge, for instance, the practical knowledge of
artisans to invent, produce, or make use of such objects. The development
of the theoretical knowledge of mechanics in the early modern period can
to a large extent be accounted for by the increasing attention scholars and
engineer-scientists of the period paid to new objects of study which they
investigated by means of the extant conceptual frameworks. These objects
and phenomena had their origin predominantly in the rapidly develop-
ing technology of the day such as the pendulum and the flywheel used
in machine technology or the projectile trajectory relevant to artillery.
The practical experience gathered in the application of these objects in
a technological context became one of the points of departure for related
theoretical considerations. Before the onset of the experimental method,
these objects were a key source of empirical knowledge which accounts for
one aspect of their fundamental role in the conceptual reorganization of
mechanical knowledge in the sixteenth and seventeenth centuries. Thus,
Galileo’s new science of motion, for instance, can be conceived as result-
ing from a struggle with the challenges represented by the pendulum and
the motion of a projectile, both addressed on the basis of attempts to
understand another challenging object, the inclined plane.

Challenging objects served as shared knowledge resources.?’> In com-
bination with the theoretical frameworks employed in their investigation,
these objects largely determined the possible theoretical questions and an-
swers. Focusing on such objects thus allows for an understanding of congru-

24The idea to approach the history of early modern mechanics from the perspective
of its challenging objects was first launched in Renn (2001). It has since been widely
taken up, see in particular Biittner et al. (2004), Bertoloni Meli (2006), Biittner (2008),
Biittner (2009) and Valleriani (2010). The notion as it is here presented has been jointly
formulated with Jochen Biittner.

25For the concept of shared knowledge, see Renn (2001) and Biittner et al. (2004).
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ent theoretical developments — so characteristic for the period — which can
hardly be accounted for by oral and textual transmission alone. Another
stimulus for the development of the theoretical knowledge of mechanics
is the fact that the theoretical accounts given for these challenging ob-
jects often sought to mirror and account for the complex relations of these
objects in their technological context to other mechanical objects and phe-
nomena of interest, and in particular to the so-called simple machines. In
many cases this led to the integration of previously disparate mechanical
knowledge. This evidently represents an important mechanism for the uni-
fication of mechanical knowledge. A key example that will be discussed
below is Galileo’s identification of the inclined plane with a bent lever and
his attempt to explain the former in terms of the latter.

Scientific controversies are possible because they refer to the shared
knowledge of its participants and they presuppose a common structuring of
this knowledge by shared conceptual systems. They arise because the dis-
cussants adopt different interpretations of the same framework and draw
different conclusions from it. For example, it may turn out that the same
phenomenon can be conceived in two alternative manners. This may hap-
pen even within a single conceptual system, but is all the more likely as
the relevant shared knowledge typically involves diverse conceptual sys-
tems or alternative options for choosing foundational concepts that may
then serve as starting points for conceptualizing the given phenomenon. In
any case, in the course of the exploration of the shared knowledge, partial
differences of meaning may arise. The fact that these differences are only
partial allows a meaningful exchange over the course of the controversy,
while the very existence of these differences makes the controversy itself
unavoidable.

Typically, scientific controversies are not resolved by victory, but
rather by a further development and subsequent transformation into a
new conceptual framework in which the original question often changes
or even loses its meaning. Thus, the original issue of the wvis viva contro-
versy concerned two alternative proposals for the causal agent of certain
effects, as well as the question of what physical magnitude is conserved.
Eventually this alternative gave way to the understanding that there are
actually two distinct magnitudes, momentum and energy, which are ef-
fective and conserved in physical interactions. But even when no party
prevails, one of the opposing positions may have a greater impact on the
emergence of a novel conceptual system. In any case, both antagonistic
positions can be recognized, in hindsight, as alternative interpretations of
the same underlying conceptual basis. This is precisely the hallmark of a
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more developed conceptual framework, that it allows a reconstruction of
the previous positions, while it cannot be expressed itself in terms of the
previous framework.

From this epistemological perspective, a number of typical features
may be recognized that characterize a scientific controversy, such as the
multiplication of examples in one’s favor, attempts to reconstruct the ad-
versary’s position from one’s own perspective, but also the unavoidable
occurrence of misunderstandings, and a shift toward a more reflective
stance, following the lineage of the premises of the argument defended.
All of these moves effectively constitute a further exploration of the limits
of the conceptual framework available to the historical actors. This con-
ceptual framework is in fact never given from the outset in its entirety,
that is, in all of its potential conclusions and applications, but actually
only unfolds with the unfolding of the real scientific practice in which it
is embedded. Conceptual development in this sense is hence the develop-
ment of the shared knowledge of the community of practitioners, and their
controversies are one essential form in which this development takes place.
Its effectiveness may therefore depend on the specific historical conditions,
be they material, social, or intellectual, favoring or impeding the possibil-
ity of controversies. As a result, some controversies may be resolved, in
the sense outlined above, in a very short time, while others, such as the
one treated here, may extend over centuries.

1.4 The physical background of the equilibrium controversy

The first balances were constructed in the grand early civilizations of antiqg-
uity, in Babylonia, in Egypt, and in China. They are attested since about
the third millennium BCE. The introduction of balances was associated
with the establishment of a quantified concept of weight. The balance also
attained a symbolic significance from very early on, but its functioning did
not become the subject of any written accounts before Greek antiquity. In
fourth-century Greece, balances with unequal arms were invented, an in-
vention which opened up the possibility of equilibrating different weights
on one side of a balance with a single weight in different positions on the
other side. This invention eventually gave rise to the formulation of the
law of the lever as we find it in the works of Aristotle, Archimedes, Heron,
and others. In modern terms, the law of the lever can be expressed as the
equality of the product of weight and lever arm at each side of a balance
in equilibrium. The invention of the balance with unequal arms also gave
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rise to the insight that the effect of a weight may depend on its position,
the central subject of this book.

Numerous studies have been dedicated to the balance in practically
all times and cultures, in particular, in the Arabic and Latin Middle Ages,
as well as in the early modern period. The understanding of the balance
became, more than that of any other instrument, the paradigm of me-
chanical knowledge, the core of a science of weights. For more than two
millennia the balance served as a generator or touch stone for physical
concepts, from the law of the lever to the principle of the conservation of
energy. How could this happen? Here we deal not with the fascinating
history of the balance as a key model of physical science, but focus rather
on a specific aspect of this history which is related to the positional effect
of a weight placed on a balance.

A balance with equal arms and equal weights is in equilibrium. We
normally imagine such a balance in its default position, its arms aligned
along the horizontal, perhaps with the two equal weights placed in two
scale pans, appended to the beam of the balance at equal distances from
its suspension point. But what happens when the balance is deflected from
this horizontal position? The following study will show that historically
the default expectation was — and is probably the case even today — that
it returns to this position, which indeed happens for most balances in
practical use. If we are taught by a modern physicist that this question
can be answered, due to classical physics, within a theory of mechanics
that is based on a network of causes involving concepts such as center of
gravity, torque, bent lever, the position of the fulcrum, and friction, we
are, of course, willing to concede that the equilibrated balance may not be
as simple a physical device as it initially appeared. We may also learn that
an ideal balance does not actually return to the horizontal position, but
that it will rather stay in whatever position it is brought, thus illustrating
the concept of an indifferent equilibrium.

Apparently, more sophisticated knowledge is required to answer even
the seemingly simple question of whether a deflected balance will return
to its original position. But from where did this sophisticated knowledge
come? Modern physical theories such as theoretical mechanics no longer
carry with them easily recognizable traces of the origin of their concepts.
Physicists tend to assume that the correct answer to a problem such as
that of the deflected balance must have ultimately emerged from careful
experiments, the results of which were integrated into a proper theoretical
framework. Without such a framework, even the most sophisticated ex-
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perimental explorations will in fact yield nothing but an accumulation of
data on single cases without a basis for generalization.

But how could such a theoretical framework emerge when observations
concerning even the most elementary case of a deflected balance remained
inconclusive, as they apparently did for more than two millennia? The
question of whether or not an equilibrated balance would return to its
horizontal default position or remain indifferent in whatever position it
is brought was not in fact settled before the early modern period when
it became the explicit subject of a controversy between Guidobaldo del
Monte and other protagonists of preclassical mechanics,?® in particular
Benedetti.

There is, of course, the possibility that the knowledge necessary to
decide this equilibrium controversy developed from sources other than the
study of balances, as it certainly did to some extent. Without confronting
other challenging objects such as the so-called simple machines, the lever,
the wheel and axle, the pulley, the inclined plane, the wedge, and the
screw, theoretical mechanics would not have evolved as it did. From its
beginning in Greek antiquity, the aim of mechanics was to explain the
communality of a set of mechanical devices and, in particular, of how they
made it possible to achieve a large effect with a small force. Nevertheless,
in much of the history of mechanics up to the early modern period, it
was the balance that kept its paradigmatic role in forming and exploring
basic concepts such as equilibrium and the positional effect of a weight.
A study of the history of the equilibrium controversy, culminating in the
confrontation between Guidobaldo and Benedetti, therefore also offers the
opportunity to analyze this pivotal role of the balance more closely.

An ideal balance with equal arms and equal weights, that is, a balance
with a weightless beam suspended from its center of mass in a homogeneous
gravitational field, will indeed be in an indifferent equilibrium. When it
is brought into any position compatible with its mechanical constraints, it
will stay there. The weights at the end of the beam of the balance exert
forces on the beam. Together with the arms at each side of the beam
these forces form a torque, also called moment or moment of force, causing
a tendency to rotate the balance. In the case of the ideal balance described
above the torques are equal, which explains the equilibrium of the balance
from a modern point of view.

26For the concept of preclassical mechanics, see Damerow et al. (2004); see also Renn
et al. (2001), Bittner et al. (2004); Valleriani (2010); Damerow and Renn (2010); Biit-
tner (2008); furthermore see the broad discussion in Bertoloni Meli (2006).



18 1. Introduction

effective
lever
arm

fulcrum fulcrum

arm

effective
component

of the force force force

Figure 1.2: The torque of a weight attached to one side of a balance is
given by the product of the arm and the effective component of
the force acting perpendicularly to it, or, which is equivalent,
by the product of the force and its effective lever arm, which is
the component of the real lever arm perpendicular to the force.

The torque is given, more specifically, by the product of the arm and
the effective component of the force acting perpendicularly to it. Alterna-
tively, the torque can be expressed as the product of the force and its effec-
tive lever arm, which is the component of the real lever arm perpendicular
to the force (see figure 1.2).27 While the equivalence of both definitions
is immediately clear if the algebraic notation of modern physics is used,
it needs a more sophisticated argument to prove it purely geometrically
using the mathematics of the time of preclassical mechanics.

If the balance is in a horizontal position, the torque at one side is
simply the product of the weight and the balance arm at that side. If
the balance is in an oblique position, the torque can be found by project-
ing the arm of the balance on the horizontal and multiplying the length
of this projection, that is, the effective lever arm, with the weight. In
modern understanding, the torque is actually a vector product, a concept
not established before the nineteenth century. The requirement that the
torques are equal for a balance in equilibrium can be conceived of as a
generalization of the law of the lever. This generalization is applicable not

2"Halliday and Resnick (1977, 232); Halliday et al. (2007, 225-226).
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only to balances with unequal arms, but also to balances with arms that
are not aligned or, in other words, to the so-called bent lever. If one arm
of a balance is aligned with the horizontal, while the other arms is bent
at an angle, it is again the projection of the bent arm on the horizontal
that acts as the effective lever arm. This way of determining the effective
lever arm by a projection on the horizontal was emphasized — as we will
see below — by Benedetti and opposed by Guidobaldo.

The concept of torque is not the only modern concept to explain the
equilibrium of a balance or the behavior of a bent lever. They can also be
analyzed with the help of the concept of mechanical work. This concept is
more generally applicable to physical systems than the concept of torque
and, in a sense, even more intricate as a glance at its definition in classical
physics makes clear. In general, the work performed by a force on a body
along a trajectory is given by the line integral of the scalar tangential com-
ponent of the force along the trajectory. Generally, the force is changing
along the path, as it does in the case of a balance arm moving from the hor-
izontal into an oblique position. The line integral of the changing force is
given by the infinite sum of infinitely small displacements on the trajectory
multiplied with the forces acting in these infinitesimal displacements. The
changing force may have arbitrary directions, but according to the defini-
tion of mechanical work only the component of the force acting along the
path of the displacement or, which is the same, the component of the path
traversed along the direction of the force has to be taken into account. In
modern terminology, this is the time integral of the scalar product of the
force vector and the velocity vector along the trajectory, in contrast to the
vector product of the lever arm and the force relevant to the consideration
of the torque. Thus, the concept of work is even more demanding than the
concept of torque because it involves the infinitesimal calculus so that the
historical actors considered here, living before its introduction in the age
of Newton?® and Leibniz,?° had no chance to fully master this concept.

Only in the most simple cases can mechanical work be thought of as
the product of a force and the distance over which it acts. In particular,
the work performed by the force of gravity does not depend on the path
taken by a body. The vertical component of the force of gravity can be
considered as practically constant and the varying horizontal component
requires no force and thus has no influence on the mechanical work of the
motion along the trajectory. Therefore, the work can be determined in
this specific case by just considering the vertical distance traversed, for

28]saac Newton, 1642-1726.
29Gottfried Wilhelm Leibniz, 1646-1716.
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Figure 1.3: In the specific case of a balance in a homogeneous field of grav-
itation the mechanical work of a weight attached to one of its
arms is given by the product of the constant gravitational force
and the vertical component of its displacement.

instance, by a weight on a balance beam (see figure 1.3). The equilibrium
of a mechanical constellation can then be characterized by the demand
that the total work performed by a displacement of the entire constella-
tion in agreement with the mechanical constraints is zero. Now the work
performed by one weight is simply given by the product of the vertical
component of its displacement by the force of weight. In the case of a
balance with unequal arms, the vertical components of the displacements
of the two weights are proportional to the lengths of the arms of the bal-
ance. Hence the total work performed by a displacement, for instance, by
bringing the balance from the horizontal into some oblique position, is zero
if the products of weight and length of the arm are equal on both sides.
Then the work performed by lifting the weight on one side of the balance
will be equal to the work gained by lowering the weight on the other side of
the balance. In this way, the inverse proportionality of weights and arms
follows, as stated by the law of the lever.

This way of determining mechanical equilibrium can be also illustrated
by the case of an inclined plane: Let a weight be placed on the inclined
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plane and connected via a weightless rope through a wheel at the top
to another weight hanging down on the other side, moveable along the
vertical such that when the weight along the plane is moved upwards, the
other weight is moving perpendicularly downward. In equilibrium, the
total work performed by the system must be zero. For the weight moving
along the vertical, the work performed is simply the product of the weight
and the total displacement which happens to be along the vertical. For the
weight moving along the inclined plane, the work performed is the product
of the weight with the vertical component of the displacement along the
plane. Given the connection through the rope, the total displacement
along the plane must be the same as the total displacement of the weight
moving along the vertical. In the case of equilibrium, the product of the
weight along the vertical with the total displacement must be the same as
the product of the vertical component of the displacement along the plane
with the weight on the plane. But this vertical component is to the total
displacement as is the height of the plane to its length. It hence follows
that the product of the weight in the vertical and the length of the plane
must be the same as the product of the weight on the plane and the height
of the plane, or in other words, the weight along the vertical is to the weight
on the plane as is the length of the plane to its height. This is the famous
law of the inclined plane, as it was first stated by Jordanus. Remarkably,
his proof also works with the consideration of vertical displacements which
is why it has often been associated with the principle of work (see figure
3.13).

Such associations are in fact merely the product of anachronistic pro-
jections. They suppose an essentially teleological development of the his-
tory of scientific concepts in which earlier concepts are merely embryonic
forms of the mature ones. A closer look at the equilibrium controversy
makes it evident that such a perspective is of little help in understand-
ing the nature of the historical process. None of the protagonists of this
controversy strove for the introduction of novel physical concepts such as
torque or work. They were actually merely concerned with a better un-
derstanding of the concept of weight and of the way a weight acts under
given mechanical circumstances. They also did not attempt to differen-
tiate between those physical aspects captured by the modern concepts of
torque and work. While the modern concept of work indeed covers all
mechanical devices, the concept of torque only applies to cases in which
a lever arm is involved. Also, while the torque refers to the way a force
acts at a particular point in space and time, the concept of work, being
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represented by an integral, refers to the action of a force along a certain
path.

The participants in the controversy attempted instead to find a univer-
sal way in which the effectiveness of a weight varying with the mechanical
circumstances could be described so as to be applicable to all mechanical
devices. The concept of positional heaviness, introduced by Jordanus in
the thirteenth century, represents such an attempt. One key aspect of the
controversy was, as we shall extensively discuss in the following, the ques-
tion of whether positional heaviness is to be measured by the projection of
the lever arm on the horizontal (as the torque) or by the vertical compo-
nent of a displacement of the weight on the lever arm (as the work). From
a modern perspective this alternative makes little sense as it refers, as we
have seen, to two distinct physical concepts that cannot always be applied
to the same situations. How hopeless the attempt was to capture both as-
pects by a single, modified concept of weight becomes clear if one considers
that the modern concept of torque refers to a point, while the concept of
work refers to a displacement. Nevertheless, the equilibrium controversy
contributed significantly to preparing the ground for the emergence of the
later conceptual distinctions of classical physics, in particular, with the
ambiguities and paradoxes that surfaced as it unfolded.

One of these paradoxes was the perplexing difficulty in establishing a
stable answer to the simple question of whether an ideal balance deflected
from its horizontal default position would return to it or not. By referring,
as we did above, to an ideal balance we have actually introduced tacit
premises, in particular, that the lines of force are parallel and that the
gravitational force remains the same even when the balance is displaced
from its default position. In short, we have neglected the cosmological
context of the balance, the fact that the weights carried by its beam tend
to fall not along parallel lines, but along lines meeting at the center of the
earth and that the force of gravitational attraction may vary with distance.
Clearly, the effects introduced when these circumstances are taken into
account must be vanishingly small and practically irrelevant. They can,
however, not be as easily dismissed as for instance the role of friction as
they directly pertain to the understanding of the very concept of weight
at the center of the analysis of the balance. Moreover, the cosmological
context of a physical problem like that of the equilibrium of the balance
was particularly important to the debates of the early modern period where
such problems were inevitably related to larger issues of the physical world
view. In fact, Aristotelian natural philosophy was the dominant conception
of nature at the universities and, beginning with the Council of Trent, had
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been embraced as the official world view of the Church. It is therefore not
surprising that, in this period, the cosmological dimension played a critical
role for the equilibrium controversy.

Figure 1.4: A diagram from Benedetti’s book representing a balance AB
supported at O in a cosmological context where U is the center
of the earth. The weights in A and B have a tendency to fall
toward U. The lines OT and OF drawn from the point of sus-
pension are perpendicular to the lines AU and BU connecting
the weights with the center of the earth.

It is not difficult to reconsider the question of the behavior of an
equilibrated balance in a context in which the lines of force connect the
weights to the center of the earth and in which the forces themselves may
vary with the distance from that center (see figure 1.4). How does such a
cosmological balance behave from the perspective of later classical physics?
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The torque of one of the weights placed at the end of the beam is given by
the projection of the respective balance arm onto a line that now plays the
role that the horizontal had played in the ordinary balance. This line is
obtained by drawing, from the point of suspension, a perpendicular onto
the line connecting the weight with the center of the earth. Similarly,
the torque of the weight on the other side of the balance can again be
determined by constructing a perpendicular onto the line connecting this
weight with the center of the earth. It now turns out that the ratio between
the two lines measuring the torques at the two sides of the balance is the
inverse of the ratio of the two lines connecting the weights to the center of
the earth, if it is assumed that the gravitational force does not change with
distance. As a consequence, the torque on the side of the balance which
has descended is larger than the torque on the side which has been raised
so that the cosmological balance would neither stay indifferent nor return
to the default position, but rather align itself along the vertical. This
was also the conclusion that Benedetti reached and to which Guidobaldo
violently objected. If it is furthermore assumed that the gravitational
force does vary with distance, becoming weaker as the distance increases
(as in reality), the effect that the balance turns into the vertical is even
strengthened. Under the given circumstances, the only way to obtain
an indifferent equilibrium is to assume that the gravitational attraction
behaves the other way around, becoming stronger as the distance increases,
as if it were a rubber band by which bodies are confined to their center of
attraction.

Guidobaldo, the most influential writer on mechanics of the sixteenth
century, was proud to have reconciled the Archimedean theory of equi-
librium, based on the concept of center of gravity, with the Aristotelian
understanding of weight as tending to the center of the world. This rec-
onciliation was embodied by what was evidently, in his view, the greatest
discovery he had made: the insight that both an ideal balance and also
what we have called a cosmological balance remain in indifferent equi-
librium. His adversary Benedetti claimed that, while such an indifferent
equilibrium holds under terrestrial circumstances, it is impossible for a
cosmological balance. He thus challenged Guidobaldo’s grand synthesis.
While Benedetti’s conclusion is in accordance with later classical physics,
the controversy could hardly be settled definitively with the arguments
available at the time. It was the equilibrium controversy more than its
resolution that spurred the further development of physics.3°

30The equilibrium controversy was not settled during the period under consideration
here. Also, we have not attempted to be exhaustive in dealing with all pertinent con-
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1.5 Editorial remarks

Latin and Italian texts are transcribed using orthographic normalization,
that is, punctuation, accents, and capital letters have been revised accord-
ing to standard Latin and Italian. As a rule, abbreviations and symbols
have been expanded or resolved. Arabic names are romanized. Transla-
tions are adapted from standard references, when available, and modified
whenever necessary. All further translations, unless otherwise indicated,
are by the authors.?!

Some of Guidobaldo’s marginal notes to Benedetti’s text were deleted
and are now unreadable. Some notes have been cut off by a bookbinder.
Such passages have been amended as far as possible.

The considerable number of deleted passages raised the question of
whether it would be possible to read the text underneath the deletions by
applying special analytical methods and also whether the deletions have
been performed by the same author who wrote the notes. In order to
answer these questions the composition of the ink has been examined by
means of an X-ray fluorescence analysis (XRF), performed at the Federal
Institute for Materials Research and Testing in Berlin.?? The result of the
preliminary analysis is that the deletions were made in the same ink and
hence most probably by Guidobaldo himself and that the text underneath
cannot be rendered legible by a non-destructive analysis.

The copy of DelMonte (1577), reproduced in the first volume of the
present series, (Renn and Damerow, 2010), is itself a testimony to the
equilibrium controversy. Passages relevant to the controversy have been
underlined using an iron gall ink from the period but distinct from that
used by Guidobaldo himself in his marginal notes to Benedetti’s work.
The composition of the ink has also been analyzed by means of an X-
ray fluorescence analysis, performed at the Federal Institute for Materials
Research and Testing in Berlin (see figure 1.5).

tributions. For glimpses of other aspects of the controversy and its historical sequel
in the recent literature, see Roux (2004, 36—39) and Bertoloni Meli (2006, 31-32).
A particularly interesting case is the treatise on mechanics from 1597 by Colantonio
Stigliola, 1546-1623, see Gatto (2006). For a discussion of the role of the bent lever as
a challenging object in the relativity revolution, see Janssen (1995).

31Translations of Benedetti, Guidobaldo, and Tartaglia, for example, are taken from
Drake and Drabkin (1969), sometimes with slight modifications.

328ee the appendix.
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Figure 1.5: X-ray fluorescence analysis of the ink used in underlinings
found in a copy of Guidobaldo’s mechanics. The underlinings
were written with an iron gall ink from the period. They con-
centrate on the foundational aspects of Guidobaldo’s approach,
his comments on Aristotle, and the critique of his adversaries.



Chapter 2
The Authors and their Critic

2.1 The author Jordanus de Nemore

Jordanus de Nemore, or Jordanus Nemorarius as he is called in some
manuscripts, was the author of several treatises completed before 1260.
Nothing specific is known about his personal life. The historical period
and the range of his scholarly activities are only circumscribed by the in-
clusion of his works in the Biblionomia, a catalog of the library of Richard
de Fournival, the chancellor of the Amiens Cathedral,! compiled between
1246 and 1260.

Codex 43 of this catalog lists several works attributed to Jordanus:
Philotegni or De triangulis,
De ratione ponderum,
De ponderum proportione, and
De quadratura circuli.

Codex 45 lists:
Practica or Algorismus,
Practica de minutiis, and
Ezxperimenta super algebra.

Codex 47 refers to:
Arithmetica.

Codex 48 lists:
De numeris datis,
Quedam experimenta super progressione numerorum, and
Liber de proportionibus.

Codex 59 refers to:
Suppletiones plane spere.

1Richard de Fournival, ca.1201-1260
2For the following, see Brown (1967); Hgyrup (1988); Grant (2008).
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Many more later manuscripts are attributed to Jordanus, but this
may have been due to the close association of his name with the sub-
jects he established in the Latin tradition, in particular also the science
of weights. It is therefore often difficult to assess which works he actually
authored, which works he adopted himself from an earlier tradition and
just commented upon, which works were partly authored by him but then
extended by later commentaries, and which works were simply ascribed to
him because of his role as an authority in a particular field.

Jordanus thus emerges as one of the most important mathematicians
of the Middle Ages. His extant mathematical writings deal with geometry,
algebra, and arithmetics. His work clearly draws both on ancient and on
Arabic sources, as is the case for his contributions to mechanics. He thus
represents for the mathematical sciences, in a sense, a parallel figure to
his contemporary Albertus Magnus,? who established Aristotelianism as a
frame of reference for theological and philosophical discourse, benefitting
from the Arabic-Latin translation movement of the preceding century.*
More specifically, Jordanus flourished in a period in which Latin Europe
was about to establish its own institutional and intellectual structures for
absorbing the rich knowledge inherited from the Arabic world. By bringing
subjects such as the science of weights, known to him through the Arabic
tradition, into a more rigorous, Euclidean form, he elevated them to the
scientific standards of the emerging scholastics, a transformation that did
not take place without leaving traces on the contents with which it was
concerned.® Here we claim, in particular, that the concept of positional
heaviness which Jordanus introduced in order to distinguish between a
weight and its positional effect was exactly such a trace of the framework
of emerging scholastics (see page 60).

The starting point of Jordanus’ work on mechanics was probably the
Liber karastonis, ascribed to Thabit Ibn Qurra® in a translation that may
go back to Gerard of Cremona,” as well as the Liber de canonio,® probably
a Latin translation of a text going back to a Greek source. Both texts deal
with the balancing of the steelyard and take into account the fact that
a balance has a material beam which itself possesses weight. The Liber
karastonis provides a proof of the law of the lever from an Aristotelian
foundation and the Liber de canonio focuses on the material beam. Taken

3 Albertus Magnus, ca.1200-1280

4For an overview, see Abattouy et al. (2001) and Speer and Wegener (2006).
5See also the discussion in Hgyrup (1988).

6Thabit ibn Qurra, died in 901.

7Gerard of Cremona, 1114-1187.

8Moody and Clagett (1960, 55-76).
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together, they constituted the challenge of constructing a sophisticated
theory of the balance on an Aristotelian foundation in a Euclidean form,
in other words, just the kind of challenge that Jordanus also addressed in
his other works.

Three major groups of manuscripts on the science of weights at-
tributed to Jordanus can be distinguished.” The Elementa super demon-
strationem ponderum contain seven postulates and nine propositions to-
gether with extensive proofs. They also contain a reference to one of
Jordanus’ mathematical works. The Elementa are often found in medieval
manuscripts together with the Liber de canonio. They may thus be con-
sidered as providing a theoretical foundation, anchored in an Aristotelian
framework, for the treatment of the material beam in the Liber de canonio.

The Liber de ponderibus begins with precisely the same postulates
and propositions, albeit their wording is partly different.!® Furthermore
the postulates are preceded by a prologue, explicitly introducing the term
gravitas secundum situm, i.e. positional heaviness; at the end four addi-
tional propositions are appended, which stem from the Liber de canonio.
This treatise, however, does not contain the extended proofs of the Ele-
menta but instead, in the various forms in which it is extant, two types
of explanatory commentaries to the propositions, one short in a scholastic
style, one longer involving mathematical arguments as well.

Finally, the Liber de ratione ponderis is a much longer treatise divided
into four parts containing ten, twelve, six and seventeen propositions re-
spectively. The text begins with seven postulates that are similar to those
of the other two treatises. The first postulate adds reference to the “vir-
tus,” i.e. “force” of tending downward and resisting motion. The last pos-
tulate explains the horizontal equilibrium position of the beam in terms of
angles with the vertical. Also, most of the propositions of the first part are
similar to those of the other treatises, with a reference to upward motion
omitted in the first proposition, a reference to unequal weights added in
the second proposition, with proposition 3 of the De ratione ponderis tak-
ing the place of proposition 4 of the Elementa and vice versa, proposition
5 remaining identical, with proposition 6 of the De ratione ponderis tak-
ing the place of proposition 8 of the Elementa, and with proposition 7 of
the De ratione ponderis taking the place of proposition 9 of the Elementa.
Propositions 6 and 7 of the Elementa, dealing with the bent lever in a

9See the edition of the manuscripts and the commentaries by Moody and Clagett
(1960); see also Brown (1967).

10Compare the propositions in de Nemore (1533) with the corresponding propositions
in Moody and Clagett (1960, 119-142).
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way that is problematic from a modern perspective, however, are replaced
by the “correct” proposition 8 of the De ratione ponderis. Propositions 9
and 10 of the De ratione ponderis deal with the descent of a weight along
a rectilinear path and with the inclined plane. Part 2 of the De ratione
ponderis treats the material beam, Part 3 further cases of the bent lever,
while Part 4 adresses various subjects of motion.

As mentioned above, Jordanus’ work became known in the sixteenth
century through printed editions of his Liber de ponderibus by Petrus Api-
anus'! and of the De ratione ponderis by Tartaglia.'? The latter comprises
the two kinds of commentaries mentioned above, the longer one obviously
based on knowledge of other manuscripts by Jordanus as well.

The present volume deals mainly with Apianus’ edition of the Liber de
ponderibus, that is, the edition annotated by the marginalia of Guidobaldo.
In manuscripts of the Liber de ponderibus, but not in the Apianus edition,
the text concludes with the formula:

Explicit tractatus de ponderibus magistri Jordanis.
Here ends the treatise on weights of Master Jordanus.'3

The authorship of Jordanus de Nemore is nevertheless controversial,
even for the postulates and the theorems. Some manuscripts ascribe the
postulates and the first nine theorems not to Jordanus but to Euclid.
Indeed, the final sentence of the second comment to the ninth theorem of
the Apianus edition reads:

Hic explicit secundum aliquos liber Euclidis de ponderibus.
Here ends, according to some, Euclid’s book on weights.!4
Since in medieval manuscript traditions, propositions, proofs, and as-
criptions of authorship led a life of their own, rather independently from

each other, there is little one can conclude with certainty from these cir-
cumstances.®

1de Nemore (1533).

2de Nemore (1565).

3Moody and Clagett (1960, 164-165).

1 de Nemore (1533, D i verso), page 320 in the present edition.

15Moody speculated that the theorems were transmitted independently from the proofs
and traditionally ascribed to Euclid. From this view, Jordanus can neither be the
author of the concept of positional heaviness nor of the theorems, but rather emerges
as a commentator who developed the technical proofs found in the Elementa super
demonstrationem ponderum (Moody and Clagett, 1960, 146—147) as well as those of
the improved and extended version of this treatise, the De ratione ponderis (Moody
and Clagett, 1960, 167-227).
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The postulates and the first nine theorems in fact form a rather closely
knit deductive system centered on the notion of positional heaviness that
could have hardly arisen without some explicit technical proofs in the first
place.'® For this reason, we will treat the core theory of the various trea-
tises, the Elementa, the Liber de ponderibus, and the De ratione ponderis
as the work of Jordanus. We have to leave open, in particular, whether the
prologue of the Liber de ponderibus with its apparent or real echoes of the
Aristotelian Mechanical Problems, or the substantial improvements found
in the De ratione ponderis are the accomplishment of Jordanus himself
or of a later commentator. For most of our arguments it is sufficient to
associate them with the paradigm he created.

2.2 The author Giovanni Battista Benedetti

Giovanni Battista Benedetti was born in Venice on August 14, 1530 and
died on January 20, 1590 in Turin.!” He belonged to a patrician family
and was educated in philosophy, music, and mathematics by his father,
who, according to Gaurico, was a Spaniard interested in philosophy and
the natural sciences.!® At the age of 23 Benedetti published his first scien-
tific treatise, the Resolutio omnium Euclidis problematum,'® offering the
solution to geometrical problems using a compass with a fixed opening.
The work reacted to a challenge that emerged from a controversy between
Niccold Tartaglia?® and Ludovico Ferrari?! in the years 1546-1548. The
letter of dedication, addressed to Gabriel de Guzman, a Spanish priest,
contains some autobiographical remarks by Benedetti. According to these
remarks he did not receive any formal education, nor did he have a mas-
ter. However, he acknowledged that Tartaglia had introduced him to the

16While this still leaves the speculative possibility that such proofs once existed, were
then lost, and finally reconstructed by Jordanus, such a reconstruction remains without
any specific historical evidence in the sources.

17There is little historical evidence concerning Benedetti’s personal life. For biographical
accounts, see the pioneering study from 1926 by Giovanni Bordiga, with a commented
bibliography by Pasquale Ventrice of 1985 (Bordiga, 1985). See also Drake and Drabkin
(1969, 31-41), Cappelletti (1996), and Drake (2008). A comprehensive review of his
work and historical context may be found in Manno (1987). For a reconstruction of
Benedetti’s European network of correspondents, see Cecchini (2002). For a detailed
presentation of Benedetti’s mechanical theories we benefitted from Maccagni’s studies,
in particular, Maccagni (1967).

18Luca Gaurico, 1476-1558, in Tractatus astrologicus (Gaurico, 1552).

9Benedetti (1553).

20Niccold Tartaglia, 15007-1557.

21Lodovico Ferrari, 1522-1565.
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first four books of Euclid’s Elements, probably between 1546 and 1548.%2
Tartaglia may also have familiarized the young Benedetti with the prob-
lems of mechanics as he had treated them in his own book, Quesiti, et
inventioni diverse of 1546.23 Benedetti later also became acquainted with
the edition of a work by Jordanus that Tartaglia had prepared and that
contained an analysis of the bent lever by the principle that Benedetti was
using in his own work to determine the positional heaviness of a body.2*
According to an epigraph preserved in Turin, Benedetti had a daugh-
ter who died in childbirth in 1554 at the age of 26. In the same year he
published another work, the Demonstratio proportionum motuum local-
ium.?> Here he developed a theory of the motion of fall, first proposed in
the dedicatory letter of the Resolutio of 1553.25 According to this theory,
bodies of the same material fall through a given medium with the same
speed and not with speeds in proportion to their weights, as Aristotle had
claimed. Benedetti thus tried to overcome the fallacies of the Aristotelian
theory of fall by employing the Archimedean concept of buoyancy, assum-
ing that the motion of fall depends on the specific rather than the absolute
weight. The use of Archimedean notions to correct Aristotle’s physics was
probably stimulated by Tartaglia’s Italian translation of the first book of
Archimedes’ treatise on bodies in water in 1543.2” Benedetti’s challenge
to Aristotle apparently raised considerable discussion. In his Demonstra-
tio he discussed Aristotle’s views at length and responded to his critics.
In the second edition of the Demonstratio, also published in Venice in
1554,28 Benedetti argued that the resistance incurred by a falling body
in a medium depends not on its volume, but on its surface area. This
is also the view that Benedetti presented in Diversarum speculationum
mathematicarum et physicarum liber, published in Turin in 1585 and is-
sued again under slightly different titles in Venice in 1586 and in 1599.%
He explained the acceleration of the motion of fall in terms of an increas-
ing impetus of the falling body. Such examples show how he dealt with
new challenging problems, which were difficult and sometimes impossible

22Tn the letter to the reader of Benedetti’s Diversarum speculationum mathematicarum
et physicarum liber (Benedetti, 1585, first page of Ad lectorem) the author referred to
Tartaglia as his main mathematical source.

23Tartaglia (1546).

24de Nemore (1565). See the discussion in chapter 3.9.

25Benedetti (1554).

26Benedetti (1553).

27 Archimedes (1543a).

28Benedetti (1555); see Benedetti (1985).

29Benedetti (1585, 1586, 1599).
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to treat using the mainstream theories of his time, by bringing forth and
promoting new ideas. In spite of Benedetti’s efforts to secure priority for
his ideas by repeated publication, they were plagiarized by Jean Taisnier3’
in 1562 and spread without recognition of his authorship.3!

In 1558 Benedetti joined the court of Ottavio Farnese, the Duke of
Parma,3? as “lettore di filosofia e matematica.”3® There, he performed
astronomical observations and built sundials whose construction he later
described in his own book on the subject in 1574.34 In two letters to Cipri-
ano da Rore, choirmaster at the Court of Parma, Benedetti explained the
musical consonance and dissonance of two tones by the ratio of oscilla-
tions of waves of air generated by the strings of musical instruments. He
claimed that the frequency of two strings of equal tension must have an
inverse ratio to the lengths of the strings, and thus proposed to mathe-
matically describe the degree of consonance or dissonance of two tones.
These letters were only published much later in Benedetti’s comprehen-
sive Diversarum speculationum mathematicarum et physicarum liber. In
January 1567 Benedetti left Parma with a letter of recommendation from
the Duke.

In the same year Benedetti was invited by the Duke of Savoy, Emanuele
Filiberto,?® to the Court in Turin.?® The Duke, after the invasion and dev-
astation of his territory by French and Spanish troops, was engaged in a
renewal of the civic and military infrastructure that included political and
economic reforms, but also an increased support for education and the
sciences.?” Benedetti became involved in this renewal as an advisor to the
Duke, as a court mathematician, and as an engineer-scientist. In Turin he
constructed mathematical instruments such as sundials, calculated horo-
scopes, built a fountain, and executed other public tasks.?® Concurrently,
he possibly taught at the new University of Turin and educated the son of
the Duke, the later Carlo Emanuele I, in mathematics. In recognition of
his services to the court he was made a nobleman in 1570.

30 Jean Taisnier, 1508-1562.

31 Taisnier (1562), see the discussion in Drake (2008).

320ttavio Farnese, 1524-1586.

33Bordiga (1985, 593 ff.).

34Benedetti (1574). Drake (2008) and others following him suggest the year 1573. This
seems to be an error.

35Emanuele Filiberto, 1528-1580.

36Benedetti (1585, first page of the dedication to the Duke).

37See Ricuperati (1998).

38See Mamino (1989) and Roero (1997).



34 2. The Authors and their Critic

In his book De gnomonum umbrarumque solarium usu liber of 157439
he dealt at length with the construction of sundials with faces of varying
inclinations and also with cylindrical and conical surfaces. His treatise De
temporum emendatione opinion of 1578 aimed at correcting and reform-
ing the calendar. In 1578 the Duke initiated a public disputation at the
University of Turin, at which Benedetti argued with Antonio Berga on
whether there was more water or more land covering the surface of the
earth. The views which Benedetti brought forth against Berga in this de-
bate were published in Turin in 1579 under the title Consideratione di Gio.
Battista Benedetti, filosofo del sereniss. S. Duca di Savoia, d’intorno al
discorso della grandezza della terra e dell’acqua del eccellent. sig. Antonio
Berga.?® In 1580, after the death of Emanuele Filiberto, Benedetti was
confirmed in his position by Carlo Emanuele I. There is evidence that, by
1585, he was married. In 1581 he wrote a lengthy letter in which he reacted
to a treatise questioning the reliability of astrology and ephemerides, later
published in Diversarum speculationum mathematicarum et physicarum
liber.*' Benedetti was, as this book shows, an admirer of Copernicus and
developed cosmological views of his own, which were remarkably close to
the views of his correspondent Francesco Patrizi (the fluidity of space and
the infinity of the universe outside the sphere of the fixed stars) and to
Giordano Bruno (Copernicanism and plurality of worlds) who visited Turin
and Chambéry around 1578.42

In astrological accounts, Benedetti predicted his own death for the
year 1592, as one reads in the conclusion of the Diversarum speculationum
mathematicarum et physicarum liber. As he lay on his deathbed in January
1590, he tried to account for his premature death with a calculational error
of four minutes that he must have made in his horoscope.

2.3 The critic Guidobaldo del Monte

Guidobaldo del Monte was born on January 11, 1545 in Pesaro, in the
territories of the Duke of Urbino and died on January 6, 1607 in nearby
Montebaroccio (today Mombaroccio).*3 He studied mathematics at the

39Benedetti (1574).

40Benedetti (1579).

41Benedetti (1585, 228-248).

42See Seidengart (2006) and Omodeo (2009).

43For the following short biography, see the volume on Guidobaldo’s Mechanicorum
liber in this series; see also Rose (2008) and Gamba and Andersen (2008). For exten-
sive discussions of Guidobaldo’s science and historical context, see Gamba and Mon-
tebelli (1988), Biagioli (1990), Bertoloni Meli (1992), Gamba (1998), Micheli (1992),
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University of Padua in 1564. After serving in the army for some time
and participating in the campaign of the Holy Roman Emperor Maximil-
ian 1144 against the Turks, he joined the circle of Federico Commandino*®
in Urbino. Commandino was a key figure of a scientific humanism that
aimed at restoring the ancient mathematical sciences by editing and trans-
lating works of Euclid, Archimedes, Pappus,?® and others. In later life
Guidobaldo pursued his studies, writing several books and constructing
and producing scientific instruments at the family castle in Montebaroc-
cio.

In his own work Guidobaldo built on the restoration of ancient science
inaugurated by Commandino and, in 1577, published the comprehensive
and influential Mechanicorum liber.*” The book focuses on Heron’s*® five
simple machines — the lever, the pulley, the axle in a wheel, the wedge, and
the screw — complemented by the balance as a sixth one. Following Heron
and Pappus, Guidobaldo claimed that every mechanism can be reduced
to one of these machines and that their properties can in turn be derived
from those of the balance and the lever. He saw himself as pursuing an
approach that could be traced directly to Archimedes. In fact, the latter’s
concept of center of gravity plays a key role in his treatise. But Guidobaldo
also followed the Aristotelian tradition by attaching great importance to
the concept of the center of the world, deriving mechanical properties
from the mutual relation of the three centers: the point of suspension or
support of a body (its fulcrum), its center of gravity, and the center of the
world. In 1581 Guidobaldo’s book was published in Italian,* translated
and introduced by Filippo Pigafetta.’® In 1588 Guidobaldo published a
commentary on Archimedes’ book on the equilibrium of planes,®! followed
in 1600 by a major treatise on perspective.®?

The Urbino school of engineer-scientists to which Guidobaldo be-
longed was characterized by a strict focus on classical antiquity as the only
legitimate model for science as well as by an esprit de corps that found

Henninger-Voss (2000), Bertoloni Meli (2006), van Dyck (2006a), van Dyck (2006b)
and Becchi et al. (2012).

44Maximilian II, 1527-1576.

45Federico Commandino, 1509-1575.

46Pappus of Alexandria, ca. 290-350.

4"DelMonte (1577), Renn and Damerow (2010).

48Heron (or Hero) of Alexandria, ca. 10-70.

49DelMonte (1581); see the discussion in Henninger-Voss (2000).

50Filippo Pigafetta, 1533-1604.

51DelMonte (1588), see the discussion in Frank (2007).

52DelMonte (1600), see the discussion in Gamba and Andersen (2008) and Marr (2011).
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its most prominent expression in Bernardino Baldi’s®® posthumously pub-
lished Cronica de’ Matematici.®® Baldi was Guidobaldo’s friend and a
fellow-disciple of Commandino. His In mechanica Aristotelis problemata
exercitationes, also published posthumously,®® built on Guidobaldo’s me-
chanics and constituted another attempt to demonstrate the harmony be-
tween Archimedean and Aristotelian approaches to mechanics and thus of
the integrity of the ancient tradition. The members of the Urbino school
were unanimous in their rejection of what they considered medieval con-
taminations of the ancient tradition by writers such as Jordanus and his
early modern followers Tartaglia and Cardano.?® Accordingly, the judge-
ment on authors such as Benedetti who was considered a proponent of this
tradition was harsh. This is evident from Guidobaldo’s marginal comments
presented in this volume, but also from the short biography of Benedetti
in Baldi’s Cronica de’ matematici:

Gio: Battista Benedetti Venetiano attese alle Matematiche,
nelle quali servi i Duchi di Savoja. Scrisse un libro di Gnomon-
ica, il quale tocco molte cose appartenenti alle dimostrationi
della detta disciplina, se non che viene ripreso da piu esquisiti di
non haver’osservato quel metodo, e quella purita nell’insegnare,
che ricercano le Matematiche, ed ¢ stato osservato da gl’ottimi
Greci, e da gl’Imitatori loro. Scrisse anco alcune altre cose
leggiere, e di non molto momento.

The Venetian G.B. Benedetti occupied himself with mathe-
matics, a field in which he served the Dukes of Savoy. He
wrote a book on gnomonics which deals with many themes
belonging to the proofs of this discipline. It is, however, re-
proached by more distinguished scholars for not having followed
that method and that purity in teaching which mathematics re-
quires and which has been observed by the great Greeks and
those who followed them. He furthermore wrote some other
light things of little import.5”

In 1589 Guidobaldo became Visitor General of the fortresses and cities
of the Grand Duke of Tuscany. A year earlier he had come in contact with

53Bernardino Baldi, 1553-1617.

54Baldi (1707). The manuscript version is preserved at University of Oklahoma Li-
braries, History of Science Collections. See also Nenci (1998).

55Baldi (1621); see volumes 3 and 4 on Baldi’s treatise in this series Nenci (2011a,b).
56Gerolamo Cardano, 1501-1576.

57Baldi (1707, 140). Baldi himself was keenly interested in gnomonics on which he wrote
an extensive manuscript that remained, however, unpublished.



2. The Authors and their Critic 37

the young Galileo. They frequently exchanged letters about mechanical
subjects and probably met for the first time when Guidobaldo visited Tus-
cany in the late Spring of 1589,°® and again in 1592 in Montebaroccio.
Guidobaldo became Galileo’s mentor and patron, securing him university
positions first in Pisa (1589) and later in Padua (1592). One link be-
tween them was Galileo’s Pisan friend and colleague Jacopo Mazzoni in
whose work Guidobaldo was interested.?® Galileo’s initial scientific inter-
ests, concerning problems of static equilibrium analyzed in the style of
Archimedes, were well matched with those of Guidobaldo. Later Galileo
also emulated Guidobaldo’s activities as an engineer-scientist, setting up
a workshop for producing scientific instruments and writing treatises on
fortification and mechanics.®® However, in the course of time, significant
differences emerged in their approach to the developing mathematical sci-
ence of nature in which Galileo took a position closer to that of Benedetti.
In contrast to Guidobaldo, Galileo was convinced, in particular, that also
phenomena of motion such as projectile motion, the oscillations of a pen-
dulum, or motion along an inclined plane were amenable to an exact math-
ematical treatment. Like Benedetti, but not Guidobaldo, he furthermore
developed a keen interest in the Copernican world system. In 1592, the
year of Galileo’s move to Padua, Guidobaldo was visited at Montebaroccio
by Galileo with whom he performed the experiments on projectile motion
that led to the discovery of the law of fall.®1 On that occasion, and proba-
bly even earlier, they must have discussed foundational issues of mechanics
as well, including the relation between Guidobaldo’s and Benedetti’s ap-
proach, possibly using the very copy of Benedetti’s book, parts of which
are reproduced here. Galileo’s early intellectual career thus unfolded in
the midst of the tension between Guidobaldo and the classicist Urbino
school, on the one hand, and Benedetti’s more open—minded attitude to
tradition, on the other.

58This information is based on recent studies by Francesco Menchetti, subsequently
extended by Martin Frank, see Menchetti (2012).

59 Jacopo Mazzoni, 1548-1598. Guidobaldo’s interest in Mazzoni has recently been
stressed by Martin Frank (personal communication).

60For an extensive historical discussion, see Valleriani (2010).

61See Renn et al. (2001).






Chapter 3
The Context

3.1 The long-term transmission of mechanical knowledge

The context of this discussion of the equilibrium controversy, based on
Guidobaldo’s marginalia, is the long-term development of mechanical knowl-
edge, in particular from the origin of theoretical mechanics in antiquity to
the dawn of classical mechanics in the late Renaissance, when the contro-
versy first became a central issue of contemporary discussions. It may be
helpful therefore to begin with a brief survey of the history of mechanics,
a history that extends over more than two millennia. This long period can
be divided into six more or less coherent periods:

- The first period may simply be called the prehistory of mechanics; it
comprises the long period in which human cultures accumulated practical
mechanical knowledge without documenting this knowledge in written
form and without developing theories about it. Although the origin of
other sciences such as mathematics and astronomy can be traced back
to ancient urban civilizations such as those of Babylonia and Egypt,
this, surprisingly, is not the case for mechanics. Although there are
numerous sources testifying to the large construction projects of these
civilizations, there is in fact not one single document referring to the
mechanical knowledge that must have been involved in these endeavors.

- The next period properly merits the label origin of mechanics. It saw, in
particular, the formulation and proof of the law of the lever. More gen-
erally, it is characterized by the appearance of the first written treatises
dedicated to physics and mechanics in ancient Greece, associated in par-
ticular with names such as Aristotle, Euclid, Archimedes, and Heron.!
These works had an enormous impact on the subsequent development of
mechanical knowledge. Aristotelian physics focused on the role of forces
on moving bodies, and Aristotelian and Archimedean mechanics, based

1For a discussion of the parallelism between the emergence of mechanics in Greece and
in China, see Renn and Schemmel (2006).
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on the law of the lever, provided two fairly independent points of refer-
ence for the development of theoretical mechanics. They finally merged
into one common conceptual basis for a new coherent theory of mechan-
ics only with the advent of classical physics in the late seventeenth and
eighteenth centuries.

The third period is, at the beginning, characterized by the transforma-
tion of mechanics into a science of balances and weights and the enrich-
ment of Aristotelian physics by a theory of impetus and a mathematical
extension of the Aristotelian doctrine of generation and corruption to a
theory of changing qualities. This period covers the Arabic and Latin
Middle Ages, which saw the production of a substantial literature on
mechanics focused on a relatively small range of subjects, in particular,
the behavior of the balance and the justification of the law of the lever,
and the changing qualities of mechanical bodies such as heaviness and
velocity.

The fourth period is that of preclassical mechanics, ranging from the
sketches of Renaissance engineers such as Leonardo da Vinci? to the
mature works of Galileo Galilei. In contrast to the preceding period,
it deals with an increasingly large number of subjects, including the
inclined plane, the pendulum, the stability of matter, and the spring, in
attempts to integrate the science of weights with the effect of forces on
moving bodies, which necessarily transformed the inherited theoretical
building blocks.

The fifth period is that of the rise of a mechanistic world view. The
successful integration of earlier traditions into the fundament of classi-
cal physics appeared without alternatives. From the first comprehensive
vision of a mechanical cosmos, such as that of Descartes, via the es-
tablishment of classical and later analytical mechanics, this process led
to the attempts of nineteenth-century scientists to build physics on an
entirely mechanical foundation, which was conceived as an ontological
basis of the natural sciences.

The sixth period comprises the decline of the mechanistic world view
and the disintegration of mechanics at the turn of the nineteenth to
the twentieth century, resulting in the emergence of modern physics and
its conceptual revolutions represented by the relativity and quantum
theories.

2Leonardo da Vinci, 1452-1519.
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This schematic overview of the long-term development of mechanics
raises a number of puzzling questions. For example: How did theoreti-
cal mechanics originate in ancient Greece and why did this not happen
earlier? What kind of knowledge made the formulation of the law of the
lever possible, and what knowledge was required for its proof? What
accounts for the remarkable differences between the medieval science of
weights and preclassical mechanics? What kind of empirical knowledge
made the emergence of classical mechanics possible and what accounts for
its remarkable stability over the more than 200 years of classical physics?
What explains the steady development, consolidation, and stabilization of
Aristotelian physics over more than 2000 years? How can one explain the
disintegration of mechanical concepts around the turn from the nineteenth
into the twentieth century and the creation of revolutionary theories such
as general relativity and quantum theory, which proved to be an adequate
foundation for today’s physical and cosmological knowledge, although that
knowledge was not available when they emerged? How did the law of the
lever survive all these changes? And finally the question that will come
under closer scrutiny in the present volume, how did the concept of po-
sitional heaviness emerge and, under varying labels, become an integral
part of preclassical and, after a substantial transformation, of classical
mechanics?

3.2 The ancient roots of mechanics

The development of mechanical knowledge sketched here was a non-linear
and multi-layered historical process. In particular, the following analysis
of the specific process of the transmission of mechanical knowledge from
antiquity to the Arabic and Latin Middle Ages and finally to the Renais-
sance makes it clear that the development of mechanics was anything but
a successive accumulation and theoretical integration of a growing body
of mechanical knowledge. Theoretical mechanics had a twofold root in the
ancient Greek reflection on practical experiences. On the one hand, there
was the intuitive experience that in order to move a body a certain effort
is required depending on its weight. This experience became the basis
of the concept of force as the cause of terrestrial and celestial motion in
Aristotelian dynamics. On the other hand, the reflection on the potential
of mechanical devices to reduce the force required to move a body became
the basis of the Archimedean theory of equilibrium and its generalization
in the concept of the center of gravity.
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In ancient Greece the development of these basic concepts of mechan-
ics was an issue of highly personalized communication between the mem-
bers of a relatively small group of experts, for which the correspondence of
Archimedes is typical.? There was a strong relation between authors, their
theoretical biases, and their specific subjects. Following the model of Eu-
clid’s compilation of the mathematical knowledge of his time, Archimedes
tried to present his insights in the form of deductive treatises.* Thus, the
concept of center of gravity became the core concept of deductive mechan-
ics. Aristotle, in contrast, presented his account of natural phenomena in
a network of categorizations linked by syllogisms. Originally, there was no
intimate relation between Aristotelian dynamical explanations of motion
and gravity, on the one hand, and the deductive mathematical method,
on the other. Similarly, Aristotelian explanations of mechanical devices
merely followed the tradition of the literature presenting issues in form
of problems and their solutions, without exposing an immanent necessity
constituted by its subject. Finally, the shift from a personalized to a more
institutionalized representation of knowledge in late antiquity contributed
much to the historical transfer of the ancient heritage, but resulted in a
compilation rather than an integration of the various elements of mechan-
ics developed in the ancient Greek tradition.

3.3 Preclassical mechanics

Preclassical mechanics of the sixteenth and early seventeenth centuries
was characterized by an elaboration of the knowledge resources available
in light of challenging objects such as labor-saving machinery, ballistics,
the stability of architecture, or ship-building provided by contemporary
technology. Preclassical mechanics was a historical stage in its own right
in the development of mechanics. It was pursued by a class of engineer-
scientists who addressed these technical challenges by drawing on hetero-
geneous bodies of knowledge, which comprised the growing set of recovered
ancient scientific and technical texts. The heterogeneity as well as the frag-
mentary nature of the shared knowledge of early modern science, especially
with regard to the heritage of ancient science and its subsequent transfor-
mation, is well illustrated by the conflictual integration of Aristotelian and
Archimedean knowledge resources on mechanics as it can be traced in the
works of Tartaglia, Cardano, Guidobaldo, Benedetti, Galileo, and many

3See the discussion in Netz (1999).
4Dijksterhuis (1956).
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others, and in particular also in the conflicting approaches of Guidobaldo
and Benedetti documented in this volume.

No simplistic division of the protagonists of preclassical mechanics into
followers of Aristotelian dynamics and Archimedean statics, into northern
and central Italian schools, into Aristotelians and anti-Aristotelians, will
be able to do justice to the complex interlocking of the diverse components
of the shared ancient heritage.® For instance, the works of Archimedes on
statics and hydrostatics provided not only a model for a deductive theory
of physics emulating the structure of Euclid’s Flements, but also assets to
modify specific explanations within an Aristotelian conceptual framework,
in particular, the Aristotelian explanation of free fall in media with the help
of the Archimedean concept of extrusion. Conversely, Aristotelian natural
philosophy provided a physical underpinning to the Archimedean theory
of equilibrium of planes, fostering its extension to a more comprehensive
treatment of mechanics. Although discussions about mechanics in the
early modern period were often shaped by questions of the superiority or
compatibility of the diverse bodies of knowledge inherited from antiquity,
in the end everyone drew from the same sources so that Aristotelian and
Archimedean elements are found alongside each other, albeit in different
constellations, in the works of authors as diverse as Tartaglia, Cardano,
Guidobaldo, Benedetti, and Galileo.

The integration of these elements took place under the new conditions
of the early modern period for the development of mechanical knowledge
that were given not only by the emergence of challenging objects, but
also by an intellectual context that involved many more actors intervening
simultaneously than had ever been the case since antiquity. Accordingly,
the inherent potential of the traditional bodies of knowledge was much
more intensely exploited than ever before — in directions shaped, but not
uniquely determined, by the concrete material at hand, that is, by the
challenging objects that represented focal points of attention.

As a consequence, a multiplicity of different pathways developed,
sometimes leading to the same insights into a given problem, sometimes
to diverging opinions on it. At the same time, intrinsic tensions within a
given traditional body now emerged more clearly, due to the fact that it
was no longer, as was typically the case in antiquity, one single author or
a string of authors separated by generations who were involved in its elab-
oration. Instead, one and the same problem was now often addressed from

5For a still very helpful survey of different sixteenth-century knowledge traditions, see
Drake and Drabkin (1969).
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distinctive perspectives, thus becoming a borderline problem of different
knowledge traditions and catalyzing their conflictual integration.®

The traditional image of this period, which still often lurks behind
even the most sophisticated historical reconstructions, whereby single au-
thors studied single problems with greater or lesser success as judged in
hindsight, thus preparing the eventual combination of the pieces of a puz-
zle into one coherent whole, is fundamentally mistaken. In fact, strictly
speaking, all solutions proposed in preclassical mechanics are untenable
from the viewpoint of classical mechanics since they were articulated in
conceptual frameworks incompatible with those of later science, making
use of alien concepts such as positional heaviness, natural and violent ten-
dencies, or impetus.

Thus, the emergence of classical mechanics from preclassical mechan-
ics cannot have been an essentially cumulative process of selecting from
ancient sources isolated pieces of knowledge that were deemed valuable,
separating the wheat from the chaff, and then gradually adding new in-
sights. Rather, the emergence of classical mechanics from its ancient roots
must have amounted to the structural transformation of a system of know!-
edge, which involved a reorganization of conceptual systems on the basis
of results achieved within traditional frameworks. Such a transformation
would not have been possible without the interaction of the authors and a
confrontation of their proposed solutions to mechanical problems, and can
neither be described in terms of a linear accumulation of knowledge nor in
terms of a competition between distinct schools or traditions.

When was a problem actually solved? With hindsight, we may claim,
for instance, that Aristotle was the first to analyze the equilibrium of
the balance, that Archimedes proved the law of the lever, that Jordanus
solved the problem of the inclined plane, and that Galileo discovered the
law of fall. With hindsight, it may indeed seem that these insights could
have been achieved as isolated contributions, independent of the establish-
ment of a larger, stable conceptual framework. From the perspective of
preclassical mechanics, however, it is remarkable how far these solutions
actually were from being evident or uncontroversial among the contem-
poraries. Some of these became the topic of heated debates, such as the
question of the equilibrium of the balance. In particular, as will be seen
in the following, the question of whether or not a balance with equal arms
would, when deflected from the horizontal position, return to its original
state, was controversially discussed by authors such as Tartaglia, Cardano,
Guidobaldo, and Benedetti. The issue arose because partly different con-

6For the notion of borderline problem, see Renn (2007, 30).
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ceptual frameworks seemed to suggest different answers, since the exact
relation between concepts such as center of gravity and positional heaviness
had not yet been definitively established.

Solutions that appear to come close to the correct solution in classical
mechanics, such as Jordanus’ analysis of the inclined plane, were rather
isolated and in part disregarded by contemporary authors. But an isolated
solution, a solution that is not taken up, discussed, contradicted, reformu-
lated, supported by new arguments, or used in novel contexts, fails to be a
convincing solution. A broadly shared acceptance of the solution to a par-
ticular problem typically presupposes controversy and only results from
embedding the solution within an extended network of arguments, even-
tually connecting it with everything else within a system of knowledge.
A progressive accumulation of established results remained, however, il-
lusionary as long as the argumentative networks developed in preclassical
mechanics were neither comprehensive in the sense of being adequate to
deal with the entire scope of shared mechanical knowledge nor coherent in
the sense of yielding an unambiguous solution, at least to those problems
within their range of extension. The eventual emergence of more or less
stable solutions to such basic mechanical problems only emerged in the
course of the transformation of preclassical into classical mechanics, and
represented an outcome rather than a precondition of this development.

From a traditional perspective, it may come as a surprise that not only
new discoveries of dynamics such as the law of fall and the parabolic shape
of the projectile trajectory, but even elementary insights from statics such
as the indifferent equilibrium of a balance suspended from its center of
gravity, the equilibrium of a body on an inclined plane, or the principle of
the bent lever were still not definitively established toward the end of the
sixteenth century, although it seems that these results could easily have
been inferred from known ancient and medieval sources. But from the
perspective sketched above, the seemingly fruitless contemporary debates
about such problems take on a new significance. Rather than representing
encounters between blind men sometimes hitting the mark and sometimes
not, they were a medium of the dialogical transformation of a system of
knowledge.”

But how did this dialogical transformation of knowledge actually take
place and how in the end did more or less stable solutions to basic mechan-
ical problems result? Although we have claimed that this stabilization did
not happen in a piecemeal fashion, but rather in the context of a more
holistic process of conceptual reorganization, it is also clear that the trans-

7See the discussion in section 1.3; compare also the approach developed in Beller (1999).
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formation of preclassical into classical mechanics did not happen in one fell
swoop. Rather, within the developing network of mechanical arguments,
some more or less stable nodes gradually emerged which did not corre-
spond to the original roots from which the network was growing, such
as the principles of Aristotelian physics and of Archimedean mechanics.
These nodes resulted instead from an elaboration of the consequences of
the traditional framework triggered by the confrontation with challenging
objects. Some of these consequences constituted indeed the starting points
for the reorganization of the accumulated knowledge, eventually yielding
the new principles of classical mechanics, such as the principle of inertia,
the principle of work, or the understanding of the directional character of
force and of the relation between force and torque. Thus, the principle of
inertia, for instance, could be obtained by reflecting on Galileo’s results
concerning projectile motion which had still been achieved within a pre-
classical conceptual framework.® In turn, these results were related to a
stabilization of the knowledge on mechanical devices such as the inclined
plane, the bent lever, and the deflected balance, also resulting from a te-
dious process of the elaboration and integration of different knowledge re-
sources. This process was typically accompanied by controversies over the
conceptual foundations of mechanics, for instance about the role of such
concepts as that of positional heaviness, center of gravity, or momento as
it can be traced in the works of Guidobaldo, Benedetti, and Galileo, and
as they are illustrated in an exemplary way by Guidobaldo’s annotation
of Benedetti’s book.

3.4 The ancient and medieval origins of the equilibrium
controversy

Whether and under what circumstances an equilibrated balance deflected
into an oblique position returns into the horizontal is a question that goes
back to the second problem of the Aristotelian Mechanical Problems. This,
however, deals with balances having a beam of finite thickness so that it
makes a difference whether they are supported from above or from below.
But the seemingly simple case of the beam being supported at its center of
gravity is not discussed. The concept of a center of gravity in fact was un-
known to the Aristotelian author. As far as we know, this concept, which
immediately suggests one stance in the later controversy, was not intro-

8See the extensive discussion of the preclassical framework of Galileo’s work in Renn
et al. (2001) and Damerow et al. (2004).
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duced before Archimedes.? As will become clear below, it was Guidobaldo
who revived and applied this concept in the context of the controversy
about the deflected balance.

An understanding of the positional dependence of the effect of a weight
under the constraints of its attachement to the beam of a balance was, as
far as we know, expressed in geometrical terms for the first time in the
Aristotelian Mechanical Problems.'® The issue was clarified by Archimedes
who formulated the law of the lever, supplying a convincing deductive
proof.1!

The question of why the deflected balance nevertheless caused a vivid
controversy in the early modern period is obviously related to the question
of which parts of the ancient mechanical knowledge were transmitted when,
where, and how to early modern scholars.’?> As will be shown below,
the ignorance of the concept of the center of gravity in fact led to the
introduction of the concept of positional heaviness.

9For an argument that Archimedes only elaborated an already existing intuitive con-
cept, see Dijksterhuis (1956, 298-313).

10 Aristotle (1980). See the discussion in Krafft (1970), Damerow et al. (2002), and
Renn and Damerow (2007).

HThe law of the lever is also contained in the Aristotelian Mechanical Problems. How-
ever, the answers to the problems in this treatise are not based on this law but — as
far as they deal with the force-saving potential of mechanical devices which is the case
for approximately half of the problems — on a basic explanatory principle discussed in
the following section 3.4.1. Notwithstanding the debated attribution of the treatise to
Aristotle, this principle can be considered as a precursor of the law of the lever. This
law itself occurs in the whole treatise only once, pointlessly inserted into the answer to
the third problem which is based on the basic principle as all other related problems
(Aristotle, 1980, 352-353). It is therefore likely that the inserted phrase stating the law
of the lever is a later addition based on the erroneous inclusion of a marginal note in
a Byzantine manuscript from which all surviving copies are derived, see section 3.4.2
below.

12Caverni (1972, vol. 4, 190 ff.) discusses extensively the problem of the deflected bal-
ance and the opinions of Jordanus, Leonardo, Tartaglia, Cardano, Guidobaldo, and
Benedetti, as well as the subsequent discussions of this issue in the seventeenth cen-
tury. Duhem (1991) also refers frequently to the problem. In both accounts Leonardo
is considered a pivotal figure for having found or identified the correct solution to this
problem as well as to the related problem of the bent lever. Both authors essentially as-
sume that the transmission of such insights was unproblematic, supposing in particular
that Benedetti’s treatment was based on knowledge of Leonardo’s manuscripts. Clagett
(1959, 159) assumes that Galileo knew the correct solution to the bent lever problem
because he was familiar with Jordanus’ De ratione ponderis in the Tartaglia edition.
We will come back to the challenges of knowledge transmission below. The role of the
equilibrium controversy for Galileo’s Mechanics is also discussed in the introductory
essay of Galilei (2002). The role of the controversy for Guidobaldo’s work has been dis-
cussed extensively in Palmieri (2008). For a general survey of early modern mechanics,
see also Laird (1986).
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3.4.1 The Aristotelian context

Throughout the entire period under consideration, from antiquity via the
Arabic and Latin Middle Ages to the early modern period, core ideas
of Aristotelian dynamics were evidently known to scholars dealing with
mechanical problems.

According to Aristotle the velocity of a body in natural descent is
proportional to its weight while that of a body in violent motion is pro-
portional to the moving force. In his Physics he wrote:

[...] as to differences that depend on the moving bodies them-
selves, we see that of two bodies of similar formation the one
that has the stronger trend (pon}) downward by weight (Béapog)
[...] will be carried more quickly than the other through a given
space in proportion to the greater strength of this trend.!?

A passage from On the Heavens dealing with the effect of a moving
force sheds light on what he means by the term more quickly:

[...] if there is a moving body which is neither light nor heavy
(Bapog), its motion must be enforced, and it must perform this
enforced motion to infinity. That which moves it is a force
(8bvapug), and the smaller, lighter body will be moved farther
by the same force. [...] For as the greater body is to the less,
so will be the speed of the lesser body to that of the greater.!4

This passage contains in essence the core idea of the Aristotelian dy-
namics of violent, that is, enforced motion. The same force exerts a greater
effect on a lesser than on a greater body. The effects are measured by the
speeds in the sense of distances traversed in the same time which are in-
versely proportional to the sizes of the bodies.

The proportionality between force and effect, however, seems to con-
tradict experiences gained from levers and balances. Applied to such tools,
the same force has different effects depending on the position where it acts
on a beam. The Aristotelian Mechanical Problems can be interpreted as an
attempt to avoid this contradiction. The resolution of this contradiction
in the Mechanical Problems relies on a basic explanatory principle inter-
preting the balance in terms of motions of weights along circles of different
radii.!> This principle states that the part of the radius of a circle that is

13 Aristotle (1995, 216a, 12-17).
14 Aristotle (1986, 301b, 4-14).
5 Damerow et al. (2002, 94-95).
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Figure 3.1: Drawing by Tomeo in his 1525 translation Aristotelis quaes-
tiones mechanicae illustrating that the arc BS of the larger
circle is less bent than the arc ML of the smaller circle. Ac-
cording to Aristotle, the interference of the violent constraint
on the natural downward motion must thus be greater on the
smaller than on the greater circle.

farther from the center moves more quickly than the part that is closer to
the center being moved by the same force. The greater effect of a weight
moving on the greater circle described by a larger beam is explained by
the lesser interference of that violent constraint with the natural motion
downward when compared to the motion along a smaller radius. In the
Latin translation by Tomeo, the relevant passage reads:

Si autem duobus ab eadem potentia latis hoc quidem plus re-
pellatur, illud vero minus, rationi consentaneum est tardius
moveri id quod plus repellitur eo quod repellitur minus: quod
videtur accidere maiori et minori illarum quae ex centro cir-
culos describunt: quoniam enim proprius est manenti, eius
quae minor est extremum, quam id quod est maioris, veluti
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retractum in contrarium ad medium tardius fertur minoris ex-
tremum. Omni quidem igitur circulum describenti istuc ac-
cidit: ferturque eam quae secundum naturam est lationem se-
cundum circunferentiam: illam vero quae praeter naturam, in
transversum et secundum centrum: maiorem autem semper
eam quae praeter naturam est ipsa minor fertur: quia enim
centro est vicinior quod retrahit vincitur magis.

Now if of two objects moving under the influence of the same
force one suffers more interference, and the other less; it is
reasonable to suppose that the one suffering the greater inter-
ference should move more slowly than that suffering less, which
seems to take place in the case of the greater and the less of
those radii which describe circles from the centre. For because
the extremity of the less is nearer the fixed point than the ex-
tremity of the greater, being attracted towards the centre in
the opposite direction, the extremity of the lesser radius moves
more slowly. This happens with any radius which describes
a circle; it moves along a curve naturally in the direction of
the tangent, but is attracted to the centre contrary to nature.
The lesser radius always moves in its unnatural direction; for
because it is nearer the centre which attracts it, it is the more
influenced.'6

The author thus introduced the idea of explaining the dependence of
the effect of a weight on its position by considering factors such as the
natural and violent components of the motion and the lesser or greater
deviation of the motion from its natural course.

The Aristotelian analysis left much room for interpretation. In any
case, the Aristotelian Mechanical Problems could have become the start-
ing point for formulating a concept of positional heaviness and were indeed
brought into connection with it by early modern writers on this subject
such as Tartaglia.'” Positions taken in the early modern period on this
issue such as those of Guidobaldo and his adversaries can be considered as
elaborating one or the other alternative implicit in the Aristotelian anal-
ysis.!® However, it is rather unlikely that this was how the concept of

16Tomeo (1525, 27r—27v). Translation in Aristotle (1980, 341-342).

17See, for instance, how Tartaglia’s virtual interlocutor reminds him in his Quesiti of
the connection between the claim that the equilibrated balance deflected into an oblique
position will return to the horizontal and the treatment of the balance in the Aristotelian
Mechanical Problems; see Tartaglia (1546, 88v), cf. Drake and Drabkin (1969, 124).
18See section 3.8.
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positional heaviness actually came into being in the thirteenth century,
since at that time the text of the Aristotelian Mechanical Problems had
probably not yet circulated in the Latin West.'® However, once it became
available it was printed, translated, and commented upon by numerous
early modern scholars and became a standard point of reference for me-
chanical arguments in the sixteenth century.2’

3.4.2 The transmission of ancient mechanics

The concept of positional heaviness was, as discussed in section 2.1, explic-
itly introduced by the medieval scholar Jordanus de Nemore. Its historical
roots can only be determined, however, by a closer look at the milestones of
ancient mechanics represented in the works of Aristotle, Archimedes, and
Heron, and at the vexing history of the transmission and transformation
of this heritage by scholars in the Arabic world.?!

From the viewpoint of the transmission of ancient knowledge, the first
milestone of the development of the science of mechanics is the work of
Aristotle. As mentioned above, the backbone of the long-term transmission
of mechanical knowledge was Aristotelian dynamics, known in the Arabic
world, in the medieval Latin period, and in early modern times. It was
used throughout as a point of reference for arguments on balances and
other mechanical devices.

The Aristotelian Mechanical Problems had a somewhat less continu-
ous history as they were probably unknown when the science of weights
first emerged in the Latin Middle Ages.?? The treatise has been transmit-
ted as part of the Aristotelian corpus, but its attribution to Aristotle has
been called into question although there is a consensus that it dates back
to the third century BCE and has emerged from the immediate context of
his work.?® With the exception of an earlier Arabic epitome,?* all extant
Greek manuscripts and later printings are based on one archetype Byzan-
tine codex, the codex Z.Gr.214 of the Biblioteca Marciana.?® Altogether

9The arguments for its availability are indeed rather weak, see Clagett (1957).
20Rose and Drake (1971).

21For an overview of Arabic science and technology, see Hill (1993, 59-70).

221t is sometimes assumed that Jordanus must have been familiar with the Aristotelian
Mechanical Problems. However, Jordanus wrote his works in the first half of the thir-
teenth century whereas there are no indications that any manuscript reached the Latin
West at that early date.

23Rose and Drake (1971, 72).

24 Abattouy (2001, 180 and 195-199).

25Rose and Drake (1971, 73).
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twenty-nine Greek manuscripts survived.?® The three oldest manuscripts,
that is, all extant manuscripts written before the fifteenth century, were
written in Byzantium and only later transferred to Italy, whereas the ma-
jority of later manuscripts were certainly written in the West. The fifteenth
century is marked by an extreme increase in copying activities.?” Thus
twenty-one of the later manuscripts were written in the fifteenth century,
four in the sixteenth, and one in the seventeenth century.?® The situation
is further confused by the widely overlooked fact that the treatise was also
covered by Pachymeres’ Philosophia which contains paraphrases and com-
mentaries on most of Aristotle’s works. Pachymeres?? was a Greek scholar
who spent most of his life in Constantinople. The extant manuscripts of
Philosophia show a similar distribution as the “normal” manuscripts with
a peak in the sixteenth century.3°

Thus, the Aristotelian Mechanical Problems only became widely avail-
able to the scholars of the Latin tradition at the beginning of the early
modern period through Greek manuscripts and their Latin translations,
all of which derived from a single Byzantine source from the late eleventh
or early twelfth century.3' In the Arabic context, however, the core text
of the Aristotelian Mechanical Problems was known, but not the deductive
justification of its basic explanatory principle3? which in the early mod-
ern period served as an important background for arguments concerning
positional heaviness. The Mechanical Problems contain with this princi-
ple a precursor formulation of the law of the lever, knowledge of which

260One must assume that the actual number at the time was much higher, but due to
their long and changeful history, not all manuscripts that had once existed came down
to us. Rose and Drake (1971, 72-76) list twenty-nine manuscripts. The codices Ms.
Vat. Gr. 2231 and Vat. Gr. 905 have to be added to this list while Ms. Phi 1,10 of the
Biblioteca de El Escorial has to be dropped.

27 At the end of the fifteenth century, between 1495 and 1498, the Aristotelian corpus
was printed for the first time by Aldus Manutius (1449-1515). The Mechanical Problems
are contained in the second volume, printed in 1497.

28 All data on the manuscript tradition are based on unpublished work by Paul Weinig
who joined the project on the history of mechanical knowledge at the Max Planck
Institute for the History of Science for several years.

29Georgios Pachymeres, 1242-ca.1310.

30T hirteenth century: three copies; fourteenth century: three copies; fifteenth century:
nine copies; sixteenth century: twenty copies, among them Ms. Phi 1,10 of the Bib-
lioteca de El Escorial which was erroneously listed by Rose and Drake (1971, 73) as an
original Greek copy; seventeenth century: one copy; eighteenth century: one copy.
31This way of transmission, however, is untypical for the transmission of Greek
manuscripts in general. Byzantine scholars tended to neglect sources of the mathemat-
ical science and natural philosophy; see Krumbacher (1897, 605-638) for an overview
of the scarcity of technical literature.

32 Abattouy (2001, 195-199).
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was hence transmitted with the text. They also constitute, as mentioned
above, a bridge between Aristotelian dynamics and the characteristics of
mechanical devices to save force, a bridge that is sustained mainly by the
proof of the basic explanatory principle.

The second milestone is the work of Archimedes on mechanical prob-
lems, without doubt a culmination of ancient mechanical knowledge. How-
ever, this was only partially transmitted. In particular, his writings on
mechanics, apart from a fragment of On floating bodies, became known to
the Arab world only indirectly, e.g., through the works of Heron and Pap-
pus. In the Latin world they only became known through the translations
from the Greek by Willem of Moerbeke®? after 1269.3% However, the law
of the lever and the tradition of deductive proofs associated with his work
were known in all the periods in question. But his key concept of a center
of gravity seems to have been unknown in the Latin Middle Ages until the
translations of Moerbeke and those produced later.

The third milestone is the work of Heron of Alexandria. Heron of
Alexandria evidently knew all of the Greek sources representing mechanical
ideas but used them eclectically in his reduction of mechanical devices to a
classification of simple machines. In particular, Heron’s Mechanics refers
to parts of Archimedes’ works on mechanics, some of which have been lost.
Heron introduced the concept of center of gravity and applied it several
times. Moreover, he used the concept implicitly when he dealt with the
equilibrium of arbitrarily shaped beams of balances.?® Furthermore, in an
added proposition concerning a beam in form of a pulley, he introduced a
from a modern viewpoint correct solution which covered the bent lever as
a special case (see figure 3.2).36

Heron’s Mechanics as a whole was, as far as we know, only trans-
mitted to the Arabic world, while excerpts relating mainly to the simple
machines were also transmitted in Greek to the West by Pappus’ selection,
in particular by the Latin translation of Pappus of Alexandria (1588).

Further achievements of ancient mechanics regarding the balance are
known to us only through fragments, probably either transmitted directly
from the Greek or indirectly to the Arabic and subsequently to the Latin
world. One example is a proof of the law of the lever in a Book of the
Balance ascribed to Euclid. This proof is preserved only in Arabic and

33Willem of Moerbeke, ¢.1215-1286.

34Clagett (1984), see the introduction to volume 1.
35Heron of Alexandria (1900, 88).

36Heron of Alexandria (1900, 90).
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Figure 3.2: The law of the bent lever is an implicit consequence of a theo-
rem in Heron’s Mechanics. Two ropes are fixed at points ff and
v to the border of a pulley. If unequal weights are attached to
the ropes, the rope of the smaller weight will be rolled up while
the greater weight will move downwards to a certain point {
until the weights are in equilibrium. Thus the pulley with the
ropes acts as if it were a bent lever Cay.

its ascription to Euclid is somewhat doubtful.?” The most remarkable
aspect of Euclid’s proof, if compared to that of Archimedes, is the fact
that it proceeds without involving the concept of center of gravity, using
instead a concept characterizing the positional effect of a weight on a
balance, designated as the force of heaviness. Another achievement of
ancient mechanics with unclear origins is the treatment of the material
beam of the balance in the Liber de canonio.>

A fourth milestone in the transmission of the ancient heritage of me-
chanics was its reception and transformation by scholars in the Arabic
world. As mentioned earlier, the Arabic world had access to Aristotelian
dynamics as well as to the Aristotelian Mechanical Problems, but with-
out the proof of the main principle. In addition, the full text of Heron’s

37See (Clagett, 1959, 24-30). Here as in other passages we make use of a text written
by the authors jointly with Peter McLaughlin (Renn et al., 2003).
38Moody and Clagett (1960, 55-75); see also the discussion in Knorr (1982, 15-39).
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Mechanics as well as the selection made by Pappus were available.?® Fur-
thermore, the law of the lever was known, including a proof in a text
ascribed to Euclid,*® and on this basis the material beam was correctly
treated.!

Arabic treatises, probably composed on the basis of Greek material
by authors such as Thabit and al-Isfizari,*? focused on the proof of the law
of the lever on the basis of Aristotelian dynamics, including a treatment
of the material beam, and knowledge about the bent lever.*3 In partic-
ular, a scholium to the treatise of Thabit contains the idea, crucial for
an understanding of the bent lever, that the effect of a weight suspended
not directly from the beam of a balance but from the end of a rod that
is rigidly connected to the beam at an oblique angle, will be as if it were
suspended at the foot of the perpendicular drawn from the weight to the
beam.** On the other hand, Thabit, contrary to later Arabic authors, did
not make use of the concept of the center of gravity, a circumstance which
may have motivated his attempt to justify the equilibrium of the balance
instead on the basis of Aristotelian dynamics.

In his Book on the Balance of Wisdom, completed 1121-1122, al-
Khazini*® treated the question of what happens if the balance beam is
supported from above or from below, which was raised in the Aristotelian
Mechanical Problems. He explicitly considered the case in which the bal-
ance is supported at the center of gravity of the beam and claimed correctly
that it remains at rest in whatever position it is left.*6

In the course of the translation movement of the twelfth century, only
a fraction of the Arabic material was transmitted to the Latin world. In
particular, a treatise by Thabit entitled Liber karastonis was transmitted
in a Latin version, probably translated by Gerard of Cremona*’ from a
lost Arabic version. However, this treatise did not contain a treatment of
the bent lever and states in contrast to al-Khazini’s Book on the Balance
of Wisdom that the deflected balance returns to the horizontal:

39 Jackson (1970).

40Clagett (1959, 24-30).

HKnorr (1982, 15-39).

42 A)-Muzaffar al-Isfizari, 1048-1116.

43See Moody and Clagett (1960, 81-82) for the occurrence of such knowledge in a treatise
of Thabit, and Abattouy (2001, 227) for its occurrence in a treatise of al-Isfizari.
44For a discussion of the manuscript sources, see Knorr (1982, 75-87).

45 Abu al-Fath Khazini, fl. 1115-1130).

46 Abattouy (2001, 191).

47Gerard of Cremona, 1114-1187.
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Dico ergo quod linea sit veniens super equidistantiam orizon-
tis, ita quod si nos inclinemus punctum A ad punctum 7 et
elevetur punctum B ad punctum D, sufficiet pondus a donec
redeat linea AB ad locum suum ex equidistantia orizontis.

Then I say the line is in horizontal equilibrium, so that if we
incline point A to point T and elevate point B to point D,
the weight a is sufficient for line AB to return to its place of
horizontal equilibrium.*®

When Jordanus took up the subject of the science of weights at some
point in the thirteenth century, the main sources he probably had at his
disposal were, apart from Aristotelian dynamics, in particular the Liber
karastonis and the Liber de canonio. Most likely he did not yet have
access to Archimedes’ achievements, nor to any part of Heron’s work. In
a sense, Jordanus was thus in a position similar to Thabit in the ninth
century, confronted with the challenge to provide a deductive treatment of
the science of weights on the basis of Aristotelian dynamics, without having
the concept of center of gravity or other Archimedean achievements at his
disposal. The further elaboration of the framework he built was evidently
guided by taking into account new challenging objects beyond the balance
such as the inclined plane.

A more extensive access to the ancient heritage did not become possi-
ble before the fifteenth century. Among the first to refer to the Archimedean
concept of center of gravity was Leonardo da Vinci who used it in his work
on mechanical devices. In particular, he applied the concept to the prob-
lem of the bent lever (see figure 3.3):

S’e centri de’ pesi saranno equidistanti al loro centro comune,
essi pesi staranno equali in equilibra. S’e perpendiculari de’
centri de’ pesi saranno equidistanti al perpendicolare del lor
centro commune, essi pesi staranno equali in equilibra, se essi
pesi sieno equali. Per tal ragione il centro del mondo ¢ sempre
mobile per la mutazione della inondazione dell’Oceano.

When the centers of the weights are equally distant from their
common center, these weights will be equal in equilibrium.
When the perpendiculars of the centers of the weights are
equidistant from the perpendicular of their common center,
these weights will be equal in equilibrium, if these weights are

48Moody and Clagett (1960, 94-95).



3. The Context 57

8 1 8 R T ‘
w:(ﬂmr P wm[ :!'n{',ﬁ’-wm‘-!" !
A o e s el

e N - - . ol

Figure 3.3: Leonardo argued correctly that a bent lever will be in equi-
librium if the weights of the two parts of the beam are equal
and their centers of gravity have the same distance from the
vertical through their common center of gravity.

equal. For this reason, the center of the world is always mobile
because of the change of the tides of the ocean.*®

Leonardo also treated the behavior of an equilibrated balance de-
flected into an oblique position (see figure 3.4). He argued that the ob-
servable fact that such a balance tends to return to the horizontal is a
consequence of the imprecision of the fulcrum:

La gravita e tutta per tutta la lunghezza del suo sostentaculo
e tutta in ogni parte di quello. Per che causa accade in ispe-
rienzia che quando I'aste istando per obbliqua linia e restando
colle sue parti equalmente distante a la linia centrale, essa non
resta obliqa, anzi si fa equidiacente e componente colla detta
linia centrale con 4 angoli retti? Risponda nascere dalla im-
perfezzione del polo.

The heaviness is whole for the whole length of its carrier and
whole in each part of it. Why does it happen in experience
that, when the beam is along an oblique line and with its parts

Leonardo da Vinci (1992, folio 126v).
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Figure 3.4: Leonardo correctly assumed that an equilibrated balance de-
flected into an oblique position will not return into the hori-
zontal. He explained the common experience that the balance
nevertheless seems to return into the horizontal as resulting
from the difficulty in constructing a balance whose fulcrum
matches precisely the center of gravity.

equally distant from the central line, it does not remain oblique,
but rather makes itself horizontal and forming with the said
central line 4 right angles? Answer that this comes from the
imperfection of the fulecrum."°

As is well known, the impact of such insights found in Leonardo’s
manuscripts on the subsequent scientific development is difficult to assess.
From our point of view, there can be no question of singular discoveries

50Leonardo da Vinci (1992, folio 128r).
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that may have been lost or found in a scientific relay race as long as such
insights are not integrated into a wider network of knowledge.?!

Another striking instance in which significant contributions to a fur-
ther development of mechanics based on Archimedean principles can be
attributed to an author in hindsight, while in fact the contemporary im-
pact remained rather limited, is the extraordinary work of Francesco Mau-
rolico.’? By early 1548 Maurolico completed a major work composed of
four books, entitled De momentis aequalibus.®® In this work he systemat-
ically defined the concept of momentum as the positional effect of weights
responsible for their equilibrium. His work was first published, however,
more than a century later when knowledge of Archimedes’ work had be-
come widely available.?*

3.4.3 The unreconciled ancient heritage

The preceding overview shows that the transmission of the ancient knowl-
edge about mechanics was neither cumulative nor a linear process. From
the Hellenistic world there were essentially two pathways of transmission
to the Latin scholarly tradition. The first was the transmission to the
Arabic world and from there through the boundary areas of Arabic and
Latin cultures in Spain and Sicily to the rest of Europe. The second was
the transmission to the Eastern Roman Empire centered around the city
of Constantinople and from there first to Italy and later to other Westeu-
ropean regions.

The result was a patchwork of partly incompatible conceptual net-
works of mechanical knowledge, embedded in quite distinct cultural and
social settings. Consequently, the intermittent and scattered transmission
of the concept of center of gravity led in particular to the emergence of
an alternative conceptualization of the way in which equilibrium results
from the functioning of weights depending on different mechanical constel-
lations, and this focused on the concept of positional heaviness.

Using the concept of center of gravity the equilibrium can be con-
ceptualized in terms of the relation of the center of gravity and the point
of suspension. Such a conceptualization leads directly to the concept of
torque in classical mechanics if the equilibrium is expressed as an equality
of physical magnitudes. However, as shown above, the concept of center
of gravity, introduced by Archimedes and taken up by Heron and Pappus,

51See Renn et al. (2001); Biittner et al. (2004).
52Francesco Maurolico, 1494-1575.
53Maurolico (1685a).

54Gee Clagett (1974); Napolitani (1998, 2001).
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was known in principle in the Arabic scholarly community but evidently
had only a limited and rather late impact on Arabic mechanical knowledge.
In any case, it did not become part of the Arabic treatises on mechanics
which were translated in the twelfth century into Latin. It became known
to the Latin scholarly world only in the later thirteenth century through
the translation of works of Aristotle by William of Moerbeke who had ac-
cess to now lost Greek manuscripts probably transmitted from Byzantium.

Thus, the early medieval Latin scholars were familiar with Aristotelian
dynamics through works such as Aristotle’s Physics or De caelo, but with
the tradition of ancient mechanics only through the selective translation
of Arabic sources. In this situation the attempt to solve the problem of
explaining the causes for the equilibrium of balances resulted in the idea
that the actual weight of a body changes according to the mechanical
context. This idea, however, is ambiguous in itself. If it is the weight that
really changes, what then is the magnitude that has been determined since
millennia using the balance as a weighing device? But if the real weight
does remain the same, what kind of weight is it that changes according to
the context? How can one explain that two bodies holding a balance in
equilibrium may nevertheless have different weights?

This ambiguity is reflected in the conceptual fuzziness of the terms
used to express the effect of a weight under different mechanical conditions.
The most advanced attempt to eliminate this ambiguity was offered by
Jordanus. In accordance with the growing role of Aristotelian methodology
for structuring knowledge, his solution made use of Aristotelian logic in
order to avoid the apparent fallacies related to the mechanical problems
associated with weights in different positions on a balance. Aristotle had
introduced the term fallacia a dicto simpliciter ad dictum secundum quid
to denote the fallacy of ignoring a qualification such as the position of a
weight, supposing that what is true under certain circumstances,’® e.g.
the equilibrium of equal weights on a balance, is true also in general, e.g.
generalizing the statement of equilibrium for the positions of weights on
an equal-arms balance to all positions of the counterpoise of a steelyard.
Thus, Jordanus introduced the term gravitas secundum situm in contrast
to the pondus of a body, translated here as positional heaviness and weight
respectively. In this way a historically consequential concept of mechanics
had been shaped by a reflection suggested by the intellectual context of
early scholasticism (see section 2.1).

55For a discussion of this fallacy, see Uberweg (1882, 418-422) and Schreiber (2003,
141-151).
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With the revival of the work of Jordanus in the early modern pe-
riod this solution was widespread, but now became confronted with the
alternative conceptualization of the equilibrium of balances by means of
the concept of center of gravity revived with the translation of works by
Archimedes and Pappus and indirectly through quotations of Heron’s work
in Pappus’ Collectiones.

Thus, Renaissance and early modern scholars stumbled upon an un-
reconciled part of the ancient conceptual heritage. This eventually led to
the equilibrium controversy on which the present study is focused.

3.5 Jordanus’ approach to positional heaviness

The treatise Liber de ponderibus is, as discussed in section 2.1, another
representation of Jordanus’ core theory with an extended set of proposi-
tions, but here the postulates are preceded by a prologue. This prologue
introduces Jordanus’ concept of positional heaviness as a new technical
term together with a justification of its introduction:

Quia si sumantur de circulo maiori et minori arcus equales,
corda arcus maioris circuli longior est. Propterea possum ex
hoc ostendere, quod pondus in libra tanto fit levius, quanto
plus descendit in semicirculo. Incipiat igitur mobile descendere
a summo semicirculi, et descendat continue. Dico tunc quod,
cum maijor arcus circuli plus contrariatur recte linee quam mi-
nor, casus gravis per arcum maiorem plus contrariatur casui
gravis qui per rectam fieri debet, quam casus per minorem
arcum. Patet ergo quod maior est violentia in motu secun-
dum arcum maiorem, quam secundum minorem; alias enim
non fieret motus magis contrarius. Cum ergo apparet plus in
descensu adquirendum impedienti, patet quia minor erit gravi-
tas secundum hoc. Et quia secundum situationem gravium sic
fit, dicatur gravitas secundum situm in futuro processo.

If equal arcs are taken on a greater circle, and on a smaller one,
the chord of the arc of the greater circle is longer. From this I
can then show that a weight on the arm of a balance becomes
lighter to the extent that it descends along the semicircle. For
let it descend from the upper end of the semicircle, descending
continuously, I then say that since the longer arc of the circle is
more contrary to a straight line, than is the shorter arc, the fall
of the heavy body along the greater arc is more contrary to the
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fall which the heavy body would have along the straight line,
than is a fall through a shorter arc. It is therefore clear that
there is more violence in the movement over the longer arc, than
over the shorter one; otherwise the motion would not become
more contrary (in direction). Since it is apparent that in the
descent (along the arc) there is more impediment acquired, it
is clear that the gravity is diminished on this account. But
because this comes about by reason of position of the heavy
bodies, let it be called positional heaviness in what follows.%6

M, D XXXIIIs

Figure 3.5: Title vignette of Apianus’ edition of Jordanus’ Liber de pon-
deribus displaying a scholar and a practitioner. The scholar ex-
plains the functioning of a steelyard according to Aristotelian
principles.

The justification seems to echo an argument in the Aristotelian Me-
chanical Problems but could also have been inspired in a more general way
by Aristotelian physics. At the very least, Aristotelian scholars must have
faced a contradiction. On the one hand, according to Aristotelian dynam-
ics, the moving force or weight of a body is proportional to the resulting

56Moody and Clagett (1960, 150), see also Apianus’ edition of de Nemore (1533, A iii
verso), page 300 in the present edition. Translation adapted from Moody and Clagett
(1960, 151).
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swiftness. On the other hand, according to the principle of Aristotelian
mechanics, in circular motion the swiftness, as discussed in section 3.4.1,
caused by equal forces does not stay the same but rather becomes propor-
tional to the distance from the center (see figure 3.5). As shown above,
the Aristotelian explanation for this principle was based on the assumption
that the interference of the center forcing the motion into a circular path
impedes the motion toward the center of the world in dependence on the
degree to which the path is curved. This is similar to the argument used
by Jordanus to justify for the seemingly changing weight the designation
as positional heaviness (gravitas secundum situm), applying, as is claimed
in section 3.4.3, an Aristotelian strategy for avoiding the secundum quid
fallacy to the science of weights.

The term positional heaviness thus became the core concept in the
postulates and the propositions of Jordanus’ treatises on the science of
weights. First he attempted in the postulates to provide a precise defini-
tion of the term on the basis of the Aristotelian assumptions. In Apianus’
edition of the Liber de ponderibus, the first to the fifth postulate are for-
mulated accordingly:

Prima est: Omnis ponderosi motum ad medium esse.

Secunda: Quanto gravius tanto velocius descendere.

Tertia: Gravius esse in descendendo, quanto eiusdem motus ad
medium est rectior.

Quarta: Secundum situm gravius esse, quanto in eodem situ
minus obliquus est descensus.

Quinta: Obliquiorem autem descensum minus capere de di-
recto, in eadem quantitate.

The first is: The motion of every weight is toward the center
[of the world].

The second: The heavier it [the weight] is, the faster it de-
scends.

The third: It is heavier in descending, insofar as its movement
toward the center [of the world] is straighter.

The fourth: It is positionally heavier, insofar as its descent, in
that same position, is less oblique.

The fifth: But a more oblique descent partakes less of the
straight [descent], for the same quantity [of the path].>?

57de Nemore (1533, A iv recto), page 301 in the present edition.
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The second postulate simply asserts the basic principle of Aristotle
that the velocity of a moving body depends on the exerted force, in this
case the heaviness of a falling body (see section 3.4.1). The third postulate
also refers to the Aristotelian tradition, but now to the consequences of the
relation between natural motions and what acts contrary to them. The
fourth postulate introduces the term positional heaviness as resulting from
the obliqueness of descent. Finally, the term obliqueness is explained in the
fifth postulate by the amount of straight descent covered by it for equal
quantities of the path. This fifth postulate had, as will be shown below,
the greatest influence on all attempts to quantify the concept of positional
heaviness.

Figura a Nicolao de Tartaglifs
mftrulta .

ok T

Figure 3.6: Figure added by Tartaglia to the proof of the second proposi-
tion of Jordanus’ De ratione ponderis. Jordanus argued that
the positional weight at C is greater than at B because the
vertical descent ZM is greater than the vertical descent KY.
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Having stated his postulates, Jordanus started with a proposition re-
lated to the Aristotelian doctrine that velocity is proportional to weight
respectively to the exerted force:

Propositio prima.

Inter quaelibet duo gravia est velocitas descendendo proprie, et
ponderum eodem ordine sumpta proportio, descensus autem,
et contrarii motus, proportio eadem, sed permutata.

First proposition

Between any two heavy bodies, the proper velocity of descent
is directly proportional to the weight; but the proportion of
descent and of the contrary movement of ascent is the inverse.%®

Then, with his second proposition, Jordanus presented the claim which
later became the issue of the equilibrium controversy triggered by the in-
herent ambiguity of the concept of positional heaviness (see figures 3.6 and
3.7:

Propositio secunda.

Cum fuerit aequilibris positio aequalis, aequis ponderibus ap-
pensis, ab aequalitate non discedet, et si ab aequidistantia se-
paretur, ad aequalitatis situm revertetur.

Primum patet, quia sunt equae gravia. Secundum patet per
suppositionem quartam, vocatur autem illud situs, quod circu-
lus dicitur, sicut patet per praedicta.

Second proposition.

If an equilibrated [balance] is in horizontal position [positio
aequalis], with equal weights suspended, it will not leave the
horizontal position [aequalitate]; and if it is removed from the
horizontal position [aequidistantia], it will return to the hori-
zontal position [aequalitatis situm).

The first [part] is evident because the weights are equally heavy.
The second is clear from the fourth postulate; but it [the weight]
is called positionally [heavy] because one speaks about the cir-
cle as is evident from the preceding.®

58de Nemore (1533, A iv verso), page 302 in the present edition. Translation in Moody
and Clagett (1960, 155).

59de Nemore (1533, B ii recto), page 305 of the present edition. Translation by the
authors, cf. Moody and Clagett (1960, 156-157).
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Figure 3.7: Figure added in Apianus’ edition to the proof of the second
proposition of Jordanus’ Liber de ponderibus. The commentary
argues that equal arcs along a circle correspond to unequal ver-
tical descents depending on the distance from the horizontal.
Thus, the upper arc CD corresponds to a smaller vertical de-
scent, i.e. FE, than the lower but equal arc BC corresponding
to the vertical descent EI

The short argument in Apianus’ edition of Jordanus’ Liber de pon-
deribus as well as the detailed proof in Tartaglia’s edition of Jordanus’ De
ratione ponderis make essential use of the fourth postulate. The argument
specifies the positional heaviness of the weights at the deflected balance
by identifying the vertical components corresponding to their respective
descents. Jordanus’ result is the erroneous claim that the deflected balance
returns into the horizontal position because the upper weight acquires a
greater positional heaviness than the lower weight.

Several of the following propositions are concerned with the influence
of various circumstances on the positional heaviness of a weight. The
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fourth proposition of Apianus’ edition of the Liber de ponderibus,%° for
example, concerns the dependence of the positional weight on the deflection
of the beam of a balance:

Propositio quarta.

Quodlibet pondus in quamcumque partem discedat secundum
situm sit levius.

Fourth proposition.

In whichever direction any weight departs [from the position
of equality], it becomes positionally lighter.5!

As in the case of the second proposition, the proofs of all further
propositions that concern the magnitude of the positional heaviness are
essentially based either on the fourth postulate, thus relating the positional
heaviness to the obliqueness of the downward tendency or motion and,
in consequence, to the vertical descent, or directly on the Aristotelian
dynamics as it is formulated with some variations in the first theorem of
all three treatises ascribed to Jordanus.

Accordingly, Jordanus presented as the eighth proposition®? the law of
the lever by expressing the equilibrium of two unequal weights as equality
of their positional heaviness (see figure 3.8):

Propositio octava.

Si fuerint brachia librae proportionalia ponderibus appenso-
rum, ita, ut in breviori gravius appendatur, aeque gravia erunt
secundum situm.

FEighth proposition.

If the arms of the balance are proportional to the weights sus-
pended in such a manner that the heavier [weight] is suspended
on the shorter [arm], positionally they will be equally heavy.53

The proof of this proposition is based directly on Aristotelian dynam-
ics as formulated in the first proposition. Jordanus made particular use

60The proposition is the same as the fourth proposition in Jordanus’ Elementa and the
third proposition in his De ratione ponderis.

61de Nemore (1533, B iii verso), page 308 in the present edition. Translation adapted
from Moody and Clagett (1960, 157).

62The proposition is the same as the eighth proposition in Jordanus’ Elementa and the
sixth proposition in De ratione ponderis.

63de Nemore (1533, C iv recto), page 317 in the present edition.
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Figure 3.8: Jordanus’ proof of the law of the lever and Apianus’ commen-
tary are based on the establishment of a relationship between
the motion of unequal weights D and F on a balance and up-
ward motions MD and HG of similar weights caused by the
same force treated according to Aristotelian dynamics.

of the assumption, which is summarized succinctly in the passage from
On the Heavens quoted above:%* distances and weights are inversely pro-
portional when the same force is applied to them. In order to apply this
assumption to the equilibrium of a balance with unequal weights he argued
that the descent of the heavier weight on one side of the balance can be
considered as being equivalent to an upward motion of the same weight
on the other side. He could thus compare ascents of different weights over
different distances, inversely proportional to the weights, which according
to Aristotelian dynamics can be achieved by the same force. This then
serves to show that the balance is in equilibrium.

Apianus not only reported Jordanus’ proof, but also extended it with
commentaries. He made explicit use of the concept of positional heaviness,
exploiting the vertical component of the path of the beam as a measure
(see figure 3.7).

For our context it is important to note that both the EFlementa and the
De ponderibus, that is, the present text, are distinguished from De ratione
ponderis by the fact that the latter omits two incorrect propositions on the
bent lever, propositions 6 and 7. In Apianus’ edition proposition 6 reads:

64See section 3.4.1.
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Propositio sexta.

Cum unius ponderis sint appensa, et a centro motus inae-
qualiter distent, et si remotum secundum distantiam propin-
quius accesserit ad directionem, alio non moto secundum situm,
illo levius fiet.

Sixth proposition

When equal weights are suspended at unequal distances from
the center of movement, and if the longer arm is bent so that
its end is at the same distance from the vertical as is the
shorter arm, then, if the latter remains unmoved, the weight on
the longer arm will become positionally lighter than the other
weight.%°

This incorrect proposition on the bent lever was replaced in Jordanus’
treatise De ratione ponderis by a correct theorem (numbered as proposi-
tion 8) which indirectly states the measure of positional heaviness by means
of vertical projections on the horizontal, and which later became central
to Benedetti’s work (see figure 3.15):

Si inequalia fuerint brachia librae, et in centro motus angulum
fecerint: si termini eorum ad directionem hinc inde aequaliter
accesserint: aequalia appensa in hac dispositione aequaliter
ponderabunt.

If the arms of a balance are unequal, and form an angle at the
axis of support, then, if their ends are equidistant from the
vertical line passing through the axis of support, equal weights
suspended from them will, as so placed, be of equal heaviness.%®

It seems that the De ratione ponderis was an improved version of the
FElementa, probably due to Jordanus himself.®” In particular, the distance
between the weight and the vertical through the point of suspension of
the beam of a balance is used as a measure of its positional heaviness,
also in other theorems.%® But in spite of this improvement, other issues
involving positional heaviness, such as the claim that a balance would
always return to its horizontal position, still received the same problematic

65de Nemore (1533, C ii verso), page 314 in the present edition, cf. Moody and Clagett
(1960, 158-159).

66de Nemore (1565, 6), cf. Moody and Clagett (1960, 184-187).

6"Moody and Clagett (1960, 171-172).

68Moody and Clagett (1960, 205-206).
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treatment as they had in the Elementa.%° Thus, the new insight expressed
in proposition 8 did not lead to a thorough conceptual revision of the
theory of the balance expounded by Jordanus and in particular not to a
revision of the concept of positional heaviness. A similar situation holds for
the later treatise on weights by Blasius of Parma,”® who also stuck to the
erroneous assumption that a deflected balance returns to the horizontal.
The bent lever, however, is correctly treated by taking the projections on
the horizontal as a measure of positional heaviness.”

The erroneous claim that the deflected balance spontaneously returns
to the horizontal was later criticized by Leonardo da Vinci with direct
reference to the science of weights.”> Leonardo critically discussed the
explanation of the balance by “Pelacani,” i.e., Blasius of Parma. According
to Leonardo, Blasius had claimed that the longer arm of the balance will
fall more quickly than the shorter arm because its descent traverses the
quarter circle more directly than the shorter arm. Since the weights tend to
fall along the perpendicular, the motion will be slower the more the circle
is curved. In the proof of the seventh proposition of Part I of his treatise
on weights, Blasius indeed claimed that a heavy body seeks to move along
a straight line and that the slower it moves the more it deviates from its
natural path.”® Leonardo argued against this by considering a case in
which the weights are attached by ropes and fall perpendicularly without
being impeded by the curvature of the circle described by the balance. He
concluded that what is more distant from its suspension will be carried
less by it. Since it is carried less, it acquires more freedom, and since a
free weight will always descend, the end of the beam which is more distant
from the fulcrum will sink more quickly than any other part as it carries
a weight.

It remains unclear whether Leonardo’s insights into the behavior of
a deflected balance had any impact on the scholarly discussion of this
problem in the early modern period. With certainty we only know that the
De ratione ponderis was published in 1565 in Venice by Curtius Trojanus
at the instigation of Niccold Tartaglia.”™ In this form it may have become
one of the starting points for Benedetti’s treatment of positional heaviness.
He could have indeed taken the result that Jordanus had formulated in

69Moody and Clagett (1960, 176-179).

70Blasius of Parma, 1345-1416.

“IMoody and Clagett (1960, 251).

72See Liicke (1953, 485) on Ms. 2038 Bib. Nat. 2 v. See also the discussion on pages
56-59.

73Moody and Clagett (1960, 243-245).

7 de Nemore (1565).
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proposition 8, transforming it into a general principle for analyzing the
positional effect of weight. Remarkably, the controversy in the sixteenth
century between Tartaglia, Cardano, Guidobaldo, and Benedetti on the
notion of positional heaviness was triggered by a conundrum that had
remained unsettled for centuries, as the different versions of Jordanus’
work testify.

3.6 Tartaglia’s approach to positional heaviness

Compared to the situation of Jordanus, the availability of sources on me-
chanics was significantly different in the early modern period (see sections
3.4.1 and 3.4.2). In particular, the Aristotelian Mechanical Problems had
become widely known through the transmission and translation of the
Byzantine manuscript. As mentioned above, part of Heron’s work had
become available through Pappus. In addition, Archimedes’ work on the
equilibrium of planes made available the knowledge of how to treat the
problems of the balance in a deductive way on the basis of the concept of
center of gravity.

This broad availability of ancient sources brought about a novel sit-
uation for discussions of the dependency of the effect of a weight on its
position. In particular, it now became relevant to establish connections
between the different conceptual frameworks embodied in these sources.
One of the key protagonists to contribute both to the spread of ancient and
medieval sources and to the creation of a new synthesis was the engineer-
scientist Niccolo Tartaglia. Following Jordanus, he formulated the law of
the lever in Quesiti, et inventioni diverse™ in terms of positional heaviness:

Se li brazzi della libra saranno proportionali alli pesi in quella
imposti, talmente, che nel brazzo piu corto sia appeso il corpo
piu grave, quelli tai corpi, over pesi seranno equalmente gravi,
secondo tal positione, over sito.

If the arms of the balance are proportional to the weights im-
posed on them, in such a way that the heavier weight is on the
shorter arm, then those bodies or weights will be equally heavy
positionally.”®

Tartaglia’s book became a point of reference — and a target of severe
criticism — both for Guidobaldo and Benedetti and shall therefore be con-

"5 Tartaglia (1546).
"6 Tartaglia (1546, 92v). Translation in Drake and Drabkin (1969, 132-133).
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sidered here in further detail. Tartaglia also followed Jordanus in claiming
in his Third Petition that

[...] un corpo grave esser in el discendere tanto piu grave,
quanto che il moto di quello ¢ piu retto al centro del mondo.

[...] a heavy body in descending is so much the heavier as the
motion it makes is straighter toward the center of the world.””

Figure 3.9: According to Tartaglia, the descent of a body from A to D is
more obligue than the descent from A to C since the projection
AH on the line of descent to the center of the world is shorter
than the projection AG.

He substantiated the idea by the defining concepts of line of direction to
the center of the world and obliqueness:

La linea della direttione € una linea retta imaginata venire per-
pendicolarmente da alto al basso, e passare per il sparto, polo,
over assis de ogni sorte libra, over bilancia.

The line of direction is a straight line imagined to come perpen-
dicularly from above to below and to pass through the support
or axis of any kind of scale or balance.”™

"TTartaglia (1546, 84v). Translation in Drake and Drabkin (1969, 118).
"8 Tartaglia (1546, 83r). Translation in Drake and Drabkin (1969, 115).
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Piu obliquo se dice essere quel descenso, d’un corpo grave, il
quale in una medesima quantita, capisse manco della linea della
direttione, overamente del descenso retto verso il centro del
mondo.

The descent of a heavy body is said to be more oblique when
for a given quantity it contains less of the line of direction, or
of straight descent toward the center of the world.™

Thus, Tartaglia measured the straightness of the given descent by its pro-
jection on the vertical line of direction (see figure 3.9).

H
Figure 3.10: According to Tartaglia, the descent of a body from A to G is

more oblique than the descent from A to H since its curvature
is greater.

Alternatively, he measured the straightness of descent also with ref-
erence to the more or less acute angle with the path of straight and direct
descent to the center of the world (see figure 3.10).8° He thus followed a
procedure introduced by Jordanus in De ratione ponderis which Tartaglia
later edited,®! a procedure, however, that was absent in Jordanus’ other
works. In the case of a curved descent in particular, for instance along a
circular arc, Tartaglia determined straightness by the lesser or greater cur-
vature of the path of descent, making use of the idea of angles of contact
(also referred to as curvilinear angles or as mized angles in the following),

" Tartaglia (1546, 83r). Translation in Drake and Drabkin (1969, 115).

80Tartaglia (1546, 84v-85r). Translation in Drake and Drabkin (1969, 118-119).

81de Nemore (1565, 3v—4r). Evidently, at the time Tartaglia wrote Quesiti, he must
have been familiar with Jordanus’ De ratione ponderis.
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formed not by straight lines but by circles or by a straight line and a
circle.®?

Tartaglia treated the case of a scale or balance of equal arms with
equal weights attached to them following Jordanus. Taking the latter’s
stance in the equilibrium controversy, he also concluded that, when the
scale is moved from its initially horizontal equilibrium position by an exter-
nal intervention so that one weight is above, the other below the horizontal,
the scale will return to the horizontal position by itself because the weight
that has been raised has become positionally heavier than the weight that
has been lowered (see figure 3.11). On the other hand, he claimed that the
greater positional heaviness cannot be compensated by adding a weight to
the lower weight since even the smallest weight attached to this side would
move the scale to a vertical position.

Figure 3.11: According to Tartaglia, the body at I is positionally heavier
than the body at V since the projection XY is greater than
WEF.

To justify the first claim, Tartaglia considered the balance in any
position outside the horizontal and now compared, following Jordanus,
the descents of the two weights with the aim of establishing which of them
is more direct. For this purpose, he compared descents through equal parts
of the circle described by the arms of the balance, i.e. descents through
equal angles taken downward from the given position of the beam. Due

82Gee Tartaglia (1546, 84v—85r), Drake and Drabkin (1969, 119). For a review of the
contemporary controversial discussion of this mathematical concept, see Maiertu (1992),
see also Bordiga (1985, 627-628).
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to geometrical reasons, it now turns out that the descent of the upper
weight is always straighter than that of the weight that has been lowered
so that the upper weight becomes, according to the definition, positionally
heavier. As a consequence, the balance will return to its original horizontal
position.®3

In his discussion of this result Tartaglia actually employed two dif-
ferent measures of straightness, both of which were in agreement with his
definition quoted above. In the proof of his proposition, he made use of
the projection of a finite circular descent on the vertical line of direction,
comparing those projections for descents of equal angles. Later, however,
he compared instead more directly the angles between the curved path
of descent and a straight perpendicular line to the center of the world.®*
For this purpose he actually compared angles of contact, just as Jordanus
had done in De ratione ponderis (see figure 3.12). In this way Tartaglia
concluded that the angle between the circular descent of the lower weight
and the vertical line to the center of the world is larger than the angle
between the circular descent of the higher weight and the said line.

E

H L

Figure 3.12: According to Tartaglia, the body at B is positionally heavier
than the body at A since the angle of contact between BD
and BF (taken along the periphery) is smaller than the angle
between AH and AF (taken along the periphery).

He thus again obtained the result that the descent of this higher weight
is more direct and the weight itself positionally heavier. Had he just com-

83 Tartaglia (1546, 88v-90r), Drake and Drabkin (1969, 124-127).
84Tartaglia (1546, 90r-92r), Drake and Drabkin (1969, 130-131).
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pared the ordinary angles between the tangents to the circular paths of
descent and the vertical, the two angles would have simply been equal. It
is thus the difference or ratio between the angles of contact, themselves
less than any difference or ratio you please which can occur between any
large and small quantities®® that is responsible for the difference in posi-
tional heaviness. Therefore, this difference cannot be compensated by any
finite weight placed on the side of the scale that happens to be positionally
lighter.

Following and improving upon Jordanus, Tartaglia also treated the in-
clined plane with the help of the concept of positional heaviness.86 He con-
sidered two adjacent inclined planes of different inclinations but of equal
height (see figure 3.13). He then took two weights which may be imagined
to be connected by a weightless rope making sure that if one weight moves
up, the other moves down. He claimed that when the weights are in the
same proportion as the lengths of these planes with the greater weight
being placed upon the more oblique plane, equilibrium will result. This is,
in fact, a correct proposition about bodies placed on inclined planes.

In his proof, Tartaglia, following Jordanus, managed to compare as-
cents of equal lengths along the differently inclined planes, but starting
from the same height. From the larger vertical projection of the displace-
ment along the steeper ascent he concluded that the corresponding weight
must have a larger positional heaviness. By means of a geometrical ar-
gument he showed that the ratio between the positional heaviness of two
weights equals the inverse relation between the lengths of the inclined
planes. As a consequence, the weight on the steeper plane — due to its
proportionally increased positional effectiveness — is able to equilibrate
the larger weight on the more oblique plane.

Tartaglia thus employed the concept of positional heaviness in his
proof of the law of the lever, in his problematic conclusion that a balance
with equal arms always returns to the horizontal position although the
infinitely small driving force cannot be compensated by any weight, and
as well in demonstrating the equilibrium of an inclined plane. In each case,
his analysis was based on evaluating the straightness of descent, either by
determining the projection of the descent on the vertical, or by its angle
with the line connecting a heavy body to the center of the world. Some of
these achievements and the conceptual framework on which they depend
were both further elaborated and criticized by Benedetti and Guidobaldo.

85Drake and Drabkin (1969, 130).
86 Tartaglia (1546, 96v-97r), Drake and Drabkin (1969, 140-143).
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Figure 3.13: According to Tartaglia, given that MH equals NG, the lines
MX and NZ represent the different positional heaviness of a
body on the corresponding inclined planes. A body at H is
thus positionally heavier than the same body at G in propor-
tion to the length of the lines MX and NZ which for geomet-
rical reasons equals the proportion between the lengths of the
inclined planes DK and DA.
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Tartaglia’s systematic use of the concept of positional heaviness adopt-
ed from Jordanus became a starting point for numerous attempts to apply
Archimedes’ law of the lever to challenging new objects of preclassical me-
chanics. The way Tartaglia applied the concept already shows its inherent
difficulties, which puzzled scholars in the early modern period. The con-
cept was supposed to provide an answer to the problem that the effect
of a weight depends somehow on material conditions which hindered its
straight movement toward the center of the world. But precisely how
this effect came about remained ultimately undetermined. In particular,
Tartaglia was unable to convincingly eliminate the resulting ambiguity of
the concept. As we shall see in the following, this ambiguity triggered
several contradicting interpretations which became stumbling blocks of
preclassical mechanics and resulted in acrimonious struggles between their
adherents.

3.7 Cardano’s approach to positional heaviness

Girolamo Cardano was born in Pavia in 1501. His father was a lawyer
and a friend of Leonardo da Vinci. He studied and practiced medicine,
a subject on which he published extensively. Later, he published also on
mathematics, contributing significantly to the development of algebra. On
the issue of solving third-degree equations he had an intense priority dis-
pute with Tartaglia. He also made major contributions to mechanics. In
1570 he was imprisoned by the Inquisition for heresy, in particular for hav-
ing casted the horoscope of Christ. In the same year, Cardano published
his Opus novum de proportionibus in which he returned to a consideration
of mechanical problems, in particular, of weights on a balance and their
displacements along horizontal and vertical components.

Cardano first treated the balance on a few pages of the first book of
De subtilitate, published in 1550.87 At that time he may have been famil-
iar with Jordanus’ work through Apianus’ edition of Liber de ponderibus
printed 1533.88 It is also possible that he knew the work of Jordanus
through Tartaglia’s Quesiti®® published 1546, four years before his own
publication. In any case, the first part of his text is substantially based on
Jordanus’s treatment of the medieval doctrine of the science of weights.

Cardano began his treatment of the balance with the figure of a bal-
ance deflected from the horizontal equilibrium into an oblique position (see

87Cardano (1550, 16-21).
88de Nemore (1533).
89 Tartaglia (1546).
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Figure 3.14: According to Cardano there are three ways to determine po-
sitional heaviness. The positional heaviness in point F, for
instance, may be determined by the horizontal FP, by the
vertical FL, or by the angle QBF.

figure 3.14). He claimed that a weight placed at the end of the beam of
the balance will be heavier in the horizontal position than in any oblique
position:

Dico quod pondus in C constitutum erit gravius quam si lanx
collocetur in quocunque alio loco, ut pote quod constitueretur
lanx in F. Ut autem cognoscamus quod C sit gravius in eo situ
quam in F, necessarium est ut in aequali tempore movetur per
maius spacium versus centrum. Videmus enim graviora pari
ratione in reliquis existente velocius ad centrum ferri.

I say that the weight placed at C' will be heavier than when
the scale beam is placed in any other position, like when for
instance the beam is located in F. But in order to recognize
that C is heavier in this position than in F) it is necessary that
it is moved in the same time through a greater distance toward
the center. We see namely that the heavier bodies, everything
else being equal, are more quickly carried toward the center.%0

The claim that a weight will be heaviest if the beam is in horizontal
position corresponds precisely to the way in which Jordanus introduced

90Cardano (1550, 16).
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the technical term positional heaviness in the Proemium to the Liber de
ponderibus®® and how he formulated the claim in his fourth proposition
using the term. In Tartaglia’s Quesiti, which Cardano may have known,
there is no explicit proposition with the same claim, but it is implicitly
contained in the proof of his fifth proposition and explicitly formulated as
the first corollary to this proposition:

Dalle cose dette, et dimostrate di sopra, se manifesta qualmente
un corpo grave in qual si voglia parte, che lui se parta, over
removi dal sito della equalita lui si fa piu leve, over leggiero
secondo il sito, over luoco, et tanto pitt quanto pit sara remosso
da tal sito [...]

From the things said and demonstrated above, it is manifest
how a heavy body, whenever parted or removed from the posi-
tion of equality, is made positionally lighter, and the more so,
the more it is removed from that position.%?

The first step of the justification of Cardano’s claim refers to Aris-
totelian dynamics associating the heaviness of a body with the velocity of
its descent as it was formulated in Jordanus’ second comments and in a
sequence of definitions and postulates of Tartaglia’s Quesiti leading to his
second postulate. Jordanus’ postulate reads:

Secunda, quanto gravius tanto velocius descendere.

Second: That which is heavier descends more quickly.”3
Tartaglia’s postulate reads:

Simelmente adimandamo, che nasia concesso quel corpo, ch’e di
maggior potentia debbia anchora discendere piu velocemente,
et nelli moti contrarii, cioe nelli ascensi, ascendere pit pigra-
mente, dico nella libra.

Likewise we request that it be conceded that that body which
is of greater power should also descend more swiftly; and in
the contrary motion, that is, of ascent, it should ascend more
slowly — I mean in the balance.?*

91de Nemore (1533, A iii verso), page 300 in the present edition.

92Tartaglia (1546, 90r). Translation in Drake and Drabkin (1969, 127).

93de Nemore (1533, A iv recto), page 301 in the present edition. Translation in Moody
and Clagett (1960, 175).

94Tartaglia (1546, 83v). Translation in Drake and Drabkin (1969, 116).
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Cardano then announced two reasons for his claim that positional heavi-
ness at the end of a deflected beam is greater the closer the beam is to the
horizontal (see figure 3.14):

Quod autem hoc contingat magis pondere et libra in C' collo-
cata quam in F, ostendo duabus rationibus.

Prima, quod si in aliquo tempore moveatur ex C' in E, et sit
arcus CF aequalis F'G, quod tardius descendet ex F' in G, quam
ex C'in FE, et ita erit levius in F, quam in C.

Secundo, quod posito quod in aequali spatio temporis movere-
tur ex C'in F, ex et F in G, adhuc per arcum CE aequalem
FG, magis appropinquaret centro quam per motum factum in
arcu FG.

Ideo ergo duplici ratione magis gravabit pondus lance posita
ad perpendiculum cum trutina, quam in quoque alio loco.

But that it is heavier when the balance is placed at C than at
F, 1 demonstrate with two reasons.

First, because, insofar as [the weight at the end of the beam]
is moved in some time from C to E, the arc CFE being equal to
FG, it descends more slowly from F' to G than from C to E,
and so it will be lighter at F' than at C.

Second, because, insofar as it is assumed that [the weight at
the end of the beam]| is moved in the same amount of time from
C' to E, and from F to G, up to this point through the same arc
CFE equal to FG, it approaches the center more than through
the motion made along the arc FG.

Hence for this double reason the weight placed on the scale
beam perpendicularly with respect to the support will be heav-
ier than in any other position.?®

Cardano’s first reason considers the case that equal arcs are traversed
in different times and infers that the speed through the arc further away
from the horizontal must be smaller and thus that the weight in this po-
sition must be lighter. His second reason considers the case that equal
arcs are traversed in equal times and infers that the weight closer to the
horizontal approaches the center of the world more.

The following main part of the argument explains the two cases. The
first explanation reads (see figure 3.14):

95Cardano (1550, 16-17).
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Primum igitur sic declaratur. Manifestum est in stateris, et in
his qui pondera elevant, quod quanto magis pondus a trutina,
eo magis grave videtur: sed pondus in C distat a trutina quan-
titate BC' lineae, et in F quantitate FP, sed CB est maior
FP, ex decimaquinta, tertii elementorum Euclidis: igitur lance
posita in C, gravius pondus videbitur quam in F, quod erat
primum.

Ex hac etiam demonstratione manifestum est, libram quanto
magis discendit versus C ex A, tanto gravius pondus reddere,
et eo velocius moveri: at ex C versus @), contraria ratione pon-
dus reddi levius, et motum segniorem, quod et experimentum
docet.

The first is thus explained in the following way. It is manifest
in steelyards and in those [instruments] that lift weights, that
the more the weight is [removed] from the support, the heavier
it appears: but the weight at C' is removed from the support
by the quantity BC of the line, and at F' by the quantity FP,
but CB is larger than FP, from the fifteenth [proposition] of
the third [book] of Euclid: hence when the beam is placed at C,
the weight will appear heavier than at F, which was the first.

From this demonstration it is also manifest that the more the
balance descends from A toward C, the heavier the weight will
be rendered, and the quicker it will be moved: but from C to
@, for the contrary reason, the weight will be rendered lighter,
and the motion slower, as also the experiment shows.%

This explanation is puzzling and not only because the last sentence
refers to an experiment that relates the equilibrium controversy to the
motion along a circular arc, as in the case of a pendulum. Cardano’s text
introduces an idea that cannot be found in Tartaglia’s Quesiti, that is, the
idea that if the beam is in a deflected position, the horizontal distance to
the vertical through the center of the balance is a measure of the positional
weight. It is, however, as discussed earlier, implicitly contained, among
others, in the eighth proposition of Jordanus’ De ratione ponderis, which
is the proposition that has been corrected from proposition six of Elementa
and Liber de ponderibus (see section 3.5). It is thus also contained in the
eighth proposition of Tartaglia’s later edition of Jordanus’ corrected and
extended treatise, which is supplemented by improved drawings (see figure
3.15).

96 Cardano (1550, 17).
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Figuraa Nicolao T artalea
coftrutta fuper bane 8,

(=

il

Figure 3.15: Tartaglia’s figure added to the text of Jordanus in order to
explain the idea that in the case of a bent lever ACB with
equal weights attached, the equilibrium is characterized by
equal horizontal distances EB and AC.

The conclusive part of Cardano’s second explanation reads (see figure
3.14):

Secundum vero sic demonstratur. [...] Dum igitur libra move-
tur ex C' in F pondus descendit per BM lineam, seu propin-
quius centro redditur quam esset in C, et dum movetur per
spatium arcus FG, descenditque per OP, et BM, maior est OP.

Igitur suppositio etiam quod in aequale tempore transiret ex C'
in E, et ex F in G, adhuc velocius descendit ex C, quam ex F.
Igitur gravius est in C, quam in F. Ex hoc autem demonstratur
quod dicit Philosophus, quod si aequalia sint pondera in F' et
R, libra tamen sponte redit ad situm CD, ubi trutina sit AB.
Nec hoc demonstrat Iordanus, nec intellexit.

But the second will be thus demonstrated. [...] When thus the
balance is moved from C to E the weight descends through the
line BM, that is, it is rendered closer to the center than when
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it was in C, and when it is moved through the space of the arc
FG, it will descend through OP, and BM [is] larger than OP.

Hence also the supposition that when [the weight] traverses
in the same time from C to E, and from F to G, it thus de-
scends more quickly from C than from F. Hence, it is heavier
at C than at F. But from this it is demonstrated what the
Philosopher says, that when the weights at F' and R are equal,
the balance will nevertheless spontaneously return to the posi-
tion CD, where the support is AB. And this Jordanus neither
demonstrates nor understands.?”

In this case Cardano again closely followed the fourth and fifth pos-
tulates of Jordanus by which the vertical descent is taken as a measure
of the positional heaviness (see section 3.5). His argument also parallels
Tartaglia’s line of argument in the Quesiti where the twelfth in combi-
nation with the seventeenth definition completely determines his further
reasoning (see section 3.6).

Tartaglia’s twelfth and seventeenth definitions read:

Diffinitione XII:

Un corpo se dice essere pili, over men grave d’un’altro nel de-
scendere, quando che la rettitudine, obliquita, over dependen-
tia del luoco, over spacio dove descende lo fa descendere pit,
over men grave dell’altro, et similmente piu, over men veloce
dell’altro, anchor che siano ambidui simplicemente eguali in
gravita.

Definition XII:

A body is said to be more or less heavy in descent than another
when the straightness, obliquity, or pendency of the place or
space where it descends makes it descend more or less heav|il]y
than the other, and similarly more or less rapidly than the
other, though both are simply equal in heaviness.”®

Diffinitione XVII:

Piu obliquo se dice essere quel descenso, d’un corpo grave, il
quale in una medesima quantita, capisse manco della linea della

97Cardano (1550, 17).
98 Tartaglia (1546, 82v). Translation in Drake and Drabkin (1969, 114).
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direttione, overamente del descenso retto verso il centro del
mondo.

Definition XVII:

The descent of a heavy body is said to be more oblique when
for a given quantity it contains less of the line of direction, or
of straight descent toward the center of the world.%

Consequently, Cardano, like Jordanus and Tartaglia, also arrived at
the erroneous conclusion that an equilibrated balance, deflected into an
oblique position, will spontaneously return to the horizontal. Strictly
speaking, this conclusion does not follow from his first measure of po-
sitional weight, but Cardano evidently failed to notice the fact that his
different measures have different implications. In particular, he failed to
recognize the potential of the first measure to lead to the correct solution
of later classical physics.

Remarkably, Cardano ascribed the traditional stance in the equi-
librium controversy to Aristotle himself. While he disputed that the
claim that a deflected balance returns to the horizontal had been prop-
erly demonstrated by Jordanus, he referred to the Aristotelian Mechanical
Problems for further support of this claim and introduced, on this basis, a
third measure of positional weight, the angle with regard to what he called
the meta, the direction of the line of support in the sense that, when the
support is from above, the meta is represented by the lower half line, and
when the support is from below, the meta is represented by the upper half
line (see figure 3.14):

Aristoteles dicit hoc contingere, quum trutina est supra libram,
quia angulus @BF metae, maior est angulo QBR. Et similiter
quum trutina fuerit QBQB, erit meta AB, et tunc angulus
RBA, maior erit angulo F'BA, sed maior angulus reddit gravius
pondus.

[..]

Generalis igitur ratio haec sit: pondera quo plus distant a meta
seu linea descensus per rectam aut obliquum, id est, per angu-
lum, eo sunt graviora.

Aristotle says that this happens when the support is above the
balance, because the angle QBF of the meta is larger than the
angle @BR. And similarly when the support is @B, the meta

9 Tartaglia (1546, 83r). Translation in Drake and Drabkin (1969, 115).
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will be AB, and thus the RBA will be larger than the angle
FBA, but the larger angle will render the weight heavier.

[o.]

The general reason is hence this: the more the weights are
removed from the meta or from the line of descent along a
straight or an oblique line, that is, [as measured] by an angle,
the heavier they are.!%°

Many years later, in 1570, Cardano published his Opus novum de pro-
portionibus where he once again returned to a consideration of mechanical
problems, in particular also of weights on a balance and their displacements
along horizontal and vertical components without, however, proposing a
new approach to the question of the stability of the balance.!0!

3.8 Guidobaldo’s approach to positional heaviness

In his Mechanicorum liber of 1577192 Guidobaldo del Monte made consid-
erable efforts to criticize the concept of positional heaviness, as introduced
by Jordanus and revived by Tartaglia and Cardano, as well as some of the
consequences drawn from it. As this criticism provides the background for
many of his marginal notes to Benedetti’s book, it shall be discussed in the
following at some length.1% Even in the preface to his book, Guidobaldo
stressed the fundamental importance of his criticism of Jordanus and his
early modern followers Tartaglia and Cardano:

Verum quo facilius totius operis substructio ad fastigium suum

per duceretur, nonnulla quoque de libra fuerunt pertractanda,

et praesertim dum unico pondere alterum solum ipsius brachium
penitus deprimitur: que in re mirum est quantas fecerint ru-

inas Tordanus (qui inter recentiores maximae fuit auctoritatis)

et alii; qui hanc rem sibi discutiendam proposuerunt.

Now, in order that my whole work might be more easily built
up from its foundation to its very top, certain properties of the
balance had to be treated, particularly the case when one arm

100Cardano (1550, 17-18).

101 Cardano (1570, 100-102).

102DelMonte (1577), see Renn and Damerow (2010).

103See also the illuminating discussion of Guidobaldo’s controversy on the same issue
with the “Goto” in Gamba and Montebelli (1988). For a discussion of Guidobaldo’s
criticism of the concept of positional heaviness, see also Duhem (1991, 150-156).
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of the balance is depressed by a single weight. On this subject
it is strange what disastrous errors were made by Jordanus
(who had enjoyed the greatest authority among recent writers)
and others who proposed this subject.!%4

Of particular importance to Guidobaldo was the claim that the bal-
ance, in any position also outside the horizontal, is in an indifferent equi-
librium, in contrast to the opinion of Jordanus, Tartaglia, and Cardano,
that it would return spontaneously to the horizontal position. The argu-
ment was of such importance to Guidobaldo that he spent the better part
of some fifty pages of his book in dealing with it. In the Italian edition
of 1581, he made the translator, Filippo Pigafetta, insert at the end of
this discussion a lengthy comment,'® actually written by himself, refer-
ring both to the theoretical novelty of Guidobaldo’s treatment and to the
evidence he had been able to offer for it by actually constructing balances
that displayed indifferent equilibrium:

Che questo autore ¢ stato il primo a considerare esquisitamente
la bilancia, ed intenderla dalla natura, e dal vero esser suo;
pero che egli il primiero di tutti ha manifestato chiaramente
il modo del trattarla, e insegnarla, con proporre tre centri da
essere considerati in questa speculatione; I'uno ¢ il centro del
mondo, 'altro il centro della bilancia, ed il terzo il centro della
gravezza della bilancia, che in essa era un nascosto secreto di
natura. Senza questi tre centri, chiara cosa ¢, che non si puote
venire in conoscimento perfetto, ne dimostrare gli effetti varii
della bilancia, i quali nascono dalla diversita del collocare il
centro della bilancia in tre modi, cioé quando il centro della
bilancia sta sopra il centro della gravezza di essa, overo quando
¢ di sotto, o pure allhorche il centro della bilancia ¢ nell’istesso
centro della gravezza di lei;

si come l'autore insegna nelle tre precedenti dimostrationi, cioe
nella seconda, nella terza, e nella quarta propositione: peroche
nella seconda mostra quando la bilancia torna sempre egual-
mente distante dall’orizonte; nella terza quando non solo non
ritorna, ma si move al contrario; nella quarta, che essendo

104The preface of DelMonte (1577) is printed without page numbers, see the facsimile
reproduction in Renn and Damerow (2010, 54). Translation in Drake and Drabkin
(1969, 246).

105DelMonte (1581, 28v—29r). See the discussion in Micheli (1995), in particular, pp.
163-167.
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la bilancia sostenuta nel suo centro dalla gravezza sta ferma
dovunque ella si trova, il quale effetto in particolare non e piu
stato tocco, ne veduto, ne manco da niuno manifestato, fuor
che dall’autore: anzi fin hora tenuto falso, ed impossibile da
tutti gli predecessori nostri; i quali con molte ragioni si sono
sforzati di provare non solamente il contrario, ma hanno etian-
dio affermato per certo, che la sperienza mostra la bilancia
non dimorare gia mai ferma se non quando ella & egualmente
distante dall’orizonte.

La qual cosa in tutto e contraria alla ragione prima, per essere
la dimostratione della sudetta quarta propositione tanto chiara,
facile, e vera, che non so, come se le possa in modo alcuno con-
tradire: e poi all’esperienza conciosia che I’autore habbia fatto
sottilissimamente lavorare bilancie giuste a posta per chiarire
questa verita, una delle quali ho io veduto in mano dell'Tllustre
Signor Gio. Vicenzo Pinello, mandatagli dall’istesso autore,
la quale per essere sostenuta nel centro della su a gravezza,
mossa dovunque si vuole, e poi lasciata, sta ferma in ogni sito
dove ella vien lasciata. Ben ¢ egli vero, che non bisogna, nel
fare cotesta esperienza, correr cosi a furia, per essere cosa oltra
modo difficile, come dice I'autore di sopra, il fare una bilancia,
la quale sia nel mezo delle sue braccia sostenuta a punto, e nel
centro proprio della sua gravezza.

Per la qual cosa egli ¢ da por mente, che qual’hora alcuno si
mettesse a far cotale esperienza, e non gli riuscisse, non percio
si deve sgomentare, anzi dica pur fermamente di non haver
bene operato, ed un’altra volta ritorni a farne la sperienza, fin
che la bilancia sia giusta, ed eguale, e venga sostenuta a punto
nel centro della gravezza sua.

Et benche da altri siano state tocche le altre due predette spec-
ulationi, cioé quando la bilancia ritorna sempre egualmente
distante dall’orizonte, e quando si move al contrario di questo
sito, tuttavia non si & piu intesa questa verita gia mai aperta-
mente, se non dall’autore nostro; peroche gli altri non hanno
co’l senno penetrato in cio tanto avanti, che habbiano saputo
con distintione considerare il centro della bilancia in tre modi,
come ho narrato.

Now our author is the first to have considered the balance in
detail and to have understood its nature and true quality. For
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he is the first of all to have shown clearly the way of dealing
with it and teaching about it, by propounding three centers
to be considered in its theory: one is the center of the world,
another the center of the balance, and finally the center of
gravity of the balance: for in this was a hidden secret of nature.
Without these three centers, it is clear that one could not come
to a perfect knowledge or demonstrate the various effects of the
balance which emerge from the diversity of placing the center
of the balance in three ways, that is, when the center of the
balance is above the center of gravity, or below, or when the
center of the balance is in its very center of gravity.

These the author shows in the three preceding demonstrations,
that is, in the second, third, and fourth propositions. In the
second, he shows when the balance returns to a horizontal posi-
tion, in the third when it not only does not return but moves in
the contrary direction, and in the fourth that, when a balance
is sustained at its center of gravity, it remains at rest wher-
ever it is left. This last effect in particular has not been dealt
with before, or seen, or even suggested by anybody besides
this author. Indeed, until the present time it has been held to
be false and impossible by all our predecessors, who not only
have given many arguments attempting to prove the contrary,
but have even assumed it to be certain that experience shows
the balance never to remain fixed except when parallel to the
horizon.

This is quite contrary to reason, first because the demonstra-
tion of the above fourth proposition is so clear, easy, and true
that I do not know how it could be contradicted in any way;
and second, their view is contrary to experience, inasmuch as
our author has arranged for precise balances to be manufac-
tured in a very sophisticated way for the purpose of showing
this truth, one of which I saw in the hands of the illustrious
Giovanni Vicenzo Pinelli,'¢ sent to him by the author himself,
and, because it was sustained at its center of gravity, it could
be moved to any position and would rest at any place where
it was left. True it is that in performing this experiment one
might not act hastily, for it is an extremely difficult thing (as
the author says above) to make a balance which is sustained

106 Giovanni Vincenzo Pinelli, 1535-1601.
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precisely at the center of its arms and at its precise center of
gravity.

For this reason it is good to remember that, when anyone tries
to perform such an experiment and does not succeed, he should
not be discouraged, but rather should say that he had not been
careful enough, and should try repeatedly until the balance is
just and equal and is sustained precisely at its center of gravity.

And though others have touched on the other two propositions
(that is, when the balance always returns to a horizontal po-
sition, and when it moves to the contrary side), yet the truth
of this has never been understood except by this author, and
others have not gone far enough to have made a distinct con-
sideration of the center of the balance in three ways, as I have
explained.'0”

This inserted text higlights the centrality of the reconcialiation of Aris-
totelian and Archimedean approaches for Guidobaldo’s work, embodied in
the relation between the three centers: the center of the world, the center
of the balance, and the center of gravity of the balance.'%® Inachievable as
this synthesis was because of the impossibility of an indifferent equilibrium
with gravitational forces acting toward a center, it did create a challenging
problem driving the further development of mechanics, including experi-
mental endeavors as described by Pigafetta.

Guidobaldo started the main part of his book with a long chapter
on the balance. After some propositions about balances that are not sus-
pended from the center of gravity, he turned with his fourth proposition to
his major concern mentioned above, that is, the indifference of a balance
suspended from the center of gravity against displacements. He actually
gave a rather concise demonstration of the statement formulated in this
proposition:

Libra horizonti aequidistans aequalia in extremitatibus, ae-
qualiterque a centro in ipsa libra collocato, distantia habens
pondera; sive inde moveatur, sive minus; ubicunque relicta,
manebit.

107DelMonte (1581, 28v). Translation in Drake and Drabkin (1969, 294-295), with
modifications.

108For the role of this argument in Guidobaldo’s work, see van Dyck (2006a) and van Dyck
(2006b); for the general role of cosmological considerations in preclassical mechanics,
see Damerow and Renn (2010); Bittner and Renn (2007).
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A balance parallel to the horizon, having its center within the
balance and with equal weights at its extremities, equally dis-
tant from the center of the balance, will remain stable in any
position to which it is moved.!%?

The gist of his proof consists of a simple idea. The proof directly follows
from his definition of the concept of center of gravity of a body, adopted
from Commandino’s Latin translation of Pappus’ Collectiones:'1°

Centrum gravitatis uniuscuiusque corporis est punctum quod-
dam intra positum, a quo si grave appensum mente concipiatur,
dum fertur, quiescit; et servat eam, quam in principio habebat
positionem: neque in ipsa latione circumvertitur.

The center of gravity is a certain point within it, from which,
if it is imagined to be suspended and carried, it remains stable
and maintains the position which it had at the beginning, and
is not set to rotating by that motion.'!!

If the balance is suspended from its center of gravity it must — according
to this definition — remain stable in any position. From a modern point of
view of the necessary rigor of demonstrations, this of course is a tautology
rather than a proof. What is missing is a justification of the implicit
assumption that a center of gravity meeting the requirements of Pappus’
definition always exists.

Guidobaldo also gave another definition of the center of gravity which
he adopted from Federico Commandino:

Centrum gravitatis uniuscuiusque solidae figurae est punctum
illud intra positum, circa quod undique partes aequalium mo-
mentorum consistunt. si enim per tale centrum ducatur planum
figuram quomodocunque secans semper in partes aequeponder-
antes ipsam dividet.

The center of gravity of any solid shape is that point within it
around which are disposed on all sides parts of equal moments
[partes aequalium momentorum|, so that if a plane is passed

109DelMonte (1577, 5r), Renn and Damerow (2010, 65). Translation in Drake and
Drabkin (1969, 261).

110See Commandino’s edition (Pappus of Alexandria, 1660, 450), first published in 1588
(Pappus of Alexandria, 1588).

H1DelMonte (1577, 1r), Renn and Damerow (2010, 57). Translation in Drake and
Drabkin (1969, 259).
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through this point cutting the said shape, it will always be
divided into parts that are in equilibrium [partes aequeponder-
antes].11?

If the concept of moment is understood in a modern sense as describing
the effect of a weight depending on its position, that is, the vector product
of the weight and the lever arm, the definition is essentially correct (see
section 1.4). Tt should be noted, however, that the concept of momento
or momentum, later revived by Galileo,!!® was employed by Guidobaldo
neither here nor in any of his other demonstrations.

Guidobaldo must have felt that his proof of the indifference of a bal-
ance suspended from the center of gravity could not easily convince his
contemporaries. Thus he noted:

Quoniam autem huic determinationi ultimae multa a nonnullis
aliter sentientibus dicta officere videntur; idcirco in hac parte
aliquantulum immorari oportebit; et pro viribus, non solum
propriam sententiam, sed Archimedem ipsum, qui in hac eadem
esse sententia videtur, defendere conabor.

But with regard to this last conclusion, many things are said
by men who believe otherwise. Hence it will be well to dwell
further on this; and according to my ability I shall endeavor
to defend not only my own opinion but Archimedes too, who
seems to have been of the same opinion.'*

Continuing the proof of his fourth proposition he therefore started to
address extensively the erroneous claim of his adversaries and their alleged
proofs that a balance removed from the horizontal position will actually
not remain indifferent to this displacement, but rather return to its original
position.

112DelMonte (1577, 1r), Renn and Damerow (2010, 57). Translation in Drake and
Drabkin (1969, 259). In the second part Guidobaldo clearly referred to the Latin
translation aequeponderare of Archimedes’ expression for being in equilibrium. The
translation of Drake and Drabkin has been corrected here accordingly.

13 For a comprehensive study of Galileo’s use of the term and its historical context, see
Galluzzi (1979).

H4DelMonte (1577, 5v), Renn and Damerow (2010, 68). Translation in Drake and
Drabkin (1969, 262).
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3.8.1 Overview of Guidobaldo’s criticism of the claims of his
adversaries

The long, somewhat chaotic supplement of some fifty pages''® to Guidobal-
do’s fourth proposition of the chapter on the balance starts with a marginal
note. This explicitly lists the treatises that were the subject of Guidobal-
do’s critique (see figure 3.16). In the first place he referred to Jordanus’ De
ponderibus, known to him from the commented edition of Apianus which
he owned.'!® In the second place he referred to Cardano’s De subtilitate,'1”
and finally to Tartaglia’s Quesiti.''® As we have discussed in the preceding
sections, these treatises in fact all contain the claim that a balance in
equilibrium, if it is moved out of the horizontal position, will spontaneously
move back into the horizontal.!'?

‘,l m’ * Quoniam autem huic determinationi vitima multad nonnullis

ribs. aliter fentientibus dicta officere videntur 3 ddcirco in hac parteali-
,:2 Cronds| quantulum immorari oportebit 5 & pro viribus , non folum pro-
nus de fub.| priam fententiam , fed Archimedemipium, quiin haceademeile
wlitate, | fantentia videtur, defendere conabor.

Nicolaus :

Tartalea | * ’
de guafitis,
ac uuentio

!

Figure 3.16: Marginal note listing the treatises Guidobaldo is criticizing.

Guidobaldo proceeded, over many pages, to derive assertions within
the framework of Jordanus, Tartaglia, and Cardano, including his own
opinion about the indifferent equilibrium of a balance, initially derived

15DelMonte (1577, 5v—-30r), see Renn and Damerow (2010, 68-117).

116de Nemore (1533), see chapter 5 for the discussion of Guidobaldo’s marginal notes in
his copy of the treatise. It seems that this version of Jordanus’ doctrine was the only
one to which he explicitly referred, although he could have also seen the edition of De
ratione ponderis by Tartaglia (de Nemore, 1565). On the manuscript tradition and an
English translation, see Moody and Clagett (1960, 169-227).

17Cardano (1550, 16-20) and the corresponding part contained in Opera omnia (Car-
dano, 1966, vol. 3, 369-371).

118 Tartaglia (1546).

119de Nemore (1533, propositio secunda), page 305 in the present edition; Cardano (1550,
17, emphasized by a marginal note); Tartaglia (1546, 88v, libro ottavo, quesito XXXII,
propositione V); see also the corresponding proposition in Tartaglia’s edition of Jor-
danus’ De ratione ponderis (de Nemore, 1565, 3v, quaestio secunda).
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with the help of the concept of center of gravity. His motives are explained
in the already mentioned comment inserted by Pigafetta (see page 87ff.):

ed affine che questa nova opinion sua, dimostrata a pieno nella
predetta quarta propositione, resti totalmente chiara, non si
¢ gia contentato egli d’haverla dimostrata con vive ragioni, e
certe solamente, ma come buon filosofo, procedente con via
di reale dottrina, e di fondata scienza, (imitando Aristotele, il
qual ne’ principii de suoi libri, investigando dottrina migliore,
ha datto contra la opinione de gli antichi, solvendo le ragioni
addotte da loro:) ha ben voluto, essendo la verita una sola,
proporre le opinioni de’ suoi predecessori, ed esaminare le loro
ragioni, le quali sembrano provar il contrario, e solverle, la loro
fallenza dimostrando co’l presente discorso [...]

Anzi di piu per confermatione della verita soggiunge, che questi
tali non hanno saputo fare le loro demostrationi; poi che co’l
proprio modo di speculare usato da loro, e con le loro medesime
ragioni prova la sua intentione, e sentenza essere verissima,
appoggiando si alla dottrina di Aristotele sempre, e facendo
toccar con mano, che egli con esso lui € d’accordo nelle questioni
mechaniche.

And to the end that this new opinion of his, fully demonstrated
in the aforesaid fourth proposition [about the indifferent equi-
librium], should be completely clear, he has not been content
to demonstrate it with vivid and certain reasoning alone, but,
like a good philosopher, proceeding by the path of true doctrine
and well-founded science (imitating Aristotle, who at the be-
ginning of his books, in quest of the best doctrine, has given the
contrary opinions of the ancients, analyzing the reasons which
they accepted), he has wished, because there is but one truth,
to propound the opinions of his predecessors and examine the
reasons by which they prove the contrary, and to resolve these,
showing their fallacy in the present argument |...]

Moreover, as a confirmation of the truth, he adds that they did
not know how to construct their proofs; for by their own mode
of theorizing and their very own reasons, he proves his opinions
to be most true, supporting them always on the doctrine of
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Aristotle and making it clear that he is in accord with him in
the mechanical questions.'?°

Mentioning Aristotle here is significant. It shows that Guidobaldo
could not easily dismiss a concept as closely related to Aristotelian dynam-
ics as is positional heaviness. His faithfulness to Aristotle was evidently a
major motive for his engagement in the equilibrium controversy, as also
his marginal comments to the works of Jordanus and Benedetti show.

Guidobaldo’s discussion of arguments in the treatises of his adver-
saries, which are related to his allegedly fundamental “discovery” of the
indifferent equilibrium of a balance suspended from its center of gravity,
is composed of several sections. Typically these sections begin with a
paraphrase or reference to an argument of one of these treatises which
Guidobaldo considered worthy of substantial rejection. He then presented
opposing arguments or derived implicit consequences that justified his crit-
icism. The result is a flow of meandering arguments and counterarguments.
They extend the proof of his fourth proposition to an irritating web of in-
ferences that cannot easily be disentangled. Given that the arguments of
Guidobaldo’s adversaries are themselves partly hybrids of various threads
of implications, an adequate understanding of the disproportionate “proof”
of his fourth proposition requires taking into account the context of the
arguments in their treatises. A brief overview of the different sections of
Guidobaldo’s continuation of his proof may help to follow his arguments.

1. Guidobaldo first developed a general argument against the proposi-
tion that a balance in equilibrium if moved into an oblique position
will return to the horizontal. He showed that the implications of
this proposition are incompatible with the concept of the center of
gravity upon which Archimedes’ theory of equilibrium is based.!?!

2. Guidobaldo then paraphrased and extended a counterargument of
Tartaglia’s fictitious interlocutor Mendoza against his claim that the
balance will return to the horizontal.!?? This counterargument is
based on the idea that it must be possible to compensate the alleged

120DelMonte (1581, 29r). Translation in Drake and Drabkin (1969, 295-296), with slight
modifications.

121DelMonte (1577, 6r-6v), Renn and Damerow (2010, 69-70), for an English translation
see Drake and Drabkin (1969, 262-263).

122 Tartaglia (1546, 90v—91r), for an English translation see Drake and Drabkin (1969,
128-129).
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greater positional heaviness of the upper end of the balance in an
oblique position by adding a weight to the lower end.'?3

. Tartaglia rejected this counterargument by referring to an idea of

Jordanus concerning the possibility of infinitely small differences be-
tween “mixed” angles which are composed of straight and curved
legs.'?* Guidobaldo paraphrased Tartaglia’s rejection of Mendoza’s
counterargument, followed by an extensive argument against this re-
jection.'?® At the end of this argument Guidobaldo introduced the
condition that the directions to the center of the world for both ends
of the beam of the balance are not parallel, attributing this assump-
tion also to his adversaries although they did not make explicit use
of it in their arguments. This condition later became a major con-
cern in his reception of Benedetti’s work. Contrary to the claim
of Guidobaldo’s adversaries, it follows that the lower end becomes
positionally heavier than the upper end, a conclusion to which he
returned in the sequel.

. Next, Guidobaldo paraphrased three different arguments for dealing

with the changing positional heaviness in dependence of the position
of the beam of the balance. They differ in the measure of the po-
sitional heaviness, the first determining the positional heaviness by
the horizontal distance of the weight from the vertical axis of sup-
port, the second by the vertical component of the actual trajectory,
the third by the angle between the beam of the balance and the di-
rection toward the center of the world. They have in common that
they seem to determine somehow the effect of the obliquity by which
the weights are hindered in descending directly to the center of the
world.

Guidobaldo first reported Cardano’s argument that the weight of a
body attached to the beam of the balance is heavier the more dis-
tant it is from the support of the balance (see section 3.7).126 This

123DelMonte (1577, 6v), Renn and Damerow (2010, 70), for an English translation see
Drake and Drabkin (1969, 263).

124 Tartaglia (1546, Book 8, sixth proposition, 91r-92r), for an English translation see
Drake and Drabkin (1969, 129-131). Tartaglia had evidently taken this argument from
the manuscript he used in his later edition of Jordanus’ De ratione ponderis, de Nemore
(1565, 4r), for an English translation see Moody and Clagett (1960, 179).

125DelMonte (1577, 6v-8r), Renn and Damerow (2010, 71-73), for an English translation
see Drake and Drabkin (1969, 263-265).

126 DelMonte (1577, 8v), Renn and Damerow (2010, 74), for an English translation see
Drake and Drabkin (1969, 265-266). See also Cardano (1550, 16—20) and (Cardano,
1966, vol. 3, 369-371) which is discussed above.
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distance is measured, as we have seen, by the horizontal distance of
the suspended weight from the vertical through the center of the bal-
ance.'?” Accordingly, a body suspended from a balance arm would
be heaviest in the horizontal position of that arm, the position in
which its motion would also be swifter than in any other position.
This conceptualization of positional heaviness is close to the mod-
ern concept of torque, suggesting that the positional heaviness at the
upper and the lower position must be the same (see section 1.4).
The second argument is based on taking the vertical distances of
descent as a measure of the positional heaviness.!?® Guidobaldo
knew this argument from his copy of Apianus’ edition of Jordanus’
treatise Liber de ponderibus, where the argument forms the basis of
the fourth and fifth postulates and is further elaborated in Apianus’
commentary to Jordanus’ second proposition.'?® The argument also
appears in Jordanus’ treatise De ratione ponderis and is thus also
contained in Tartaglia’s edition (see section 3.5).130 As discussed
above, an extensive version of the argument is furthermore contained
in Tartaglia’s Quesiti (see section 3.6).13! The argument is also
appended by Cardano to his virtually correct conceptualization of the
positional heaviness as representing — in modern terms — the torque.
It seemed to imply the same conclusion as his first argument about
the changing positional heaviness in dependence of the obliquity of
the beam of the balance. This argument, however, provided a strong
reason in favor of the erroneous conclusion that the balance must
return to the horizontal position.

The third argument, which Guidobaldo again explicitly attributed to
Cardano,'3? involves the concept of meta and is based on taking as a
measure the angle between the beam of the balance and the direction

127TDelMonte (1577, 8v) added the marginal note: Cardanus primo de subtilitate. The
note concerns Cardano (1550, 16-17). Drake and Drabkin (1969, 266, footnote 20)
attribute misleadingly also Guidobaldo’s following references to Jordanus and Tartaglia
to this proof.

128DelMonte (1577, 8v-9r), Renn and Damerow (2010, 74-75), for an English translation
see Drake and Drabkin (1969, 266-267).

129de Nemore (1533, B ii recto-B ii verso), pages 305-306 in the present edition.

130de Nemore (1565, 3v), for an English translation see Moody and Clagett (1960, 176
179).

131 Tartaglia (1546, 89r-89v), for an English version see Drake and Drabkin (1969, 125
127).

132Guidobaldo referred to Cardano (1550, 17-18).
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toward the center of the world.'®3 From the fact that the angle, thus
defined, is greater in the upper than in the lower position, Cardano
concluded that also the positional heaviness must be greater in the
upper position.

5. Before detailing a refutation of his adversaries, Guidobaldo coun-
tered both Cardano’s and Tartaglia’s arguments in a general way by
stressing that from the observation that a weight is swifter or its
motion straighter, it does not follow that it will therefore also be
heavier:

Neque enim intellectus quiescit, nisi alia huius ostendatur
causa; cum potius signum, quam vera causa esse videatur.
Now the intellect is not satisfied unless this can be demon-
strated from some other cause, for this appears to be merely
a sign rather than a cause.'3*

He also noticed that all arguments referring to the swiftness of motion
do not actually infer the positional heaviness of a body from its
position, but only from its departure from that position.
Guidobaldo started his detailed account of the arguments of his ad-
versaries with a discussion of Cardano’s claim that the positional
heaviness is determined by the distance from the vertical through the
center of the lever, that is, the first argument he had introduced ear-
lier.!3% In the sequel he gave an account of the changing effect of the
obliquity of the beam of a balance from his own perspective.'36 His
account included the cosmological context, in contrast to the tacit
assumption of Cardano that the lines drawn from different points of
the balance to the center of the world are parallel and thus cannot
meet at this point. Guidobaldo’s arguments are mainly based on
physical reasons for his own claim that a weight (pondus) attached
to the end of the beam of a balance is more or less heavy (gravius)
according to the amount of support the beam gets from the center
of the balance in dependence on the obliqueness of its position.

133DelMonte (1577, 9r), Renn and Damerow (2010, 75), for an English translation see
Drake and Drabkin (1969, 267).

34DelMonte (1577, 9v), Renn and Damerow (2010, 76). Translation in Drake and
Drabkin (1969, 267-268).

135DelMonte (1577, 9r-9v), Renn and Damerow (2010, 75-76), for an English translation
see Drake and Drabkin (1969, 267-268).

136DelMonte (1577, 9v-151), Renn and Damerow (2010, 76-87), for an English translation
see Drake and Drabkin (1969, 268-275).
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6. Guidobaldo continued with a critique of the second claim of his ad-
versaries, in this case, as mentioned above, maintained by Jordanus,
Tartaglia, and Cardano as well.!3” All of them considered the verti-
cal descent of a weight attached to the end of the beam of a balance,
that is, the projection of the circular path of the end of the beam on
the vertical direction to the center of the world, to be a measure of
the obliquity of its path and thus of the weight’s changing positional
heaviness. Guidobaldo’s refutation made use of two arguments. He
first referred to the cosmological fact that the directions from differ-
ent points of the circular path of the end of the beam toward the
center of the world cannot be parallel and thus only approximately
represent the positional heaviness. From the failure of his adversaries
to take this fact into account, he concluded that all their demonstra-
tions are false. His second argument conceded that the difference
of the directions toward the center of the world is so small as to be
imperceptible, and that their assumption that the straight descents
of the weights are parallel was feasible. On this basis he then showed
that their definition of positional heaviness was ambiguous and leads
to contradictory results.

7. After demonstrating that the arguments of his three adversaries may
lead to untenable conclusions, Guidobaldo added a sophisticated ge-
ometrical proof that on the basis of their assumptions about the re-
lation between the vertical descent, the obliqueness of descent, and
the positional heaviness, he could actually infer the opposite of their
claim, namely that the positional heaviness at a position closer to the
vertical is greater than the positional heaviness at a position more
distant to the vertical, which is counter-intuitive.33

8. What follows is a short commentary on the origin of the errors of
his adversaries. Guidobaldo argued that in general, inferences from
false assumptions are false.3?

9. After this general commentary, Guidobaldo once again returned to
the dependence of the positional heaviness on the geometrical con-
stellation of the inclined balance, now paying attention to the fact

37DelMonte (1577, 15r-17r), Renn and Damerow (2010, 87-91), for an English transla-
tion see Drake and Drabkin (1969, 275-277).

138DelMonte (1577, 17r-17v), Renn and Damerow (2010, 91-92), for an English transla-
tion see Drake and Drabkin (1969, 277-278).

139DelMonte (1577, 17v-18r), Renn and Damerow (2010, 92-93), for an English transla-
tion see Drake and Drabkin (1969, 278-279).
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that both weights should be considered as being connected by the
beam so that their motions cannot be considered independently.!*°
He tried to show that, even if the assumptions of his adversaries
were accepted, that is, if the directions from the weights attached to
the ends of the beam toward the center of the world were assumed
to be parallel, and that the positional heaviness depended on how
straight (rectus) their descent is, it does not necessarily follow from
their arguments that the beam returns to the horizontal.

At this point Guidobaldo introduced the idea that one has to con-
sider both weights not separately, but connected by the beam of
the balance. From this perspective he reconsidered the arguments of
his adversaries. He first discussed the dependence of the positional
heaviness on the vertical descent of weights attached to the beam,
as claimed by Jordanus, Tartaglia, and Cardano. He then discussed
the dependence on the horizontal distance to the vertical through
the point of suspension of the balance, as claimed by Cardano. In
both cases Guidobaldo argued that the positional heaviness must be
equal. In the first case he drew attention to the fact that one must
not compare two descents, but rather a descent on one side with a
rise on the other. In the second case the positional heaviness is equal
by definition so that both measures lead to the same conclusion, in
agreement with Guidobaldo’s claim that the balance is in indifferent
equilibrium. As an act of virtuosity Guidobaldo added the argument
that if one compares ascents rather than descents, the balance will
move, according to the logic of his adversaries, into a vertical and
not a horizontal position.

10. Guidobaldo continued with an investigation of the situation in which
the directions meet at the center of the world, instead of being paral-
lel, and with a discussion of the meaning of obliqueness and straight-
ness as criteria for the positional heaviness, offering his own reinter-
pretation of this concept.'*! He concluded that, contrary to the
opinion of his adversaries, the positional heaviness in the lower po-
sition must be greater and not smaller than the weight in the upper
position.

HM0DelMonte (1577, 18r-19r), Renn and Damerow (2010, 93-95), for an English transla-
tion see Drake and Drabkin (1969, 279-281).

MIDelMonte (1577, 19r-19v), Renn and Damerow (2010, 95-96), for an English transla-
tion see Drake and Drabkin (1969, 281).
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11. This conclusion contradicts, of course, not only the claims of Guido-
baldo’s adversaries, but also his own claim that an equilibrated bal-
ance suspended at its center of gravity, if moved to an oblique posi-
tion, will remain there. Therefore he now made use of his main argu-
ment, which he had introduced earlier, namely that the two weights
on the balance have to be considered in conjunction.'4? He criticized
his adversaries for not taking this circumstance into account. His ar-
gument is implicitly based on the modern idea that the horizontal
components of the directions toward the center of the world cancel
each other out so that the remaining directions of gravity are parallel
and the straightness of descent is the same for both weights.

12. So far Guidobaldo had extensively discussed and refuted all the infer-
ences his adversaries had drawn from taking horizontal and vertical
measures as defining the magnitude of the positional heaviness. At
this point he moved on to the last claim of his initial overview.'43
Cardano had argued that the angle between a beam supported from
above and the meta, the direction toward the center of the world,
determines the positional heaviness of a body attached to the end of
the beam. He concluded that in this case the positional heaviness of
the upper body exceeds that of the lower body. He further claimed
that if the balance is supported from below, the positional heaviness
of the lower body will exceed that of the upper body. Guidobaldo
replied that there was no reason whatsoever for this assertion. More-
over, he argued that this assertion would lead to a contradiction if
it were taken into account that a balance can be supported, at the
same time, from above and below.

13. Guidobaldo finally discussed extensively the issue of a balance sup-
ported from above or from below'** as it had been treated in the
Aristotelian Mechanical Problems, that is, with regard to a material
beam in which the point of suspension of the balance does not nec-
essarily lie on the line connecting the centers of gravity of the two
weights. Cardano had indeed ascribed to Aristotle his assertion that
the angle between the beam and the meta determines the heaviness of

142DelMonte (1577, 19v—20v), Renn and Damerow (2010, 96-98), for an English trans-
lation see Drake and Drabkin (1969, 281-283).

143DelMonte (1577, 20v-21v), Renn and Damerow (2010, 98-100), for an English trans-
lation see Drake and Drabkin (1969, 283-284).

M4DelMonte (1577, 21v-30r), Renn and Damerow (2010, 100-117), for an English trans-
lation see Drake and Drabkin (1969, 284-294).
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its weight (gravius pondus reddere).'*> Cardano had further main-
tained, as discussed above, that Jordanus neither proved nor even
understood this relation. In addition he had claimed that experience
(ezperimentum) supports his assertion.!45 Guidobaldo first discussed
Cardano’s misunderstanding of Aristotle’s proposition. He conceded
the difficulty in constructing a balance that is supported exactly at
its center of gravity, but maintained that this is not a principal dif-
ficulty but only a question of practical precision. He then continued
with his own interpretation of Aristotle’s arguments, adding detailed
proofs of his own of all possible constellations including equilibrated
balances with unequal weights attached to them, compensated by
corresponding unequal arms, and finally balances with a bent beam.
The gist of this discussion is the support of his own claim from the
Aristotelian treatment of the balance.

In summary, this long and somewhat chaotic supplement to Guidobal-
do’s fourth proposition of the chapter on the balance is concerned with
a number of basic ideas intimately related to the concept of positional
heaviness. In the following, some of these ideas will be addressed in more
detail, also in order to demonstrate how carefully Guidobaldo studied the
contemporary literature and how he worked the fruits of these readings
into his own line of reasoning. Our later discussion of the marginalia to
Benedetti’s work vividly illustrates how this process of reception actually
worked.

3.8.2 Exploiting the concept of center of gravity

Guidobaldo began his discussion'” by generally refuting his adversaries’
claim that a balance with equal weights attached at equal distances from
its beam will, if the beam is moved from the horizontal position, not be
indifferent to this displacement, but rather return to its original horizontal
position. He pointed out a specific consequence of this claim:

Hanc eorum sententiam nullo modo consistere posse ostendam.
Non enim, sed si quod aiunt, evenerit, vel ideo erit, quia pon-
dus D pondere E gravius fuerit, vel si pondera sunt aequalia,
distantiae, quibus sunt posita, non erunt aequales.

145The discussion concerns the second problem of the Aristotelian Mechanical Problems,
see Aristotle (1980, 346-351).

146See our discussion in section 3.7.

147See point 1 of the preceding overview, page 95.
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For if what they say is true, this result will occur because either
the [upper] weight D is heavier than the [lower] weight E or the
weights are equal but the distances at which they are placed
are not equal.*8

Guidobaldo argued that, since the weights are equal, the return to the
horizontal position would involve a shift of the common center of gravity
of the two weights at the arms of the balance. This, however, would be in
conflict with the third proposition of Archimedes’ On the Equilibrium of
Planes'®® and with Pappus’ definition of the center of gravity he used in
his own proof of the contrary statement:

Cum pondera eandem inter se se servent distantiam. Unius
cuiusque enim corporis centrum gravitatis in eodem semper
est situ respectu sui corporis.

For the weights remain the same distance apart, and the center
of gravity of any body stays always in the same place with
respect to that body.?°

In the following part'®' Guidobaldo turned to the other possibility,
that is, to the claim that the balance might return to the horizontal po-
sition due to an increase of the weight'®? of the ascending side of the
balance. He used an indirect proof working with the counterargument of
Tartaglia’s interlocutor Mendoza that, if the two bodies on the arms of the
balance should attain different weights, that difference could be compen-
sated by placing an additional weight on the side that has become lighter.
The latter conclusion then would lead to a contradiction.!®® While on the
one hand the center of gravity of the balance now in equilibrium must
still be at the center of the balance, according to the law of the lever the
addition of a weight would move the center of gravity out from the center
of the balance. Guidobaldo argued that the existence of two centers of

148DelMonte (1577, 6r), Renn and Damerow (2010, 69). Translation in Drake and
Drabkin (1969, 262).

149 Archimedes (1953, 190), see also the first proposition in Tartaglia’s edition
(Archimedes, 1543b, 5).

150DelMonte (1577, 6r), Renn and Damerow (2010, 69). Translation in Drake and
Drabkin (1969, 263).

151DelMonte (1577, 6v), Renn and Damerow (2010, 70), see Drake and Drabkin (1969,
263).

152Guidobaldo avoided here as in other places the term positional heaviness used by his
adversaries.

153Point 2 of the overview, page 95.
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gravity contradicts Archimedes’ theory, indirectly demonstrating that in
the oblique position the balance would remain stationary (manebunt).

3.8.3 The intricacies of the concept of curvilinear angles

Figure 3.17: Guidobaldo refuted the argument that the curvilinear angle
MDG, which from a modern point of view is zero, is the small-
est possible angle by inserting the curves D and RD. Accord-
ing to the line of reasoning of his adversaries the angles MDQ
and MDR must be smaller than MDG.

The objection put forward by Tartaglia’s interlocutor Mendoza that
a greater positional heaviness of the upper part of an inclined balance
might be compensated by an additional weight on the lower part, had
been refuted by Tartaglia using an argument going back to Jordanus.'®*
Tartaglia had argued that the difference in positional heaviness may just
be infinitesimally small (not just minimal, but still less) so that it cannot
be compensated by any finite weight. In his book Guidobaldo summarized
this argument as follows:

1548ee point 3 of the overview, page 96.
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Excessum enim ponderis D supra pondus E, cum quantitatis
rationem habeat, non solum minimum esse, verum in infini-
tum dividi posse immaginabamur, quod quidem ipsi, non solum
minimum, sed ne minimum quidem esse, cum reperiri non pos-
sit, hoc modo demonstrare nituntur.

For, the excess of weight D over weight F having some ratio
and quantitative part, we imagined it to be not only minimal
but also capable of infinite division. They seek in the following
manner to prove that no such weight can be found, since it is
not just minimal, but still less.!??

Indeed, Tartaglia had argued that this is exactly what happens be-
cause the ratio of the mixed angles (angulus miztus), as Guidobaldo called
them, included between circumference and perpendicular at the two sides
of the balance, that is, between the path of the weight and the direction
to the center of the world, is supposedly smaller than any other ratio that
exists between greater and smaller quantities.! The term mized angle
designates angles with a curved leg. Guidobaldo reduced them to the spe-
cial case of circles and a tangent touching each other. From a modern
point of view the degree of such angles is zero, independent of the curva-
ture of their legs. Guidobaldo, however, shared with Tartaglia the opinion
that such angles differ from each other, although the difference is infinitely
small.

In his response Guidobaldo first argued that it is easily possible, by
considering circles of larger diameters, to construct situations in which the
ratio between the two angles is even smaller so that the claim that the ratio
is the smallest possible one is refuted (see figure 3.17). He then pointed
to the fact that the lines connecting the weights to the center of the world
are not parallel but must converge at that center. On this basis he ar-
gued that the lower weight actually becomes positionally heavier than the
weight that has been raised,'®” because the small but finite angle between
perpendiculars and the directions to the center of the world outweighs any
effect of infinitely small “angles” (see figure 3.18).

155DelMonte (1577, 6v-7r), Renn and Damerow (2010, 70-71). Translation in Drake and
Drabkin (1969, 263-264).

156 Tartaglia, (1546, 130-131), thirty-third question, sixth proposition; for an English
translation see Drake and Drabkin (1969, 128-132). See also the discussion on page 73.

157TDelMonte (1577, 7Tr-8r), for an English translation see Drake and Drabkin (1969, 264
265).
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Figure 3.18: According to Guidobaldo, if S represents the center of the
world the mized angle SEG between the circular path of the
weight at £ and the direction to the center of the world is
less than the mized angle SDG. Thus, contrary to what his
adversaries claim, by their own suppositions the weight placed
at E must be heavier than that at D.
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As we shall discuss below (see section 3.9), Benedetti shared this con-
clusion but based this argument on entirely different assumptions.'®® In
contrast to Benedetti, Guidobaldo stayed entirely within Tartaglia’s con-
ceptual framework, comparing curvilinear angles as indicators of positional
heaviness. It is thus also clear that Guidobaldo’s insistence on the con-
vergence of perpendiculars at the center of the world was not exaggerated
precision, but rather a valid argument in a context in which infinitesimally
small angles are being considered.'®?

3.8.4 Guidobaldo’s reaction to Cardano’s first argument

In responding to the arguments of his adversaries,'®® Guidobaldo began
with a general remark on their failure to offer physical reasons for the
changing effect of the obliquity of the beam of a balance. He then adressed
Cardano’s claim that the closer a weight is to the vertical of the beam the
less it weighs, offering his own account for this claim (see figure 3.19).
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Figure 3.19: Discussing Cardano’s first measure of positional heaviness by
the horizontal distances LP, DO, AC Guidobaldo explained
the changing effect of the weight by the different extent to
which the weight presses on the circumference of the circle
traced by the balance.

158 Benedetti (1585, 148—149), pages 336—337 in the present edition, for an English
translation see Drake and Drabkin (1969, 175-176).

159Gee the discussion in van Dyck (2006a).

160DelMonte (1577, 9r-151), Renn and Damerow (2010, 75-87), for an English translation
see Drake and Drabkin (1969, 267-275). See point 5 of the overview, page 98.
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In dealing with the varying distance of a weight from the vertical posi-
tion of the beam, Guidobaldo reconstructed the whole line of reasoning by
which the weight of a body on a balance arm has different effects according
to the position of the arm from his own perspective, governed by attention
to the relation between weight, support and center of the world. He sum-
marized his own account stressing the physical reasons for the changing
effect of a weight in different positions on the circle described by the beam
of the balance:

Idem ergo pondus propter situum diversitatem gravius, lev-
iusque erit. Non autem quia ratione situs interdum maiorem re
vera acquirat gravitatem, interdum vero amittat, cum eiusdem
sit semper gravitatis, ubicunque reperiatur; sed quia magis,
minusque in circumferentia gravitat |[...]

Therefore the same weight, by diversity of position, will be
heavier or lighter, and this not because by reason of its place
it sometimes truly acquires greater heaviness and sometimes
loses it, being always of the same heaviness wherever it is, but

because it presses [grava] more or less on the circumference
[...]161

The proximity of the descent of a weight moving in constrained mo-
tion, on the one hand, and the natural motion of a weight to the center
of the world, on the other, is determined by the angle of contact between
the circular path of constrained descent and the straight line of direct de-
scent to the center of the world. In this way Guidobaldo concluded, in
particular, that it is not in the horizontal position of the balance arm that
a body weighs most but at that point where a straight line drawn from
the center of the world touches, as a tangent, the circle described by the
balance arm. In the following we shall call that point for ease of reference
the extreme point. At this point the lever arm forms a right angle with
the path of direct descent to the center of the world. Accordingly, at this
point the constrained descent of the weight along the circle will be closest
to its natural descent along a straight line. It is also at the extreme point
where the balance arm sustains the weight less than if it were at any other
place on the circumference. The position of the balance arm at this point
will be parallel to the horizontal, though not at the fulcrum of the balance
but at the position of the center of gravity of the suspended body.

161DelMonte (1577, 10v), Renn and Damerow (2010, 78). Translation in Drake and
Drabkin (1969, 269).
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Figure 3.20: Contrary to Cardano, Guidobaldo took into account that the
directions from the two weights at the end of a balance cannot
be parallel and that therefore the extreme point at which a
weight is heaviest differs from point A.
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Evidently, if the center of the world were infinitely distant and all
lines of direction converging at it were perpendiculars and parallel to each
other, then the extreme point would mark the horizontal position of the
balance arm, also at the fulcrum. For a finite distance of the center of the
world, the point where the weight is heaviest lies instead slightly below
the horizontal through the fulcrum (see figure 3.20).
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Figure 3.21: Guidobaldo argued that the weight placed at O will be heav-
ier along the arm DO than along the arm CO because the
curvilinear “angle” SOH is less than the “angle” SOG.

Guidobaldo then showed that the same line of reasoning also allowed
him to conclude that the weight at the extreme point is heavier the longer
the balance arm, a crucial feature of any acceptable concept of positional
heaviness (see figure 3.21). His argument is based on comparing curvilin-
ear angles. In fact, the larger circle marked by the larger balance arm will
make the smaller “angle” with the line of straight and natural descent to
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the center of the world. He then continued to consider the balance from
a cosmological perspective, taking into account its finite distance from the
center of the world (see figure 3.20). As we have discussed, this perspective
was suggested to him by the attempt to set mechanical devices and pro-
cesses into the context of an Aristotelian cosmos, a characteristic feature of
preclassical mechanics. Guidobaldo demonstrated that the closer the bal-
ance is to the center of the world the farther the extreme point (where the
weight is heaviest) will lie from the horizontal position of the balance arm
(as seen from the fulcrum). He even proceeded to study cases in which the
balance is located so that the center of the world lies either on or within
the circle described by the balance arm. In his analysis Guidobaldo stuck
to the principle that the positional heaviness (which he avoided to desig-
nate in this way) is determined by the closeness between constrained and
direct descent to the center of the world, as given by the angle of contact
between these two descents.

" O B
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Figure 3.22: Guidobaldo considered the extreme case in which the center
of the world lies at the bottom of the circle described by the
balance.

Particularly interesting is the case in which the balance is located
so that the center of the world lies at the bottom of the circle described
by the balance arm (see figure 3.22). For this case Guidobaldo showed
that the closer the weight is to the bottom the heavier it becomes since,
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in any other position, it receives support from the balance arm and thus
does not attain its full effect. The drawing accompanying the argument
shows a circle with various chords connecting points on the circumference
with the bottom of the circle; these points are also connected by radii
to its center. Guidobaldo compared the constrained motion along the
circumference with the direct motion along the corresponding chord to
the center of the world located at the bottom of the circle. The exact
same constellation of motions would later play a crucial role in Galileo’s
theory of motion, albeit with a different interpretation (see figure 3.23). It
seems that Galileo simply transposed Guidobaldo’s cosmological model to
a terrestrial situation. The center of the world located at the bottom of
the circle then simply becomes again the lowest point of the motion of the
beam of a balance, while the various radii represent positions of the beam
at different angles. But what about the chords? In a terrestrial setting
they can only be interpreted as inclined planes connecting various points
along the circumference with the bottom of the circle. Alternatively, the
circle itself could also be conceived as representing the cross-section of a
sphere or a cylinder constraining the motion. In any case, the motion of
a weight left to itself along the circle, whether constrained by the beam
of a balance or the surface of a sphere, would then be the motion of a
pendulum.

Guidobaldo’s cosmological model of a balance touching the center of
the world could thus serve as the blueprint for a cornerstone of Galileo’s
new science of motion, the comparison of the motion of a pendulum along
a certain arc with the motion along an inclined plane representing the
chord of that arc. In 1602 the motion of a pendulum as well as the motion
of fall along inclined planes representing the chords of a circle became
the subject of a famous letter by Galileo to his patron Guidobaldo, who
had been skeptical with regard to Galileo’s claim about the isochronism of
these motions.'®? Indeed, Guidobaldo’s analysis does not suggest any such
isochronism. Its demonstration required a recognition of the laws of motion
along differently inclined planes. This Galileo attained on a conceptual
basis that was closer to Benedetti’s mechanics than to Guidobaldo’s theory
(see section 3.10). Galileo’s famous insights into the relation between the
motion of a pendulum and the motion along inclined planes thus ultimately
derived from integrating elements of both Guidobaldo’s and Benedetti’s
work.

162Favaro (1968, vol. 10, 97-100). See also the discussion in Renn et al. (2001) and in
Biittner (2009).
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Figure 3.23: Part of a page of Galileo’s manuscript MS 72 (Galilei, 1602,
fol. 172r) related to theorem 6 of Galilei (1638) in (Favaro,
1968, vol. 8), the so-called “Theorem of Chords.” According to
this theorem a falling body will require equal times to traverse
the distances CA and DA.

Guidobaldo finished his excursion on the question of how a balance
behaves in the vicinity of the center of the world with a remark on the
material beam of the balance which, of course, has weight itself. With
the help of the concept of center of gravity he was able to quickly settle
the issue. All that needed to be done was to find the center of gravity of
the entire constellation of the arm of the balance and the weight attached
to it. This constellation could then be treated as before as an idealized
beam with a weight attached to it. Before going further, Guidobaldo
summarized what he had identified so far as being the false assumptions
of his adversaries, in particular, that a weight is heaviest in the horizontal
position of the beam, which cannot be the case if the finite distance to the
center of the world is taken into account.
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3.8.5 Guidobaldo’s reaction to the main argument of his
adversaries

Having exhausted the issue of the distance of the balance beam from the
vertical, Guidobaldo, as he had announced before, next entered a series of
arguments shared by Jordanus, Tartaglia, and Cardano.'®3® These argu-
ments concerned the determination of the positional heaviness by straight-
ness and obliqueness in the sense of the amount to which a given descent
partakes more or less in the direct descent to the center of the world.
His adversaries took the horizontal projections of equal parts of the cir-
cular trajectory to the vertical as a measure of this partaking (see figure
3.24). Comparing the different descents along equal arcs of the upper and
the lower weight, for geometrical reasons they thus came, as we have dis-
cussed, to the conclusion that the beam of the balance must return to the
horizontal because the descent of the upper weight exceeds that of the
lower.

Figure 3.24: According to Jordanus, Tartaglia, and Cardano, the verti-
cal lines PO and OC represent the vertical descents of the
starting points of the displacements along the equal arcs LD
and DA. Therefore, the positional heaviness at point L must
be smaller than at point D. Consequently, the balance must
move spontaneously into the horizontal position.

163See point 6 of the overview, page 99.
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Since Guidobaldo had earlier emphasized that the lines connecting
the weights with the center of the world cannot be parallel, he could now
argue that the alleged proofs of his adversaries were altogether fallacious:

Ex quibus non solum suppositio illa, qua libram DFE in AB
redire demonstrant, verum etiam omnes fere ipsorum demon-
strationes ruunt.

Thus they ruin not only the assumption from which they demon-
strate that the balance DE returns to AB, but also almost all
their demonstrations.!64

Guidobaldo’s response to his adversaries, however, left room for the
counterargument that the deviations from the parallelism of the lines to
the center of the world is negligibly small and that their arguments would
work at least approximately. Therefore, Guidobaldo conceded this paral-
lelism and proceeded to demonstrate that measuring positional heaviness
by vertical projections leads to inconsistencies, even under these condi-
tions.1%®  Jordanus, Tartaglia, and Cardano attempted to determine the
magnitude of the positional heaviness by the vertical components of their
further descent. They thus fell into the trap that they had to determine
an attribute of a weight at a particular point by the length of a line, ne-
glecting that this implicit definition did not sufficiently clarify how and in
which direction the endpoint of this line had to be placed.

This is the tacit background of Guidobaldo’s construction of counter-
examples to their claim. He compared subsequent descents along equal
arcs such as LA and AM corresponding to the equal vertical descents
PC and CH. According to the implicit definition of his adversaries, the
positional heaviness at points L and A should thus be equal (see figure
3.24). However, these subsequent descents in fact bring the beam into two
different inclinations in which the endpoints of the beam are obviously of
different positional heaviness.

Guidobaldo extended this discussion with further arguments, claiming
in particular that when comparing the positional heaviness of descents on
the two sides of the balance, their vertical components with regard to
the horizontal position of the beam must be taken into account because
otherwise further difficulties arise. He finally concluded that this definition
of the magnitude of positional heaviness by vertical descents is inconsistent:

164DelMonte (1577, 15v), Renn and Damerow (2010, 88).
165See point 7 of the overview, page 99.
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Ergo ex diversitate tantum modi considerandi, idem pondus,
et gravius, et levius esse continget. Non autem ex ipsa natura
rei. Insuper ipsorum suppositio non asserit, pondus secundum
situm gravius esse, quanto in eodem situ minus obliquum est
principium ipsius descensus. Suppositio igitur superius allata,
hoc est, secundum situm pondus gravius esse, quanto in eodem
situ minus obliquus est descensus; non solum ex his, quaedix-
imus, ullo modo concedi potest; sed quoniam huius oppositum
ostendere quoque non est difficile: scilicet idem pondus inae-
qualibus circumferentiis, quo minus obliquus est descensus, ibi
minus gravitare.

Thus from a mere diversity in manner of consideration, and
not from the nature of the thing, it would come about that the
same weight was heavier or lighter. Moreover, their assumption
does not affirm that the positional heaviness will be greater
when at the same place the commencement of the descent is
less oblique. Hence the postulate [they] adopted above, that is,
that the weight is positionally heavier according as the descent
from the same place is less oblique, is not to be conceded at
all, for the reasons we have given; and not only that, but it is
not difficult to show the exact opposite; that is, that the less
oblique the descent of the same weight along equal arcs, the
less it weighs.166

Guidobaldo proceeded to consider equal arcs as before but now shifted
the lower arc AM to result into the arc OP. By a rather involved geomet-
rical proof he was now able to show that by applying the definition of
his adversaries, the positional heaviness in the upper position L must be
greater than the positional heaviness in the almost horizontal position O,
which is absurd.

Guidobaldo concluded with a general methodological reflection:!6”

Non igitur ex rectiori, et obliquiori motu ita accepto colligi
potest, secundum situm pondus gravius esse, quanto in eodem
situ minus obliquus est descensus. atque hinc oritur omnis
ferme ipsorum error in hac re, atque deceptio: nam quamuis
per accidens interdum ex falsis sequatur verum, per se tamen ex

166DelMonte (1577, 16v—17r, page number 16, misprinted as 14), Renn and Damerow
(2010, 90-91). Translation in Drake and Drabkin (1969, 277).
167See point 8 of the overview, page 99.



3. The Context 117

Figure 3.25: Guidobaldo argued that according to the definition of his ad-
versaries and contrary to their claims the positional heaviness
in point L must be greater than in point O, since the vertical
descent LX is longer than the descent TP.

falsis falsum sequitur, quemadmodum ex veris semper verum,
nil idcirco mirum, si dum falsa accipiunt; illisque tanquam
verissimis innituntur; falsissima omnino colligunt, atque con-
cludunt. Decipiuntur quinetiam, dum librae contemplationem
mathematice simpliciter assummunt; cum eius consideratio sit
prorsus mechanica: nec ullo modo absque vero motu, ac pon-
deribus (entibus omnino naturalibus) de ipsa sermo haberi
possit: sine quibus eorum, quae librae accidunt, verae caulae
reperiri nullo modo possint.

Therefore it is not possible to deduce from the degree of straight-
ness or bending of the motion (taken in their sense) that the
weight is positionally heavier [secundum situm pondus gravius
esse] according as, at a given place, the fall is less bent. And
from this arises most of their error and delusion in this mat-
ter. And though at times the truth may accidentally follow
from false assumptions, nevertheless it is the nature of things
that from the false the false generally follows, just as from true
things the truth always follows. So it is no wonder that, when
they assume false things as true and use these as a basis, they
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deduce and conclude things that are quite false. These men
are, moreover, deceived when they undertake to investigate
the balance in a purely mathematical way, its theory being ac-
tually mechanical; nor can they reason successfully without the
true movement of the balance and without its weights, these
being completely physical things, neglecting which they simply
cannot arrive at the true cause of events that take place with
regard to the balance.'%8

3.8.6 The necessity of considering the weights in conjunction

Finally, Guidobaldo approached his goal of demonstrating with the help of
a modified but still ambiguous concept of positional heaviness the indiffer-
ent equilibrium of a balance, assuming that the weight itself is changing.6?
This rather tedious procedure is in stark contrast to his straightforward
earlier proof which made use of the concept of the center of gravity. Now,
at the beginning of the home stretch, he introduced the key idea that
distinguishes his own approach from that of his adversaries, namely that
the weights on a balance cannot be considered in isolation “as if now one
and now the other were placed in the balance, but never both of them
together.”170

Neglecting the cosmological context for the time being, Guidobaldo
first showed that the procedure of determining positional heaviness by the
amount to which a given descent partakes more or less in the direct descent,
a procedure he had just refuted with a reductio ad absurdum, allowed for
the conclusion that a balance, when removed from the horizontal, would
stay in its oblique position and not return to its original place (see figure
3.26). In his argument he used the key idea of the connection of the two
weights, stressing that one should not compare the descents of the weights
but rather the descent of one (from position D) with the simultaneous rise
of the other weight (from position E):

Erit itaque descensus ponderis in D ascensui ponderis in F ae-
qualis, et qualis erit propensio unius ad motum deorsum, talis
etiam erit resistentia alterius ad motum sursum. Resistentia
scilicet violentiae ponderis in F in ascensu naturali potentiae

168DelMonte (1577, 17v—-18r), Renn and Damerow (2010, 92-93). Translation in Drake
and Drabkin (1969, 278-279).

169Gee point 9 of the overview, page 99.

170Drake and Drabkin (1969, 279). Translated from DelMonte (1577, 18r), see Renn and
Damerow (2010, 93).
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Figure 3.26: Guidobaldo’s drawing on page 18r related to his proof of the
indifferent equilibrium of a balance in an oblique position.

ponderis in D in descensu contra nitendo apponitur; cum sit
ipsi aequalis. Quo enim pondus in D naturali potentia deorsum
velocius descendit, eo tardius pondus in F violenter ascendit.
Quare neutrum ipsorum alteri praeponderabit, cum ab aequali
non proveniat actio. Non igitur pondus in D pondus in F sur-
sum movebit. Si enim moveret; necesse esset, pondus in D
maiorem habere virtutem descendendo, quam pondus in E as-
cendendo; sed haec sunt aequalia: ergo pondera manebunt. Et
gravitas ponderis in D gravitati ponderis in E aequalis erit.

Therefore, the descent of the weight placed at D will be equal
to the rise of the weight placed at E, and whatever the incli-
nation of the one is to downward movement [propensio [...] ad
motum deorsum], such will also be the resistance of the other
to upward motion [resistentia ad motum sursum]. That is, the
resistance to the force of the weight [violentia ponderis] placed
at E in its ascent opposes itself to the natural power [naturalis
potentia ponderis] of the weight placed at D, because of their
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equality, so that by however much the weight placed at D goes
with its natural power more swiftly downward, by so much
the weight placed at F is more slowly forced upward. So that
neither of the two will weigh more [praeponderare] than the
other; there being no action that proceeds from equality, the
weight [pondus] placed at D will not move the weight placed
at E upward, because, if it did, it would be necessary that the
weight placed at D should have stronger force [maior virtus]
in descending than should the weight placed at E in rising.
But these things are equal; therefore the weights [pondus| will
remain at rest and the weighing down of the weight [gravitas
ponderis| placed at D will be equal to the weighing down of the
weight placed at E.17!

Not leaving any doubt among his readers that he nevertheless consid-
ered the procedure applied to be worthless, Guidobaldo inserted another
virtuoso-like reductio ad absurdum. He used the same procedure of deter-
mining positional heaviness by the amount to which a descent partakes in
the vertical, to conclude that the balance would, when removed from its
original horizontal position, ultimately assume a vertical position. The ar-
gument only works when the connection of the two weights on the balance
is once again ignored. The trick of Guidobaldo’s reductio ad absurdum
is not to compare descents, as Jordanus and Tartaglia had done in order
to show that the balance returns to its horizontal position, but to com-
pare ascents instead. When previously the descent of the upper weight
was straighter than that of the lower weight so that it acquired a greater
positional heaviness, its rise is now more oblique than that of the lower
weight so that it acquires a smaller positional heaviness. As a consequence,
the lower weight which acquires a greater positional heaviness sinks to the
bottom and the balance attains a vertical position.

Quae quidem suppositio, adeo manifesta esse videtur, veluti
ipsorum altera.

This assumption seems as evident as theirs. [...]}72

Thus Guidobaldo commented and concluded that neither of these demon-
strations is true.

IT1DelMonte (1577, 18v), Renn and Damerow (2010, 94). Translation in Drake and
Drabkin (1969, 279-280).

172DelMonte (1577, 19r), Renn and Damerow (2010, 95). Translation in Drake and
Drabkin (1969, 280).
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3.8.7 Guidobaldo’s reinterpretation of the concept of positional
heaviness

It is at this point that Guidobaldo introduced his own interpretation of the
changing effect of a weight attached to the end of a beam in dependence of
its inclination.!”™ Following up on his earlier discussion,'”® this interpreta-
tion takes the cosmological context into account, i.e., the finite distance to
the center of the world. Furthermore, this interpretation determines oblig-
uity in terms of the deviation of the actual path of the displacement from
the closest route to this center. This deviation is measured by the curvi-
linear angle between both paths at the initial point of the displacement. In
order to discriminate the weight pondus from its effect Guidobaldo quali-
fied the way in which a weight acts under different circumstances using the
term gravitare. He formulated his reinterpretation in the following way:

Praeterea si ipsorum suppositionem, eorumque verborum vim
recte perpendamus; alium certe habere sensum conspiciemus.
nam cum semper spatium, per quod naturaliter pondus move-
tur, a centro gravitatis ipsius ponderis ad centrum mundi, in-
star rectae lineae a centro gravitatis ad centrum mundi pro-
ductae, sit sumendum; tanto huiusmodi ponderis descensus,
magis, minusque obliquus dicetur; quanto secundum spatium
instar praedictae lineae designatum, magis, aut minus (natu-
ralem tamen locum petens, semperque magis ipsi appropin-
quans) movebitur; ita ut tanto obliquior descensus dicatur,
quanto recedit ab eiusmodi spatio: rectior vero, quanto ad idem
accedit. et in hoc sensu suppositio illa nemini difficultatem
parere debet, adeo enim veritas eius conspicua est; rationique
consentanea: ut nulla prosus manifestatione egere videatur.

In addition to this, if we shall examine their assumption, and
the force of their argument, we shall certainly see that these
have a different meaning. For since the space through which
the weight moves naturally must be from the center of gravity
of this weight toward the center of the world, along a straight
line drawn from the center of gravity to the center of the world,
it will be said that a descent of the weight made in this way
will be more or less oblique according to the space designated,
and that it will move more or less along the said line, always

173See point 10 of the overview, page 100.
174See point 3 of the overview, page 96, and chapter 3.8.3.
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going to seek its natural place by the closest route. Thus the
descent is said to be more oblique, the more it departs from
that space, and straighter the more it approaches it. Now in
this sense the assumption need not give rise to difficulty on
the part of anyone, because this is so clear in its truth and its
agreement with reason that it does not appear to need to be
made evident in any way.!™

Guidobaldo thus explained his understanding of the concept of po-
sitional heaviness, an understanding that he evidently no longer saw as
being in conflict with his own line of reasoning, which emphasized the con-
cept of center of gravity and its relation to the center of the balance and
the center of the world. The concept of positional heaviness was indeed
an underdetermined concept, susceptible to various interpretations that
were not necessarily in agreement with each other.!”® These interpreta-
tions, moreover, could vary in conciseness. A more concise interpretation
typically allows for more powerful conclusions, but is also more liable to
conflict with other branches of the conceptual network in which it is em-
ployed. Guidobaldo’s vaguer version of the concept avoided conflicts with
his elaborate framework: it allowed for comparisons between weights of
larger and smaller positional heaviness, it avoided the ambiguities that re-
sult from making the positional heaviness dependent on finitely extended
descents, but it did not comprise a quantification as will be encountered
in Benedetti’s case. In other words, there was no quantitative measure for
the positional heaviness of a given body under given circumstances.

Nevertheless, Guidobaldo’s concept opened up a wide range of conclu-
sions, in particular with regard to the cosmological behavior of balances
and weights closer or more distant from the center of the world. With
this Guidobaldo implicitly also left a challenge to his successors employing
his achievements in their own work: For instance, how stable are these
conclusions or what modifications do they require when reconsidered from
the perspective of a modified interpretation of the concept of positional
heaviness such as that of Benedetti or Galileo? As we have mentioned
above, Galileo for instance turned Guidobaldo’s statements about weights
on a balance being closer or more distant from the center of the world into
statements about weights on lesser or more steeply inclined planes.

175DelMonte (1577, 19r), Renn and Damerow (2010, 95). Translation in Drake and
Drabkin (1969, 281).
1761n the words of Yehuda Elkana, it was a “concept in flux,” (Elkana, 1970).
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3.8.8 From positional heaviness to indifferent equilibrium

After Guidobaldo had reinterpreted the notion of positional heaviness, he
now approached the task of demonstrating the indifferent equilibrium of
a balance. He had just shown that this reinterpretation would apparently
even lead to the conclusion that the lower weight tends more to the center
of the world than the upper weight. As a consequence, it seemed to follow
that the balance would spontaneously move into a vertical position as soon
its horizontal position is slightly disturbed, which is indeed a correct con-
sequence from a modern point of view which Guidobaldo, however, could
not accept. In order to show that, with the help of his reinterpretation
of the positional effect of a weight, he could nevertheless derive the in-
different equilibrium of a balance, Guidobaldo now made crucial use of
the fact that the two weights are connected. He thus complemented his
reinterpretation with the idea to consider the balance as a system with an
interaction of the two weights (see figure 3.27).177

His crucial argument was that if the two weights are joined together,
one has to consider the descent not of each single weight, but of their
center of gravity toward the center of the world. As a consequence, the
natural motions of the two weights fixed to the balance will not be along
straight lines converging at the center of the world, but along parallels to
the straight line that connects their center of gravity with the center of the
world. He argued that the connection of the two weights by the balance
forces the weights into these parallel downward tendencies.

Si vero pondera in ED sibi invicem connexa, quatenusque sunt
connexa consideraverimus; erit ponderis in £ naturalis propen-
sio per lineam MEK: gravitas enim alterius ponderis in D ef-
ficit, ne pondus in E per lineam ES gravitet, sed per EK.

But if the weights at £ and D are joined together and we
consider them with respect to their conjunction, the natural
inclination of the weight placed at F will be along the line
MEK, because the weighing down of the other weight [gravitas
alterius ponderis| at D has the effect that the weight [pondus]
placed at E must weigh down [gravitet] not along the line ES,
but along EK.178

177See point 11 of the overview, page 100.
178DelMonte (1577, 20r), Renn and Damerow (2010, 97). Translation in Drake and
Drabkin (1969, 282).
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Figure 3.27: Guidobaldo considered the weights in conjunction and argued
that the balance resulting tendencies of the weights downward
are parallel.

Having thus established the legitimacy of considering the natural de-
scents of the two weights as being parallel, Guidobaldo could now use
the same consideration as he had done before: comparing the rise of one
weight with the decline of the other. The downward tendencies of the two
weights were then identified by means of the closeness between constrained
and natural descent (or rise) as measured by the angles of contact between
these two paths:
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Cum autem suppositio illa, quae ait, secundum situm pondus
gravius esse, quanto in eodem situ minus obliquus est descen-
sus; tanquam clara, atque conspicua admittatur; proculdubio
haec quoque accipienda erit; nempe, secundum situm pondus
gravius esse, quanto in eodem situ minus obliquus est ascen-
sus. Cum non minus manifesta, rationique sit consentanea.
Aequalis igitur erit descensus ponderis in E ascensui ponderis
in D. eandem enim obliquitatem habet descensus ponderis in
FE, quam habet ascensus ponderis in D; et qualis erit propensio
unius ad motum deorsum, talis quoque erit resistentia alterius
ad motum sursum.

Now assuming that the weight is positionally heavier to the
degree that its descent from a given place is less oblique, one
will also admit without doubt that the weight will be position-
ally heavier according as its rise at a given point will be less
oblique, since this is no less evident or agreeable to reason.
Therefore the descent of the weight at E will be equal to the
rise of the weight at D, because the descent of the weight at £
has as much of the oblique as does the rise of the weight at D;
and whatever may be the inclination of the one to downward
movement, this likewise will be the resistance of the other to
upward movement.!7?

Guidobaldo finally concluded:

Ex quibus sequitur pondera in D F, quatenus sunt sibi invicem
connexa, aeque gravia esse.

From which it follows that the weights at D and F, considered
in conjunction, are equally heavy.'8°

3.8.9 Guidobaldo’s interpretation of Aristotle’s balances

In agreement with his plan Guidobaldo next addressed the last argument
in favor of the balance returning to the horizontal position, involving the
idea of the meta of the balance.'®" This meta is represented by the lower

179DelMonte (1577, 20r-20v), Renn and Damerow (2010, 97-98). Translation in Drake
and Drabkin (1969, 282-283).

180DelMonte (1577, 20v), Renn and Damerow (2010, 98). Translation in Drake and
Drabkin (1969, 283).

181Gee point 12 of the overview, page 101, as well as section 3.7.



126 3. The Context

half of the perpendicular line through the fulcrum when the support is
from above. He was quite aware of the obscure character of argument:

[...] nihil meo iudicio concludit. Figmentumque hoc de trutina,
et meta potius omittendum, ac silentio praetereundum esset,
quam verbum ullum in eius confutatione sumendum; cum sit
prorsus voluntarium.

[...] in my opinion this [i.e. the return to the horizontal] does
not follow, and this fiction about the support and the meta
should just be left out and passed over in silence; for to say
anything about it only confuses the issue, the whole thing being
arbitrary.182

Nevertheless, Guidobaldo went to some length to reveal the illusionary
character of the argument, apparently because the argument seemed to be
supported by the Aristotelian Mechanical Problems as well as by empirical
evidence.'® As to the role of empirical evidence, Guidobaldo stressed
that the case in which the balance is supported at its center is particularly
difficult to realize in practice, in contrast to the cases in which the support
is either from above or from below:

Quocirca si centrum in ipsa libra esse consideraverimus, ad
sensum confugiendum non est: cum artificilia ad summum illud
perfectionis gradum ab artifice deduci minime possint.

Hence if we consider the center to be in the balance, one can-
not have recourse to the senses, for artificial devices cannot be
brought to such a degree of perfection.!®*

This consideration may have provided a challenge and the starting point
for Guidobaldo’s efforts to actually produce such an indifferent balance, as
it is described in Pigafetta’s inserted letter quoted above (see page 87ff.).

The remainder of Guidobaldo’s discussion of the Aristotelian Mechan-
ical Problems deals mainly with the other two cases discussed by Aristotle,
i.e., the cases when the support is either from above or from below (see
figure 3.28). He had actually already dealt with these cases in the deduc-
tive part of his book, in propositions 2 and 3, on the basis of the concept

182DelMonte (1577, 20v—21r), Renn and Damerow (2010, 98-99). Translation in Drake
and Drabkin (1969, 283).

183See point 13 of the overview, page 101.

184DelMonte (1577, 22r), Renn and Damerow (2010, 101). Translation in Drake and
Drabkin (1969, 285), modified by the authors.
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Figure 3.28: In agreement with Aristotle, Guidobaldo argued that a bal-
ance supported from above when displaced from the horizon-
tal position would return to the horizontal. His proof differs,
however, from the proof of Aristotle. Guidobaldo argued that
the upper weight F requires a greater heaviness than the lower
weight F' because the descent of the upper weight toward the
center of the world S is less oblique than the rise of the lower
weight.

of center of gravity. Now Guidobaldo re-expressed these conclusions with
the help of his concept of the dependence of the heaviness (gravitas) on
the positional circumstances:

Quod non solum ex secunda, et tertia huius liquet; verum
quia existente centro supra libram pondus elevatum maiorem
propter situm acquirit gravitatem. Ex quo contingit reddi-
tus librae ad aequalem horizonti distantiam. E contra vero,
quando centrum est infra libram. Quae omnia hoc modo os-
tendentur; supponendo ea, quae supra declarata sunt. Scilicet
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pondus ex quo loco rectius descendit, gravius fieri. et ex quo
rectius ascendit, gravius quoque reddi.

This [i.e. Aristotle’s opinion that a balance supported from
above will return to the horizontal, while a balance supported
from below will move toward the lower side] is clear not only
from the second and the third propositions of the present book,
but also because, if the center is above the balance, the higher
weight acquires a greater positional heaviness, considering the
return of the balance to the position parallel to the horizon.
The contrary happens when the center is below the balance.
These things are demonstrated in the following manner, what
has been said above being assumed: that is, that the weight
will be heavier in that place from which its descent is straighter,
and is likewise heavier at the place from which its rise would
be straighter.!®®

Throughout the arguments that follow, Guidobaldo made use of defin-
ing that straightness in terms of angles of contact as he had done before.
But he also occasionally employed Tartaglia’s other definition of straight-
ness, in terms of the descent partaking more or less in the vertical. The
use of the latter definition, however, is prefaced by a note of caution on
the intrinsic falsity of this approach:

Ex ipsorum quinetiam rationibus, ac falsis supositionibus iam
declaratos librae effectus, ac motus deducere, ac manifestare
libet; ut quanta sit veritatis efficacia appareat, quippe ex falsis
etiam elucescere contendit.

Besides, we may use their logic and their false assumptions
to produce the effects and motions of the balance already ex-
plained, so that from this one may see the power of truth and
how it forces itself to shine forth even from false things.!86

The excursion on Aristotle’s balances ends with an extension of the
previous arguments to the case in which an additional weight is placed on
one arm of the balance, to the case in which the arms of the balance are
of different lengths, and to the cases in which the arms are curved or form
an angle.

185DelMonte (1577, 23r), Renn and Damerow (2010, 103). Translation in Drake and
Drabkin (1969, 286).

186DelMonte (1577, 25v), Renn and Damerow (2010, 108). Translation in Drake and
Drabkin (1969, 289).
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3.8.10 Arguments in further propositions

This lengthy digression is followed in the Italian version by the comment of
the editor Pigafetta (page 87ff.). Guidobaldo then resumed the deductive
part of his treatise with a continuation of the systematic treatment of
the balance. What will be discussed in the following is the remainder of
Guidobaldo’s book, giving exclusive attention to the question of weights
and forces acting in a direction other than the perpendicular or toward
the center of the world and, of course, to the issue of positional heaviness.
It is in the subsequent book on the lever that these topics again play a
significant role.

Figure 3.29: Guidobaldo extended the vertical through the center of grav-
ity of the weight to the beam of the lever in order to determine
its effective heaviness, a conclusion that is not compatible
with classical mechanics.

The crucial theorem is proposition 5 (see figure 3.29):

Potentia quomodocunque vecte pondus sustinens ad ipsum pon-
dus eandem habebit proportionem, quam distantia a fulci-
mento ad punctum, ubi a centro gravitatis ponderis horizonti
ducta perpendicularis vectem secat, intercepta, ad distantiam
inter fulcimentum, et potentiam.
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The power that sustains the weight in any way by means of the
lever will have the same proportion to the weight as that of the
distance from the fulcrum to the point on the lever, vertical to

the center of gravity of the weight, to the distance between
187

fulecrum and the power.

Figure 3.30: Guidobaldo considered the lever in various positions, always
determining the effective lever arm by vertically projecting
the position of the center of gravity of the sustained weight
upon the lever arm.

In order to fully appreciate the significance of what Guidobaldo had in
mind, it is necessary to consider the ensuing applications of this theorem
as well, for instance proposition 8 (see figure 3.30):

Potentia pondus sustinens centrum gravitatis supra vectem
horizonti aequidistantem habens, quo magis pondus ab hoc
situ vecte elevabitur; minori semper, ut sustineatur, egebit po-
tentia: si vero deprimetur, maiori.

187TDelMonte (1577, 43v), Renn and Damerow (2010, 144). Translation in Drake and
Drabkin (1969, 300).
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If the power sustaining the weight which has its center of grav-
ity above a horizontal lever is given, then, the more the weight
is raised from this position by means of the lever, the smaller
the power required to sustain it. But if it shall be lowered,
greater power is required.'®®

In other words, Guidobaldo attempted to address the variation of the
force required to lift a weight placed from above on a lever, when that lever
is either raised or lowered. Now while it does seem that in this analysis
Guidobaldo made use of the projection on the horizontal, measuring the
effective length of the lever arm of a weight appended or sustained at
an angle, this is actually not the case. What he considered is merely the
projection of the center of gravity of the sustained weight along the vertical
upon the lever arm in an oblique or horizontal position. In the case of a
weight placed from above on a lever arm, the base point of this projection
on the lever is then taken as determining the effective length of the lever
arm. This is different from the way in which the effective weight (or rather
the torque) would have to be determined according to classical physics.
From a modern perspective, it would be the point where the perpendicular
through the center of gravity of the weight placed on the lever arm crosses
the horizontal (and not the arm of the lever as Guidobaldo had it) that
determines the effective length of the lever arm, namely the distance of this
point from the fulcrum. The two procedures only coincide in the trivial
case in which the lever is in a horizontal position. In summary, although
Guidobaldo’s approach is vexingly close to that of Benedetti and Galileo,
it does not actually yield the same correct results.

Another instance in which Guidobaldo needed to take into account
something like positional heaviness can be found in his book on the wheel
and the axle (see figure 3.31). Proposition 1 of this book states that

Potentia pondus sustinens axe in peritrochio ad pondus ean-
dem habet proportionem, quam semidiameter axis ad semidi-
ametrum tympani una cum scytala.

The power sustaining the weight by means of the wheel and
axle is in the same ratio to the weight as the radius of the axle
to the radius of the wheel including the handle.'3?

188DelMonte (1577, 49r), Renn and Damerow (2010, 155). Translation in Drake and
Drabkin (1969, 301-302), with slight modifications.

189DelMonte (1577, 107r), Renn and Damerow (2010, 271). Translation in Drake and
Drabkin (1969, 318).
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Figure 3.31: Guidobaldo reduced the wheel to the case of a balance in
which the power may act in a non-vertical direction. He did
not offer a general procedure for determining the effective
lever arm.

In the context of explaining this proposition Guidobaldo also consid-
ered the case in which the power is applied to a handle not in a horizontal
but in an oblique position. He treats this case according to the model
of a balance at the end points of which the weight to be moved and the
moving weight (representing the power) are attached. This balance is in
an oblique position, its fulcrum supposed to be at the center of gravity
of the two weights (and not at the center of the wheel). The relation be-
tween those two weights, in case of equilibrium, can hence be derived from
the law of the lever. Remarkably, Guidobaldo did not make use of the
treatment of the bent lever according to the procedure of determining ef-
fective lever arms by horizontal projection, a procedure that would, in this
case, have yielded the same result. His approach is indeed not a generic
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one at all, but depends entirely on the adequate identification of the lever
problem at hand.

N

Figure 3.32: Pigafetta, the translator of Guidobaldo’s book, added Pap-
pus’ erroneous proof of the law of the inclined plane.

The risky character of this identification may be well illustrated by a
third instance in which something like positional heaviness plays a role. In
his book on the screw, Guidobaldo dealt with its reduction to the inclined
plane which in turn is reduced to the balance. For the latter reduction he
referred to Pappus. Pappus’ analysis of the inclined plane has therefore
at this point been inserted into the Italian edition by Pigafetta (see fig-
ure 3.32). It considers a spherical body placed on an inclined plane and
imagines that the force needed to move its weight along the plane can be
determined by imagining the whole situation being equivalent to that of
an appropriately positioned balance. The procedure is indeed quite sim-
ilar to the one we have just encountered in the discussion of wheel and
axle, albeit much more problematical. A balance with unequal arms in
horizontal position is erected from the point at which the sphere touches
the inclined plane, its fulcrum being positioned vertically above it. At one
side of the balance the body to be moved is attached, and on the other
side, a weight, whose magnitude is to be determined, that balances the
body to be moved. The length of this other side is given by the point at
which the horizontal balance arm touches the plane. In other words, from
the geometrical constellation the lengths of both lever arms are known so
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that the magnitude of the counter-balancing weight can be obtained, and
from it, and some dynamical assumptions, the power needed to move the
given weight along the inclined plane. Although the procedure reproduces
correctly some qualitative features of the problem, such as the increase of
power with steepness of the plane, it turns out to be incompatible with
classical physics, implying that an infinitely large power would be required
to lift a weight vertically.

In his 1588 book on Archimedes,'®® Guidobaldo briefly returned to
the issue of the distances at which weights act to form a center of gravity.
But instead of entering a detailed discussion of the positional effect of a
weight, he limited himself to emphasizing that one should always consider
weights arranged in a straight line (see figure 3.33):

Quare cum Archimedes tam in hoc postulato, quam in sequen-
tibus, supponit pondera in distantiis esse collocata, intelligen-
dum est distantias ex utraque parte in eadem recta linea exis-
tere. Nam si (ut in secunda figura) distantia A B fuerit aequalis
distantiae BC, quae non in directum iaceant, sed angulum con-
stituant; tunc pondera AB, quamvis sint aequalia, non aeque
ponderabunt. nisi quando (ut in tertia figura) iuncta AC, bi-
fariamque divisa in D, ductaque BD, fuerit haec horizonti per-
pendicularis, ut in eodem tractatu nostro exposuimus. Distan-
tias igitur in eadem recta linea semper existere intelligendum
est. ut ex demonstrationibus Archimedis perspicuum est.

For this reason, since Archimedes assumes in this postulate as
well as in the following ones that the weights are placed at
certain distances, it is to be understood that these distances
exist on both sides in the same straight line. For if (as in
the second figure) the distance AB were equal to the distance
BC, which do not lie along a straight line, but constitute an
angle, the weights A B, although they are equal, do not weight
equally [non aeque ponderabunt], other than when (as in the
third figure) AC is connected and divided in half at D and BD
being drawn, the latter would be perpendicular to the horizon,
as we have discussed in our treatise. Therefore the distances
are always understood to be along the same straight line, as is
evident from the demonstrations of Archimedes.!%

190DelMonte (1588). For extensive historical discussion, see Frank (2007).
91DelMonte (1588, 25).
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Figure 3.33: In his 1588 book on Archimedes, Guidobaldo stressed that
the distances of weights have to be considered always along
the same straight line, without giving a prescription for the
case of a bent lever.
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3.8.11 The flaws of Guidobaldo’s understanding of the
positional effect of heaviness

After this lengthy discussion, following Guidobaldo’s meandering argu-
ments, let us summarize his views on positional heaviness. He abandoned
the framework of Jordanus and Tartaglia as he considered this to be incom-
patible with his own treatment based on the concept of center of gravity.
He considered their exclusive focus on the straightness of descent as re-
sulting from a purely mathematical perspective, neglecting the fact that
the descent of a body is related, on the one hand, to the mechanical con-
straints of the motion of weights suspended from a balance, and, on the
other, to the direction of the descent toward the center of the world.

In view of his extensive discussion of the concept as well as the argu-
ments of his adversaries, which were based on it, one may ask if Guidobaldo
himself believed in a concept of positional heaviness that may be freed from
the contradictions he had revealed, or whether his use of that concept was
exclusively polemical in character. At first glance one may be inclined to
answer this question in favor of the merely polemical use, as indeed most
interpreters have done.

On closer inspection, however, it has turned out that Guidobaldo
did not reject the concept of positional heaviness altogether. He reinter-
preted it using a conceptual differentiation between the weight (pondus)
and its heaviness (gravitas) as a result of the positional circumstances of
its descent. In his own treatment, Guidobaldo avoided the definition of a
quantitative measure of the positional effect of a weight in a constrained
situation so as not to run into the same ambiguities he himself had crit-
icized. Instead, he limited himself to a consideration of the tendency of
the center of gravity to join the center of the world along the most direct
path possible, without having the mathematical means at his disposal to
make such a procedure concise. He used ad-hoc suppositions to obtain the
results he believed to be true. In this way, however, he exposed himself to
the same kind of criticism that he had raised against his adversaries.

In summary, neither in the polemical nor in the deductive part of
Guidobaldo’s treatise on mechanics, a generic procedure for quantitatively
determining positional or effective heaviness by a projection of the lever
arm onto the horizontal can be found that corresponds to the modern pro-
cedure for determining the torque of a weight on a bent lever. Similarly,
no treatment of this problem of forces not acting along the vertical was
offered by Guidobaldo. Against this background, the question of how he
might react to an analysis in which such procedures are employed becomes
relevant as it must have constituted a foundational challenge for his me-
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chanics. Pondering this question would have remained a matter of mere
speculation were we not in the fortunate position of having Guidobaldo’s
extensive marginalia on Benedetti’s book at our disposal.

3.9 Benedetti’s approach to positional heaviness

For Benedetti’s mechanics a specific way of determining positional heavi-
ness, measured by the distance from the fulcrum to the line of inclination
of a weight (linea inclinationis, the line connecting the center of gravity of
the weight to the center of the elements) played a crucial and unambigu-
ous role.'92 Benedetti’s situation was, in fact, somewhat different from
that of his predecessors. Nothing speaks against the assumption that he
was familiar with the preceding literature, in particular, with the works
discussed above. He thus also knew the pitfalls and contradictions into
which the discussion of the positional effect could lead. In the beginning
of his treatise on mechanics he introduced the positional aspect of weight,
without, however, explicitly introducing positional heaviness as a technical
term.

Benedetti then carefully analyzed how a weight changes its effect in
dependence on the position of a moveable arm of a balance.'®3 Follow-
ing the tradition of his predecessors, he explained this change of effective
weight in physical terms by claiming that a weight is impeded by the bal-
ance arm in following its straight path to the center of the region of the
elements, as he expressed himself. As a consequence, it exerts a certain
pressure on the arm which varies according to its inclination. This pres-
sure will be greater the nearer the arm is to the vertical, while it would
vanish in the horizontal position. Hence the weight will be positionally
heavier when the moveable arm of the balance is along the horizontal than
in any other position.

More specifically, Benedetti proposed a quantitative measure of a
given weight or of a motive force according to its position. In contrast
to Tartaglia’s measure of positional heaviness, he determined the (posi-
tional) weight using a projection by means of perpendiculars drawn from
the center of the balance to the line of inclination, corresponding to the
effective length of the lever arm. This argument resembles Cardano’s first
argument, that is, to take the horizontal component of the distance to the

192Benedetti (1585, 141-142), pages 329-330 in the present edition. See also sections 6.1
and7.1.

193Benedetti (1585, 142-143), pages 330-331 in the present edition. See also sections 6.1
and 7.2.
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support as a measure of the positional heaviness. However, going beyond
Cardano who only considered the case of parallel directions to the cen-
ter of the world, Benedetti also considered lines of directions not directed
along the vertical. From the perspective of classical physics Tartaglia’s
(and Jordanus’) concept of positional heaviness is closer to issues of en-
ergy conservation and the work principle, while that of Benedetti (and
later of Galileo) is closer to the modern concept of torque (see section 1.4).

Benedetti may have taken his lead from Cardano’s argument or even
from its criticism by Guidobaldo. But he may also have turned a re-
sult that he could have found in Jordanus’ De ratione ponderis, edited by
Tartaglia,'?* into a key principle of his mechanics. As we have discussed,
proposition 8 of De ratione ponderis states in fact that when the arms
of a balance form an angle, then if their ends are equidistant from the
vertical line passing through the axis of support, equal weights suspended
from them will be of equal heaviness (see figure 3.15).19 Jordanus’ proof
is a rather complex indirect proof that is based on showing that if such a
balance were not in equilibrium, a weight by descending through a certain
vertical distance would be able to lift an equal weight by a larger verti-
cal distance, which is assumed to be impossible. If Jordanus was indeed
Benedetti’s starting point, which seems likely as he referred to de Nemore
(1565), then he must have dropped any consideration of such vertical de-
scents and rather took the end result of Jordanus’ analysis, namely the
distance of a weight from the line of suspension, as a general criterion for
its positional effect.!?%

Benedetti also made use of his method to determine the effectiveness
of a force according to its position by treating a balance with a weight
on one arm and a force acting on its other arm at an angle other than
90 degrees.'®” The line of inclination is hence, in this case, not a perpen-
dicular but given by the direction in which the force acts. Nevertheless,
Benedetti’s procedure is general enough to cover this case as well. Ac-
cordingly, a perpendicular is drawn from the center of the balance to the
oblique line of inclination, and it is the length of that perpendicular which
determines the effective lever arm of the force. This treatment happens to
be in agreement with the way in which the torque of the force would be
determined according to classical physics (see section 1.4).

194de Nemore (1565).

195Moody and Clagett (1960, 185-187). See also the discussion in sections 2.1 and 3.5.

196We have observed such a process of reinterpretation also in many other instances
of conceptual development, see e.g. Damerow et al. (2004), and referred to it as a
Copernicus process.

197Benedetti (1585, 143), page 331 in the present edition. See also sections 6.1 and 7.3.
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Benedetti also dealt with the fact that the beam of a balance is not
a mathematical line but a material body which he imagined as having a
rectangular cross-section.'®® Furthermore, he treated balances supported
at one of their ends. His idea was to use his treatment of forces not
acting along the vertical in order to reduce such a material balance to
the simple case of a bent lever. For this purpose he first imagined a
balance supported from below with two bodies attached to its arms that
are conceived as exerting their weights from the top of the rectangular
beam of the balance. Connecting the fulcrum of the balance with the
places of the weights Benedetti thus obtained a triangle positioned on its
top. He then argued that what determines the effectiveness of the weights
are the distances of their lines of inclination from the center, i.e. the
horizontal projections of the sides of that triangle. Next he generalized
the treatment to the cases of balances supported at their center or at
another point. Benedetti claimed that such an analysis of the material
beam had never been achieved before in the literature.'%9

Benedetti further addressed alleged errors in Tartaglia’s Quesiti.
His main target, however, was Tartaglia’s understanding of the concept
of positional heaviness. He did agree with Tartaglia’s general claim which
has been quoted above (see section 3.7).

200

Dalle cose dette, et dimostrate di sopra, se manifesta qualmente
un corpo grave in qual si voglia parte, che lui se parta, over
removi dal sito della equalita lui si fa piu leve, over leggiero
secondo il sito, over luoco, et tanto pitt quanto piu sara remosso
da tal sito [...]

From the things said and demonstrated above, it is manifest
how a heavy body, whenever parted or removed from the posi-
tion of equality, is made positionally lighter, and the more so,
the more it is removed from that position.?0!

But he disagreed with the cause assigned by Jordanus and Tartaglia to
this effect. According to Benedetti,

quia vera causa per se ab eo oritur, quod a centro librae de-
pendeat ut primo cap. huius tractatus ostendi.

198 Benedetti (1585, 144-146), pages 332-334 in the present edition. See also sections 6.1,
7.4 and 7.5.

199Drake and Drabkin (1969, 171).

200Benedetti (1585, 148-151), pages 336-339 in the present edition. See also sections 6.2,
7.6 and 7.7.

201 Tartaglia (1546, 90r). Translation in Drake and Drabkin (1969, 127).



140 3. The Context

the true cause emerges by itself from the fact that the weight
hangs down [in part] from the fulcrum of the balance, as I
showed in the first chapter of this treatise.202

In other words, Benedetti stressed that by taking into account the distance
from the fulcrum to the line of inclination his approach to the positional
effect of a weight is distinct from and superior to Tartaglia’s consideration
in the Jordanus tradition of straightness of descent.

More specifically, Benedetti refuted several of Tartaglia’s claims. In
particular, he disputed the central claim in the equilibrium controversy
that when a balance is moved from its horizontal position it will return to
this position because the body that had been moved upward will attain
greater positional heaviness than the body which had been moved down-
ward.2%3 As we have seen above, Jordanus’ and Tartaglia’s argument was
based on comparing the descents of the two weights. In other words, the
balance would thus have to break in the middle in order to visualize these
descents. Benedetti now pointed to the simple fact, already emphasized by
Guidobaldo, that, when one weight descends, the other must ascend, and
that the corresponding arcs will always be similar to each other and placed
in the same way. He concluded that no positional difference in heaviness
can be produced in the way that Tartaglia argued.??4

Nevertheless, Benedetti did not believe in an indifferent equilibrium
of such a balance when considered in a cosmological context. In the con-
tinuation of his argument, he rather came to the from a modern viewpoint
correct conclusion that, when such a balance in equilibrium is displaced
from its original horizontal position, the weight that has been lowered will
actually assume a greater positional heaviness than the one that has been
lifted up:

Pondus igitur ipsius A in huiusmodi situ, pondere ipsius B
gravius erit.

Therefore the weight of A in this [lower] position will be heavier
than the weight of B.20°

He reached this conclusion by taking into account that the lines of
inclination of the two weights are not parallel to each other but must

202Benedetti (1585, 148), page 336 in the present edition. Translation in Drake and
Drabkin (1969, 175).

203 Thirty-second question, fifth proposition; see Drake and Drabkin (1969, 124-127).

204Drake and Drabkin (1969, 175).

205Benedetti (1585, 148), page 336 in the present edition. Translation in Drake and
Drabkin (1969, 176).
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converge at the center of the elements. The effective lever arms of the two
weights must hence be determined by perpendicular lines drawn from the
center of the balance to these lines of inclination. It now turned out that
the perpendicular line, corresponding to the weight that had been lowered,
is larger than the line corresponding to the weight that had been lifted.
Consequently, the lower weight had become heavier positionally so that
one would expect the balance to tilt into a vertical position (see figure
1.4).

Benedetti added some more critical remarks on Tartaglia’s way of
considering positional heaviness. Tartaglia had argued in Quesiti, as we
have seen, that the upper weight attains a greater positional heaviness
than the lower one, but that this difference is arbitrarily small and can
therefore not be compensated by any finite weight.2°6 This conclusion
was reached by comparing curvilinear angles of contact on each side of
the balance. In his analysis of this argument Benedetti again took into
account that the lines of inclination are not parallel to each other but
must converge toward the center of the elements, just has Guidobaldo had
done before him. Clearly, since Tartaglia’s argument hinges on angles of
contact, which are infinitesimally small compared to ordinary angles, even
that small deviation from being parallel must matter in this case. Taking
this into account, Benedetti was able to construct a contradiction, thus
refuting Tartaglia’s argument. He concluded:

Omnis autem error in quem Tartalea, Iordanusque lapsi fuerunt
ab eo, quod lineas inclinationum pro parallelis vicissim sumpserunt,
emanuit.

Now the whole error into which Tartaglia and Jordanus fell
arose from the fact that they took the lines of inclination as
parallel to each other.207

Other propositions of Tartaglia, such as his demonstration using the
concept of positional heaviness of basic properties of a balance with un-
equal arms in propositions 7 and 8 of the Quesiti, were dismissed as
lacking in rigor when compared to the corresponding demonstrations of
Archimedes. Concerning the inclined plane treated in Tartaglia’s proposi-
tion 14, Benedetti interpreted it by reducing it to a balance in a position
parallel to the plane. He did not consider the vertical displacements that

206 Thirty-third question, sixth proposition; see Drake and Drabkin (1969, 130-131). See
the discussion in section 3.6.

207Benedetti (1585, 150), page 338 in the present edition. Translation in Drake and
Drabkin (1969, 177).
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are crucial to the analysis given by Jordanus and Tartaglia. Instead, he
rather argued that Tartaglia’s geometrical analysis was flawed by the ne-
glect of the convergence of the lines of inclination at the center of the
elements and that the same body which Tartaglia considered at different
positions on the same inclined plane cannot have the same weight in these
positions since, in Benedetti’s interpretation, they correspond to places at
different lengths along the arm of a balance.

In summary, Benedetti had introduced a way to determine the posi-
tional effect of a weight or a force that essentially gives, in the cases he
considered, the same results as the application of the modern concept of
torque. In particular, Benedetti had managed to go beyond the considera-
tion of weights tending downward to include forces acting in an arbitrary
direction. In this way, he was also able to take into account the fact that,
on a spherical earth, the lines of inclination of weights on a balance are not
parallel. He did not manage, however, to successfully apply his measure
of positional heaviness to challenging objects such as the inclined plane.

3.10 Benedetti, Guidobaldo, and Galileo

Historians of science have always regarded Benedetti’s Diversarum specu-
lationum [...] liber®*® as remarkable because of the close similarity of some
of its parts with Galileo’s early writings. The range of themes and methods
common to both authors is indeed astonishing. Both Benedetti and Galileo
proposed a theory of the motion of fall based on Archimedean hydrostatics,
both considered the acceleration of this motion and its causes, both for-
mulated what in hindsight appear as proto-inertial principles, both dealt
with the bent lever in a similar fashion, both analyzed the relation between
vibrating strings and musical tones, both formulated similar views on the
irradiation of surfaces, both expressed similar views on thermal and hydro-
static phenomena, and, last but not least, both embraced the Copernican
world system.?%? Many of these themes and ideas belonged to the shared
knowledge of preclassical mechanics. Yet, in some respects the agreement
of their approaches is so striking that one may wonder whether it is due
to mere coincidence.

In the introduction to Mechanics in Sixteenth-Century Italy Stillman
Drake writes:

208Benedetti (1585).
209For an overview, see Bordiga (1985).
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The question of Benedetti’s influence, particularly on the young
Galileo, is one of great interest and importance in the history
of mechanics in the sixteenth century.2'°

Still, in spite of many pages dedicated to the issue over more than one
century, the question of Benedetti’s direct impact on Galileo has remained
unclear, in particular as Benedetti was never mentioned by him. Did
Galileo ever consider Benedetti’s mechanics, his theory of motion, and his
cosmology in any detail? Did Benedetti’'s work shape Galilei’s own views
during his formative years, and, if so, why did he never refer to it?

There are a number of possible connections that have been consid-
ered in the past. For instance, Galileo’s Pisan colleague Jacopo Mazzoni
mentioned Benedetti in In universam Platonis et Aristotelis philosophiam
praeludia from 1597.2'1 He also received a letter from Galileo, written
on May 30, 1597 arguing for the Copernican world view.?!2 In his book
Mazzoni referred to Benedetti’s discussion of the possibility that motion
along a straight line can be continuous,?!® a theme that was later taken
up by Galileo in chapter 20 of De Motu, which also contains an explicit
reference to Copernicus.?'* Another potential intermediary was Galileo’s
friend Paolo Sarpi who discussed Benedetti’s theory of fall in Pensieri
naturali e metafisici.>®> While earlier historians of science such as Cav-
erni, Duhem, Wohlwill, and Mach stress Benedetti’s role for the history
of mechanics and his pivotal role for Galileo’s subsequent achievements,
the more recent historical literature tends to deny the possibility of an
influence of Benedetti on Galileo.?'6

210Drake and Drabkin (1969, 36).

211 Mazzoni (1597).

212Favaro (1968, vol. 2, 194-202).

213Gee Benedetti (1585, 183—184). For a historical discussion of the context of this
argument in contemporary technology, see Freudenthal (2005).

2l4Mazzoni (1597, 193) and Galilei (1960b, 326). It is conceivable that such issues
had been discussed, inspired by Benedetti’s work, between Galileo, Mazzoni, and
Guidobaldo during the latter’s stay in Tuscany in 1589. We would like to thank
Pier Daniele Napolitani for drawing our attention to this possibility and to the above-
mentioned passages.

215Cozzi and Sosio (1996). For an overview of such potential connections, see the dis-
cussion in Bordiga (1985, 732-736) who also mentions Mersenne, Clavius, and Cardinal
Michelangelo Ricci as possible intermediaries.

216See the discussion by Ventrice in Bordiga (1985, 732-736) who mentions Drake,
Drabkin, Fredette, and Galluzzi among those who are skeptical about a concrete
influence of Benedetti on Galileo. A notable exception are the commentaries by
Carugo and Geymonat to their edition of Galileo’s Discorsi (Carugo and Geymonat,
1958). Bertoloni Meli even discusses the possibility of Guidobaldo and Galileo dis-
cussing Benedetti, but nevertheless rejects any substantial influence by the latter on
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The present edition of the parts of Benedetti’'s book that deal with
mechanics together with Guidobaldo’s critical notes may help to provide
a somewhat surprising answer to this question. It was most probably
Guidobaldo, Benedetti’s fervent opponent in matters of mechanics, who
served as a conduit to Galileo and, at the same time, made it virtually
impossible for Galileo to openly admit to this influence if did he not want
to risk the protection of the most important patron of his early career.

Among the most striking and consequential similarities between the
work of the young Galileo and that of Benedetti is the latter’s theory of
the motion of fall,?!” with the treatment of the motion of fall as motion in
a medium according to Archimedean principles, just as it was presented
in Galileo’s early work De motu.?'® After carefully examining the issue,
Drabkin arrived at the following conclusion:

While there may be some instances of the influence, direct or
indirect, of the earlier author on the later, in many cases the
similarities seem to be the reflection of a common heritage and
tradition, the use of the same sources, or the concurrence of
independent minds.2!?

Drake surmised, referring to a period extending at least up to 1596:

But of course it may be simply that Galileo had not yet heard
of Benedetti.??0

In line with this assessment, even recent, more careful studies of the
emergence of Galileo’s science have basically ignored a possible impact
of Benedetti on its formative period.

There are, however, other perhaps less striking similarities between
Galileo and Benedetti. One of them is the prominence of the bent lever in
their writings on mechanics, which contrasts with the rather minor role it

Galileo’s thinking because that influence would have supposedly arrived too late, see
Bertoloni Meli (2006, 61-65).

217This topic was the first subject in the letter of dedication in Resolutio (Benedetti,
1553). It was taken up again with different arguments in the two editions of Demon-
stratio (Benedetti, 1554, 1555). Finally it became the subject of a chapter on the
Aristotelian theory of motion in Diversarum speculationum |[...] liber (Benedetti, 1585,
168-197) which remained without any marginal notes by Guidobaldo.

2188ee Galilei (1909a, 1960b).

219Drabkin (1964, 630).

220Drake and Drabkin (1969, 37).
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played for Guidobaldo.??! A related similarity is the analysis of the bent
lever in terms of special concepts expressing the varying effect of a weight
according to its position.

In his mechanical writings, most likely postdating his move to Padua,
Galileo used such a term for expressing the varying effect of a weight, his
famous concept of momento which he defined as follows:?22
Momento & la propensione di andare al basso, cagionata non
tanto dalla gravita del mobile, quanto dalla disposizione che
abbino tra di loro diversi corpi gravi.

Moment is the tendency to move downward caused not so much
by the heaviness of the movable body as by the arrangement
which different bodies have among themselves.??3

Galileo’s concept of momento®?* and his analysis of the bent lever,

crucial to both his mechanics and his theory of motion, evidently emerged
from the midst of the controversy about the concept of positional heavi-
ness. In this controversy Galileo took a position much closer to Benedetti
than to Guidobaldo. Instead of positional heaviness Galileo used the con-
cept of momento or momentum that Guidobaldo had introduced in his
book by quoting Commandino’s definition of the center of gravity. But
while Guidobaldo made no further use of it in his mechanics, Galileo took
this concept with respectable lineage in the Urbino school, gave it a new
meaning that was taken over from Benedetti and made it a pillar of his
own framework, including, following Commandino, the definition of the
center of gravity:

Centro della gravita si diffinisce essere in ogni corpo grave quel
punto, intorno al quale consistono parti di eguali momenti.
Center of gravity is defined to be that point in every heavy

body around which parts of equal moments are arranged.?2?

The evidence for our claim concerning Benedetti’s legacy in Galileo’s
work comes from Guidobaldo’s marginal notes on Benedetti’s book, as

221Benedetti’s achievements in this regard have been recognized in the history of me-
chanics since Mersenne’s French edition, Galilei (1634); see the discussion in Bordiga
(1985, 184-187). For a more recent assessment, see Benvenuto (1987).

222Remarkably, the concept of momento is also used in Stigliola’s treatise from 1597, see
Stelliola (1597) and, for historical discussion, Gatto (2006).

223Favaro (1968, vol. 2, 159). Translation in Galilei (1960a, 151). See also Galilei (2002).

2248ee the extensive discussion in Galluzzi (1979).

225Favaro (1968, vol. 2, 159). Translation in Galilei (1960a, 151). See also Galilei (2002).
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well as from his entries in a research notebook, known under the title of
Meditatiunculae,??® which contain traces of Galileo’s intervention in this
controversy.

According to Benedetti and Galileo (and in contrast to Tartaglia and
Guidobaldo) the effective length of the lever arm, obtained by drawing a
perpendicular from the fulcrum of the balance to the line of inclination
determines the effectiveness of a weight or a mechanical constellation. As
we have seen, the measure of positional heaviness used by Benedetti had
already played a role in Cardano’s treatment of the balance in De subtilitate
where it occurs together with two other measures.?2” While these measures
in a similar way qualitatively determine the changing effect of a weight
attached to a balance in dependence on the obliquity of the beam, they
result in quantitatively different values. Cardano was either unaware of
these differences, or he simply did not pay attention to the possibility of
defining a quantitative measure of the magnitude of positional heaviness.

As we have also discussed, in contrast to Cardano, Benedetti unam-
biguously introduced a quantitive measure for the magnitude of a given
weight or force in dependence of the positional circumstances (see section
3.9). His prescription is strikingly similar to that of Galileo:

Quod quantitas cuiuslibet ponderis, aut virtus movens respectu
alterius quantitatis cognoscatur beneficio perpendicularium duc-
tarum a centro librae ad lineam inclinationis.

That the magnitude of one given weight or the magnitude of
one motive force in comparison with another can be found by
means of perpendiculars drawn from the center of the balance
to the line of inclination.??8

Similarly Galileo wrote in his Mechanics:

Ma qui ¢ d’avvertire, come tali distanze si devono misurare
con linee perpendiculari, le quali dal punto della suspensione
caschino sopra le linee rette, che dai centri della gravita delli
due pesi si tirano al centro commune delle cose gravi.

But here it must be noted that such distances must be mea-
sured with perpendicular lines dropped from the point of sus-

226 DelMonte (1587).

227Cardano (1550, 16-20), see section 3.7.

228 Benedetti (1585, 143), page 331 in the present edition. Translation in Drake and
Drabkin (1969, 169).
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pension upon the straight lines drawn from the centers of grav-
ity of the two weights to the common center of heavy bodies.??"

In his Mechanics, Galileo later stressed once more how important it is to
carefully define the effective distances of weights from their support:

Un’altra cosa, prima che piu oltre si proceda, bisogna che sia
considerata; e questa ¢ intorno alle distanze, nelle quali i gravi
vengono appesi: per cio che molto importa il sapere come
s'intendano distanze eguali e diseguali, ed in somma in qual
maniera devono misurarsi.

There is one thing that must be considered before proceeding
further, and this concerns the distances at which heavy bodies
come to be weighed; for it is very important to know the sense
in which equal and unequal distances are to be understood,
and in what manner they must be measured.3°

He also made it clear in his analysis of the inclined plane by means of
the bent lever that this procedure is critical in determining the momento of
a given weight.23! As discussed earlier, in his Diversarum speculationum
[-..] liber Benedetti convincingly demonstrated the effectiveness of this
method in determining the magnitude of a force or weight according to its
position.

Another remarkable similarity between Benedetti’s and Galileo’s me-
chanics is the proof of the law of the lever. Both started by considering a
uniform weight supported from its center of gravity which is then broken
into unequal pieces sustained by strings from a support above the uniform
weight. The proof then argues about the possibility to rearrange these
strings without disturbing the equilibrium. Benedetti’s somewhat obscure
proof was critically annotated by Guidobaldo (see section 7.15). A sim-
ilar proof is then much more clearly expressed in Galileo’s mechanics.?32
Finally, Benedetti’s discussion of projectile motion may have stimulated
Galileo and Guidobaldo’s joint experiment using an inclined plane to trace
the trajectory of a projectile (see page 199).

The very existence of Guidobaldo’s marginal notes on Benedetti’s Di-
versarum speculationum [...] liber provides one definitive answer to the
question of who had actually read this book. The fact that Guidobaldo

229Favaro
230Favaro
231 Favaro
232Favaro

1968, vol. 2, 160). Translation in Galilei (1960a, 152).
1968, vol. 2, 164). Translation in Galilei (1960a, 156-157).
1968, vol. 2, 181) and Galilei (1960a, 173).

1968, vol. 2, 161-163) and Galilei (1960a, 153-154).

A~~~
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del Monte had read it, however, is not entirely new.?33 Guidobaldo’s note-
book, the famous Meditatiunculae,** contains a few entries referring to
Benedetti’s book which furthermore suggest that Guidobaldo must have
studied this work at about the same time he began to correspond with
Galileo.?%> Tt has also been shown that other entries in the Meditatiunculae
document common research and discussions by Guidobaldo and Galileo.?36

This coincidence strongly suggests that Guidobaldo served as a con-
duit to his younger colleague Galileo, transmitting knowledge about some
of Benedetti’s methods that he himself rejected. A closer inspection of the
Meditatiunculae reveals striking evidence for the likelihood of this scenario.
Remarkably, the page of Guidobaldo’s notebook facing the page with his
most detailed critique of Benedetti shows Galileo’s famous construction
relating the bent lever to the inclined plane (see figure 3.34).237

Figure 3.34: Galileo’s construction relating the bent lever to the inclined
plane in Guidobaldo’s notebook.

233See Renn et al. (2001, 74).

234DelMonte (1587). For a historical discussion and a transcription, see Tassora (2001).

235Gee, in particular, DelMonte (1587, 145-146), extensively discussed in sections 5.2
and 7.3 below.

236See Renn et al. (2001).

237DelMonte (1587, 145bis), this page may have been inserted.
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Figure 3.35: Guidobaldo’s construction related to the inclined plane in his

notebook. The construction was adapted from Pappus’ erro-
neous solution.

This circumstance is all the more noteworthy as Guidobaldo’s note-
book also contains, on an earlier page, his own problematic adoption of
Pappus’ analysis of the inclined plane (see figure 3.35).23% In his writings
Galileo had criticized this analysis,??® substituting it with his own solu-
tion of the problem which makes use of the bent lever conceptualized in
the same way as Benedetti did. Guidobaldo therefore must have learned
about this proof from Galileo, and he must also have seen the connection to
Benedetti’s methods. It is in any case most unlikely that the two scientists
did not discuss this connection and it is quite plausible that Galileo be-
came familiar with Benedetti’s work through Guidobaldo. Galileo started
corresponding with Guidobaldo in 1588, three years after the publication
of Benedetti’s book and shortly before he embarked on what later became
known as his writings De Motu.?4® First Galileo wrote a dialogue ver-
sion and then an essay in twenty-three chapters. Only this second version
contains his proof of the law of the inclined plane, the argument about
continuity of motion along a straight line, and the mention of Copernicus.
Most probably this version was written after Galileo became familiar with
Benedetti’s work. His treatise on mechanics, which for the first time ex-
plicitly discussed the problem of the effective lever arm, was only written
much later, certainly after he had visited Guidobaldo in 1592 on his way

238DelMonte (1587, 64).

239Galilei (1960a, 172).

240Galilei (1960b). For a thorough discussion of the chronology of these writings, see
Giusti (1998).
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to Padua (see section 2.3). It therefore seems most probable that Galileo
was familiar with key ideas of Benedetti when he wrote these works.

A more detailed examination of Guidobaldo’s argument in his note-
book makes it evident that the discussion of Benedetti’s work was not only
a turning point for Galileo, but also for Guidobaldo himself. In fact, this
discussion must have convinced him, at least to some extent, both of the
legitimacy and the fertility of Benedetti’s procedure for determining the
positional effect of a weight. In fact, he was able to justify this proce-
dure with the help of the concept of center of gravity central to his own
mechanics.

In the approach to the bent lever problem that he took in his note-
book, Guidobaldo considered an arrangement familiar from Benedetti’s
book, a balance with one deflected arm and with two weights that are in
inverse proportion to the projections of their lever arms on the horizontal
(see figure 3.36). He assumed this balance to be in equilibrium and deter-
mined the center of gravity of the two weights according to the principles
of his own book on mechanics. He found that their center of gravity lies
at the crossing point between a vertical line through the support and the
line connecting the two weights, thus justifying the assumption that it is
in equilibrium.

For geometrical reasons it is now clear that the distances of the weights
from the center of gravity are in the same proportion as the projections on
the horizontal, and inversely as the weights themselves. Guidobaldo had
thus managed to relate Benedetti’s procedure for determining positional
heaviness to his own use of the concept of center of gravity, a typical
example of how concepts become related by being applied to the same
problem. At first he concluded that this is what was to be shown, but
then continued the argument to include Galileo’s consideration of inclined
planes (see figure 3.36):

Libra ABD habeat AB horizonti aequidistans. Ponderaque in
AD maneant. Primum ducta DC ad AB perpendiculari, dico
pondus D ad pondus A esse, ut AB ad BC. Sit BK ipsi AB per-
pendicularis, et in centrum mundi tendat, iungaturque AGD.
Et quod pondera manent, erit ex meis mechanicis punctum G
centrum gravitatis, et ut pondus D ad pondus A, ita AG ad
GD. Et quod BG DC sunt parallelae erit AB ad BC ut AG ad
GD, hoc est ut pondus D ad A. Quod demonstrare oportebat.

Let the balance ABD have [the part] AB equidistant from the
horizon. And let the weights in AD be at rest. If first DC
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is drawn perpendicularly to AB, I say that the weight D is
to the weight A, as [is] AB to BC. Let BK be perpendicular
to AB and tend toward the center of the world, and let AGD
be joined. And since the weights are at rest, according to my
[book on] mechanics the point G will be the center of gravity,
and as the weight D is to the weight A, so is AG to GD. And
since BG DC are parallel, AB will be to BC as AG to GD,
that is, as the weight D to [the weight] A. Which was to be
demonstrated.?4!

Figure 3.36: Guidobaldo’s analysis of Galileo’s construction relating
inclined plane and bent lever.

Before the claim that this is what was to be demonstrated, Guidobaldo
inserted a passage in which he prepared the argument concerning inclined
planes by reformulating what he had found in terms of positional heaviness
without actually using the term. What he nevertheless needed was a way to
describe the changing effect of a weight with position in order to then argue
about the powers capable of supporting weights on differently inclined
planes. So he attempted to reformulate the equilibrium of two different
weights on a bent lever in terms of the different effects of one and the
same weight, which he introduced as a reference weight, on the two sides of

241DelMonte (1587, 145bis).
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the bent lever. Expressing himself in a rather cumbersome and confusing
way, he argued, from what he had shown before, that these effects are
proportional to the projections of the lever arms on the horizontal:

Ex hoc patet aequalia pondera in A D [...] esse pondus A ad
pondus D ut AG ad GD. Sit n[empe] ob evitandam confusionem
pondus L, quod intelligatur in A aequale existens ipsi ponderi
in D. Quod nlempe] pondus in D ad pondus in 4 cui aeque-
ponderat est ut AG ad GD. Pondus vero in D eandem habet
gravitatem ut pondus in A. Ergo pondus L ad pondus A et ad
pondus in D est ut AG ad GD. et per consequens ut AB ad
BC. Levius ergo est pondus in D quam pondus in B, quanto
minor est BC quam BA.

From this it is evident that, equal weights [being] in A D [...],
that the weight A is to the weight D as is AG to GD. Let now,
in order to avoid confusion, the weight L, which is understood
to exist in A, be equal to the same weight at D. Because in
fact the weight at D is to the weight at A, with which it is
in equilibrium, as is AG to GD. But the weight at D has the
same heaviness as the weight at A. Therefore the weight L is
to the weight A and to the weight at D as is AG to GD, and
in consequence as AB to BC. Hence the weight at D is lighter
than the weight at B by as much as BC is smaller than BA.?42

After this preparation, following Galileo’s argument, Guidobaldo re-
lated the bent lever to the inclined plane, comparing the power supporting
a weight in the vertical direction with the power supporting the same
weight along the plane. He formulated the law of the inclined plane by
stating that these powers are inversely as the length of the plane is to
its height. He then proceeded to relate the inclined plane as well as the
vertical to the balance or rather to the bent lever with different positions
of its arm, by claiming that a weight on the plane is as if it were on an
arm that is vertical to the plane. He could then apply the result previously
derived for the bent lever to the inclined plane. For geometrical reasons
his argument refers to an inclined plane formed by the intersection of the
line representing the original inclined plane and the vertical line tangent
to the circle formed by the possible positions of the deflected lever arm
(see figure 3.36):

242DelMonte (1587, 145bis).
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Sit deinde planum DFE horizonti inclinatum, et per EF hori-
zonti recta sitque DF horizonti aequidistans. Dico potentiam
pondus sustinentem in FF ad potentiam idem pondus susti-
nentem super DEF, ita esse, ut DE ad EF. Intelligatur idem
pondus in N. Quoniam nempe pondus in N super NO est, ac si
esset libra ABN essetque pondus in brachio BN, cum sit BNP
angulus rectus. Similiter ob eandem causam pondus in D super
DF est ac si esset in brachio BD, cum sit BDE quoque rectus.
Hoc nempe modo pondera tangunt plana quod nempe similiter
pondus in N super planum NPO est ac si esset in brachio BN
pondus vero in N est aequegrave ut in A erit pondus in N ad
pondus D ut AB hoc est BD ad BC. Et quod triangula CDE
EDF PDO sunt similia, et CDE simile est ipsi BDC erit BD
ad BC ut DE ad EF, hoc est ut DP ad PO.

Let then DE be a plane inclined to the horizon, and through
EF, perpendicular to the horizon, let DF be equidistant to the
horizon. I say that the power supporting the weight at EF' is to
the power supporting the weight over DFE as is DE to EF. It is
to be understood that the same weight is in N. Now evidently
the weight at N is over NO, as if the balance were ABN and the
weight on the arm BN, because BNP is a right angle. Similarly
for the same reason the weight at D over DF is as if it were on
the arm BD, because BDE is also a right [angle]. In this way
namely the weights touch the planes since indeed the weight at
N over the plane NPO is similarly as if it were on the arm BN.
But the weight at N is equally heavy as at A. The weight at N
will be to the weight D as AB, that is BD, is to BC. And since
the triangles CDE EDF PDOQO are similar, and CDEFE is similar
to BDC, BD will be to BC' as DFE is to EF, that is, as DP to
P0.243

Guidobaldo returned to his introduction of a reference weight rep-
resenting the power of supporting a weight in the vertical. This weight
corresponds to the weight at the deflected arm of the balance and is to the
weight on the horizontal arm as is the horizontal arm to the projection of
the deflected arm. He could now conclude that the same proportion also
holds for the powers supporting weights along the vertical and the inclined
plane, respectively:

243DelMonte (1587, 145bis).
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Pondus atque in N sustinetur a pondere L. Pondus vero D
sustinetur a pondere in A, pondus vero in L ad ipsum in A,
est ut AB hoc est BD ad BC. Ergo potentia sustinens pondus
super NO ad potentiam pondus sustinens super DPFE est ut
BD ad BC.

And the weight at N is supported by the weight L. But the
weight D is supported by the weight at A, but the weight at L
is to the same in A, as is AB, that is BD, is to BC. Therefore the
power supporting a weight over NO is to the power supporting
the weight over DPE as BD is to BC.2%4

In a final step of his proof Guidobaldo then transferred the propor-
tions he had found for the small triangle generated by his geometrical
construction to the originally considered inclined plane:

Eodem atque modo sustinetur pondus super DP, veluti super
DE, et super PO, ut super EF. Ergo potentia sustinens pondus
super DE ad eam, quae sustinet pondus super EF est ut DFE
ad FF. Quod demonstrare oportebat.

And in the same way the weight is supported over DP, or over
DE, and over PO, as over EF. Therefore the power supporting
the weight over DF is to that which supports the weight over
EF as is DE to EF. Which was to be demonstrated.?4°

Guidobaldo had thus recapitulated Galileo’s proof of the inclined
plane based on relating it to the bent lever. Since he had previously shown
that Benedetti’s treatment of the bent lever could be justified using the
concept of center of gravity, he had reached a new understanding of the
problem of the inclined plane within the framework of his own mechanics.

Let us summarize the situation with regard to the interaction between
Guidobaldo, Galileo, and Benedetti: At the beginning of 1588, Galileo and
Guidobaldo exchanged their views on the technicalities of proofs in the
Archimedean tradition. A more intensive and regular scientific exchange
then developed, as we may conclude from the few surviving letters. Thus
Guidobaldo had sent Galileo his commentary on Archimedes for commen-
tary and criticism, as we know from a letter of May 28, 1588.246 From
another letter to Galileo, dated December 8, 1590,2*” we may conclude

244DelMonte (1587, 145bis).
245DelMonte (1587, 145bis).
246 Favaro (1968, vol. 10, 33-34).
247Favaro (1968, vol. 10, 45).
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that Guidobaldo used to receive letters from Galileo on an almost daily
basis and that Galileo sent his findings likewise to his mentor Guidobaldo.
As mentioned above, recent research into Guidobaldo’s biography has re-
vealed evidence that Guidobaldo and Galileo must have met as early as
1589 in Tuscany.?*® They might even have met jointly with Galileo’s
teacher Mazzoni who, as we have also seen, cited Benedetti in his work.
Thus Guidobaldo, Mazzoni and Galileo may have discussed Benedetti’s
Diversarum speculationum ...liber with the consequence that Galileo re-
considered his work in progress on motion and, in particular, his treat-
ment of motion along inclined planes. This treatment essentially relies
on Benedetti’s theory of the bent lever and was included in Guidobaldo’s
notebook. But Benedetti’s impact on Galileo probably went even further
than that. Galileo may now have taken the Copernican hypothesis much
more seriously than before, discussing this as well as other subjects with
Mazzoni. In the above-mentioned letter of 1597 Galileo praised Mazzoni
for his Praeludia and reminded him of the controversial issues on which
they meanwhile had reached an agreement, trying now to also press him
on the Copernican hypothesis (see page 143).249

It is in any case difficult to imagine that Guidobaldo did not discuss his
views on Benedetti’s mechanics with Galileo, views that he considered at
the same time misguided as well as profoundly challenging, as his marginal
notes make evident.

3.11 Theoretical excursus: mental models in the transmission
of knowledge

3.11.1 The basic mental models of early mechanical knowledge

An analysis of the long-term development of mechanical knowledge re-
quires an appropriate description of the architecture of this knowledge.
As pointed out earlier (see section 1.2), one must take into account, in
addition to the theoretical knowledge usually considered in the history of
science, two further types of knowledge, intuitive physics and practical
mechanical knowledge. In order to describe the interaction between these
different layers, it has turned out to be useful to adopt the concept of
mental model from cognitive science and to adapt it to the needs of his-

248\Menchetti (2012).
249This scenario was developed in a joint discussion with Pier Daniele Napolitani.



156 3. The Context

torical analysis.??® Mental models are cognitive instruments for drawing
conclusions from experiences in the context of given knowledge.

More specifically, mental models are knowledge representation struc-
tures which allow inferences to be drawn from prior experiences about
complex objects and processes, even when only incomplete information on
them is available. Furthermore, conclusions based on mental models can
be corrected in light of new information. The concept of mental model
is thus particularly suited to explain the long-term continuity of certain
aspects of physical thinking. Mental models are also capable of mediating
between existing theories and experiences which may or may not be diffi-
cult to subsume under these theories. They thus constitute a particularly
important theoretical instrument for understanding what happened in the
early modern period. It was indeed the period of preclassical mechanics
that was characterized, as we have discussed, by the encounter between
traditional theories and novel challenging objects that were difficult to sub-
sume under the existing theories so that these objects became a stimulus
for further developments (see section 3.3).

A mental model consists of a relatively stable network of possible
inferences relating inputs that are variable. Cognitive science often uses
the term slots to indicate the nodes in the structure which have to be
filled with inputs satisfying specific constraints. Applying a mental model
presupposes the assimilation of specific knowledge to its structure, that is,
input information compatible with the constraints of the slots is mapped
into them. Filling the slots is the crucial process that decides on the
appropriateness and applicability of a mental model for a specific object
or process. Once the mapping is successful — if the input information
satisfies the constraints of the slots — the reasoning about the object or
process is, to a large extent, determined by the mental model.

An example of fundamental importance of the history of mechanics
is the motion-implies-force model which, when involved in the interpreta-
tion of a process of motion, yields the conclusion that the moved object
is moved by a force exerted upon it by some mover. While this conclu-
sion is incorrect from the perspective of classical physics, contradicting as
it does Newton’s principle of inertia, it is in agreement with Aristotelian
dynamics (see section 3.4.1). What is more important in our context, the
motion-implies-force model represents elementary human experiences. In
fact, when observing some moving object, one usually presumes that there
is some mover at work which drives the object by its force, even when the

2500n the concept of mental model, see Renn and Damerow (2007). In the following we
also make use of Renn et al. (2003).
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mover itself and its force cannot be directly observed. The missing infor-
mation about the mover is simply added by the default setting of the model
based on prior experiences. If, however, additional empirical information
eventually becomes available, e.g. specifying the kind of mover, then this
information replaces the original default setting without, however, chal-
lenging the model itself.

Mental models relevant to the history of mechanics either belong to
generally shared knowledge or to the shared knowledge of specific groups.
Accordingly, they can be related to the three types of knowledge men-
tioned above. First, there are the basic models of intuitive physics, such
as the motion-implies-force model just described. Another group of men-
tal models is part of the professional knowledge of more or less specialized
practitioners. Their historical transmission is related to the transmission
of the real instruments that embody them. And, finally, there are the
mental models that belong to theoretical knowledge and that are commu-
nicated by an explicit description of their structure and of the conditions
of their applications.

A foundational experience of practitioners’ knowledge since ancient
times has been the equivalence of the weight of a body and the force
required to lift it up. This equivalence is prototypically embodied in a
real model, namely that of the balance with equal arms. In fact, the
force that keeps the balance in equilibrium is equal to the weight in the
scale pan. Hence we call this model of compensation between force and
weight the equilibrium model. However, the practical knowledge of the
technicians and engineers of antiquity also involved other basic experiences,
and, in particular, the experience of how one can free oneself from the
constraint of the equivalence between weight and force. In fact, the art
of the mechanician consisted precisely in overcoming the natural course of
things with the help of instruments such as the lever. According to this
understanding, a mechanical instrument serves to achieve, with a given
force, an unnatural effect that could not have been achieved without the
instrument. We therefore call the model underlying this understanding
the mechanae model — according to the Greek word pnyov) which means
both mechanical instrument and trick, and which is at the origin of the
word mechanics.

A key mental model of theoretical knowledge resulted from an inte-
gration of the mechanae model with the equilibrium model in the context
of a theoretical reflection on the practical knowledge related to the balance
with unequal arms that occured in the context of Aristotelian physics, and
in particular in the Aristotelian Mechanical Problems. We call this model
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the balance-lever model. It can be understood as a generalization of the
equilibrium model, associated with the ordinary balance with equal arms.
In the case of an equal-arms balance, weight differences are balanced by
weights; in the case of an unequal-arms balance, they are balanced by
changing the position of the counterweight along the scale or by fixing
the counterweight at the end of the beam and changing the position of
the suspension point. This necessarily generalized the equilibrium model:
weights can be compensated not only by weights but also by distances. It
was this practical knowledge related to balances with unequal arms, in-
vented in Greek antiquity some time before Aristotle, which provided the
empirical basis for the formulation of the law of the lever.2%!

Another key mental model of mechanical knowledge is the center of
gravity model. Tt can be applied to any given heavy body, allowing one to
mentally replace it by its total weight and its center of gravity. Its slots are
therefore the heavy body itself, its total weight, and the center of gravity.
The structure of the model is determined by noting that any axis through
the center of gravity turns the body into a lever in equilibrium. In other
words, the center of gravity model allows any body to be conceived as a
generalized balance with a fulcrum and a distribution of weights around it
in equilibrium. In contrast to the fulcrum, however, the center of gravity
no longer has to be a physically distinguished point that can be identified
by visual cues, but its identification is rather the result of the application
of the model to a heavy body. In fact, the center of gravity model can
be applied to any body, whether it physically resembles a balance or not.
This is the step taken by Archimedes in his work on the equilibrium of
plane figures.?52

To what kind of knowledge does the center of gravity model belong?
It is clearly rooted in practical knowledge dealing with balances as it is
embodied in the equilibrium model and also in observations on the stability
of bodies. On the other hand, understanding the center of gravity model
actually requires an explicit or implicit description of its properties. In
other words, neither the emergence nor the transmission of this mental
model is conceivable without its representation by written language. The
very fact that the model is applicable to all heavy bodies suggests that
it could hardly have emerged in the context of practitioners’ knowledge
dealing with specialized domains, but that the model rather belongs to
theoretical knowledge.

251See the discussion in Damerow et al. (2002) and Renn and Damerow (2007).
252 Archimedes (1953).
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The center-of-gravity model resulted from a reflection on the applica-
bility of the equilibrium model to all bodies. Indeed, the application of a
mental model to different objects and processes and the outcome of such
applications may themselves become the object of reasoning that produces
new knowledge, provided that such knowledge is appropriately represented
— in our case by written language. Knowledge about knowledge structures
may then in turn change these knowledge structures. Thus, the application
of a mental model may lead to changes — in our case to a generalization —
of that model by a deliberate reorganization of its structure as the result
of the accumulated meta-knowledge obtained by reflection. As an example
for such a reorganization, take the transformation of the concept of ful-
crum into that of the center of gravity. While in the equilibrium model the
fulcrum is primarily characterized by its physical properties as the turning
point of a balance, and only then by the functions it takes on as a conse-
quence of the application of the model, in the more developed model these
secondary properties now become the primary properties of the center of
gravity.

Figure 3.37: If a material beam of a balance is supported from above, and
deflected from its horizontal position, it returns to this po-
sition according to the Aristotelian Mechanical Problems be-
cause the upper part of the balance, to the right of the plane
indicated by the perpendicular line through the suspension
point, is heavier than the lower part to the left of this plane.
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A starting point for the development of the center-of-gravity model is
found in the Aristotelian Mechanical Problems discussed above in section
3.4. There the Aristotelian author considered, as we have seen, an equal-
arms balance with an extended, material beam and distinguished between
the case in which the balance is suspended from above and the case in which
it is supported from below. In these two cases the balance displays different
behaviours when its equilibrium is disturbed, for instance by adding or
removing a weight. The solution to the problem of why it rises again when
supported from above is based on a consideration of the perpendicular
line across the point of suspension, which represents a plane dividing the
balance into two parts (see figure 3.37). The relation between the weights
of these two parts of the balance now decides whether or not the balance
rises again. In this way, the equilibrium model is generalized to apply
to the suspended beam itself, without the weights usually attached to a
balance. The criterion for whether it moves or remains at rest is now no
longer the relation between such weights, but that between the two parts
divided by the perpendicular plane across the point of suspension.

Although applied to the special case of the material beam of a balance
either suspended from above or supported from below, this model works
quite generally for all bodies and, if elaborated systematically, naturally
singles out the case in which the two parts are always of equal weight.
Indeed, if the suspension point across the beam is appropriately moved, a
point is reached where the downwardly displaced side of the beam is neither
greater nor lesser than the other side. For the material beam this happens
if it is suspended from the middle rather than from above or below, in
other words, if it is suspended from its center of gravity — a conclusion
that the Aristotelian author does not actually draw. But a reflection on
the Aristotelian argument could yield a first characterization of the center
of gravity as the point from which a suspended body will remain at rest and
preserve its position. In this way, the center-of-gravity model eventually
resulted from a reflective abstraction of the equilibrium model rooted in
practical knowledge, made possible because of the representation of this
knowledge in terms of written language, in this case in the Aristotelian
text.

The center-of-gravity model provided the backbone for Archimedes’
proof of the law of the lever based on redistributing weights under the con-
straint that the equilibrium is maintained (see figure 3.38). The legitimacy
of this argument, however, has often been disputed, in particular vividly
and powerfully by the historian and philosopher of science Ernst Mach
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Figure 3.38: Archimedes’ proof of the law of the lever is based on a redistri-
bution of weights justified with the help of the concept of cen-
ter of gravity. A constellation of unequal weights at unequal
distances from the fulecrum may thus be replaced, as shown in
the figure, by a set of equal weights evenly distributed with
regard to the fulcrum. The two constellations are equiva-
lent because the redistribution of weights leave the center of
gravity invariant. The redistribution may be visualized by
replacing the unequal weights by equilibrated balances, ap-
pended from the same suspension points and carrying evenly
distributed weights. This illustrates how the concept of cen-
ter of gravity makes it possible to conceive any given body as
a balance and how this concept can be iteratively applied to
justify such redistributions of weights.

around the turn of the last century.??> He argued that Archimedes’ proof
actually presupposes what has to be shown, the law of the lever. In fact, he
argued that the proof involves the assumption that equal displacements of
a weight placed on a beam from and towards the point of support cancel
each other. This assumes that the effect of a weight placed on a beam
is a linear function of distance, a presupposition essentially equivalent to
the law of the lever. A closer look at Archimedes’ proof reveals, however,
that he did not actually talk about such displacements of weights at all.
This objection to Mach’s analysis has been raised by several historians and
has been masterfully elaborated in Dijksterhuis’s book on Archimedes.2>*
In his analysis Dijksterhuis correctly emphasized that, in the critical step
of his proof, Archimedes made use of the concept of center of gravity in

253Mach (1988, 10-24). Mach also reports other criticisms.
254Dijksterhuis (1956, chap. 9).
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order to justify that the original weights keep the system in equilibrium.
Indeed, Archimedes argued that these weights maintain the equilibrium
because they are placed at the respective centers of gravity of the two
groups of equally spaced weights which correspond to them and which,
taken together, keep the beam in equilibrium because their overall center
of gravity coincides with the point of support of the beam.

Archimedes’ proof essentially presupposes three properties of the cen-
ter of gravity: First, the center of gravity of a symmetric configuration as
used in the proof will be at the middle point of the configuration. Second,
if a body is supported at its center of gravity, it will be in equilibrium.
And third, bodies of equal weight may be substituted for each other with-
out changing the state of equilibrium as long as their centers of gravity
coincide. The latter point is crucial for Archimedes’ argument: Because
of the new abstract quality which the concept of fulcrum assumes when
generalized to the concept of center of gravity, it could now be applied
iteratively, allowing, in particular, the point of suspension of a weight on
a balance to be conceived as the fulcrum of another balance (see figure
3.38). The properties listed above are also used in the proofs of Benedetti
and Galileo (see section 7.15). The iterative application of the concept of
center of gravity is in fact the critical feature of these proofs, working with
different constellations of weights on a balance, considered to be equivalent
with regard to their center of gravity.

Against this background, it now becomes possible to characterize the
concept of positional heaviness as resulting from a reflective abstraction
following a route alternative to that which led to the center-of-gravity
model. As our historical analysis has shown, the concept of positional
heaviness emerged in a situation where the concept of center of gravity
was not available and thus left room for this alternative conceptualization
(see section 3.4).

3.11.2 The positional-heaviness model

The basic idea of the concept of positional heaviness was to express the
equilibrium of two different weights on a balance with unequal arms, not
as a statement of proportionality — equilibrium results when the lengths of
the lever arms are inversely proportional to the weights — but as resulting
from an equality. Equilibrium then results when the two different weights
are nevertheless equal in positional heaviness, given that a weight acquires
a larger or smaller positional heaviness the longer or shorter the lever arm
is on which it acts. As we have seen, the concept of positional heaviness
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proved to be effective also in treating devices such as the bent lever and
the inclined plane because it lent itself to dealing with the varying effect
of a weight in dependence on the angle of inclination.

From a theoretical point of view the concept of positional heaviness
is based on a special mental model. Like the center-of-gravity model, this
mental model also resulted from a reflective abstraction based on gen-
eralizing the equilibrium model to all balances, including balances with
unequal arms. But in contrast to the center-of-gravity model, the posi-
tional heaviness model did not lead to a generalization of the concept of
fulcrum, but rather to a generalization of the concept of weight attached
to a mechanical constellation such as a balance. The original positional
heaviness model allowed for a differentiation between a weight and its ef-
fect without establishing any precise relation between them — other than
requiring that equilibrium is associated with equal positional weights. The
model thus paved the way for a number of theoretical attempts to specify
such a relation under the condition that they are conformal with general
properties of the model such as the monotonous relation between the mag-
nitude of the observable effect and the magnitude of the positional heav-
iness which describes this effect. As we have discussed, several different
and partly incompatible measures of positional heaviness were triggered in
the framework of its underlying mental model which provided a coherence
of qualitative knowledge, in spite of such alternatives.

Mental models are usually context-specific and not universally valid.
Thus, the concept of positional heaviness made sense only against the
background of the specific context of knowledge about mechanical devices
used in medieval and early modern technology and of the body of available
contemporary theories available to organize this knowledge. In particular,
when the concept of positional heaviness was first coined by Jordanus, it
was shaped by a context in which the Archimedean concept of center of
gravity was not available, in which the perplexing differentiation between
a weight and its effect under certain conditions could make reference to
Aristotle’s theory of fallacies, and in which a deductive organization of
knowledge on the Euclidean model served as an epistemic ideal. The re-
flection on such theories and their function constituted a specific image of
knowledge?>® and thus another context-specific condition of the concept.

In the early modern period, the context for using, rejecting, or elabo-
rating the positional-heaviness model changed. New technological devices
and a broader program of mechanical explanation entered the scene. The
possibility to reduce an effect such as the power-saving potential of a pul-

2553ee Elkana (1978).
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ley or a complex machine to the paradigm of the balance from which
the concept of positional heaviness had been derived now became a criti-
cal, context-specific condition of the applicability of the model. Another
context-specific condition was the cosmological assumption that weights
always tend to move toward the center of the world. This was an almost
universally accepted Aristotelian premise of preclassical mechanics. Fur-
thermore, the adherence to the Archimedean kind of deductive theories
as a model for structuring the body of mechanical knowledge provided
an image of knowledge characteristic for the Renaissance and early mod-
ern context. This explains the common mathematical framework of the
attempts to render the meaning of the concept of positional heaviness in
precise mathematical terms. And finally, the availability of Archimedean
writings made it necessary to confront the consequences of interpreting
a mechanical problem against the background of the positional-heaviness
model with the implications of the center-of-gravity model.

Mental models can be adapted to new experiences attained, in par-
ticular, in the process of studying challenging objects. The example of an
equilibrated balance deflected into an oblique position of its beam shows
that this adaptation may be a multifaceted process. The analysis of the
different approaches of Guidobaldo and his adversaries demonstrates, on
the one hand, that these scholars and engineers shared a basic under-
standing of the difference between a weight and its effect. This common
understanding was based on a shared mental model which reflected gen-
eral experiences obtained from the practical handling of balances. We have
shown, on the other hand, that the specific ways in which Guidobaldo and
his adversaries applied the shared mental model to particular experiences
such as those concerning the behavior of a deflected balance and to results
of experiments dedicated to studying this behavior in detail challenged the
application of the model and determined in various ways its more or less
successful adaptation.

These adaptations were, however, limited by some common context-
specific historical conditions. In particular, no concept of mathematical
function existed that would have allowed experiences involving several
physical dimensions such as space, time, and weight to be integrated into
a single composite physical magnitude such as torque or work. In the case
of the challenging object of a deflected balance, it was thus impossible to
integrate the effect of geometrical properties of the deflected balance and
the effect of physical properties of the attached weights into a composite
magnitude representing all of these effects. The changing effect of a weight
in dependence on the obliquity of the beam of a deflected balance could
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either be explained as resulting from circumstantial conditions that could
not be assimilated to one theoretical framework, or the effect could be
represented by a new concept of weight that would be determined by spe-
cific geometrical or mechanical aspects of the experiences with deflected
balances. Realizing the latter possibility led to the specific problems of
defining a precise concept of positional heaviness. The deficiency in ad-
equately representing the interplay between various physical magnitudes
was fundamental, to the effect that not even the equilibrium of a balance
could be conceived of as an equality of values of a composite physical mag-
nitude. The introduction of generalized composite mechanical properties
such as the product of lengths and weights would have been, however, the
precondition for a conceptual development leading to the concept of torque
used in classical mechanics to define the equilibrium of a balance.

The historical development we have reviewed nevertheless did even-
tually lead to a certain reconciliation of the original alternative concep-
tualizations in terms of center of gravity and positional heaviness. This
must be understood as the result of the extensive elaboration and contro-
versial evaluation of the consequences of the application of the underlying
shared mental models to an ever increasing array of challenging objects.
It is thus no accident that this relative and preliminary stabilization of the
conceptual structures of preclassical mechanics went along with a growing
network of arguments connecting these mechanical problems and hence
the mental models underlying their conceptualization. Galileo’s proof of
the inclined plane theorem with the help of the bent lever, analyzed with
the help of his concept of momento, itself an adaptation of the concept
of positional heaviness, may stand as a representative for this process of
knowledge integration.

Mental models link past with present experiences and thus allow con-
clusions to be drawn from incomplete information. In the present case the
knowledge about a challenging object such as the bent lever, the inclined
plane or the equilibrated balance deflected by a force acting in an arbitrary
direction, was too incomplete to determine a general theory covering all
of this knowledge. Only mental models such as the positional-heaviness
model made it possible to link this knowledge to prior experiences and
to the tradition of theoretical mechanics based on the law of the lever,
as well as to Aristotelian cosmology and the medieval science of weights.
Among the relevant prior experiences was, in particular, the familiarity
with balances in equilibrium which were normally conceived of as being in
horizontal position, a default assumption which was even reflected in the
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designation of the equilibrium as the position in which the beam of the
balance is parallel to the horizon.??¢

Mental models bridge various levels of knowledge that represent the
same object in various forms. Early modern technology was based largely
on the intuitive knowledge of practitioners and, in particular, on rules of
thumb derived by engineers who organized their work. Early modern prac-
titioners had ample experience with the dependency of forces and weights
on geometrical and mechanical constellations. However, such knowledge
was not usually written down and transmitted only by participation in
its application in practical contexts. It was mental models such as the
positional-heaviness model that allowed this practical knowledge to be
combined with knowledge at the level of theoretical reflection based on
theories of mechanics available at the time.

If one tries to confront the historical concept of positional heaviness
with potential counterparts in classical physics, it becomes particularly
evident that the effectiveness of the historical concept requires an expla-
nation along the lines just sketched, rather than conceiving it in some
sense as an ancestor of modern concepts (see section 1.4). For the cases of
the equilibrium of a balance with unequal arms and that of a bent lever,
the equality of positional heaviness corresponds, in modern terms, to the
equality not of weights or forces but of torques. This translation, however,
does not work in the case of equilibrium on an inclined plane. In this
case the equality of positional heaviness for different weights placed on
differently inclined planes has to be interpreted in terms of the changing
component of the force of gravitation in the direction of the inclined plane
and as a consequence of the principle of work. The equilibrium of two bod-
ies of different weights placed on differently inclined planes and connected
with each other by a weightless rope can then be explained by the com-
pensation of weight and distance in the sense that the larger weight travels
a shorter vertical distance along the less steeply inclined plane than the
smaller weight hanging down along the more steeply inclined plane, when
both are being moved in accordance with their constraints. In other words,
the compensation between lengths and weights receives different explana-
tions in the two cases, excluding the possibility of translating positional
heaviness with a single modern term such as torque, vector component of
force, or work.

256Gee, for instance, the term parallelum epipedo orizontis in the Liber de canonio, the
expression equatur linea super equidistantiam orizontis in the Liber karatonis, and the
expression situm equalitatis esse equidistantiam super superficiei orizontis in the Liber
de ponderibus; for reference see Moody and Clagett (1960, passim).
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In summary, both the concept of center of gravity and the concept of
positional heaviness are reflective abstractions resulting from mental mod-
els rooted in practical experience, in particular, the equilibrium model and
the balance-lever model. The representation of these models in the medium
of written language constituted not only the basis for using these models
far beyond the original extension of their range of applicability but also
the presupposition for reflecting on the properties of the model as they are
revealed by applying it to particular challenging objects. Whereas mental
models such as the motion-implies-force model emerged from a reflection
on the operations directly performed with a real object, secondary abstrac-
tions such as that yielding the concepts of center of gravity or of positional
heaviness resulted from a reflection on mental operations represented by
language and performed in order to explore the properties of the model
and its application. Without the representation in terms of language, such
concepts would have hardly emerged.

Against this background, we recognize that the proofs encountered in
our historical sources presuppose not only the practical knowledge about
balances with equal and unequal arms, which gave rise to the equilibrium
and the balance-lever model, but also concepts of theoretical knowledge
such as center of gravity and positional heaviness, which resulted as re-
flective abstractions from these models. These proofs involve, however,
not only these abstract concepts but also, just like the proofs of Euclidean
geometry after which they are often modelled, complex constructions corre-
sponding to physical arrangements and the operations performed on them.
While in Euclidean geometry the physical operations reflected in the writ-
ten text are constructions performed with compass and ruler, here they
typically correspond to operations with balances. In this way, the practical
knowledge about balances continued to provide the empirical grounding
that made these proofs convincing.






Chapter 4
Jordanus’ Treatise De ponderibus Edited by Petrus
Apianus

In the following we shall first briefly summarize the structure and the con-
tents of the book annotated by Guidobaldo and then present his marginal
notes in their context, with detailed explanations and quotations of the
passages on which he chose to comment.

The Liber Jordani de ponderibus is based on fourteenth-century manu-
scripts edited by Petrus Apianus in 1533 at Nuremberg.! It comprises a
prologue, seven postulates, and thirteen theorems (see also sections 2.1 and
3.5). After each theorem, the Apianus edition presents a short commentary
as well as a generally much more extended supplementary commentary,
either by the editor himself or compiled from other manuscript sources, as
Moody and Clagett contend.?

4.1 The prologue

The prologue introduces the science of weights as being subject to both
philosophy and geometry. The author then emphasizes that the arm of a
balance describes a circle. The effect of a weight in different positions of the
arm of the balance is derived from the properties of motion along a circle,
conceived in the manner of the Aristotelian Mechanical Problems. An arc
is compared to its chord in order to assess its curvature. A longer arc of the
same circle is thus considered to be more curved than a shorter one, and
an arc of a given length is more curved in a smaller circle than in a larger
one. The author furthermore assumed that the more curved a motion is,
the more contrary it is to a straight line and the more violence it contains.
But the more violence or more impediment the motion of a body acquires,
the more its heaviness is diminished. This consideration constitutes the

tde Nemore (1533).

2The following description is based on Moody and Clagett (1960, 145-149). For a
discussion of the extensive commentary and its manuscript basis, see also Moody and
Clagett (1960, 293-305).
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basis for the statement that a body becomes lighter the more the arm of
a balance descends and ultimately for defining positional heaviness. After
explaining how such considerations of contrariety of motions relate to a
situation in which a heavy body is at rest, the author claimed to have
prepared the postulates that are stated next. They are characterized as
being in no need of proof and as constituting assumptions of the science
of weights.

4.2 The postulates

The first two of the seven postulates (see page 63) are rooted in Aristotelian
natural philosophy, stating that the movement of every body is toward the
center of the world and that the heavier a body is, the faster it descends.
The next three postulates deal with the more or less straight or oblique
character of a body’s descent. The third postulate introduces the notion
of “heavier in descending,” defined by the directness of the motion to the
center. The fourth postulate defines positional heaviness by stating that a
body is positionally heavier if its descent is less oblique. Obliqueness is, in
turn, defined in the fifth postulate. A descent is called more oblique if it
partakes less of the vertical. The sixth postulate indirectly characterizes a
body as having less positional heaviness by the fact that it moves upward
as a consequence of the descent of the other body. The seventh postulate
finally characterizes the position of equality by equidistance to the plane
of the horizon.

4.3 The first theorem on the proportion of descents and ascents
of heavy bodies

The first theorem specifies the second postulate. It states that the veloc-
ities of descent are in direct proportion to the weights of heavy bodies,
while the contrary motions of descents and ascents are in inverse propor-
tion to each other. This theorem lays the ground for a derivation of the law
of the lever by starting from Aristotelian dynamics as it is then pursued
in theorem 8. The direct proportionality between weight and velocity of
descent is a common conclusion from Aristotelian dynamics (see section
3.4.1). The inverse proportionality characteristic of the law of the lever
may then be derived from the contrariety of descent and ascent of the two
arms of a lever. The first short comment makes this implication explicit,
while the second, more detailed and technical comment discusses the con-
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clusion in a scholastic style, refuting arguments of a possible adversary but
also referring to propositions of Euclid and Archimedes.

4.4 The second theorem on the equilibrium position of a balance

The second theorem states that a balance with equal arms will not leave
the horizontal position when two equal weights are attached. It also states
that when the balance is brought into a different position it will return
to the horizontal. The first commentary just refers to the fourth postu-
late for a justification of the latter statement, which is essentially to the
definition of positional heaviness. This is hardly understandable without
knowledge of the full argument in favor of this claim as it is familiar from
other writings. The longer second commentary then provides the missing
explanation showing how the fourth postulate is to be applied in order
to arrive at the desired conclusions. The argument it provides is essen-
tially identical to that of the Elementa, while the accompanying figure is
somewhat different.

4.5 The third theorem on the irrelevance of the lengths of the
pendants

The third theorem argues that the lengths of the supporting chords of
the weights attached to the balance are inconsequential for the equilib-
rium. The first short comment sketches an indirect proof, arguing that
if one body descends, the other side would have to be less heavy. This
contradicts the premise that the weights on the two sides of the balance
are equal. As a justification it refers, somewhat surprisingly, to the second
postulate. The second longer comment essentially follows the reasoning
of the Elementa and is based on the notion of positional heaviness. Re-
markable is a concluding reference to the fact that the different distances
of the suspension chords from the center of the world have been rightly
neglected.

4.6 The fourth theorem on the decrease of positional heaviness

The fourth theorem claims that whenever a weight attached to the beam of
a balance descends it becomes positionally lighter. The first commentary
simply refers to the fourth postulate which states that a body becomes
positionally heavier if its descent is less oblique. The second commentary
then argues in more detail, again following the same logic as the Flementa,
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that when a weight is displaced from the horizontal position it will move
through arcs that capture less of the vertical so that in fact the weight
becomes, by the fourth postulate, less heavy positionally. This theorem is
omitted from the De ratione ponderis.

4.7 The fifth theorem on the descent of the longer arm

The fifth theorem states that when the arms of a balance are unequal, but
the weights attached are equal, the balance will descend on the side of the
longer arm. The first commentary notes that the motion of the longer arm
describes a larger circle and then refers to the third postulate which states
that a body is heavier in descending if its movement toward the center is
more direct. The extensive second commentary elaborates in great detail
the mathematical relation between circle and arc and refers to Euclid, in
particular to the edition of the Elements by Johannes Campanus,® as well
as to Ptolemy and Archimedes. The reference to Ptolemy’s Almagest, with
which Apianus was intimately familiar through his work on cosmography,*
suggests that Apianus, who around this time must have been working also
on his famous sine tables,® may have contributed his own thoughts to
this commentary or even be its author, an issue which, however, remains
controversial.

4.8 The sixth theorem on the bent lever

The sixth theorem is one of the problematic statements about the bent
lever dropped from the De ratione ponderis. It states that when equal
weights are suspended so that one weight is attached from the shorter arm
in horizontal position, while the other weight is attached to the longer
arm which is, however, bent so that its end is at the same distance from
the vertical as is the shorter arm, then the weight on the longer arm
will become positionally lighter. According to classical physics, as well
as according to theorem 8 of the De ratione ponderis and Benedetti’s
rule, the two weights should, however, be in equilibrium. In the Elementa
this erroneous conclusion is reached by arguing that the descent of the
weight on the longer arm is more oblique than the descent of the weight
on the shorter arm, comparing arcs that capture equal amounts of the
vertical. The first comment to the theorem is again rather vague and

3Johannes Campanus, 1220-1296.
4 Apianus (1524).
5 Apianus (1541).
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hardly indicates an approach to demonstrating this conclusion. The more
explicit second comment again follows the logic of the demonstration in
the Elementa.

4.9 The seventh theorem on the freely swinging pendant

The seventh theorem states that when equal weights are suspended from
equal arms, one by a freely moving chord of suspension and the other by
a rigidly fixed rod at a right angle to the arm of the balance, the weight
that is freely swinging will be positionally heavier. The theorem thus
amounts to the surprising claim that the equilibrium of a balance depends
on the mobility of its arms in such a way that the weight on the mobile
arm has supposedly a greater effect than the weight on the arm that is
fixed. What actually happens in this case according to classical physics
is that such a balance in a horizontal position is in stable equilibrium,
while a balance with two freely moving chords of suspension would be in
indifferent equilibrium.

The first commentary is exceptionally long while still not being very
helpful to the non-initiated. It begins as usual with an explication of the
terms involved, followed by an indication of how the proof is to be carried
out. The hint it gives, however, is limited to the enigmatic statement
that the arm that can swing freely describes a greater circle in its descent.
The demonstration found in the FElementa reduces this case to the bent
lever considered in the preceding theorem. The arm of the balance with a
fixed rod is mentally replaced by a bent lever along the hypothenuse of the
triangle formed by the arm and the rod. The weight at the end of this bent
lever has thus the same distance from the vertical line through the point
of suspension as has the weight on the other arm of the balance. All that
now remains is to compare the obliquity of the descents of these weights
as it was considered in the previous theorem. The first comment proceeds
by referring to the confusion that may arise when neglecting the difference
between mobile and fixed arms, in particular when trying to establish the
second theorem. As we have seen, the second theorem in fact claims that
the balance always returns to the horizontal position, or in modern terms,
that its equilibrium is stable. This, however, is certainly not the case when
it has two freely moving chords of suspension. It is therefore remarkable
that the first commentary explicitly states that theorem 7 was invented
in the course of an experiment aimed at verifying theorem 2. It refers to
the possibility that the claim of theorem 2 may seemingly be refuted by
such an experiment if one considers a balance with freely moving chords.
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The second comment then provides the same argument as the proof of the
Elementa.

4.10 The eighth theorem on the law of the lever

The eighth theorem states the law of the lever in terms of positional heav-
iness. The first commentary merely rephrases the claim and refers back
to the first theorem. The proof of the Elementa is based on reducing the
compensation of weights and lengths in a balance with unequal arms to
a compensation of weights and heights to which they are lifted according
to Aristotelian dynamics, using the preparation provided by theorem 1.
The argument is in fact based on the statement inferred from theorem 1
that what suffices to lift a certain weight to a given height will also suffice
to lift another weight to a different height if these weights and distances
are inversely proportional to each other. The second commentary elabo-
rates this idea in great detail, adding references to the relevant theorems
of Euclid.

4.11 The ninth theorem on the equal positional heaviness of
bodies in different positions

The ninth theorem states that two oblong bodies of equal weight and
shape, one suspended in a vertical position, the other at its midpoint
in a horizontal position, have the same positional heaviness. The first
commentary first rephrases the theorem and then vaguely indicates that it
can be proved by remarking that the semicircles described by these weights
are equal. The proof of the Elementa decomposes the weight in horizontal
position into two equal weights hung at equal distances from the midpoint
of the original weight. It then shows that each of these weights balances
half of the weight on the other side of the balance. The second commentary
develops this idea and remarks in conclusion that this theorem constitutes,
according to some, the end of Euclid’s book on the balance.

4.12 The four theorems of the De canonio

The four remaining theorems are taken from the Liber de canonio (see also
section 2.1). They deal with the weight of a material beam and its role
for the equilibrium of a balance. The structure of the text remains the
same. After the theorem a first commentary explains the terms, rephrases
the theorem, and hints at a proof. The second commentary then provides
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technical details including a figure and typically referring to theorems of
Euclid’s Elements.






Chapter 5
Guidobaldo’s Marginal Notes in Jordanus’ Book

Guidobaldo evidently owned a copy of Apianus’ edition of Jordanus.! This
copy survived and is annotated in Guidobaldo’s hand. These marginal
notes are presented here not with the aim to offer an exhaustive philo-
logical analysis, but in order to gain insight into the equilibrium contro-
versy, in particular with regard to the concept of positional heaviness.
The presentation of the notes comprises a short characterization of the
relevant passages in Jordanus’ text, including quotations of the passages
to which Guidobaldo referred — if these passages could be identified, then
the marginalia themselves are presented and interpreted.

5.1 Second theorem: rejecting Jordanus’ stance in the
equilibrium controversy

Guidobaldo left several notes on this theorem and its commentaries, some
of them very minor. The second theorem deals, as mentioned above, with
the equilibrium position of a balance, claiming that a balance always re-
turns to its horizontal position when it is displaced from it. Guidobaldo
in contrast was, as we have also discussed extensively, convinced that the
balance remains in whatever position it has and does not return to the
horizontal.

Guidobaldo’s first note refers to Jordanus’ statement of the theorem:

Cum fuerit aequilibris positio aequalis, aequis ponderibus ap-
pensis, ab aequalitate non discedet, etsi ab aequidistantia sep-
aretur, ad aequalitatis situm revertetur.

If an equilibrated [balance] is in horizontal position [positio

aequalis], with equal weights suspended, it will not leave the
horizontal position [aequalitate]; and if it is removed from the

tde Nemore (1533).
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horizontal position [aequidistantia], it will return to the hori-
zontal position [aequalitatis situm).?
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Figure 5.1: First marginal note to the second proposition.

In his first short marginal note Guidobaldo simply rejects this claim.
He noted:

haec propositio falsa e[st]

this proposition is false

Guidobaldo’s second note, on the next page, refers to the detailed
argument in the second commentary, in particular to the following state-
ment:

Non enim ulterius descendet B, eo quod descensus eius versus
D magis obliquus est, quam ascensus C ad aequalitatem, B
enim et C iam equaliter distant a situ aequalitatis |...]

In fact B does not descend further because its descent toward D
is more oblique than the ascent of C' to the horizontal position
since B and C have the same distance from the horizontal
position [...J3

The argument compares, as usual, the obliquity of descents in order
to establish which weight is positionally heavier. In the present case it
is argued that the descent of the [lower| weight B is more oblique than
that of [upper] weight C' so that weight B is positionally lighter than
weight C, with the effect that the balance returns to its horizontal position.

2de Nemore (1533, B ii recto), page 305 of the present edition. Translation by the
authors, cf. Moody and Clagett (1960, 156-157).
3de Nemore (1533, B ii verso), page 306 of the present edition.
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Guidobaldo has underlined the word “ascensus” in the sentence quoted
above and noted in the margin that it has to be replaced by “descensus”
to make the argument work following the logic of Jordanus who compared
descents on both sides of the balance:

descensus

descent

tum
eius

8{(?:

Figure 5.2: Second marginal note to the second proposition.
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In a third marginal note on the same page, still related to the second
theorem, Guidobaldo remarks:

[halec demonstratio inutilis est [pr]orsus ut in nostro Mechan-
icorum libro patet. [slequens vero recte concludit

this demonstration is completely useless as is clear from our
book on mechanics, but in the following he reasons correctly

2 / ’ /_, 'CI'CUI
e tMohM (243 ram |
st ™ ’S’““*‘\ régu:
y ' re&ic

SR an. (B

> ok
2 cuic
C ) linea
Lt
4 fon
=R

Figure 5.3: Third marginal note to the second proposition.
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Guidobaldo claimed here, not that Jordanus’ proof is wrong, because
geometrically it is correct, but that it is useless. In fact the geometrical
reasoning of the commentator about arcs and what they capture from the
vertical is mathematically correct.
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Figure 5.4: Correction of a typographical error.

On the same page there is a very brief fourth marginal note and a
correction in the lettering of a figure. The letter 7 replaces the letter [ in
the text which is crossed out. The same is done in the drawing. This just
corrects a sloppy designation of a point in the diagram.
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Figure 5.5: Correction of another typographical error.

A similar error in the same paragraph is also corrected by Guidobaldo.
The word 4n in the text is crossed out and replaced by the letter m.
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This shows that Guidobaldo worked carefully through Apianus’ edi-
tion, even correcting typographical errors, and that he followed, equally
carefully, the intrinsic logic of Jordanus’ arguments.

5.2 Fourth theorem: the neglect of the cosmological context

The next marginal note refers to the fourth theorem which claims that a
weight becomes positionally lighter when it is removed from the horizontal
position:

Quodlibet pondus in quamcumque partem discedat secundum
situm fit levius.

In whichever direction a weights descends, it becomes position-
ally lighter.*

Guidobaldo’s comment may address either this claim or the first statement
of the commentary to this theorem which refers to the fourth postulate,
the definition of positional heaviness by the obliqueness of descent:

Manifestum est hoc per suppositionem quartam.

This is evident by the fourth postulate.®

Guidobaldo noted in the margin, close to both of these statements, in large
script:

Falsa

False

Most probably, this comment refers to Guidobaldo’s claim, discussed
extensively in his book (see section 3.8.4), that, when one takes into ac-
count the cosmological context, it is not the horizontal position but a dif-
ferent one, in dependence on the distance of the balance from the center
of the world, in which a weight reaches its maximal positional heaviness.

4de Nemore (1533, B iii verso), page 308 in the present edition. Translation in Moody
and Clagett (1960, 156-157).
5de Nemore (1533, B iii verso), page 308 in the present edition. Translation in Moody
and Clagett (1960, 156-157).
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Figure 5.6: Marginal note to the fourth proposition.

5.3 Fifth theorem: failure to recognize the authority of Archimedes
in mechanics

The fifth theorem claims, as we have discussed, that a balance with equal
weights but unequal arms will descend on the side of the longer arm. In
the middle of the extensive second commentary justifying this proposi-
tion, which, as we have also discussed, contains many technical references,
Guidobaldo just underlined the word Archimedes:

[...] sed sicut circumferentia ad circumferentiam, ita semidi-
ameter ad semidiametrum per quintam Archimedis de curvis
superficiebus.
[...] but as circumference to circumference such is diameter
to diameter by the fifth proposition of Archimedes’ De curvis
superficiebus.5

Possibly this underlining simply meant that Guidobaldo found it remark-
able that Archimedes is just quoted as an authority in mathematics but
not in mechanics by the author.

6de Nemore (1533, C i recto), page 311 in the present edition. Translation by the
authors, cf. Moody and Clagett (1960, 158).
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Figure 5.7: Underlining a word in the proof of the fifth proposition.

5.4 Seventh theorem: on the erroneous treatment of an
equilibrium problem

The seventh theorem is one of the problematic theorems concerning the
bent lever, the other being theorem 6 on which Guidobaldo left no an-
notation. Theorem 7 concerns the balance with one fixed and one freely
moving suspension, claiming that the freely swinging weight is positionally
heavier.

Guidobaldo’s first note is written in the margin of the beginning of
the commentary to this theorem, but it may also refer to the theorem
as a whole. Indeed, as we have discussed above, the first part of the
commentary is hardly illuminating, while the enunciation of the theorem
offers itself to criticism from the viewpoint of Guidobaldo’s mechanics.
Guidobaldo’s approach crucially involves the concept of center of grav-
ity, as we have discussed above. Now the question raised by the present
theorem, namely what happens to such a balance when it is displaced
from the horizontal position, can be addressed with the help of this con-
cept, leading to the conclusion that the balance is in stable equilibrium.
But Guidobaldo may have also focused on a statement in the commentary
which is obviously problematic:

[...] tunc illud quod est circumvolubile, maiorem circulum con-
stituit in causa [should be casu] quia plus declinat propter cir-
cumvolutionem, et sic pondus ibi gravius est secundum situm
cum eius descensus sit rectior.

Then the arm which can swing freely will describe a greater
circle in its descent, because it has a greater declination on ac-
count of the rotation; and thus the weight there is positionally
heavier, since its path of descent is straighter.”

7de Nemore (1533, C iii verso), page 316 in the present edition. Translation in Moody
and Clagett (1960, 158-159).
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In any case, Guidobaldo wrote:
falsa [ijmmo sequitur oppositum [s]i per principia vera fiat
demonstratio

false; in fact the opposite follows if the demonstration is per-
formed according to true principles
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Figure 5.8: Marginal note to the seventh theorem.

The next marginal note simply corrects a typographical error at the
end of the commentary to theorem 7, replacing ho in the text which is
underlined by the correct word hoc.

\lv’- —————— .- R ' —_ .
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Figure 5.9: Correction of a typographical error near the end of the com-
mentary to Jordanus’ seventh theorem.
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5.5 Eighth theorem: rejecting Jordanus’ proof of the law of the
lever

Theorem 8 constitutes, as we have discussed, a proof of the law of the lever.
Guidobaldo left two marginal notes to this theorem and its discussion in
the commentaries. The first note refers to the statement of the theorem,
expressed in terms of an equality of positional heaviness:

Si fuerint brachia librae proportionalia ponderibus appenso-
rum, ita, ut in breviori gravius appendatur, aeque gravia erunt
secundum situm.

If the arms of the balance are proportional to the weights sus-
pended, in such manner that the heavier weight is suspended
on the shorter arm, then the suspended weights will be of equal
positional heaviness.®

Guidobaldo wrote:

propositio quidem vera. Demonstrationum vero sequentium
nulla ex necessitate concludit

the proposition is true indeed, but he derives nothing of the
following demonstrations by necessity

While the claim — the law of the lever — is evidently correct, Guidobaldo
questioned the method of proof based on Aristotelian principles rather
than on the concept of center of gravity.

Guidobaldo’s second marginal note to this theorem on the same page
refers to the proof given in the second commentary which he evidently
worked through. It refers, in particular, to the following statement (see
figure 5.11):

Dico, quod non faciet motum in aliquam partem regula recta,
ascendat primo B et descendat C, ita ut DAFE sit quasi regula,
et D quasi pondus C, sint DM et EF perpendiculares super
BC palam est igitur [...], quod triangulia ADM et AEF sunt
similes.

Isay that, without the balance moving in any direction, let first
B rise and C descend so that DAE becomes like the balance

8de Nemore (1533, C iv recto), page 317 in the present edition. Translation adapted
from Moody and Clagett (1960, 160-161).
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Figure 5.10: Guidobaldo criticizes Jordanus’ proof.

and D like the weight C, and let DM and EF be perpendicular
lines on BC then it is obvious [...] that the triangles ADM and
AEF are similar.”

Here the words “D quasi pondus C” (“D like the weight C”) are un-
derlined.
In the margin next to it Guidobaldo wrote:

DE quasi pondera [BC]|
DE like the weights [BC]
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Figure 5.11: Guidobaldo clarifies a sentence of Jordanus’ proof.

9de Nemore (1533).
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Furthermore, he added labels to the diagram. Evidently, Guidobaldo
attempted to follow the proof concerning imaginary displacements of weights
that allow the application of Aristotelian dynamical principles. In particu-
lar, the weight D corresponds to the weight originally labelled B but then
designated as C in the text quoted above. The lettering of the text and of
the diagram was apparently so confusing to Guidobaldo that he strove for
greater clarity by correcting labels both in the diagram and in the text.

5.6 Ninth theorem: the problematic attribution to Euclid

The last sentence of the commentary to the ninth theorem ascribes the
first nine theorems not to Jordanus but to Euclid. Guidobaldo evidently
found this remarkable and underlined the statement that here the book of
Euclids ends:

Hic explicit secundum aliquos liber Euclidis de ponderibus.

Here ends, according to some, Euclid’s book on weights.!?

deraretinferiori libi sequali,ut patetex primahuius. Si cum fit circum-
uolubile,cunc per tertiam huius omnes partes aquales axqualiter pon-
derant,ut affumitur in probatione conclufionis huius. Hic explicit fed

__dumaliquos liber Euclidis de ponderibus.

Figure 5.12: The ascription of the book to Euclid.

10de Nemore (1533, D i verso), page 320 in the present edition.






Chapter 6
The Treatise De Mechanicis in Benedetti’s Book

The Diversarum speculationum mathematicarum et physicarum liber by
Benedetti is a collection of six quite different treatises, as has been men-
tioned in the beginning (see section 1.2). Only one of these treatises enti-
tled De mechanicis was in the focus of Guidobaldo del Monte’s marginalia
and will be presented here in some detail, summarizing and complementing
what has been said in section 3.9.

This treatise on mechanics is divided into twenty-five chapters. There
are some more references to mechanics in the letters that are also part of
Benedetti’s book. His discussion of the motion of fall through media and
of hydraulic problems are not part of this treatise. The treatise starts with
a brief preamble in which Benedetti claimed that he treats topics that have
never been dealt with before or have not been sufficiently well explained.

6.1 The oblique position of the beam of a balance

Chapters 1 to 6 contain a systematic account of the foundation on which
Benedetti built his mechanics. He presupposed the theory of Archimedes
but also incorporated the concept of positional heaviness.

Chapter 1 clarifies qualitatively how the variable weight changes de-
pending on the obliqueness of the beam of a balance. While a body at-
tached to the end of the beam has a maximum weight if the beam is in
a horizontal position, it vanishes when the beam is in a vertical position.
Benedetti explained this behavior as a consequence of the different extent
to which the attached weight rests on the center of the balance. If the
position of the beam is close to the vertical, the weight of a body attached
to the end of the beam is close to zero since it rests nearly completely on
the center of the balance.

Chapter 2 clarifies the positional changing of the weight quantita-
tively. Benedetti related the balance with an oblique position of the beam
to a bent lever with one horizontal and one oblique arm, thus providing
the precondition for a generalization of his result. A generalization of this
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kind is indeed required if the lines of inclination of the bodies at the end
of a balance are conceived as being directed to the center of the earth and
hence no longer as being parallel to each other. Benedetti mentioned this
possibility at the end of his chapter, but considered the angle between the
two directions as being too small to be measured and thus need not be
taken into account.

In chapter 3 Benedetti generalized from the downward inclination of a
body attached to the beam of a balance to forces acting upon the body not
vertically but making an acute or obtuse angle with the horizontal beam.
Accordingly, he replaced the bodies at the end of the beam of a balance
with two weights or two moving forces (duo pondera, aut duae virtutes
moventes), as he formulated somewhat ambiguously. His derivation of
their quantities was based on a reinterpretation of the horizontal distances
between the center of the balance and the vertical projections of the bodies
at the end of a beam in an oblique position. He interpreted these distances
as perpendicular distances from the center of the balance to the lines of
inclination, and was thus able to apply the result he achieved for vertically
descending weights also to lines of inclination caused by forces that are
not vertical.

In the following, Benedetti maintained that his arguments in chap-
ters 1 to 3 clarify all the causes operating on balances and levers. To
demonstrate this, he discussed in chapters 4 and 5 the validity of his re-
sults if applied to material balances and levers, taking into account that
they have a beam with finite extension. This, however, does not imply that
he calculated the influence of the weight of the beam itself. His discussion
was rather restricted to a justification of his claim that the geometry of a
rectangular beam does not require a modification of his propositions. In
chapter 5 he treated the case of a lever whose fulcrum is at one of its ends.

Finally in chapter 6 Benedetti added the description of an instrument
used in bakeries for treating the dough. He explained the function of the
instrument by applying his proposition of chapter 3.

The systematic approach of Benedetti in this first part of his treatise
is complemented by chapter 9 in which he justified the division of the scale
of a steelyard into equal intervals.

6.2 Benedetti’s criticism of Tartaglia and Jordanus

In chapters 7 and 8 Benedetti criticized theorems of his former teacher
Tartaglia, in particular those Tartaglia adapted from Jordanus de Nemore.
Both chapters deal exclusively with some propositions of Book VIII of
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Tartaglia’s Quesiti, et inventioni diverse,® which is concerned with the
science of weights and is entitled, accordingly, Sopra la scientia di pesi. In
those cases in which Tartaglia’s propositions are adapted from Jordanus,
Benedetti mentioned explicitly the corresponding proposition in the edition
of Jordanus’ De ratione ponderis, corrected and illustrated by Tartaglia,
and published under the title Tordani opusculum de ponderositate Nicolai
Tartaleae studio correctum novisque figuris auctum.?

Chapter 7 starts with some brief critical remarks on Tartaglia’s propo-
sitions 2 to 5. Tartaglia’s proposition 2 essentially paraphrases and modi-
fies the Aristotelian claim that the speed of moving bodies is proportional
to the driving force. Following Jordanus, Tartaglia maintained that the
velocities of descending heavy bodies of the same kind are proportional
to their power (Italian: potentia) while in the case of ascending bodies
their velocities are inversely proportional to their power. For bodies of
the same kind their power is conceived here as proportional to their sizes,
that is, to their weights. Descending bodies are thus simply falling bodies
with velocities proportional to their weights, while in the case of ascending
bodies their weight acts as a resistance. Tartaglia’s proposition 3 gener-
alizes proposition 2 for bodies with equal weights but unequal positional
heaviness. His proposition 4 maintains that in the latter case the power
of bodies attached to a balance is proportional to the distances from the
center.

Benedetti’s critical remarks are somewhat eclectic. He argued that
Tartaglia, in his proposition 2, did not take into account the quantity of
external resistance (quanti momenti sint extrinsecae resistentiae). With
regard to Tartaglia’s proposition 3 Benedetti pointed to its assumptions,
namely that the bodies have to be homogenous and must have the same
shape. He criticized that Tartaglia’s proof does not actually require these
assumptions but would be true also for heterogeneous bodies or for bodies
with differing shapes. Concerning proposition 4 he criticized that Tartaglia
did not prove what he claimed to prove. He should have rather followed
Archimedes’ proof of the law of the lever.

Benedetti’s chapter 7 continues with a detailed discussion of the sec-
ond part of Tartaglia’s proposition 5 and the following two corollaries and
is thus directly concerned with the equilibrium controversy. Tartaglia
maintained in this proposition that a balance that is in equilibrium in a
horizontal position will necessarily return to this horizontal position when
moved into an oblique position. In a first corollary he claimed that the

! Tartaglia (1546).
2de Nemore (1565).
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more the beam of a balance is brought into an oblique position, the more
the bodies attached to it become positionally lighter. In a second corollary
he claimed that while both bodies in this case become positionally lighter,
the lifted body loses less of its positional heaviness than the body moving
down. He concluded that the beam will return to a horizontal position.
Benedetti questioned Tartaglia’s approach by referring to the first three
chapters of his own treatise, arguing in particular that Tartaglia’s second
corollary must be wrong. He discussed once more the beam of a balance
in an oblique position, but now without the assumption that the lines of
inclination of bodies attached to the beam of a balance are parallel. He
rather considered the case that these lines are directed to the center of
the world, showing, as we have discussed above in section 3.9, that not
the lifted body but rather the body that is moved down loses less of its
positional heaviness.

Benedetti continued in chapter 8 with critical comments on Tartaglia’s
propositions 6, 7, 8, and 14. Tartaglia’s proposition 6 contains the proof
of his fallacious claim that the lifted body of an oblique beam of a balance
loses less of its positional heaviness than the body moving down, now
modified by the further claim that the difference is smaller than any finite
quantity. Tartaglia claimed:

[...] che la differenzia ch’¢ fra le gravitd de questi dui corpi
egli & impossibile a poterla dar, over trovar’ fra due quantita
inequali.

[...] that the differences between the heaviness of these two
bodies is impossible to give or find between two unequal quan-
tities.?

Like Guidobaldo had done before him, but with different results, Benedetti
criticized Tartaglia for not taking into account that the lines of inclination
are not parallel.

Tartaglia’s proposition 7 contains the simple statement that if the
arms of a balance are unequal and bodies with equal weights are attached
to the ends of the beam the balance will tilt on the side with the longer
arm. Benedetti criticized that Tartaglia again did not take into account
that the lines of inclination are not parallel and that in any case Tartaglia
did not give the correct cause of the effect.

Tartaglia’s proposition 8 formulates, following Jordanus, the law of the
lever in terms of positional heaviness, stating that if the lengths of the parts

3Tartaglia (1546, 91r). Translation in Drake and Drabkin (1969, 130).
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of the beam of a balance with unequal arms are inversely proportional to
the weights of the bodies attached to them, their positional heaviness will
be equal. Benedetti criticized, just as Guidobaldo had done in his marginal
notes to Jordanus, that this proposition is much better demonstrated by
Archimedes. He added that therefore all the proofs of the propositions 9
to 13 are invalid.

Finally, Tartaglia’s propositions 14 and 15 concern Jordanus’ proof
of the law of the inclined plane which, from a modern perspective, is
essentially correct. Benedetti criticized, as we have also discussed in section
3.9, Tartaglia’s argument by imputing to it an interpretation of the inclined
plane as a balance, with the top of the plane being its center. His criticism
based on the propositions of his chapters 1 to 3 thus completely missed
the point of Tartaglia’s argument.

6.3 Benedetti’s criticism of Aristotle

Benedetti’s treatise on mechanics continues mainly with critical notes on
the Aristotelian Mechanical Problems* which constituted a key reference
for mechanical arguments at the time.®> His notes are as diverse as the
Aristotelian Mechanical Problems themselves.

Before he embarked on this criticism, Benedetti dealt, in chapter 9,
with the problem of why a steelyard carries a linear gradation.® He took
into account the weight of the beam and that of the scale by postulating the
equilibrium of the balance when no extra weight is added. Then he added
weights of one pound on both sides, arguing that, by common science
(scientia communis),” the balance stays in equilibrium if they are placed
at equal distances from the fulcrum. He had thus found the mark on
the beam that indicates a magnitude of one pound. He then successively
placed further weights onto the scale, now arguing from the law of the
lever that they must be compensated by distances proportional to their
number. He thus avoided the problem of applying the law of the lever
directly to a material steelyard, just as one does in practice when gauging
such a balance.®

4 Aristotle (1980). See subsection 3.4.1.

5See Rose and Drake (1971) and also the introduction to Nenci (2011a).

6Benedetti (1585, 152), page 339 in the present edition, see also Drake and Drabkin
(1969, 178).

"In the sixteenth century the term scientia communis was used to designate knowledge
common to all mathematical sciences, its core being the Euclidean theory of proportions.
See Sepper (1996, 153-154).

8See the discussion in Damerow et al. (2002).
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In chapters 10 and 11, Benedetti started with critical remarks on
Aristotle’s first problem. Aristotle asked why larger balances are more
accurate than smaller ones.” Actually, this concrete physical question is
not the focus of the extensive answer the author gave to this problem.
He rather provided a long proof of the basic explanatory principle which
plays a major role in the whole treatise (see section 3.4.1). At the end of
the proof Aristotle argued that the same load will move faster on a larger
balance thus making such balances more accurate.!?

The criticism Benedetti passed on Aristotle’s argument has two parts.
In chapter 10 Benedetti began by rejecting Aristotle’s claim that the cir-
cumference of a circle combines concavity with convexity. He then argued
against a specific part of Aristotle’s proof of his principle which involves
the superposition of motions. In this part Aristotle showed that:

Quandoquidem igitur in proportione fertur aliqua id, quod fer-
tur, super rectam ferri necesse.

[...] whenever a body is moved in two directions in a fixed ratio
it necessarily travels in a straight line.!!

He concluded:

Si autem in nulla fertur proportione secundum duas lationes
nullo in tempore, rectam esse lationem est impossibile.

[...] if a body travels with two movements with no fixed ratio
and in no fixed time, it would be impossible for it to travel in
a straight line.!?

For the Aristotelian author this proposition served as a means to de-
scribe circular motion as a result of two movements with no fixed ratio.
Benedetti, however, did not relate his criticism to this context. He argued
only that Aristotle’s inference concerning movements in two directions is
not sufficient since a straight movement can result from two quite different
motions, a criticism which does not really relate to the Aristotelian argu-
ment, other than showing that his entire attempt to derive the behavior
of a balance from a principle of circular motion is misguided.

In the same vein Benedetti’s criticism in chapter 11 then deals directly
with Aristotle’s answer to the question of why larger balances are more

9 Aristotle (1980, 337-347).

10 Aristotle (1980, 347).

1 Aristoteles (1585, 507). Translation in Aristotle (1980, 337).
12 Aristoteles (1585, 508). Translation in Aristotle (1980, 339).
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accurate than smaller ones. He argued that Aristotle’s argument is not well
founded since the greater accuracy has nothing to do with the motion of
the beam of the balance but only with the geometrical constellation.'® To
conclude he added a consideration of material balances, arguing according
to his own principles that a weight on the larger balance will be positionally
more effective.

Benedetti’s chapter 12 concerns problems 2 and 3 of the Aristotelian
Mechanical Problems.'* Problem 2 raises the question that forms the
starting point of the equilibrium controversy:

Cur siquidem sursum fuerit spartum, quando deorsum lato
pondere, quispiam id admouet, rursum ascendit libra: si autem
deorsum constitutum fuerit, non ascendit, sed manet?

If the cord supporting a balance is fixed from above, when
after the beam has inclined the weight is removed, the balance
returns to its original position. If, however, it is supported from
below, then it does not return to its original position. Why is
this?*®

Aristotle implicitly assumed that the beam of the balance has a certain
thickness and weight. It follows as a result of the geometry of the balance
in an oblique position that if the beam is fixed from above, a greater
part of the beam is on the lifted side of the perpendicular line across the
suspension point (see figure 3.37). Consequently the beam will move back
by itself into the horizontal position. The opposite is true for a beam fixed
from below. In this case the greater part of the beam is on the lower side
so that it cannot move back into a horizontal position by itself.

Benedetti criticized that in the first case it is not only the weight of
the beam that causes it to return to the horizontal position but also the
different distances of the weights in an oblique position from the vertical
through the point where the beam is fixed. According to his theory of the
dependency of the weight on the obliqueness of the beam, the weights must
be different on both sides. Benedetti thus generalized Aristotle’s argument
to the case of a balance without a material beam carrying weight itself.

In the second case of a beam supported from below, he argued that
Aristotle is completely mistaken. He rightly maintained that the beam

13Benedetti (1585, 153), page 341 in the present edition; Drake and Drabkin (1969,
180-182).

1 Aristotle (1980, 347-355); Drake and Drabkin (1969, 182-183).

15 Aristoteles (1585, 511). Translation in Aristotle (1980, 347-349).
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will not remain in its oblique position, but that the lower part will further
move down until the beam is below the point where it is fixed.

Problem 3 of the Aristotelian Mechanical Problems' concerning an
explanation of the effect of a lever is, to Benedetti, not worth the effort of
a detailed criticism. He only briefly notes that Aristotle did not give the
true cause which one will find in his own theory presented in chapters 4
and 5.17

In the very short chapter 13, Benedetti criticized problem 6 of the
Aristotelian Mechanical Problems:

Cur quando antenna sublimior fuerit, iisdem velis, et vento
eodem celerius feruntur navigia?

Why is it that the higher the yard-arm, the faster the ship
travels with the same sail and the same wind?!®

The Aristotelian answer provided in the Mechanical Problems is based on
the interpretation of the yard-arm as a lever having its base where the yard-
arm is fixed as the fulcrum. Benedetti maintained that this interpretation
of the yard-arm as a lever:

[...] verum non est. Huiusmodi enim ratione navis tardius
potius, quam velocius ferri deberet, quia quanto altius est velum,
vi venti impulsum, tanto magis proram ipsius navis in aquam
demergit.

[...] does not give the true explanation. For on this kind of
explanation the ship would have to move more slowly rather
than more swiftly. For the higher is the sail that is struck by
the force of the wind, the more is the ship’s prow submerged
in the water.!?

Benedetti added one sentence with his own explanation according to which
the ship with a higher sail moves more swiftly because the wind blows more
strongly in the higher region.

Chapter 14 provides a long discussion of problem 8 of the Aristotelian
Mechanical Problems. The question posed in this problem is why round

16 Aristotle (1980, 353-355).

7Benedetti (1585, 154), page 342 in the present edition; Drake and Drabkin (1969,
183).

18 Aristoteles (1585, 515). Translation in Aristotle (1980, 361).

19Benedetti (1585, 155), page 343 in the present edition. Translation in Drake and
Drabkin (1969, 183).
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and circular bodies are easiest to move. Three examples are mentioned and
later discussed: the wheels of a carriage, the wheels of a pulley, and the
potter’s wheel. Benedetti claimed that Aristotle’s answer to the question
he posed is not sufficient. Nevertheless Benedetti himself argued essentially
in a similar manner, only somewhat more extensively. Both of them argued
that the circle, contrary to differently shaped bodies, touches a plane only
at one point which can be considered as the fulcrum of a lever. But
Benedetti added a further argument which is not given by Aristotle. He
argued that a circle can be pulled along a plane without difficulty and
resistance:

[...] quia huiusmodi centrum ab inferiori parte ad superiorem,
nunquam mutabit situm respectu distantiae seu interualli, quae
inter ipsum lineamque AD intercedit.

[...] because in such a case the center will never change its
position by moving upward from below, i.e., will never change
its position with respect to the distance or interval which lies
beween it and line AD.2°

At the end of the chapter Benedetti discussed the question of why a
potter’s wheel set into motion by an external force will continue to rotate
for a time, but not forever. In his response he took into account the
friction with the support of the wheel and with the surrounding air. But
he also discussed reasons that are more deeply concerned with the nature of
such motion. He claimed, in particular, that the rotational motion is not a
natural motion of the wheel, evidently making reference to the Aristotelian
distinction between natural and violent motions. He also claimed that a
body moving by itself because an impetus has been impressed upon it by
an external force has a natural tendency to move along a rectilinear path.
This statement comes close to the principle of inertia of classical physics,
although it actually deals with rectilinear motion as a forced motion and
does not involve any assertion about its uniformity. Benedetti seems to
suggest, in any case, that this natural tendency is in conflict with the
forced rotational motion of the wheel, thus slowing it down, and the more
so, the smaller the wheel and the more its parts are constrained to deviate
from the rectilinear path.?!

In chapters 15 and 16 Benedetti dealt with issues of scale as they
are brought up by the Aristotelian Mechanical Problems. In chapter 15,

20Benedetti (1585, 155), page 343 in the present edition. Translation in Drake and
Drabkin (1969, 184).
21For the historical context, see Biittner (2008).
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consisting merely of one short sentence, Benedetti referred to his own
earlier treatment of Aristotle’s question of why larger balances are more
exact (erroneously citing chapter 10 instead of chapter 11 of his treatise)
in order to deal with the ninth problem of the Aristotelian Mechanical
Problems which reads:

Cur ea, quae per maiores circulos tolluntur et trahuntur, facil-
ius et citius moveri contingit |...]?

Why is it that we can move more easily and more quickly things
raised and drawn by means of greater circles???

In chapter 16 he discussed the tenth problem of the Aristotelian Me-
chanical Problems which reads:

Cur facilius quando sine pondere est, movetur libra, quam cum
pondus habet?

Why is a balance moved more easily when it is without a weight
than when it has one??

In his detailed response to this problem — indeed much more detailed
than the one found in the Aristotelian text — Benedetti compared two
like balances with different sets of weights on their scales, one with two
weights of one ounce, the other with two weights of one pound. He then
added a half-ounce weight on one side of each balance and observed that
the balance with the smaller weights moves more rapidly. He explained
this effect by referring to the dynamical assumption that one always has
to consider the ratio of the moving force to the body moved.

In chapter 17 Benedetti addressed the twelfth problem of the Aris-
totelian Mechanical Problems which reads:

Cur longius feruntur missilia funda, quam manu missa [...]?

Why does a missile travel further from the sling than from the
hand??

Benedetti’s response is based on the concept of impetus, conceived as an
intrinsic cause of motion originally acquired by the action of an exter-
nal force that then gradually decreases after separation from the original

22 Aristoteles (1585, 517). Translation in Aristotle (1980, 365).
23 Aristoteles (1585, 517). Translation in Aristotle (1980, 365).
24 Aristoteles (1585, 518). Translation in Aristotle (1980, 367).
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mover. He argued that a greater impetus can be impressed by the sling
due to the repeated revolutions which evidently lead to an accumulation
of this intrinsic force. He observed that the impetus would lead, if not
impeded by the sling or the hand, to a straight motion of the projectile
along the tangent to the circle of its forced motion. He also noted — dis-
tancing himself from a claim made by Tartaglia — that the motion due to
the impressed force can mingle with the projectile’s natural motion down-
ward, thus leading to a curved trajectory. It may well be the case that it
was this claim that later induced Galileo and Guidobaldo to perform their
experiment on projectile motion from which they drew the conclusion that
such a mixture of motions indeed takes place.?®

In chapter 18 Benedetti considered problem 13 of the Aristotelian Me-
chanical Problems dealing with the question of why larger handles can be
moved more easily around a spindle than smaller ones.?® In his short re-
sponse Benedetti simply referred to the fourth and fifth chapters of his own
treatise, stressing that everything depends on the lever and was evidently
convinced that the Aristotelian reduction of such problems to properties
of the circle is superfluous if not misguided.

In chapter 19 he handled in the same way problem 14 of the Aris-
totelian Mechanical Problems which reads:

Cur eiusdem magnitudinis lignum facilius genus frangitur, si
quispiam aequi diductis [deductis] manibus extrema compre-
hendens fregerit, quam si iuxta genu?

Why is a piece of wood of equal size more easily broken over
the knee, if one holds it at equal distance far away from the
knee to break it, than if one holds it by the knee and quite
close to it?27

Again Benedetti just referred to the earlier chapters of his treatise.
In chapter 20 Benedetti reconsidered problem 17 of the Aristotelian
Mechanical Problems which reads:

Cur a parvo existente cuneo magna scinduntur pondera, et
corporum moles, validaque sit impressio?

Why are great weights and bodies of considerable size split by
a small wedge, and why does it exert great pressure??®

25See the discussion in Renn et al. (2001).

26 Aristotle (1980, 367).

27 Aristoteles (1585, 518). Translation in Aristotle (1980, 369).
28 Aristoteles (1585, 520). Translation in Aristotle (1980, 371).



200 6. The Treatise De Mechanicis in Benedetti’s Book

The answer is based on interpreting the wedge as two levers opposite
to each other, their fulcra being placed at the entry points of the wedge
into the wood. Benedetti disagreed with the identification of the two
levers allowing the action of the wedge to be interpreted in terms of force,
fulcrum, and resistance. He claimed that the fulcrum is actually placed
just underneath the deepest point of the opening produced by the wedge
entering a block of wood.

In chapter 21 Benedetti claimed to provide the true explanation of
compound pulleys. He reduced a compound pulley to a chain of balances
by appropriately identifying forces and fulcra, each wheel of the pulley
corresponding to one balance.

In chapter 22 Benedetti discussed Aristotle’s wheel, i.e. problem 24
of the Aristotelian Mechanical Problems which reads:

Dubitatur quam ob causam maior circulus aequalem minori
circulo convolvitur lineam, quando circa idem centrum fuerint
positi.

A difficulty arises as to how it is that a greater circle when
it revolves traces out a path of the same length as a smaller
circle, if the two are concentric.2?

While the author of the Mechanical Problems referred to dynamical
reasons in explaining this apparent paradox, Benedetti resorted to a kine-
matic argument, a pointwise reconstruction of the trajectory of the motion
of a point on the circumference, arguing that it results from a superposi-
tion of two motions. In the case in which the motion is controlled by the
larger circle, a point on the circumference of the smaller circle traverses a
path resulting from an addition of two motions. In the case in which the
motion is controlled by the smaller circle, a point on the circumference
of the larger circle traverses a path resulting from a subtraction of two
motions.

Chapter 23 of Benedetti’s treatise does not exist.3® In chapter 24
Benedetti discussed problem 30 of the Aristotelian Mechanical Problems
which reads:

Cur surgentes omnes, femori crus ad acutum constituentes an-
gulum, et thoraci similiter femur, surgunt?

29 Aristoteles (1585, 525). Translation in Aristotle (1980, 387).
30In Drake and Drabkin (1969, 193) chapter 22 is erroneously numbered as chapter 23.
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Why is it that, when men stand up, they rise by making an
acute angle between the lower leg and the thigh, and between
the trunk and the thigh?3!

In his response Benedetti suggested that the reason for this behavior is to
create an equilibrium of the body with regard to the line that serves as
support underfoot.

In chapter 25 Benedetti addressed the last problem, problem 35 of the
Aristotelian Mechanical Problems which reads:

Cur ea quae in vorticosis feruntur aquis, ad medium tandem
aguntur omnia?

Why do objects which are travelling in eddying water all finish
their movement in the middle?32

Benedetti’s answer simply referred to the fact that whirlpools are de-
pressed in their middle without giving an explanation of this phenomenon.
He could thus restrict himself to arguing that the motion of an object to
the center of such a whirlpool is simply its natural downward motion. Re-
markable is the final comment by Benedetti, concluding his criticism of
Aristotle as well as his treatise on mechanics:

[...] a quo aliarum omnium quaestionum, quas ego omisi ra-
tiones sunt bene propositae.

But in the case of all those other problems that I have omitted,
Aristotle’s explanations are correct.33

31 Aristoteles (1585, 532). Translation in Aristotle (1980, 403—405).

32 Aristoteles (1585, 533). Translation in Aristotle (1980, 409).

33Benedetti (1585, 167), page 355 in the present edition. Translation in Drake and
Drabkin (1969, 196).






Chapter 7
Guidobaldo’s Marginal Notes in Benedetti’s Book

Guidobaldo’s marginal notes in Benedetti’s book illustrate a case where
different conceptual frameworks are applied to similar mechanical prob-
lems and thus are testimony to a competition taking place within the
same territory. More generally, these marginal notes reveal the potential
tensions and conflicts inherent in the bodies of knowledge carried over from
antiquity when these are elaborated, integrated with each other, and ap-
plied to the challenging objects of preclassical mechanics (see sections 3.3
and 3.4.3). From an analysis of the marginal notes it becomes clear that
Guidobaldo considered Benedetti’s entire approach as being misguided.
On the one hand, he repeatedly claimed that Benedetti had taken over
propositions from his own book on mechanics, such as the assertion that
a balance with equal arms would, when deflected from the horizontal po-
sition, not return to its original position. On the other hand, he found
that the conceptual foundation of Benedetti’s approach, based on deter-
mining positional heaviness by a perpendicular to the line of inclination,
is untenable, leading him to false or problematic claims. In summary, ac-
cording to Guidobaldo, everything that Benedetti had accomplished was
either plagiarized or simply wrong.

The different conceptual foundations of Guidobaldo’s and Benedetti’s
mechanics also account for the different status of certain problems within
the theoretical frameworks of their treatises. Thus, while the case of a bent
lever and the case of a balance with a weight on one side and a force acting
in an arbitrary direction on the other side are rather central to Benedetti,
such situations receive at best a marginal treatment in the deductive part
of Guidobaldo’s treatise. Benedetti’s framework was evidently more apt
than Guidobaldo’s to deal with cases in which force and lever arm are
not perpendicular to each other, or more generally, with cases in which
the acting force and the path of the motion constrained by a mechanical
device are not parallel as is the case, for instance, for the inclined plane.
While this potential was not fully exploited in Benedetti’s treatise, not
least because of the sketchiness of some of his proofs, it became essential
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to Galileo’s more rigorous and systematic treatment of mechanics modeled
after that of Guidobaldo, as well as to the theory of motion built upon it
(see section 3.10). Guidobaldo’s marginal notes on Benedetti’s treatise
thus not only illustrate the clash of their different perspectives, but also
the developmental potential inherent in this clash. They allow us to wit-
ness the beginnings of a process in which the heterogeneous conceptual
traditions of early modern mechanics were eventually fused to constitute
the framework of classical mechanics in the context of a scientific contro-
versy (see section 1.3).

Guidobaldo’s notes are presented here in the context of those passages
of Benedetti’s text to which they refer. Several parts of the marginalia have
been deleted by Guidobaldo himself. Other parts have later been cut off by
a book binder. Also, we have been unable to read all of his handwriting.

7.1 First chapter: the general charge of plagiarism

Benedetti started the part of Diversarum speculationum |[...] liber that
deals with mechanics after a short introduction with a first chapter entitled:

De differentia situs brachiorum librae.

On the difference in the position of the arms of a balance.?

It has been mentioned above that Benedetti sets out in this first chapter
to explain the idea of positional heaviness by stating:

Omne pondus positum in extremitate alicuius brachii librae
maiorem, aut minorem gravitatem habet, pro diversa ratione
situs ipsius brachii.

Every weight placed at the end of an arm of a balance has a
greater or a lesser heaviness depending on differences in the
position of the arm itself.3

The rest of the chapter elaborates on this idea.
In the introduction which precedes this chapter Benedetti claimed that
he presents material that has either never been dealt with previously or has

IThe transcriptions take into account the samples given by Anthony Grafton in the
prospectus of the auction house (Catalogue 38 of Martayan Lan). For an analysis of
the deletions, see the appendix.
2Benedetti (1585, 141-142), pages 329-330 in the present edition. Translation in Drake
and Drabkin (1969, 166-167).
3Benedetti (1585, 141), page 329 in the present edition. Translation in Drake and
Drabkin (1969, 166).
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not been sufficiently explained. It is to this bold claim that Guidobaldo
reacts in his first marginal note, written after the beginning of the first
chapter. The note is placed in the right margin of the page at the height
where the text of the first chapter begins. It refers to the chapter as a
whole, claiming that it had been taken entirely from his own book:

Hoc primum caput to[tum] desumptum est a n[ostro] mechan-
icorum libr[o] tractatu de lib[ra].

This entire first chapter is taken from our book on mechanics,
from the treatise on the balance.

It mi- P
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Figure 7.1: The first marginal note.

As this marginal comment suggests, Guidobaldo was evidently con-
vinced that not only had he derived all the relevant theorems in his own
book but also addressed what he saw as the problematic character of the
concept of positional heaviness in Jordanus, Tartaglia, and Cardano. As
Benedetti’s approach corresponds to one of the options of Cardano (see
section 3.7), he was apparently under the erroneous impression that he
had thus dealt with Benedetti’s approach as well.

7.2 Second chapter: the neglect of the cosmological context
Benedetti’s second chapter is entitled:

De proportione ponderis extremitatis brachii librae in diverso
situ ab horizontali.
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On the ratio of the weight at the extremity of the arm of a
balance in various positions with respect to the horizontal.*
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Figure 7.2: Figure at the beginning of the second chapter.

The chapter considers, as we have discussed, the changing effect of a
weight in different positions of the arm of a balance. Guidobaldo began
his marginal note on the lower left margin of the page opening the chapter
and continued it at the bottom. The note refers to the concluding sentence
on the page:

Unde fit ut hoc modo pondus magis aut minus a centro pendet,
aut eidem nititur: atque haec est causa proxima, et per se, qua
fit ut unum idemque pondus in uno eodemque medio magis aut
minus grave existat.

Hence it results that in this way a weight hangs more or less
from the center or is sustained by it. And this is the proximate
and essential cause why it happens that one and the same
weight in one and the same medium is more or less heavy.®

In his comment, Guidobaldo questioned the basic geometrical set-up
of Benedetti’s argument because it does not take into account that the
perpendicular lines are not parallel but have to meet at the center of the

4Benedetti (1585, 142-143), pages 330-331 in the present edition. Translation in Drake
and Drabkin (1969, 168-169).

5Benedetti (1585, 142), page 330 in the present edition. Translation modified from
Drake and Drabkin (1969, 169).
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Figure 7.3: Marginal note to the second chapter.

world. As we have discussed, in his own book, he had extensively criticized
Tartaglia’s approach in a similar way — not because of an overemphasis on
precision, but for reasons of logical consistency enforced by Tartaglia’s
conceptualization of oblique descents.

non est neque proxima neque per se; nam [pond|us in F brachii
[BF] non est equegrave ut pondus in U brachii BU ; [nec]
pondus in F brachii BE est equegrave ut pondus [in] U brachii
BU. Unde tota haec demonstratio falsa est.

because that [i.e. the greater or smaller extent to which a
weight rests on the center| is neither the next [cause| nor the
[cause] by itself. For the weight at F' of the arm BF is not
equally heavy as the weight U of the arm BU; nor is the weight
at E of the arm BF equally heavy as the weight at U of the
arm BU. Whence this entire demonstration is false.

Guidobaldo thoroughly examined what he considered to be the prob-
lematic foundation of Benedetti’s mechanics also in his research notebook,
the Meditatiunculae, under the heading:%

Contra Cap. 2 Jo. de Benedicti de Mechanicis

Against chapter 2 of Giovanni Benedetti’s [treatise] on Mechan-
ics

6See DelMonte (1587, 145).
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Figure 7.4: In his notebook Guidobaldo reconsidered Benedetti’s analysis
of the bent lever, conceived as a balance with one horizontal
arm BD and an oblique arm in the positions BF or BE. He
stressed the difference between Benedetti’s treatment and a
treatment that takes into account the finite distance of the
bent lever from the center of the world. For this purpose,
Guidobaldo compared the line LUS parallel to the line AQ,
connecting the fulcrum B of the balance with the center of
the world, with the line FM connecting the weights on the
beam with the center of the world. He concluded that it is the
weight at S, at the point where the line LUS meets the circle
the beam describes around the fulcrum, and not, as claimed
by Benedetti, the lower weight at F, that will be equally heavy
as the weight at U.
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He addressed Benedetti’s claims by reconstructing them from the per-
spective of his own conceptual framework based on the concept of cen-
ter of gravity. As indicated in his marginal notes, Guidobaldo rejected
Benedetti’s approach because it supposedly did not take into account the
finite distance of the weights from the center of the world and hence the
fact that the plumb lines are not parallel to each other.

In his diagram, Guidobaldo compared the line LUS parallel to the line
AQ through the fulcrum with the line FM connecting the upper weight
F with the center of the world (see figure 7.4). S is the point where the
line LUS meets the circle the beam describes around the fulcrum, which is
above the position of the lower weight F. He next considered a bent lever
made of the oblique arm BS, rigidly connected to the straight arm BD,
assuming that BU is half BD.

If now a weight is placed at S which is double the weight at D, the
bent lever will be in equilibrium, as Guidobaldo showed with reference to
his book, because the center of gravity of the weights at S and at D will
be at the point R, which will be in its lowest place on the vertical line BQ.

He then concluded that it is the weight at S, but not the lower weight
E, that will be equally heavy as the weight at U. He proceeded to demon-
strate this in greater detail by considering the proportions in which the line
connecting the two weights of the bent lever is cut by the perpendicular
BQ for the two cases, i.e. the weight being placed at S and weight being
placed at F.

Guidobaldo concluded that the same weight is heavier at S than at FE.
He then turned to a closer consideration of the upper weight F. Again he
constructed a bent lever LBD in equilibrium in order to compare it with
the bent lever formed with the upper weight F. And again he showed that
the weight is heavier at L than at F, concluding:

Et quibus etiam constat idem pondus in F, et in U, et in E,
diversi modo gravitare. Gravius est enim in situ £ quam in U
et in F. In U vero gravius, quam in F.

From this it is also clear that the weight at F, at U, and at
E gravitates in a different way. It is namely heavier in the
position E than it is at U and at F. But at U it is heavier than
at F.7

Finally, he summarized in almost the same words as in his marginal
comment quoted above:

"DelMonte (1587, 145).
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Veluti quoque falsum est propter filum pondus in F est aeque-
grave, ut pondus in U brachii BU. Non est igitur haec vera et
proxima causa, et per se harum gravitatum. Ut ipse profitetur.

In the same way it is also false that because of the thread the
weight at F is equally heavy as the weight at U on the arm BU.
This is therefore not the true and next cause, nor the essential
[cause] of these gravities. As he himself admits.®

7.3 Third chapter: the pitfalls of determining positional
heaviness

The third chapter is entitled:

Quod quantitas cuiuslibet ponderis, aut virtus movens respectu
alterius quantitatis cognoscatur beneficio perpendicularium duc-
tarum a centro librae ad lineam inclinationis.

That the magnitude of one given weight or the magnitude of
one motive force in comparison with another can be found by
means of perpendiculars drawn from the center of the balance
to the line of inclination.”

The title summarizes the gist of Benedetti’s procedure for determining
positional heaviness. Guidobaldo left two comments in the right margin
of the page opening the chapter — the first short, the second long and with
deletions.

Guidobaldo’s first comment refers to the figure on the preceding page
of Benedetti’s treatise to which in turn the first sentence of chapter 3 refers
(see figure 7.2):

Ex iis, quae a nobis hucusque sunt dicta, facile intellegi potest,
quod quantitas BU quae fere perpendicularis est a centro B
ad lineam F'U inclinationis, ea est, quae nos ducit in cogni-
tionem quantitatis virtutis ipsius F' in huiusmodi situ, con-
stituens videlicet linea F'U cum brachio FB angulum acutum
BFU.

From what we have already shown it may easily be understood
that the length of BU, which is virtually perpendicular from

8DelMonte (1587, 145).
9Benedetti (1585, 143), page 331 in the present edition. Translation in Drake and
Drabkin (1969, 169-170).
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the center B to the line of inclination F'U, is the quantity that
enables us to measure the force of F itself in a position of this
kind, i.e., a position in which line F'U constitutes with arm FB
the acute angle BFU.'°

The point of Guidobaldo’s first short comment is probably the same
as that of the preceding comment: to stress that Benedetti’s diagram fails
to take into account that the vertical lines have to actually converge at the
center of the world.

TR T AV W

Figure 7.5: Note at the beginning of the third chapter.

Guidobaldo’s first comment reads:

diximus hoc f[iguram] esse hoc mod|o]

We said that this figure is in this way

Guidobaldo’s second comment, beginning in the lower right margin
and continuing at the bottom of this page, refers to the interpretation of
the figure at the bottom of the page and to the argument beginning with
the second sentence of the chapter which reads (see figure 7.6):

Ut hoc tamen melius intelligamus, imaginemur libram BOA
fixam in centro O ad cuius extrema sint appensa duo pondera,

10Benedetti (1585, 143), page 331 in the present edition. Translation in Drake and
Drabkin (1969, 169).
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Figure 7.6: Benedetti’s bent lever with forces acting along the oblique lines
AC.
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aut duo virtutes moventes F et C ita tamen quod linea incli-
nationis F idest BF faciat angulum rectum cum OB in puncto
B linea vero inclinationis C idest AC faciat angulum acutum,
aut obtusum cum OA in puncto A. Imaginemur ergo lineam
OT perpendicularem lineae C4 inclinationis |...]

To understand this better, let us imagine a balance BOA fixed
at its center O, and suppose that at its extremities two weights
are attached, or two moving forces, £ and C|, in such a way
that the line of inclination of E, that is, BF, makes a right
angle with OB at point B, but the line of inclination of C| that
is, AC, makes an acute angle or an obtuse angle with OA at
point A. Let us imagine, then, a line OT perpendicular to the
line of inclination CA [...]1!

Guidobaldo’s second comment thus refers to Benedetti’s analysis of
the case of a balance with a weight on one side and a force acting in an
oblique direction on the other side:

si intelligamus plondus] in C, ut supponi plotest] ex verbis
ipsius, intelligendum est C[T] quoque consolidatam consoli-
datis TO [...]. Unde si intelligamus C pondus et non movens,
falsa est i[ta]que si intelligatur C' movens ut homil...] vera esse
pote[st] quod [deleted: non] moveat non esse pondus s[i...] ipse

11Benedetti (1585, 143), page 331 in the present edition. Translation in Drake and
Drabkin (1969, 169-170).
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Figure 7.7: Note beside drawings of bent levers in the third chapter.

[vero] in sequenti accipiat [hoc atque ponderi?] posse demon-
stratum quare nihil [...] ut patet in 7 cap.

In his duobus cap. fundantur omnes authoris demonstrationes
ita ut sunt praecipua mechanicorum fundamenta quorum cog-
nita falsitate omnia rem[oventur.]

If we understand that a weight is at C, as we can assume from
his own words, then CT must also be understood as being solid

[and connected with] the solid lines T'O [...] If we hence under-
stand that C is a weight and not moving, [the proposition] is
false. If it is understood that C moves as [...] of a man, it can

be true, since what moves is not a weight. [But] if he himself
assumes in the following that [this] can be demonstrated [also
for a weight], nothing [...] therefore as is evident in chapter 7.
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On these two chapters all demonstrations of the author are
founded inasmuch as they are the first fundaments of mechan-
ics; once their falsity is recognized, everything is rejected.

This comment illustrates Guidobaldo’s difficulties in coping with a
subject that was apparently unfamiliar to him. Generalizing from the case
of the bent lever treated in chapter 2, Benedetti argued, as we have dis-
cussed in section 3.9, that the magnitude of a weight or a force can be
found by means of perpendiculars drawn from the center of the balance to
the line in which the weight or the force acts, that is, the line of inclination
which does not, however, have to be a perpendicular. Now this general-
ization raised problems for Guidobaldo: must this line of inclination be
understood as the solid arm of a bent lever with a weight attached to it at
the lower end, thus generating a pull downward to the center of the world?
Then Benedetti’s conclusion would be wrong. Or can the line of inclina-
tion also represent a moving force, for instance, the pull of a man acting
on the handles of a wheel? Then Benedetti’s conclusion may actually be
correct.

In his second marginal comment on this page, as well as on the re-
lated page in the Meditatiunculae, which we shall discuss immediately be-
low, we see Guidobaldo struggling with these two possibilities. Apparently
Guidobaldo believed that while Benedetti’s procedure may be applicable
to the case of moving forces, it was certainly false for weights tending to
the center of the world. In his marginal comment Guidobaldo referred
to chapter 7 of Benedetti’s treatise, probably because it served as evi-
dence that Benedetti applied this procedure not only to forces but also to
weights. As we have discussed above, Benedetti had criticized Tartaglia
and Jordanus in this chapter and offered a new analysis of the behavior of
a balance removed from its horizontal position. When taking into account
that the lines of inclination of the two weights on the balance have to con-
verge at the center of the earth, Benedetti had come to the conclusion —
by applying the incriminated procedure — that their positional heaviness
must be different, a conclusion with which Guidobaldo could obviously not
agree.

Then, in his final comment concluding the second marginal note,
Guidobaldo summarized his conviction that the entire foundation of Bene-
detti’s approach, as outlined in the first two chapters of his book, is un-
tenable.

In his research notebook Guidobaldo dealt at even greater length with
the same problem. He began his notes with the following comment:
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Figure 7.8: In his notebook, Guidobaldo attempted to refute Benedetti’s
determination of the positional effect of forces acting in an
arbitrary direction under the erroneous assumption that such
forces can be replaced by weights. Following Benedetti, he
considered a broken bent lever BOAC with fulcrum O. For the
case of an acute angle BAC, he showed that this broken bent
lever cannot be in equilibrium because its center of gravity
S can never fall on the perpendicular line OU through the
fulcrum.

Falsum est igitur ex dictis, quod in principio tertii capitoli in-
quit. Praeterea demonstratio falsa quoque videtur.

From what has been said, what he claims in the beginning of
the third chapter is therefore false. Moreover also the demon-
stration appears to be Wrong.12

Guidobaldo extensively refuted Benedetti’s procedure under the erro-
neous assumption that the latter had claimed that forces can indiscrim-
inately be replaced by weights. In particular, Guidobaldo considered a
broken bent lever BOAC with fulcrum O, weights E and C| straight arm

2DelMonte (1587, 146).
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BO, and broken arm OAC, just as Benedetti had discussed it for the two
cases of an acute and an obtuse angle BAC' (see figures 7.8 and 7.9).

He first recapitulated Benedetti’s procedure, assuming that a vertical
line OT be drawn from the fulcrum to the line AC representing the oblique
end of the bent lever. He stated that when the weight C is instead placed
at the end of the horizontal line OI, whose length is the same as that of the
perpendicular OT, it will, according to Benedetti, be in equilibrium with
the weight FE, if the weight C' is to the weight F as is BO to OT or OL
Guidobaldo then summarized that Benedetti claimed that also the bent
lever formed by the straight arm BO and the oblique arm OTC, where
a force represented by the weight C acts along the line T'C| will be in
equilibrium, which he doubted. Ironically referring to Benedetti’s use of
the term common science, he wrote:

Fateor me hanc quamdam communem scientiam non intel-
ligere.

I admit that I do not understand this certain common science.!?

Guidobaldo reformulated Benedetti’s claim by stating that the same
weight C' will be in equilibrium with the weight F, whether it is placed
on the straight balance BOI or on the broken bent lever BOTC. He thus
replaced Benedetti’s conception of a force acting along an oblique line
with that of a weight always tending downward and necessarily arrived at
absurd conclusions.

Guidobaldo showed in particular that the same weight will be heavier
on the horizontal at the point I than along the bent lever at T, demon-
strating that the bent lever TOB will not be in equilibrium if the straight
lever BOI is in equilibrium. In order to demonstrate this, he again pro-
ceeded by finding the center of gravity of the weights E and C placed at
T. More precisely, Guidobaldo determined a position for the weight C' in
which the bent lever is in equilibrium, a position, however, that is distinct
from T, so that it follows that T cannot be the equilibrium position for
this weight. For this purpose, he prolongued the line BT to D, just under-
neath I, so that it is immediately evident that, if the weight C is placed
at D, the center of gravity of the two weights will be just underneath the
fulcrum.

He then continued to show by the same pattern that also the bent
lever BOC' cannot be in equilibrium because its center of gravity S can
never fall on the perpendicular line OU through the fulcrum. And finally
he extended this argument to the broken bent lever BOTC.

3DelMonte (1587, 146).
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Figure 7.9: Following Benedetti, Guidobaldo considered in his notebook
the broken bent lever BOAC also for the case of an obtuse
angle BAC, under the assumption that £ and C are weights.
He again came to the conclusion that their center of gravity
S can never fall on the perpendicular line OU through the
fulecrum and that hence the lever cannot be in equilibrium.

Guidobaldo next addressed the case in which the bent lever is char-
acterized by an obtuse angle BAC, showing that the weight at T has a
smaller heaviness than the weight at I (see figure 7.9).

In his concluding remarks, however, he began to waver. He once again
stated that Benedetti is completely in error when applying his procedure
to weights. But he admitted that it may be when one is dealing with a
force:

Falsa igitur est demonstratio. Fallacia vero est, cum inquit,
continget, ut BOT communi quadam scientia, non moveatur
situ.

Et est omnino falsum si intelligatur C' esse pondus, quod in
centrum mundi sempre tendit. Ut ipse supponere videtur. Et
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ut ipse in seguentibus capitolis accipit hoc tamquam de pon-
deribus demonstratum.

At vero si intelligatur C potentia movens, ut hominis, qui
potest trahere T per rectam lineam T'C, tunc vera esse potest
demonstratio. Ut patet ex tractatum de axe in peritrochio
nostrorum Mechanicorum.

The demonstration is therefore false. But the fallacy is, as he
says, that it is the case that BOT by some common science
does not change its place.

And it is totally false if C' is understood to be a weight which
always tends to the center of the world, as he seems to as-
sume, and as he in the subsequent chapters assumes it to be
demonstrated as if it holds for weights.

But if C is understood to be a moving power, like that of a
man who can draw T along the straight line TC, then the
demonstration can be true. As is clear from the treatise on the
wheel and axle of our [book] on mechanics.!*

Remarkably, while the Copernican Benedetti speaks of the center of
the region of the elements (centrum regionis elementaris), Guidobaldo
insists on the center of the world (centrum mundi). By way of an after-
thought, Guidobaldo once again criticized Benedetti’s appeal to common
science, remarking that this is not worthy of an expert mathematician:

Notandum tamen, quod conclusiones per communem quandam
scientiam deductae, non sunt periti mathematici cum propriis
uti oporteat.

It nevertheless has to be noted that the conclusions which are
inferred by a certain common science are not worthy of an expe-
rienced mathematician because he should use his own [demon-
strations].1?

And by way of a second after-thought, he constructed an extreme
case in which it is immeditaly clear that the broken bent lever cannot be
in equilibrium if weights are attached to it, rather than forces (see figure
7.10):

M DelMonte (1587, 146).
5 DelMonte (1587, 146).
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Ex hac etiam figura magis patet absurdum, hoc est pondera E
C' aequeponderare non posse.

From this figure it appears even more absurd, that is, that the
16

weights E C cannot be in equilibrium.

Figure 7.10: In his notebook, Guidobaldo concluded his alleged refutation
of Benedetti’s treatment of the broken bent lever with the
construction of an extreme situation in which the two weights
E and C are found on the same side of the fulcrum O so that
it is obvious that the lever cannot be in equilibrium.

7.4 Fourth chapter: on the problem of the material beam
The fourth chapter is entitled:

Quemadmodum ex supra dictis causis omnes staterarum et vec-
tium causae dependeant.

How all causes operating on steelyards and levers depend on
the aforesaid causes.'”

The chapter deals with the fact that the beam of a balance is not a
mathematical line but a material body. Benedetti made use of his earlier

16DelMonte (1587, 146).
ITBenedetti (1585, 144-145), pages 332-333 in the present edition. Translation modified
from Drake and Drabkin (1969, 171-172).
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treatment of the bent lever to take into account the fact that the weights
attached to such a material beam do not act along a beam that can be
idealized as a horizontal line, but along oblique lines from the fulcrum to
the points of suspension of the weights, which are assumed to be placed at
the upper part of the material beam. More specifically, Benedetti stated
that if two equal weights are attached to the longer and the shorter arm
of the balance, the weight attached to the longer arm will overpower the
one attached to the shorter arm. He claimed that such an analysis of the
material beam has never been dealt with before, a point that Guidobaldo
rejected in his notes.

5

“t

Figure 7.11: Left note to the first paragraph of the fourth chapter.

3,
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Guidobaldo left three marginal comments on the page opening the
chapter; in addition he referred in a short note in the right margin to a
sentence he underlined. The short comment in the left margin includes a
drawing by Guidobaldo. The longest comment begins in the lower half of
the left margin and is continued at the bottom of the page; it also comprises
a drawing. About half of this comment was deleted by Guidobaldo himself;
at least one line has later been cut off.

Guidobaldo’s first comment reads (see figure 7.14):

[opo]rtet NU esse [hor]izonti equidistantem [ali]ter quidem unde
[vo]let demonstrandum
It is necessary that NU is equidistant from the horizon, differ-

ently from [the way] in which he wanted [it] to be demonstrated.

The hand-drawn diagram in the left margin was evidently added in the
same context.
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i
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Figure 7.12: Drawing of a material beam at the left side of the first para-
graph of the fourth chapter.

The meaning of Guidobaldo’s first comment is not entirely clear. It
seems to pinpoint the fact that Benedetti designated the upper part of the
beam as being horizontal, while, according to Guidobaldo, this is in con-
trast to what has to be demonstrated. Possibly he referred to Benedetti’s
own later generalization of his argument from balances to levers in the
penultimate sentence of the chapter:

In stateris, recte et proprie appelari potest XIS aut NOU ori-
zontalis, sed in omnium vectium specie, hoc tantum per quan-
dam similtudinem dicatur.

In balances with unequal arms, XIS or NOU can be rightly
and properly called horizontal, but in the case of all levers this
can be said only with a certain approximation.'®

Or Guidobaldo wanted to express that this premise implicitly assumes
the weights are connected by a horizontal line, in contrast to Benedetti’s
own detailed analysis which makes reference to oblique lines according to
which the weights supposedly act. To stress this point he may have added
the diagram in the margin showing a balance with equal arms.

18Benedetti (1585, 145), page 333 in the present edition. Translation adapted from
Drake and Drabkin (1969, 172).
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In any case, Guidobaldo’s first comment, his drawing, and also his
second comment all refer to the set-up of Benedetti’s demonstration in the
introduction of the chapter:

Positis igitur duobus ponderibus aequalibus in extremitatibus
brachiorum, experientia innotescit, quod pondus ad US appen-
sum, violentiam faciet ponderi appenso ad NX sed nos volumus
investigare causam huius effectus, quae a nemine unquam lit-
erarum monumentis, quod sciam, consignata fuit.

Now if two equal weights are placed at the ends of the arms,
it is clear from experience that the weights appended at US
will overpower the weight appended at NX. But we wish to
investigate the cause of this effect, which cause has never, so far
as I know, been assigned by anyone in the annals of literature.'®

The last claim is underlined by Guidobaldo as the point of reference
of his second note, in the right margin of this page.

{um, viol entiam faticepondéri appenfd> adn.xfed nos volumus inucltigareCans® .
huuncﬁzcms,zluzzngmm vaquam litcrarum monumentis , Qlu:u n, u.m,_ jara "' pryie )
fuits Tam diximusTtaceram,aut vectem macerialem effe &n.s.cius fuperficiem me- ﬂar #ehva
‘diam.fupponendo.i.cfle centrum quo nititur dicta fRatera aut vedtis; Cum hocor- . o adha

Figure 7.13: Underlined text with marginal note in the fourth chapter.

Underlined text:

quae a nemine unquam literarum monumentis, quod sciam,
consignata fuit.

which was never, so far as I know, documented by anybody in
the annals of literature.?%

Marginal note:

nos in tractatu de vecte propos. XV in libro me[chanicorum)]

We [did] in the treatise on the lever, prop. 15, in the book on
mechanics.

9Benedetti (1585, 144), page 332 in the present edition. Translation in Drake and
Drabkin (1969, 171).
20Benedetti (1585, 144), page 332 in the present edition. Translation in Drake and
Drabkin (1969, 171).
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Guidobaldo thus rejected Benedetti’s claim to originality and referred
to his own work on mechanics, and in particular to proposition 15 of the
part on the lever:

Problema.

Quia vero dum pondera vecte mouentur, vectis quoque graui-
tatem habet, cuius nulla hactenus mentio facta est: idcirco
primum quomodo inueniatur potentia, quae in dato puncto da-
tum vectem, cuius fulcimentum sit quoque datum, sustineat,
ostendamus.

Problem.

But since in moving weights with a lever, the lever also has
weight, which has not been mentioned up to this point, we
shall demonstrate how to find the power which will sustain the
lever in a given point, the fulcrum being likewise given.2!

As becomes clear from the proof of this proposition, Guidobaldo con-
sidered the centers of gravity of the two parts of the material beam, as
they are divided by the fulcrum of the lever, and treats the entire beam of
the lever as being represented by two weights suspended at the distances
of these centers of gravity from the fulcrum. Not only is his procedure
entirely different from that of Benedetti. Guidobaldo’s and Benedetti’s
conceptual frameworks actually capture different aspects of the material
beam. While Guidobaldo managed to take into account the weight of the
beam, Benedetti only dealt with its geometrical extension and focused on
the direction of the pull of the attached weight, corresponding in modern
terms to the torque of the applied force.

The third comment, also in the left margin of this page, refers to
Benedetti’s construction of the lines according to which weights act within
a material balance. It is accompanied by another diagram of Guidobaldo’s
to which he referred in the last part of this commentary.

[cu]lm pondera pendeant [S]X estque XIS recta linea huius [...]
quaerenda a lineis IN IU, ut in [...]?, quae quidem sint pro...]
immaginariae. Deinde [poste]a facit mentionem [de gra]vitate
vectis, et considerat matem/atice] [...] ex hac causa ut infra duo
vectes

[large passage deleted]

21DelMonte (1577, 60v), Renn and Damerow (2010, 178). Translation in Drake and
Drabkin (1969, 303).
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Figure 7.14: Long note to Benedetti’s fourth chapter.

AIU absque OB et pondera at XS, pondus in S maiorem habebit
vim, supra pondus in X, vecte AIU, quod idem pondus in S ad
pondus in X toto vecte [...] [line below cut]

Since the weights hang from SX and XIS is a straight line
whose [...] is to be found from the lines IN IU, as in [...], which
are though only [...] imaginary. Finally he later mentions the
heaviness of the lever and considers in a mathematical way [...]
from which cause as the two levers below

[large passage deleted|

ATU if without OB and the weights in XS, the weight at S will
have more power over the weight at X, by the lever AIU, than
the same weight at S to the weight at X with the entire lever

0.

Although much of this commentary remains illegible, two salient points
of Guidobaldo do emerge: He considered the oblique lines along which,
according to Benedetti, the weights attached to a material beam act as
being purely imaginary. And he apparently attempted to construct a con-
tradiction within Benedetti’s framework by considering the weights being
attached to different heights of the material beam. Guidobaldo’s drawing
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shows indeed a beam of approximately twice the height of the original
one, with the original one inscribed. In the last legible line of his note
he considered the weight on the longer right-hand side of the balance be-
ing attached from the original height of the beam, while the weight on
the shorter left-hand side is suspended from the beam with double height.
Guidobaldo concluded with an argument that he evidently later rejected
that, in this constellation, the weight on the longer right-hand side has
more power than if it were suspended from the same height as the weight
on the left-hand side.

7.5 Fifth chapter: on the problem of the material lever

The fifth chapter is entitled:

De quibusdam rebus animadversione dignis.

On certain facts worthy of notice.??

The chapter deals with levers whose fulcrum is at one end of the lever,
while the weight to be lifted by a force acting on the other end is posi-
tioned between these ends and somewhere near to the fulcrum. As we have
discussed before, Benedetti treated the material lever not with regard to
the weight of the beam but only with regard to its geometrical configura-
tion. He hence imagined a rectangular cross-section of such a lever with
a weight being placed on top of the beam. One lower corner serves as
the fulcrum, the other corner is lifted by the hand. The question then is
how the weight exerts a pressure on the corner where the hand is acting.
Benedetti claimed that the ratio between that part of the weight that rests
on the fulcrum and that part of the weight that rests on the corner where
the force is acting is given by the inverse ratio of the horizontal distances
of the weight from these two points (see figure 7.15):

Si vero eadem resistentia posita erit in U clarum quoque erit,
quod minor pars ponderis N annitetur ipsi U quam ipsi O cum
dicta NI a centro U longius quam a centro O distet, et pro-
portio partis ponderis N in O ad proportionem partis ponderis
N in U non erit secundum proportionem angulorum UNI et
ONTI sed secundum proportionem UI ad IO [this proportion
is underlined] quod clare comprehendi potest ab huius effectus
converso |...]

22Benedetti (1585, 145-146), pages 333-334 in the present edition. Translation in Drake
and Drabkin (1969, 172-174).
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And if the same resistance is placed at U, it will also be clear
that a smaller part of weight N will press on U than on O,
since NI is farther distant from fulcrum U than from fulcrum
0. And the ratio of the part of weight N that rests on O to
the part of weight N that rests on U will be equal, not to the
ratio of angle UNI to angle ONI, but to the ratio of UI to IO.
This may be clearly understood from the converse of this effect
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Figure 7.15: Figure and marginal note in the fifth chapter.

In the sequel Benedetti justified his claim by interpreting the situa-
tion of the lever according to the model of a balance suspended from the
point where the weight is positioned, with the two lower corners now rep-
resenting weights. From his procedure of determining effective lever arms
by horizontal projection his proposition then followed.

Guidobaldo left a marginal note at the bottom right of page 145 and
underlined the letters in Benedetti’s text referring to the proportion of
lengths in the diagram to which his comment refers:

tandem post mu[lta] veritate coactus dixit proportionem p[artium]
ponderis esse secundum OI, IU quod nos in 3 coroll. secundae
propositionis de vecte omnia di[ximus].

Finally he said after many [other things], forced by the truth,
that the proportion of the parts of the weight is as OI, IU which
we have said all in the third corollary of the second proposition

about the lever.

Guidobaldo’s marginal comment refers to the text at the bottom of
the page quoted above which in turn refers to the diagram on the same

23Benedetti (1585, 145-146), pages 333-334 in the present edition. Translation in Drake

and Drabkin (1969, 173).



7. Guidobaldo’s Marginal Notes in Benedetti’s Book 227

page. Guidobaldo referred to his own treatment of levers in his book
on mechanics, where he also dealt with a lever sustained at its two ends
carrying a weight in the middle. He explicitly referred to the third corollary
of the second proposition about the lever which reads:

Ex hoc quoque elici potest, si duae fuerint potentiae, una in A,
altera in B, et utraque sustentet pondus E; potentiam in A ad
potentiam in B esse, ut BC ad CA.

From this likewise it may be deduced that, if there are two
powers, one at A and the other at B, and both sustain the
weight F [suspended from point C], the power at A will be to
the power at B as BC is to CA.24

He also justified his claim by exchanging the roles of fulcrum and
force, but he did not take into account any directional effects of these
forces, considering the lever without extension.

7.6 Seventh chapter: on the core question of the equilibrium
controversy

The seventh chapter is entitled:

De quibus erroribus Nicolai Tartaleae circa pondera corporum
et eorum motus, quorum aliqui desumpti fuerunt a Jordano
scriptore quodam antico.

On certain errors of Niccolo Tartaglia on the weights of bodies
and their motions, some taken from a certain ancient writer
Jordanus.?®

In this chapter Benedetti criticized Tartaglia’s account of the variation of
the positional heaviness of a body on a balance changing its position. As we
have discussed extensively above (see section 6.2), he rejected, in particu-
lar, Tartaglia’s claim that a balance would return to its original horizontal
position because the weight that has moved upward becomes positionally
heavier, while the weight that has moved downward becomes positionally
lighter. Benedetti first pointed out that Tartaglia should not have com-
pared the descents of the two weights but the descent of one weight with

24DelMonte (1577, 40v), Renn and Damerow (2010, 138). Translation in Drake and
Drabkin (1969, 299).

25Benedetti (1585, 148-149), pages 336-337 in the present edition. Translation in Drake
and Drabkin (1969, 174-176).
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the ascent of another. In his annotations Guidobaldo did not fail to notice
that, in his own book, he had already drawn attention to this circum-
stance. Then Benedetti reconsidered, as we have also discussed, the entire
situation from a cosmological perspective, concluding that the weight that
has moved upward actually becomes positionally lighter, while the weight
that has moved downward becomes positionally heavier. Benedetti’s ar-
gument is based on his procedure of determining effective lever arms by
drawing perpendiculars to the lines of inclination of the two weights (see
section 3.9). It is remarkable that his first criticism seems to suggest,
in agreement with Guidobaldo’s opinion, an indifferent equilibrium of the
balance (indeed, under terrestrial circumstances it necessarily leads to that
conclusion). In contrast, his second criticism (taking into account the cos-
mological perspective) implies that the balance would actually proceed to
the vertical. Benedetti did not, however, actually make this explicit.

Page 148 has two comments by Guidobaldo, one in the middle of the
page in the left margin, the other further below, also beginning in the left
margin and continuing at the bottom of the page; the latter comment refers
to a line in Benedetti’s text underlined by Guidobaldo. His two marginal
notes address the ambiguity of Benedetti’s text. They end in the definitive
rejection of Benedetti’s method of determining positional heaviness, which
— in the eyes of Guidobaldo — is in conflict with his fundamental insight
into the indifferent nature of the equilibrium of a balance.

Figure 7.16: Marginal note to Benedetti’s seventh chapter.
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Guidobaldo’s first comment reads:

desumptum est ex iis [quae] dicta sunt a nobis [in] tractatu de
vecte [...] supponit pondera non moveri ut [re] vera est. Serius
concludit oppositum.

This is taken from what has been said by us in the treatise on
the lever. He assumes that the weights do not move which is
true. Later he concludes the opposite.

The comment refers to the passage in which Benedetti pointed out
that the descent of one weight should be compared to the ascent of the
other (see figure 3.11):

Sed in secunda parte quintae propositionis non videt quod vig-
ore situs eo modo, quo ipse disputat, nulla elicitur ponderis
differentia. Quia si corpus B descendere debet per arcum IL
corpus A ascendere debet per arcum US aequalem, et similem
eadem quoque rationem situatum, ut est arcus IL unde ut est
facile corpori B descendere per arcum IL difficile ita erit cor-
pori A ascendere per arcum US. Haec autem quinta propositio
Tartalea est secunda quaestio a Iordano proposita.

And in the second part of the fifth proposition, he fails to see
that no difference in weight is produced by virtue of position
in the way in which he argues. For if body B must descend on
arc IL, body A must ascend on arc US, equal and similar to
arc IL and placed in the same way. Therefore, just as it is easy
for body B to descend on arc IL, it will be difficult for body A
to ascend on arc US. And this fifth proposition is the second
question proposed by Jordanus.2%

Guidobaldo’s second note at the bottom of the page refers to the
diagram on the following page 149 (see figure 7.17).

It also refers to a passage in the text on page 148 that has been
underlined by Guidobaldo:

Pondus igitur ipsius A in huismodi situ, pondere ipsius B grav-
ius erit.

26Benedetti (1585, 148), page 336 in the present edition. Translation in Drake and
Drabkin (1969, 174-175).
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Figure 7.17: Drawing of a balance in a cosmological context in the seventh
chapter.

Therefore the weight of A in this position will be heavier than
the weight of B.27

This is the conclusion of Benedetti’s consideration of two weights on a
balance in an oblique position from a cosmological perspective, amounting
to the statement that the weight A that has been lowered has become
positionally heavier than the weight B that has been lifted. Guidobaldo’s
second comment reads:

[suppo]nit pondera AB non moveri. Hac demonstratione pon-
dus A gra[vius] [e]st pondere B quia haec gravi[tates] metiuntur
ex lineis perpendicularibus OT, OF quarum OT maior est, se-
quitur pondus A in hoc situ gravius esse pondere B in hoc
situ. Dico igitur quod subterfugiet [pJondus A deorsum non
moveatur et B sursum? Libra ergo AB non manebit ut sup-
posuit, et ut re vera manet. [Quajre si volens errores Iordani

27Benedetti (1585, 148), page 336 in the present edition. Translation in Drake and
Drabkin (1969, 176).
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et Tartaleae (quorum errorum nec solvit contradictiones) in-
cidit, et si non in peiora, tamen in aequalia [absjurda. Unde
perspicuum est, quod sit inanis, et falsa haec consideratio suis
perpendicularibus facta, quam [...]

He assumes that the weights AB are not moved. By this
demonstration A is heavier than weight B, because these grav-
ities are measured by the perpendicular lines OT, OF, from
which OT is the greater, it thus follows that weight A is in
this position heavier than weight B in this position. I there-
fore say what escapes him: does not weight A move downward
and weight B upward? The balance AB will therefore not re-
main as he assumes and as it truly remains. If he therefore
willingly cuts into the errors of Jordanus and Tartaglia (whose
contradictions he does not resolve), and if he does not make
them worse then nevertheless to an equal extent absurd. From
which it is evident that this consideration of his which he makes
about the perpendiculars is empty and false as [line cut off]
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Figure 7.18: Bottom note of the seventh chapter.
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As we have discussed above, Guidobaldo had, in his own book, sim-
ilarly considered the case of a balance in an oblique position from a cos-
mological perspective, also using the concept of positional heaviness.?® He
had arrived at the conclusion, in agreement with his general conviction,
that the two weights on such a balance are equally heavy positionally.
Against this background, Benedetti’s method of determining positional
heaviness, necessarily in contradiction with this conclusion, must have ap-
peared entirely unacceptable to Guidobaldo as he indeed clearly stated in

this marginal note.

28Drake and Drabkin (1969, 282). See section 3.8.8.
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7.7 Eighth chapter: on plagiarizing the criticism of Jordanus
and Tartaglia

The eighth chapter is entitled:

Quod autem idem Tartalea in 6. propositione, et Iordanus
in secunda parte secundae propositionis scribunt, maximum
quoque errorem in se continet.

What Tartaglia writes in proposition 6 and Jordanus in the

second part of proposition 2 also contains a most serious er-
29

ror.

VD

w

Figure 7.19: Drawing of the convergence of perpendiculars in the eighth
chapter.

29Benedetti (1585, 149-151), pages 337-339 in the present edition. Translation modified
from Drake and Drabkin (1969, 176-178).
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In the beginning of this chapter Benedetti criticized, as we have dis-
cussed, Tartaglia’s way of determining positional heaviness by means of
angles of contact between the curved path of a weight and a perpendic-
ular. He showed that this procedure leads to a contradiction when the
convergence of these perpendiculars at the center of the world is taken
into account, as he indicates in his drawing. Benedetti concluded his anal-
ysis with a general rejection of the method of Tartaglia and Jordanus.

Omnis autem error in quem Tartalea, lordanusque lapsi fuerunt
ab eo, quod lineas inclinationum pro parallelis vicissim sumpserunt,
emanuit.

Now the whole error into which Tartaglia and Jordanus fell
arose from the fact that they took the lines of inclination as
parallel to each other.3°

Jicer fui toto. Omnis
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Figure 7.20: Marginal note in the eighth chapter.

Benedetti’s argument is strikingly similar to those of Guidobaldo
against this method, as we have discussed above. Page 150 has a sin-
gle short comment by Guidobaldo in the middle of the left margin, next to
a text passage in which Benedetti finally rejected the method of Tartaglia
and Jordanus. In his marginal comment Guidobaldo pointed to the fact
that Benedetti’s argument, in his view, has been taken from his own book:

[ex] meo tractatu [de lib]ra

from my treatise on the balance

30Benedetti (1585, 150), page 338 in the present edition. Translation in Drake and
Drabkin (1969, 177).
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7.8 Tenth chapter: on Aristotle and the composition of motions
The tenth chapter is entitled:

Quod linea circularis non habeat concavum cum convexo coni-
unctum, et quod Aristoteles circa proportiones motuum aber-
raverit.

That the circumference of a circle does not have a concavity
joined with a convexity, and that Aristotle was mistaken in the
ratios of motions.3!

The chapter deals with the introductory part of the Aristotelian Me-
chanical Problems in which the curious properties of the circle and the
composition of motions are treated. Benedetti disputed the claim of the
Aristotelian author that the circle seems to unite the convex with the con-
cave, essentially arguing that one should distinguish between the circular
surface included by the circumference and the plane with a circular hole
that is also delimited by that circumference. Guidobaldo left two rather
long comments in the left margin of this page. In his first marginal note
Guidobaldo rejected Benedetti’s distinction because its application would
require, according to him, an intervening space which, however, is not
given. In his discussion of the Aristotelian analysis of the composition of
motions Benedetti questioned the alledged claim of the Aristotelian au-
thor that if a body moves along a given line, it moves according to one
definite proportion rather than according to another one. In particular,
Aristotle maintained that when an object moves along the diagonal it will
always move in the ratio of the sides of the parallelogram.?? Benedetti
showed instead that the same trajectory can be generated by motions fol-
lowing different proportions. In his second marginal comment Guidobaldo
pointed to the fact that Benedetti failed to understand Aristotle’s argu-
ment and that his objection is therefore irrelevant. Guidobaldo stressed in
this comment that what matters to Aristotle is only the fact that, when
a body is moved in a fixed ratio it necessarily travels in a straight line,
independently from the fact that the same straight line may be traversed
also by a motion that is given by a different ratio.

More specifically, Guidobaldo’s first comment refers to the beginning
of the chapter:

31Benedetti (1585, 152), page 340 in the present edition. Translation in Drake and
Drabkin (1969, 179-180).
32 Aristotle (1980, 339).
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Aristoteles in principio quaestionum Mechanicorum ait lineam,
quae terminat circulum videtur convexum habere coniunctum
cum concavo, quod falsum est: quia huismodi linea partes nul-
las secundum latitudinem habet, (ut ipse etiam confirmat) sed
est idem convexum circuli: linea vero quae terminus est super-
ficiae ambientis, et amplectentis circulum est eadem concavi-
tas dictae superficiae eundem circulum ambientis, quae nullam
convexitatem habet et haec duae sunt lineae, quarum una di-
versa est ab alia, neque altera alterius, quod ad convexum, et
ad concavum attinet.

Aristotle at the beginning of Questions of Mechanics says that
the line which bounds the circle seems to unite the convex
with the concave. But this is false. For a line of this kind has
no thickness (as Aristotle himself also asserts), but is identical
with the convex boundary of the circle. On the other hand, the
line that bounds the surrounding surface and encloses the circle
is identical with the concavity of the surface that surrounds the
circle, a surface which has no convexity. And these are two lines
of which one is different from the other, and not part of the
other, so far as pertains to convexity and concavity.?3

|
e N

} eft:quia
: ,')',«‘;i;“z‘j, confirm

ambien
et st o't “/‘“"

dem cir
s
lr""”g P ','-“” / quarum

B t‘}“’ "‘/7'“" ﬁ“ cauum :
o ‘;‘("}" Sedi
dum_vn;

Figure 7.21: First marginal note in the tenth chapter.

33Benedetti (1585, 152), page 340 in the present edition. Translation in Drake and
Drabkin (1969, 179).
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Guidobaldo commented:

intellexit Aristotelem loqui [quod lijnea circumferentiae area
dabitur; duae linee se tangunt secundum latitudifnem], et sunt
invicem separatae. [Hoc] fieri non potest. Imo inter [ea]s cadet
superficies quaem|[ad]modum inter duo puncta [s]it linea

He understood that Aristotle claimed that the line of the cir-
cumference will be given by the area. Two lines touch each
other along their latitude and are separate from each other;
this cannot be. Therefore a surface falls in between just as
there is a line between two points

Guidobaldo’s second comment refers to Benedetti’s criticism of Aris-
totle’s proof of the composition of motions and to the figure on page 152
(see figure 7.22).

Figure 7.22: The composition of motions discussed in the tenth chapter.

Benedetti wrote:

Cui respondeo, punctum A quod movetur in linea AM ab A
versus M usque ad F non moveri ab aliqua proportione deter-
minata magis quam ab alia: unde non solum possumus imag-
inari dictum punctum A moveri ab A usque ad F eiusdem
velocitatis sub alia quadam proportione, sed etiam sub alia,
quae iam datae contraria sit, ut est proportio ipsius AC ad
AB imaginantes moveri A versus C et AC versus BM delatam.
[...] Huiusmodi igitur consideratio ab Aristotele facta, nullius
est momenti.

To Aristotle I reply that the fact that point A moves on line
AM from A towards M as far as F' does not mean that it moves
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according to one definite proportion rather than some other.
Thus we can suppose that point A moves from A to F not only
according to one ratio of the same velocity, but also some other
which is the very opposite of the first ratio — e.g. the ratio of
AC to AB, it being imagined that A moves toward C and AC
toward BM. [...] Hence the discussion on this point by Aristotle
is of no value.?*

A.B.h:
tur cft}
Nass, Clll
: 71&#“[- «ad F.n

- ‘44“4 Kﬁluml

Figure 7.23: Second marginal note in the tenth chapter.

Guidobaldo commented:

[ho]c non intelligit [demonstr]ationis Aristotelis. Nam [parulit
Aristoteli quando ali[quid] [m]ovetur secundum aliquam pro-
por[tione]m, illud quidem moveri [secundum r]ectam lineam,
quod si sup[ponere eajm lineam secundum alias proportiones
moveri potest, [n]ihil interest [se]d haec nullius sunt [mom]enti

34Benedetti (1585, 152), page 340 in the present edition. Translation in Drake and
Drabkin (1969, 180).
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He does not understand that part of Aristotle’s proof. In fact,
Aristotle held that, if something is moved according to some
proportion, it will surely move according to a straight line;
but, if it is assumed that the line can move according to other
proportions, that makes no difference, but these things are of
no value.

7.9 Twelfth chapter: saving Aristotle in the equilibrium
controversy

The twelfth chapter is entitled:

De vera causa secundae, et tertiae quaestionis mechanicae ab
Aristotele non perspecta.

On the true cause not perceived by Aristotle of the Mechanical
Questions 2 and 3.3°
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Figure 7.24: Drawing of a balance in an oblique position in the twelfth
chapter.

35Benedetti (1585, 154), page 342 in the present edition. Translation modified from
Drake and Drabkin (1969, 182-183).
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The chapter deals with the question of how a balance either supported
from above or from below behaves when it is removed from the horizontal
position (see figure 7.24). For the case in which the balance is supported
from above Benedetti agreed with the Aristotelian conclusion that it will
return to the horizontal position, but justified this behavior with his tech-
nique for determining positional heaviness. For the case in which it is
supported from below he disagreed with Aristotle who seemed to suggest
that the balance will stay in its position. On this point Guidobaldo was of
the same opinion, as the following quotation from his book on mechanics
shows:

Nam cum in secunda parte secundae quaestionis proponit, cur
libra, trutina deorsum constituta, quando deorsum lato pon-
dere quispiam id amouet, non ascendit, sed manet? non asserit
adhuc libram deorsum moueri; sed manere. Quod in vltima
quoque conclusione colligisse videtur.

For in the second part of the second question he asks, ‘Why,
when the support is below, the balance being carried down-
ward and released, it does not rise again, but remains?’ Here
he affirms not that the balance moves downward, but that it
remains, which he seems to have deduced in the last conclu-

sion.36

In contrast to Benedetti, Guidobaldo was convinced, however, that
Aristotle’s position can be defended, which is also the point of his marginal
comment and in line with his appreciation of the ancient heritage, including
the Aristotelian work on mechanics. In his own book he argued in fact that
the balance does not move further downward because it is prevented from
doing so by the support on which it rests.

Guidobaldo’s comment refers to the following text at the lower part
of the page:

In secunda deinde huius quaestionis parte, in qui scribit libram
in situ, in quo posita est, firmam manere, toto coelo aberrat,
quia necessarium est, ut omnino cadat, eousque quo spartum
sursum remaneat: ablato tamen omni impedimento, quod nulla
eget probatione, cum natura sua clarissime pateat.

Then in the second part of this problem, in which Aristotle
writes that a balance remains fixed in the position in which

36DelMonte (1577, 26v), Renn and Damerow (2010, 110). Translation in Drake and
Drabkin (1969, 290).
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Figure 7.25: Marginal note to Benedetti’s twelfth chapter.

it has been placed, he is completely mistaken. For it must
continue to fall until the support remains above it, with the
assumption, however, that all impediment to this is removed.
This proposition requires no proof, since by its own nature it
is perfectly clear.?7

Guidobaldo’s comment reads:

[Aristotel]es potest defendi ut [in] tractatu de libra [a n]obis
factum fuit

Aristotle can be defended as it was done by us in the treatise
on the balance

7.10 Fourteenth chapter: Aristotle’s wheel and the problem of
infinite limits

The fourteenth chapter is entitled:

Quod rationes ab Aristotele de octava quaestione conficta suf-
ficientes.

That the reasons by Aristotle in Questions of Mechanics 8 are
not adequate.38

37Benedetti (1585, 154), page 342 in the present edition. Translation in Drake and
Drabkin (1969, 183).

38 Benedetti (1585, 155-159), pages 343-347 in the present edition. Translation in Drake
and Drabkin (1969, 184-187).
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Figure 7.26: The motion of a polygonal shape discussed in the fourteenth
chapter of Benedetti’s book.

This chapter also deals with the Aristotelian Mechanical Problems,
here with the question of why bodies of circular shape are easier to roll than
others.?® Benedetti considered various rotational motions, the rotation of
carriage wheels, of pulley wheels, and of potter’s wheels. He compared the
motion of a wheel with that of a polygon and gave reasons why the motion
of the former is easier than that of the latter (see figure 7.26). He argued,
for instance, that, when a polygon is rolled along a plane, its center will go
up and down, its upward motion will require an effort, while the center of
a wheel will always maintain the same distance from the center, that is, as
he formulated, from the goal of heavy bodies. He considered the circular

398ee the discussion in Biittner (2008).
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shape as the limiting case of polygonal shapes with ever more angles. One
short comment by Guidobaldo is found in the left margin of this page.
In his comment, Guidobaldo expressed his skepticism about this limiting
process.

His note refers to the following passage of Benedetti’s argument:

Si ergo quanto plures angolos habebit dicta figura, tanto ad
circunvolvendum hoc modo agilior erit. Circularis igitur figura,
quae ex infinitis angulis efficitur, omnium agillima erit.

The more angles the said figure will have, therefore the more
suitable it will be to rotate in this way. Hence the circular

shape, which is constituted from infinite angles, is the most

suitable of all.40
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Figure 7.27: Marginal note to the fourteenth chapter of Benedetti’s book.

Guidobaldo noted:

circularem ex infinitis [ang]ulis constare fateor ignotum esse

I confess that it is unknown [to me] that the circular is com-
posed from infinite angles

7.11 Sixteenth chapter: on Aristotle’s empty balance
The sixteenth chapter is entitled:

Quod Aristotelis rationes de decima quaestione sint reiiciendae.

40Benedetti (1585, 158), page 346 in the present edition.
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That Aristotle’s explanation of Questions of Mechanics 10 must
be rejected.*!

The chapter deals with another topic of the Aristotelian Mechanical
Problems, the greater readiness of an empty balance to move. Benedetti
approached the subject by comparing two balances, one carrying two small
weights, the other two large weights (see figure 7.28). Now according to
him Aristotle wonders about the fact that the balance with the smaller
weights moves more rapidly when on one of its arms another small weight
is placed than when the same small weight is placed on one of the arms
of the balance with the large weights. Benedetti essentially argued that
Aristotle would have no reason to wonder had he appropriately taken into
account his own dynamical principles (see section 3.4.1).

Benedetti explained:

quia semper ineunda est ratio proportionis virtutis mouentis
super mobile; quod ipse non fecit.

For the ratio of the moving force to the body moved must
always be considered; and Aristotle did not do this.*?
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Figure 7.28: Drawing of two balances, one carrying small weights, the
other large weights, as discussed in the sixteenth chapter of
Benedetti’s book.

41Benedetti (1585, 159-160), pages 347-348 in the present edition. Translation in Drake
and Drabkin (1969, 187-188).

42Benedetti (1585, 159), page 347 in the present edition. Translation in Drake and
Drabkin (1969, 187).
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In his short marginal note Guidobaldo seems to express his surprise
at Benedetti’s claim that Aristotle was wondering, apparently incapable
of giving an adequate solution to a problem he had posed himself. The
comment refers to the following passage of Benedetti’s text (see figure
7.28):

Sit exempli gratia libra AIE quae in utraque extremitate un-
ciam unam solam ponderis obtineat, et sit libra NIU aequalis
priori, quae pro singula extremitate unam ponderis libram habeat.
Aristoteles admiratur, quod addendo ipsi £ mediam ponderis
unciam, brachium IE velocius cadat, quam adiiciendo ipsam
mediam unciam ipsi U brachii IU.

Let there be, for example, a scale AIF which has at the ex-
tremity of each arm merely one ounce of weight; and let there
also be a scale NIU, exactly like the former one, which has
one pound of weight on each end. Aristotle wonders about the
fact that, when he adds a half-ounce weight at E, arm IF falls
more rapidly than when he adds that same half-ounce at U,
the extremity of arm IU.*3
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Figure 7.29: Marginal note to the sixteenth chapter of Benedetti’s book.

Guidobaldo noted:

quod admiratur Aristoteles

what was Aristotle wondering about

43Benedetti (1585, 160), page 348 in the present edition. Translation in Drake and
Drabkin (1969, 188).
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7.12 Twentieth chapter: on reducing the wedge to the lever

The twentieth chapter is entitled:

De vera ratione 17 quaestionis.

On the true explanation of question 17.44

This chapter also deals with the Aristotelian Mechanical Problems,
here with the question of how the wedge is to be treated according to

the model of the lever. Benedetti argued that Aristotle failed to properly
reduce the wedge to the lever:

Decimaseptima quaestio ab Aristotele haud beneé percepta fuit,
quia is non accommodat partes vectis suis locis.

Question 17 was not correctly understood by Aristotle, for he
did not assign the parts of the lever to their correct places.*®

C

Figure 7.30: A comparison of two levers, one with the fulcrum in the mid-

dle, the other with the fulcrum at one end, as discussed in the
twentieth chapter of Benedetti’s book.

44Benedetti (1585, 162), page 350 in the present edition. Translation in Drake and
Drabkin (1969, 190-191).

45Benedetti (1585, 162), page 350 in the present edition. Translation in Drake and
Drabkin (1969, 190).
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In order to improve on Aristotle Benedetti began his discussion by
comparing two levers, one with the fulcrum in the middle, the weight at
one and the force at the other end, the other lever having the fulcrum
at one end, the weight in the middle and the force at the other end (see
figure 7.30). It is the latter kind of lever that he applied to analyze the
wedge, but it first had be reduced to the ordinary lever with the fulcrum
in the middle. He argued in fact that when the weights, the distances
between weight and fulcrum, and the distances between force and fulcrum
are equal in the two levers, a force sufficient to raise the weight with one
lever will also be sufficient to raise the weight with the other lever. By
way of justification he referred, first of all, to common science (scientia
communis), and then to his principles treated in chapters 4 and 5. In his
marginal note Guidobaldo criticized Benedetti for his all too generous use
of the reference to common science (scientia communis).*6

More specifically, his comment refers to the passage:

Et quia omnia supponuntur aequalia, clarum quoque erit, com-
muni scientia, tantam virtutem in N quanta sufficiet ad attol-
lendum A in U quoque suffecturam ad elevandum E oportebit
attollere U.

And because all are assumed equal, it will also be clear, by
common science, that the force at N required to raise A will
also be sufficient at U to raise E.47

Guidobaldo wrote in the upper left margin of this page:

[...] sua communis [scient]ia multa probat [sijne demonstratione

His common science demonstrates much without proof

7.13 Twenty-first chapter: the plagiarized pulley

The twenty-first chapter is entitled:

De vera et intrinseca causa trochlearum.

On the true and intrinsic explanation of compound pulleys.*®

46GSee also the discussion in section 6.3.

47Benedetti (1585, 162), page 350 in the present edition. Translation modified from
Drake and Drabkin (1969, 191).

48 Benedetti (1585, 163-165), pages 351-353 in the present edition. Translation in Drake
and Drabkin (1969, 191-193).
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Figure 7.31: Marginal note to the twentieth chapter of Benedetti’s book.
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Figure 7.32: Reducing the pulley to the lever, as discussed in the twenty-
first chapter of Benedetti’s book.

The chapter deals with the explanation of the pulley, and in particular
with the way it can be reduced to the lever or the balance (see figure
7.32). In the middle of the right margin of page 163, Guidobaldo left
a short comment. Another related comment is found on the subsequent
page. Guidobaldo’s first comment refers to the passage in the middle of
page 163.

Imaginemur separatim stateram GH cuius centrum sit K ita
situm, ut brachium GK sit duplum ad brachium KH suppo-
nendo igitur in puncto G pondus aut virtutem moventem unius
librae, et in H duarum librarum, absque dubio haec duae vir-
tutes in huismodi distantiis a centro aequales invicem erunt, ob
rationes prioribus capitibus iam allatas, et statera orizontalis
manebit.
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Let us consider, separately from the preceding figure, a balance
GH with fulcrum K so situated that arm GK is double the arm
KH. Now if we assume a weight or moving force of one pound
at point G, and of two pounds at H, clearly these two forces
at these distances from the center will be equal to each other
for the reasons already set forth in previous chapters, and the
scale will remain horizontal.*

In his two comments on this chapter Guidobaldo is, in a sense, less
critical of Benedetti than in his other notes. He remarked, however, that
Benedetti should have referred to Aristotle when mentioning the law of
the lever in his first comment instead of referring to his own work.
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Figure 7.33: First marginal note to the twenty-first chapter of Benedetti’s
book.

His first comment reads:

hoc non [con]dit auc[tor] sed Aristoteles

This foundation is not laid by the author but by Aristotle

In the second comment to this chapter — in the lower left margin of
the next page — Guidobaldo criticized Benedetti for the lack of acknowl-
edgement that his own treatment of the pulley receives. He accused him
of wrongly pretending to add something new when dealing with the com-
pound pulley and its reduction to the balance. Benedetti mentally replaced
the compound pulley with a sequence of connected balances, arriving at
the conclusion that for a pulley with four wheels, a force that amounts
to one fourth suffices to lift a given weight. Up to this point Guidobaldo

49Benedetti (1585, 163), page 351 in the present edition. Translation in Drake and
Drabkin (1969, 192).
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agreed with him and admitted that this chapter is rather clear, even if
Benedetti added unnecessary complications. In Guidobaldo’s eyes what is
true comes anyway from his own work on the pulley which, however, is
not mentioned by Benedetti.

More specifically, the comment on the lower part of page 164 refers
to the following passage of Benedetti’s text and to the figure on page 163
(see figure 7.32):

Hucusque scientifice novimus pondus, aut virtutem ipsius S
quae est dimidium ipsi [ sustinere vim ipsorum I et () nam
quater tantum, quanta ipsamet virtus ipsius S esse conspicitur.

Up to here we have come to know that the weight or the force
of S which is half of that of I sustains the force of I and @
namely four times as much as the force of S is considered to
be.?0

Guidobaldo commented:

[...]dum hucusque verum est usque [...Jnem confuse immo sine
[confusi]one totum hoc caput][...] est. Noluit [vero?] earum
quae distincte in tractatu trochlea condimus repelrire] sed ut
aliquid novi aflfiger|e videatur per ambages [illlas communes
species, et per communes conceptus ali[quid] [a]ttingit; tan-
dem vero [aliquan]do aliqua vera profert [e]x nostro tractatu
de [troc]hlea rescripsit. Quaequae hoc tractatum cap., nem-
inem credo [...] demonstrationemque trochlearum [...Jere posse

[...] up to here everything is true and [not] confused. Even this
entire chapter is without confusion. But he does not want to
recover [anything] from that for which we have concisely pro-
vided the foundation in the treatise on the pulley but rather,
in order to appear to add something new, he attacks something
with the help of ambiguous ideas and common notions; never-
theless occasionally he advances something true [that] he has
rewritten from our treatise on the compound pulley. Whatever
[...] is treated in this chapter, I believe that nobody can [...]
the proof of the compound pulleys

50Benedetti (1585, 164), page 352 in the present edition.
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Figure 7.34: Second marginal note to the twenty-first chapter of
Benedetti’s book.

7.14 Letter to Pizzamano: simplifying the solution of a
geometrical problem

The chapter is a letter entitled:

Qualiter circulus designari possit alios duos circulos propositos
includens. Clariss. Petro Pizzamano.

How a circle can be designed so that it includes two other given
circles. To the Most Brilliant Petrus Pizzamanus.?!

This chapter belongs to the part of Benedetti’s treatise in which he
collected letters to illustrious personalities. The present letter is directed

51Benedetti (1585, 262-264), pages 356358 in the present edition.
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Figure 7.35: Drawing of a geometrical problem in Benedetti’s book on
which Guidobaldo commented.

to Pietro Pizzamano who was, between 1559 and 1580, an official in Berg-
amo, Trevigi, and Mercanzia.’? It deals with a rather trivial geometrical
problem to which Benedetti offered various solutions depending on the po-
sition of the two circles for which an encompassing circle is being searched
(see figure 7.35). In his note at the bottom of the second page dealing
with this problem Guidobaldo suggested one brief solution to the problem
raised by Benedetti.’®> While Benedetti’s solution allows for a variable
diameter of the surrounding circle, Guidobaldo’s construction does not.
Guidobaldo’s solution works by simply dividing in half the line connecting
the centers of the given circles and extending from one diameter to the
other. He then concluded that a circle around this midpoint with this
extension will touch the two given circles.

Guidobaldo’s comment refers to the diagram at the bottom of page
263 and to Benedetti’s text starting in the middle of the page:

Si vero distantia duorum propositorum circulorum tanta fuerit,
quod secundi circuli nequeant se invicem tangere, vel secare,
tunc alia via incedendum erit, quae talis est et generalis. Divi-
datur tota @B per aequalia in puncto Z circa quod signentur
duo puncta ab ipso aequidistantia K et P. Distantia vero AK
facta sit semidiameter esse unius circuli KX circa centrum A.
Distantia autem OP semidiameter alterius circuli PX circa cen-
trum O qui quidem circuli se invicem secent in puncto X a quo

52See the discussion in Bordiga (1985, 634).
53Compare also Guidobaldo’s discussion in his notebook DelMonte (1587, 148).
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cum ductes fuerint XAD et XOF per centra dictorum circulo-
rum, ipse erunt invicem aequales, eo quod cum BK aequalis sit
QP igitur XD et QP erunt invicem aequales, sed F.X aequalis
est QP quare XF aequalis erit XD tunc si X centrum fuerit
unius circuli, cuius semidiameter sit una dictarum, problema
solutum erit.

Talis etiam solutio commoda erit ad inveniendum dictum cir-
culum cuiusvis magnitudinis, dato tamen quod eius diameter,
malior sit BZ cum in nostra potestate sit accipere puncta K et
P proxima vel remota ab ipso Z ad libitum. Unde absque ulla
divisione ipsius @B per medium, satis erit signare puncta K
et P duabus distantiis mediantibus BK et QP invicem aequal-
ibus, et etiam propositis.

But if the distance of the two given circles were such that the
second circles cannot mutually touch or cut each other, then
one has to proceed by another way which is as follows and
which is general. Let the entire line @B be equally divided
at the point Z around which two points K and P are marked
which are equally distant from it. The distance AK shall be
made the radius of one circle KX around the center A. But the
distance OP shall be the radius of another circle PX around the
center O which circles cut each other in the point X from which
two lines XA D and XOF shall be drawn through the centers of
the said circles, then these will be equal to each other, so that
since BK is equal to QP therefore XD and QP are equal to
each other, but FX is equal to QP so that XF is equal to XD,
whence if X were the center of one circle whose diameter shall
be that of one of those mentioned, the problem will be solved.

This solution will also be convenient to find the said circle of
arbitrary magnitude, provided that its diameter is larger than
BZ because it is in our power to assume the points K and P
to be as close or distant from Z as we wish. Whence without
any division of @B in half it will be sufficient to assign points
K and P by two distances BK and QP equal among each other
and also to the given ones.?*

54Benedetti (1585, 263), page 357 in the present edition.
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Guidobaldo commented:

In omnibus casibus, divisa BQ bifariam, quod quidem punctum
fiat centrum, circulus descriptus per B@ transiens semper datos
circulos in punctis B continget

In all cases, if BQ is divided in half, what makes, of course,
that point to be the center, the circle described going through
BQ@ will always touch the given circles in the points B@
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Figure 7.36: Marginal note at the bottom of the first letter.

7.15 Letter to Mercato: rejecting an attempt to improve on
Archimedes

The chapter is a letter entitled:

Considerationes nonnullae in Archimedem. Doctissimo atque
Reverendo Domino Vincentio Mercato.

Some notes on Archimedes. To the most Learned and Reverend
Lord Vincenzio Mercato.?®

The chapter also belongs to that part of Benedetti’s treatise in which he
collected letters to illustrious personalities. In the present letter Benedetti
dealt with

[...] duas Archimedis propositiones, quae in translatione Tar-
taleae sunt sub numeris .4. et .5. & in impressione Basileae
sub numeris .6. et .7. [...]

[...] two propositions of Archimedes that appear under the
numbers 4 and 5 in Tartaglia’s translation and under the num-
bers 6 and 7 in the Basel edition [...].56

55Benedetti (1585, 380-396), pages 359-375 in the present edition. Translation in Drake
and Drabkin (1969, 235-237).

56 Benedetti (1585, 380), page 359 in the present edition. Translation in Drake and
Drabkin (1969, 235-236).
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He aimed at improving Archimedes’ arguments with which, as he also
wrote,

[...] the mind cannot rest altogether satisfied.?”

In his first argument he found a way of suggesting a derivation of the
law of the lever by a procedure well known from Galileo’s later treatise
on mechanics, i.e. by redistributing weights with the help of a suspension
mechanism that does not change the center of gravity.®® Imagine, to begin
with, a balance suspended from its midpoint carrying two equal weights
on its arms (see figure 7.37). In a first step Benedetti considered all parts
of the weights evenly distributed along the entire length of the beam,
with the center of gravity remaining in the middle. Then he imagined a
construction by which the beam is suspended from a point right above
the center of gravity by means of two lines (which Galileo later visualized
as strings) which are positioned at unequal distances from the center of
gravity. In a second step Benedetti considered the beam to be cut in such
a way that each of the strings carries the broken parts of the balance from
their centers of gravity. From the geometry of the situation and the initial
assumption of the uniform distribution of weight the rest then follows, and
is indeed left to the reader.

The second arguement deals with the steelyard and how its equilib-
rium is disturbed by moving the counterpoise. On this second argument
Benedetti wrote:

Illa vero propositio, quam tibi dixi Archimedem tacuisse in
huiusmodi materia est, quod si duo pondera aequilibrant ab
extremis alicuius staterae, in certis praefixis distantiis a centro.
Tunc dico si eorum uno manente alterum moveatur remotius
ab ipso centro quod illud descendet, et si vicinius ipsi centro
appensum fuerit ascendet.

The proposition about which I told you that Archimedes was
silent deals with the subject of two weights in equilibrium at the
ends of a steelyard at certain predetermined distances from the
fulerum. I say that, if one of these weights remains stationary
and the other is moved farther from the fulcrum, that second

57Drake and Drabkin (1969, 235).
58 Compare Favaro (1968, vol. 2, 161-163) and Galilei (1960a, 153-154) and the discus-
sion in section 3.10.
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weight will fall; while if that weight is appended nearer the
fulcrum, it will rise.?®

Tl 0 _m
s
>,

Figure 7.37: Drawing for a proof of the law of the lever in the second letter
of Benedetti’s book with marginal notes of Guidobaldo.

In his marginal comments Guidobaldo expressed little understanding for
Benedetti’s approach. Probably he was skeptical about Benedetti’s preten-
sion to improve on Archimedes. In his first comment Guidobaldo argued
against Benedetti that it is impossible for both the midpoint of the beam
of the balance and the point right above it to be centers of gravity of the
weights under consideration. This was clearly a misunderstanding trig-
gered by Benedetti’s somewhat sloppy use of the word center for the point
of suspension above the proper center of gravity.

More specifically, Guidobaldo’s first comment refers to the passage at
the top of page 381:

imagineris etiam OU quae sit parallela ipsi LK quae divisa
sit in puncto I supra G. Hinc nulli dubium erit, cum G fuerit
centrum totius ponderis appensi ipsi LK quod [ similiter erit
centrum cum directe locatum sit supra G hoc est in eadem
directionis linea, quod quidem non indiget aliqua demonstra-
tione, cum per se satis pateat.

Imagine also OU, parallel to LK and divided at point I above
G. Thus no one can doubt, since G was the center of the whole
weight suspended from LK, that I similarly will be the center,
since it is situated directly above G, that is in the same line of

59Benedetti (1585, 381), page 360 in the present edition. Translation modified from
Drake and Drabkin (1969, 236).
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direction. And this needs no demonstration, since it is quite
clear by itself.%?

Figure 7.38: First marginal note to the second letter of Benedetti’s book.

Guidobaldo commented:

punctum [ esse [cen|trum gravitatis. Deorsum pendet e[x]
puncto G, quod est proprie ipso[rum] centrum gravita[tis] immo
I non est centrum gravitatlis] ipsorum ponderum sed G.

[he claims] that the point I is the center of gravity [of the
weights on the balance|. It hangs down from the point G which
properly is their center of gravity therefore I is not the center
of gravity of these weights but G.

In his second comment Guidobaldo caught another oversight by Benedetti.
He criticized Benedetti for not correctly expressing the inverse proportion
in the law of the lever, which is indeed the case. The second comment

refers to the passage in the penultimate paragraph of the page (see figure
7.37):

60Benedetti (1585, 381), page 360 in the present edition. Translation in Drake and
Drabkin (1969, 169).
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Sit exempli gratia statera AU cuius centrum sit / et pondera U
A appesa, se invicem habeant ut IU et A se invicem habent.

Suppose, for example, that there is a steelyard AU, with ful-
crum I and weights U and A appended, and suppose that they
are to each other as IU to I4.67

ftin; Jw/i stk
’.t'Js.u. ’L

Figure 7.39: Second marginal note to the second letter of Benedetti’s book.

Guidobaldo noted:

deest permutatio
the permutation is lacking
As mentioned above, Benedetti’s idea of how to improve Archimedes’

demonstration of the law of the lever was later taken up and elaborated
by Galileo.

61Benedetti (1585, 381), page 360 in the present edition. Translation modified from
Drake and Drabkin (1969, 236).






Chapter 8
Conclusion

In this book we have presented two hitherto unknown, seemingly “marginal”
sources, in the true sense of the word: Guidobaldo del Monte’s marginal
annotations to two key texts of medieval and Renaissance mechanics by
Jordanus de Nemore and Giovanni Battista Benedetti, respectively. These
annotations shed new light on a long forgotten and seemingly insignificant
controversy about the indifferent equilibrium of a balance. This contro-
versy in fact played a crucial role in the emergence of central concepts of
mechanical knowledge. At the same time, it constituted a transformation
of antiquity in the sense of the construction of an authoritative reference
culture — in this case for mechanical arguments — under premises that
were themselves created by this culture. These included the transmission
of practical and theoretical knowledge about the balance.!

In the course of the controversy, the reference to an authoritative and
encompassing tradition such as Aristotelian natural philosophy — whether
affirmative or negative — provided a model and a reservoir of theoretical
knowledge. It sharpened and multiplied conceptual tensions and embedded
the specific issue of the equilibrium of a balance in a wider network of
knowledge such as the cosmological question of the shape of the earth.
Paradoxically, the controversy also resulted in a challenge to the canonical
status of this framework by creating a plurality of perspectives on the
ancient heritage.

In our historical analysis of this controvery, we have followed an un-
conventional approach. Rather than concentrating on a “thick descrip-
tion,” in the sense of providing a rich context to render a distant historical
situation meaningful for the observing historian, we have attempted to
develop what one may call a “long description,” in the sense of tracing
into the deep past the chain of historical dependencies that lie behind a
specific event. In this way, we have been able to describe the fate of a

1For the concept of transformation of antiquity we are indebted to joint work with
Hartmut Bohme, Georg Topfer and other colleagues in the context of the SFB 644
Project, see Bohme et al. (2011). For a specific treatment of the transformation of
ancient mechanics from this viewpoint, see Damerow and Renn (2010).
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crucial component of mechanical knowledge as the result of a connected
— but not continuous — history in which long-term cumulative effects, the
intermittent transmission of material culture and written documents, con-
tingent events, varying cultural contexts, and perspectival changes left a
lasting imprint on the conceptual organization of this knowledge.

The changing effect of a weight or a force in dependence on the me-
chanical constellation in which this effect is exerted was at the core of our
study. Formulated in this way, it is immediately evident that our theme
touches both on fundamental human experiences with mechanical devices
and on a variety of modern physical concepts such as the vector compo-
nent of a force, the torque, or the mechanical work. Not only did we study
how our historical actors were able to deal with their mechanical problems
without such modern concepts at their disposal, we were also interested
in reconstructing the long-term learning and unlearning experiences con-
nected with the historically changing capability to address this challenge
and in the conditions on which this capability depended.

In order to describe these learning processes, we have referred to some
of the core experiences underlying mechanical knowledge. In particular,
we have identified a small set of core experiences that have shaped early
mechanical knowledge, such as basic human experiences with force and
motion, with the equilibrium of equal-arms balances, and the novel expe-
riences made possible by the invention of the balance with unequal arms
in Greek antiquity. Two fundamental concepts of shared theoretical me-
chanical knowledge played a central role in this study: the concepts of
center of gravity and of positional heaviness. These were shown to result
from alternative reflective abstractions based on the same core experiences
with the equilibrium of a balance.

The analysis made clear, first of all, that the competence in dealing
with the changing effect of a weight was strongly shaped by specific his-
torical contexts, including the existence of overarching conceptual systems
such as that of Aristotelian natural philosophy. But it has also become
evident that an equally important role was played by the existence and
character of the long-term historical transmission processes that bridged
the various contexts and historical periods. In addition, the mode of ap-
propriation of the transmitted knowledge has turned out to be of crucial
importance for its formation.

Thus, the Aristotelian Mechanical Problems gave a written record of
insights emerging from the identification of the lever and the unequal-arms
balance. They appeared in a specific historical context in which mechanical
devices posed a philosophical problem since they seemed to contradict the
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principle that large effects require large forces. The mechanical writings of
Archimedes, which established the concept of center of gravity, were part
of Greek mathematical literature that emphasized virtuosity in solving ab-
stract problems. Heron’s treatise on mechanics, containing a compilation
of elements of prior Greek mechanical knowledge, was probably represen-
tative of Alexandrian technical literature. The works of Thabit, al-Isfizari,
and al-Khazini were written in an Islamic empire in which far-reaching
commercial relations and Greek philosophical and scientific education were
key factors. Accordingly, they focused on the balance as an important
commercial instrument, conceptualizing it within an Aristotelian context.
Jordanus, writing at the beginning of Latin medieval scholasticism, fol-
lowed in their footsteps and, by adding a sophisticated Aristotelian twist
to the understanding of the effect of a weight, formulated the concept of
positional heaviness. Early modern authors such as Tartaglia and Cardano
addressed the challenging objects of their time on the basis of whatever
they could assemble in terms of transmitted sources. Later early mod-
ern writers such as Guidobaldo and Benedetti attempted to reconcile and
systematize this fragmented intellectual heritage, and in particular the
concepts of positional heaviness and center of gravity. Galileo and his
followers began to create a new synthesis based on their work.

While this summary may seem to suggest a cumulative, if not pro-
gressive historical process, this is not what we wish to claim. On the
contrary, with regard to the question of the behavior of an equilibrated
balance removed from its horizontal default position, Archimedes himself,
in the third century BCE may well have been in a position to argue in
favor of its indifferent equilibrium. We cannot know this for certain as
too much of his work has been lost. But what is clear is that this insight
had been formulated and then forgotten several times in the course of the
long history of mechanical knowledge. Al-Khazini in the twelfth century
included it in his work; Leonardo da Vinci probably found it independently
more than three hundred years later. And Guidobaldo del Monte, about
another century later, claimed it as a key insight of his own research in
mechanics. Ironically, this alledged key insight ultimately turned out to
be untenable when confronted with the implications of a spherical earth.
What had been transmitted across different cultures and long historical
distances were evidently not specific insights, but rather some of the means
to gain them. Indeed, for all we know, there was a continuous tradition
of the practical knowledge needed to produce and use balances with equal
and with unequal arms, from Greek antiquity via the Arabic world to the
early modern period, probably even reaching China via the Silk Road.
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Also some elements of theoretical knowledge, such as the law of the lever,
basic features of Aristotelian dynamics, and the Euclidean model of or-
ganizing scientific knowledge have been more or less continuously, even
if sometimes rather tenuously, transmitted in the larger Mediterranean
world. This knowledge substratum was evidently sufficient to provide the
stimulus for tackling over and again similar mechanical problems such as
that of the equilibrium of a balance and to offer solutions to them. These
may have differed considerably and were, in any case, often lost in trans-
mission.

But such losses in transmission constituted a remarkable force of inno-
vation in the development of mechanical knowledge. In the ninth century,
Thabit ibn Qurra attempted to clarify an unidentified Greek work on the
balance, evidently unaware of the Archimedean proof of the law of the
lever. In the course of this attempt, he introduced an approach that justi-
fied the law of the lever on the basis of Aristotelian dynamics. This would
have far-reaching consequences, in particular, for the later formulation of
the concepts of positional heaviness and for the work principle. In the
thirteenth century, Jordanus tried to rebuild a science of weights accord-
ing to the Euclidean model and Aristotelian standards, although he lacked
knowledge of Archimedes and the more sophisticated Arabic treatises on
the balance. In consequence, he introduced the concept of positional heav-
iness, which enabled him to address novel problems such as that of the
inclined plane. Finally, the fragmentary character of mechanical knowl-
edge transmitted to the early modern period forced its protagonists to
concentrate their efforts on probing its consistency and establishing inno-
vative connections among its basic concepts. This gave rise to attempts
such as those of Maurolico and later Galileo to build a science of mechanics
around the concept of momentum.

With regard to our central issue, the equilibrium controversy, the
early modern situation differed significantly from that of earlier periods.
This was not due to special new insights or approaches concerning, for
instance, the experimental method or the increased interest in phenomena
of motion. The fact that so many scholars dealt with this controversy in
one century, probably more so than in all the preceding historical periods,
made a major difference, as did the unprecedented ease of communica-
tion facilitated by the availability of paper and print. As we have seen,
what had been accumulated over previous centuries was not necessarily
the knowledge, which had often been lost, but rather the potential for
knowing. This was embodied in such means for representing knowledge,
but also in a material culture that offered ever more challenging objects on
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which to probe and develop whatever fragments of knowledge had become
available.

Whatever appears to us in hindsight as major breakthroughs, such as
the establishment of the indifferent equilibrium by Guidobaldo, the suc-
cessful treatment of the bent lever by Benedetti, or the connection that
Galileo established between the bent lever and the inclined plane, thus
result as much from the long and fragmented history of mechanical knowl-
edge as from the intense exploitation of this history in the era of preclassi-
cal mechanics. In rapid succession, Guidobaldo revived the Archimedean
treatment of the balance, Benedetti extracted from Jordanus a generally
applicable method for treating the bent lever, and Galileo combined such
advances in his own pivotal work on mechanics. The fact that Galileo did
not properly acknowledge his sources, banning Benedetti’s name from his
work, is as much a characteristic of this time of intense scholarly compe-
tition as the cumulative advance that was nevertheless achieved.

In the early modern period, the network of knowledge spanned by
such insights and their connections became ever more dense. This led to
an unprecedented stabilization of this network, and also to its transforma-
tion into a system of knowledge in which these insights could be derived
from the fundamental principles of classical mechanics, which matured in
the following centuries. This advancement made it much less likely, albeit
not impossible, that insights such as those incorporated in the different
contributions to the equilibrium controversy could again be lost. The fu-
ture long-term stability of this achievement will also depend, however, on
whether and to what extent the other equilibria mentioned in the intro-
duction, concerning the relation between humanity and its environment,
for instance, or the equilibrium within human society usually designated as
“justice” and symbolized by a balance in equilibrium, can be maintained
and supported by the development of science.

Berlin, December 2011.
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Figure 8.1: Emblem showing a steelyard, illustrating that belief, sincerity,
intelligence, and understanding are best gauged at a distance.

From Covarrubias Horozco (1610).



Chapter 9
Timeline

Early third millenium BCE
The balance with equal arms is introduced in Mesopotamia and Egypt
(Damerow et al., 2002, 93)

Late fifth century BCE
First mention of a balance with unequal arms in Greek literature
(Damerow et al., 2002, 95)

Fourth century BCE

The question of the return of a balance to its original position is raised in
the Aristotelian Mechanical Problems

(Aristotle, 1980)

Third century BCE

The concept of center of gravity is introduced in Archimedes’ Equilibrium
of Planes and employed in a proof of the law of the lever

(Archimedes, 1953)

First century
The problem of the bent lever is treated in Heron’s Mechanics
(Heron of Alexandria, 1900)

Early fourth century
Part of Heron’s work is quoted in Pappus’ Collection
(Pappus of Alexandria, 1588)

Before 901

The law of the lever is proven from Aristotelian dynamic principles in
Thabit ibn Qurra’s Book on the Steelyard

(Abattouy, 2001)

1048-1116

Thabit’s work is elaborated in Al-Muzaffar al Isfizari’s Guiding the Learned
Men in the Art of the Steelyard

(Abattouy, 2001)
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11211122

Abu al-Fath Khazini argues for the indifferent equilibrium of a balance in
his Book on the Balance of Wisdom

(Abattouy, 2001)

After the late eleventh or early twelfth century

Manuscripts of the Aristotelian Mechanical Problems begin to spread to
the Latin West from Byzantine sources

(see section 3.4.2)

Twelfth century

A version of Thabit’s work, suggesting that the balance returns to its
original position, is translated into Latin, probably by Gerard of Cremona,
under the title Liber Karastonis

(Moody and Clagett, 1960)

Thirteenth century

Jordanus de Nemore argues, with the help of the newly introduced concept
of positional heaviness, that the equilibrated balance returns to its original
position in his contributions to the science of weights

(Moody and Clagett, 1960)

The work of Archimedes, and in particular the concept of center of grav-
ity, becomes known in the Latin Middle Ages through the translations of
Willem of Moerbeke

(Clagett, 1984)

1452-1519

In his manuscript notes Leonardo da Vinci argues, using the concept of
center of gravity, for the indifferent equilibrium of the equilibrated balance
(see section 3.4.2)

1495-1498

The first printed edition of the Aristotelian corpus, including the Mechan-
ical Problems, is published by Aldo Manuzio

(Aristoteles, 1498)

1533
Petro Apianus publishes Jordanus’ Liber de Ponderibus containing the

claim that the balance returns to its original position
(de Nemore, 1533)
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1546

Niccolo Tartaglia publishes his Quesiti, et inventioni diverse exploiting the
work of Jordanus and defending the claim that the balance returns to its
original position

(Tartaglia, 1546)

1548

Francesco Maurolico defines the concept of momentum in his Archimedis
de momentis aequalibus. His work remains unpublished until 1685
(Maurolico, 1685a)

1550
Girolamo Cardano proposes various measures of positional heaviness and
defends the claim that the balance returns to its original position in his

Hieronymi Cardani medici mediolanensis de subtilitate libri XXI
(Cardano, 1550)

1565
Niccolo Tartaglia publishes an edition of Jordanus’ De ratione ponderis
containing an argument pointing toward a new measure of positional heav-

imess
(de Nemore, 1565)

1577

Guidobaldo del Monte argues in his Mechanicorum Liber, using the concept
of center of gravity, that the balance does not return to its original position
and claims this insight into its indifferent equilibrium as his own major

contribution
(DelMonte, 1577)

1581

In the Italian edition of the Mechanicorum Liber Guidobaldo del Monte
refers to experimental evidence in favor of his claim

(DelMonte, 1581) (see page 871t.)

1585

Giovanni Battista Benedetti introduces, in his Diversarum speculationum
mathematicarum et physicarum liber, a “new measure” for the positional
effect of a weight or a force and argues for an indifferent equilibrium of the
balance under terrestrial circumstances and for the claim that the balance
tilts into the vertical if the spherical shape of the earth is taken into account
(Benedetti, 1585)
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1588
Guidobaldo del Monte insists on a strictly Archimedean approach to the
treatment of the balance in his In duos Archimedis aequeponderantium

libros paraphrasis
(DelMonte, 1588)

After ca. 1592

Galileo Galilei takes over Benedetti’s measure of positional heaviness and
introduces the concept of momento. Together with the concept of center
of gravity, defined in terms of momento, this becomes the basis for his
treatment of mechanical problems such as the inclined plane

(see his treatise Le mechaniche (1909b), written in the 1590s and later
published in French as Les méchaniques (1634))



Chapter 10
Online sources

The ECHO project (European Cultural Heritage Online) of the Max Planck
Institute for the History of Science is continuously extending its collection
of sources. In collaboration with other institutions, these are made freely
accessible as text files in XML format and/or as high quality images via
the website: echo.mpiwg-berlin.mpg.de. The sources mentioned in the
present publication and listed below are currently accessible in this way.
For their cooperation and support, we are particularly grateful to the Bay-
erische Staatsbibliothek in Munich, the Biblioteca Nazionale Centrale in
Florence, the Bibliotheque Nationale de France, the Biblioteca Oliveriani
in Pesaro, the Bibliothek Werner Oechslin in Einsiedeln, the Linda Hall
Library in Kansas City, the Museo Galileo in Florence, the Museo Leonar-
diano and Biblioteca Leonardiana in Vinci, the Niedersichsische Staats-
und Landesbibliothek in Gottingen, and the University of Oklahoma Li-
braries.

10.1 The first editions of Benedetti’s Diversarum speculationum
mathematicarum et physicarum liber and of Guidobaldo
del Monte’s Mechanicorum liber

DelMonte 1577
Benedetti 1585
— supplemented with Guidobaldo’s handwritten marginalia

10.2 Early modern printed treatises on mechanics

Tomeo 1525

de Nemore 1533

— supplemented with Guidobaldo’s handwritten marginalia
Apianus 1541

Archimedes 1543a

Archimedes 1543b
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Tartaglia 1546
Cardano 1550
Benedetti 1553
Commandino 1565
de Nemore 1565
Piccolomini 1565
DelMonte 1581
Aristoteles 1585
Stevin 1586
DelMonte 1588
Stelliola 1597
DelMonte 1615
Baldi 1621
Galilei 1655a
Galilei 1655b
Maurolico 1685a

10.3 Other printed Renaissance sources

Taisnier 1562

Vitruvius 1567

Cardano 1570

Benedetti 1574

Benedetti 1579

DelMonte 1600

Pappus of Alexandria 1660
Maurolico 1685b

10.4 Renaissance manuscript sources

Galileo 1589
Galilei 1602
Galilei 1634
Baldi 1707



Chapter 11
Appendix: Analyses of iron gall inks by means of X-ray
fluorescence analysis

Oliver Hahn and Timo Wolff

11.1 Introduction

A copy of the first edition of Giovanni Battista Benedetti’s Diversarum
speculationum mathematicarum et physicarum liber exhibits some notes in
the margins by Guidobaldo del Monte that were written with iron gall ink.
Some of these comments were covered with deletions also carried out with
iron gall ink. The study presented here was carried out with the aim to
find out if it would be possible to read the original comments underneath
the deletions.

The application of band pass filter infrared reflectography technique or
fast scan X-ray fluorescence mapping requires a distinct difference between
both ink materials. By means of X-ray fluorescence analysis (XRF) we
have tried to find out the elemental composition fingerprint to distinguish
between both inks.

11.2 Iron gall ink

Iron gall ink is the most used drawing and writing material in Western
history.! In general, it is produced from four basic ingredients: galls,
vitriol, gum Arabic as a binding medium and an aqueous medium such
as wine, beer or vinegar. By mixing gallic acid with iron sulphate, a
water-soluble ferrous gallate complex is formed. Due to its solubility, the
ink penetrates the parchment surface, making it difficult to erase. When
exposed to oxygen, a ferric gallate pigment is formed. This complex is not
water-soluble, which contributes to its indelibility as writing ink. Due to
the variety of different recipes? and the natural origin of different materials,

TKrekel (1999).
20ltrogge (2005).
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there is a wide range of different components and impurities in historical
iron gall inks.

Vitriol, the main source of iron in the iron gall inks, was obtained
from different mines and by various techniques.? Therefore, inks contain
many other metals, such as copper, aluminium, zinc and manganese, in
addition to the iron sulphate. These metals do not contribute to color
formation in the ink solution but possibly change the chemical properties
of the inks. The determination of different inorganic components in iron
gall inks provides the basis for the differentiation of these writing materials.

11.3 The archaeometric fingerprint method

The chemical composition including trace components is a characteristic
property of an art object. As mentioned before the qualitative and quan-
titative investigation of minor or trace components leads to composition
fingerprints which allow to differentiate between varying iron gall inks.
This is usually not possible by means of visual examination or with fur-
ther non-destructive techniques.

For a reliable quantitative analysis of the XRF-data, several tech-
nical parameters have to be taken into account. Due to the fact that
light elements such as carbon, oxygen and hydrogen, which are not de-
tected with energy dispersive XRF, are the main components of the ink
as well as of some inorganic additives to paper, an absolute quantification
is not possible. However, the determination of a fingerprint which rep-
resents the amount of a detectable trace element in relation to the main
compound iron enables the characterisation of different iron gall inks. As
mentioned before iron gall inks contain many other metals, such as copper,
aluminium, zinc and manganese, in addition to the main inorganic com-
ponent iron sulphate. The fingerprint method relies on the determination
of characteristic elemental compositions in samples.

In the fingerprint model, the ink-paper system is regarded as a three-
layer-model-system with a top layer of iron gall ink, a diffusion layer with
a linear decreasing amount of ink and a bottom layer consisting of paper.
For this system of layers a fundamental parameter approach* for the pri-
mary fluorescence is made. The primary intensity can be expressed as the
sum of the contributions from the ink and from the paper. The successive
computations take into account all physical phenomena which contribute

3Hickel (1963); Lucarelli and Mando (1996).
4Wolff (2009).
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to the formation of X-ray fluorescence. After all, this leads to the fin-
gerprint value, which depends on three parameters: the transmission of
the entire system, the penetration depth of the ink into the paper and
the ratio of the absorption coefficients. For all minor constituents ¢ such
as copper, aluminium, zinc and manganese a fingerprint value Wi can be
specified. This fingerprint value represents the amount of a minor con-
stituent relative to the main compound iron (e.g., Wcu = concentration
(Cu) / concentration (Fe)).?

- ——
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Figure 11.1: Mobile XRF spectrometer.

11.4 Experimental set-up

Analyses were carried out with the mobile energy dispersive micro-X-
ray spectrometer ArtTAX® (formerly Rontec-GmbH, Berlin, Germany,
see figure 11.1), which consists of an air-cooled low-power molybdenium
tube, polycapillary X-ray optics (measuring spot size 70 pm diameter),
an electrothermally cooled Xflash detector, and a CCD camera for sample
positioning. Furthermore, additional open helium purging in the exci-
tation and detection paths enables the determination of light elements
(11 < Z < 20) without vacuum. All measurements are made using a 30 W
low-power Mo tube, 45 kV, 600 pA, and with an acquisition time of 25 s
(live time) to minimize the risk of damage. For better statistics, at least

5Malzer et al. (2004).
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ten single measurements were averaged for one data point. Further details
concerning the method are described elsewhere.%
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Figure 11.2: Elemental fingerprints (quantification by means of fundamen-
tal parameter approach) of “original” iron gall ink and “dele-
tion” iron gall ink.

11.5 Results

The original iron gall inks as well as the deletion inks have the same ele-
mental composition. Taking into account the measuring faults (see error
bars in figure 11.2) it is obvious that there is no difference between “orig-
inal ink” and “deletion ink.” Due to this result it will not be possible to
distinguish between both ink materials. As a further consequence it will
not be possible to read the original comments underneath the deletions by
use of non-destructive techniques.

6Bronk et al. (2001); Hahn et al. (2004); Wolff (2009).
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‘M”Mﬂmwm amen noafcendat pondus namulugnn medso,
1 unp:uraht«dtf«n&m i pmttercur natrE proprix Sed afcen
:Tl:obtxha aquilibris propter usolentiam,Qui s uo(pondu? altes
i bndmmdd'cmdm#o (l}um 1Zitur Propoitio ,qui MaIor innuic
::m de afeenfu huius probacetur per primam conclufionis, 1ita
probato 0o ualerer,nif fumeretur defcenius in xquibbriin prima par
teconclufionis Exfi ficfumatur oportet tune babererefpediii ad aquas
Lracem & inaqualiacen i' braduo m:!ni \{ndc S:;:Poznu.:,m?(gm

i condulio,p kutdelcenius 2 cenlu

poeelt icintclligi <0 P bﬁ: £

< 2 limpsoter.&fecundii finom ad toram grauitatem b
ﬁgfmﬁ f“mm,& hordebesfiriéalime mtelligi - Nam hocnon eft
werum, nufi quando cadem eft proportio otius grauitatis ad cotam gra
witatern b quae b 0tius potentia a fuper (uam refifiontd, & ad potcne
gam bfuper (uam refiftenciam. & fecundum hoc uariarerur ucloatas &
dedcenfus aliter nd ualerer z];wofu,o autonis-Nam ubi aduerfarius po-

o, masor ot propostio delcenfus a ad defcélum b,G a ad b, &autor
il aliud concludic,nili @ non di uniuerialiter ueri, gy maior cft pros
porto deleeniui g yonderum Ethocnon rq'n!.?nu diétoab aducrfas
10 e quandodg licelt, guandodg econtrario Bt ideo ad hocgp conclu-
dar propokino uniuerialisex particulari data., fic ineclligere
conclulionom, inaequilibra hacd centrum fit a g pondus in fi
suclehaberad idem pondusg o fitw d, fecundi proportionem totius

us.qué porcfihaberein fitucad mﬁd&mfmm?«cﬂ habe
rembicud.  Exquoergo nd pareft ultenius defeendere il fecundum
Quanesarem 1, (Ui s <l ferentid deferibie. Sic fequitur
““GM,QZMsthlkhbcadédm)gpom&ﬁ;
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feu dfecundum
wgm Wa adda

rergindbitu ad lined direct
nenidaad caVindefiille
in quoliber cafu i

12t Gnmm.ggm i
grauitas eiufdem ponderis fecundii nem brachiorum, non ot
maior ratio,quando ita eritin quolibet cafus. Sicigi rintelligendo ¢
clu rocedic 1ti0 autoris, aliter mmgﬁ-:indligmdom
il Oftauae coclulionis,ad cuius probuationd alle
I 2. Sed uiderur ipifta expofinons fufficat profeniy coe
onis:Nam eSclufio ponit,cp ficut pondus ad fic uclocicas
ueloditatem, i tamen in ifta cxgoﬁtiom no arguitur udoth:
ergo perfuadeni potelt itomodo. Sit e pondus fncodem fitu cum b
quéfehaberginfieu d, ficut ginfimu cfehabetad b erzout prius p cofie
milem uiolentiam fufficit g ind fruagercine ﬁme.'ﬁgn em g in cos
dem fitu fufficir agerein b, erg0 econrrario fufficitind fitueleuare ¢ ad
directionem,ficutain ¢ firu fufficic levareb ad dire&jonem, fed quis
xquecito deueniet b uel e,uel f gad diredion,
fitu,fe habebicad uelociratem elusin ¢ fitu
ad caperquintam Archimedis de aruis
proportio diametrorum uel femidiametroris, uel circu
ergo et Shﬂ:»lﬂummu‘mon faciac G et cura rantii o ues
Jocitas fit proporei uel dum ramen ir,Sig ind fuffice
Teuare e,cp g in cfufficit leuare b Exiam prima conduliotexnus
habetaliam literd, failicer,qpinter quarlibet grauia ficuelocitats &
codem ordinefumpta proportio-Echoc u3
anda,ad auius
hociginur fuffice ad explicationem conclu
b;re,tbm: >
ad minus in minori > :
norem pondus m3 dubebin?l exceflum fuit fpra rious , masoa
proportone, s maioris,ad excellum fuum fupra foe
sninoris.Sitenim pondus maiusa b &minus ¢ & it 3 excellus a bk
A D Do ke et ey
itde {4 . 3
gfpaoﬁauammﬁxfidk-ﬂm m,,ﬁ‘,sm;dndhf,ﬂﬁ




,,mm-mmmmxu dhad
pbg difiandtiss P bada,jeahf add h,ergo coniondim per
i iaxadbe & OE, e Sicurbaad aiad ad v fed per ol

in Euclidis,maior ft iplus f dad b Gaded. Iguur maior
m,opomo' dbaada(ifd:ded,f«hdla«lﬁnypn &b
o p,kucdcx«ﬂ'us defcenfuum, & ef ::r_nkg.Sdﬁoalw r
s~ jgitur probatur extricelimaquarta quinu 3,
- efiquinta rio Archimedis, & hoc fic.Simaior fit proportio
Sf:dd' Gabadbg eucrfim perillam conclufionem ericefimam,, mis
Ot proportio dfaded grabada. Eifdem medis poscft
&mﬁtmponb;mndeﬁsadponququefmdmxi enfum,

minor enit pmpomomnfdf_m ponderisad exceflum fuper aliud,,

fus fuper futi cxceflum,¢ fupra alium excellum, & hocedl , qu:

ab initio promifimus demonitrare.

PROPOSITIO SECVYNDA,
Cum fueritxquilibris pofitio arqualis zequis pon
deribus appenfis,ab xqualitatenon difcedet, €tli ab
aquidiftantia {eparet,ad aequalitatis finlt revertetur,

Primum patet,quia funt xque gravia Secundum patet per i
onem quard, uocatur aucéillud fitus, ‘rq;lusdidtu_r,ﬁcm patet per

«  Aliud coOmenti fequitur. n:r‘ng:hno' dicitur xqua
o lis,quando centro drcumuo

ludols'ls’_:gdﬁa. regulax ﬁxr:\t
itigitur abe
BaaNgE— -

~ <amdudoigiurciraulo perb
\ &c,inaxgnsin@hi:{_&md:

tatis punéio medio fit d nia
'4_,, feftum eft,qp defcenfus ram b

?(tﬂ per circumferentit uer
usd, & a?uia obliquuseft u-
cerc defcéfus, & mqualiter po-
derofa (unt appéfa, utrfics per
alterii 3 fitu aqualitatis aquas
lirer mutabitur, quod eft pri-
mum.Ponatur nunc,q farde
feenfus 3 parteb, & usd
partec,dico,q redibunt ad b=

B3 wm
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us dift squﬁﬂé,q%t?ms

cuumaequaliitin: it diftantivm 3 it xqualicatis, ille minus -
pitdedirefto,qui plus diffac,ut ffatim probabitur Ergo per quicung

, pri mddddxc,muddomﬁ:sm&bnﬁ,(;defm{us igitur per
u# ihah i E1t mﬁppoﬁamc{nﬂloﬁmgnuimdt,&b,'s;um mn?:;
T N‘;‘po_ﬁlmantdtfcuu_h,bakmdu- Tamigicur refta probare,qp arcuit
X Ih" " mlﬁun,imm‘hﬂdiﬂznm‘ 3 fitu xqualitatis ille minus capiede di
y A ¢ 'qn'plm‘ abillo firu.Sicutnin ciraulo kqgh, cufus centrid
_ akg inea directionis, & q h linea sequalitatis & firarcus b cequalis are
cuicd,firunc df&ce& bixquediftantergah, dico g fe
Tinea,minor eft & c1 linca, produda .n linea b d fecante linfam cein pli
fom Iera’mbdinpmdonkcmbnzqualknd.pmaimi

‘b & ¢ d cordis zqualibus, per uicelimamodtau cert Eudlidis E¢ pro-

ua&ilslindsba&dz,eml;duotrhnguli,fdlim,zbc&;cd,quom-h
us 2 unius, aequalis fit angulo a alterius,p oftaui rivnd Euclicis,
B o oo i chiobers aicr iy na & AT
anguligad,agoptrq:mm primi Euclidis bn & nd fune zquales,

. meft maiorm dProtrada igitur linea d o xquediftiter Linca
2 k{&quzfcwlhamccinpun&op,drmduorﬁuguhdmp& dbo
’ fimniles, per fecundam & quar
cam fexti Euclidis 0 o in
aque diftatb o Sicutigieur
bad mb,fradoadpo. & dif=
jun&im per 5
quinti Budidis. Siutd m ad
mb,iadp adpo,feddmcfi
minor m b, ficut ok
agodptﬂminorpo.fd.g




pROPOSITIO 11T
Cit fuerint appens
forum pondera®qud
lia, non mott facietin
aquilibri appendicu
Joruminzqualitas.

Non debet hic fumi ina
alitas arpmdnc.:lorﬁ pon
I'«,ros longinudine, probas
urficSi flat mogus inuna par
te,ergo parsalia eftminy gra
s, per {uppolitiont fecun da,
fed poﬁmmr@ priusappenio
yia pondera effe xqualia,ergo-
S«;\munlmd COMMENTUM.
Sitregulaa b, cuius I3t cens
truma.Xappédiculabd ce,
Jongiusautéce, & brevius b
d, & pondera aqualia appen
b d & e Sirgglinea directionis
af g, quax procedacqualibe,
ducancurcad f &g e lince x=
quedifiantes lineae bac, pofi
oty centris g & F, deforibane
tur quarce arculodi per d &
equa crunt aquales, co qpdf
&g elemidiamerri fung xqua
Jes-Proprerhoc, pab & ca
funcaequales, & df eft axquas
lisba &g et xqualisac
aricelimasy mmp,,-maE
clidis.coqp bd &cce lineax e
quediftant linex af 0. O 17ie
wrifte quartx dirculort fune
xquales, & per iftarum circiis
ferencias , erit defcenfus d & e
ut P’Oblbuur wque
B ij  oblique
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P {23 muealyg e e
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mufty ad o pundium ; ; {0 ern o,
- Clien fors minlinea by Tquatlinerce, T mh
pr,-m,‘é:"m?;gzzrzob r&dp f}*u%lmp:ljndm fn e
re. Q5 1 et fine - ! ey
S : xquales, et | mQuase;
g‘;, apr ‘;’d""‘;’.“” m,it2 0 m ad l’l‘ﬁduﬁdm H30et50r; derm
ma'm Quaned tm{ld;: ?u:n“{;-l"tf Odtaul fexni Fu, dﬂgm&ful dpad
“_“mwh‘iﬁldidxu; gitur Dtﬂadon.,fmdpmp!;‘wm Uxehe

&ph linexfi ¢ per 0o
lineem peritlinea o s e ""‘?ﬂ-\k!,a.ﬂ;u toicur
quaream primi Eudij;smﬂﬂ yinex mh.Cum igieur bd per tricefing

o fitaequalis o peri
berivinm &d eritinh. & ¢ anpcriebd rqualis rub. Cam
eaericdin fua quarta, & co%::ydr: ili‘mm@?&" ekbinka
fueritinn,prowradia kq ulcy adr & pofroe e & R ik, cum ¢
113 k Q ulGy ad r, & polito gpin g feces

eftquod promifimus Nota,gvilla conclufio fundagur fu mri:'&'“
pendicula xquedifient line mrc\’uonis.quxinnxncﬁhmlﬁ.m e}? 5
CUITIECUIM €2 1 Cendro terrac fiin infinicid proeraherencur. wnl-"uurbg
pter brewioré appendiculorii & longam diffanti earum i«ré;om‘r‘x
illa appedicula nfenfibiliter in inferioribus diffant 2 lineis :
ubus lmcxdnrc&wmsjamin(mﬁhbminxqulrgq pondera fecundd

fisum qua fudicitur efle xqualia,co gyneutri fenfihilicer defcenderer.
PROPOSITIO QVARTA.

Quodlibct pondusin quamiiqs partem difcedac
fecundi fitum ficleuius.

s nifeftum elthoeper fippofidont quartam.  Alind comments
el C\ﬂ:ﬁf&tﬂw bc{:xmtﬁickmrbdqadd.nlucmmmmgr;
vedg in fitw agualitats. Capianr cim fubdarcusd g,& fup&w;‘
fhibd :rqu.\k:%:pumrmlupu bmusbg:qu.z!narar&br. Py

per probata jo regulahuius dg ;oruo.mmqu;p_gxhdmm
ﬁ’guur fecund:t fitum eritmagis graue pondus 5’ «E ‘rm‘qlﬂ"’in o
uppolitiont huius Eodem modoprobandum o




‘:xatnl'n an,:-fdo: alrerius,
coqgbf&bg fisnt xxcpealies,
paukrﬁm’wﬁ':mm tertn B
ddu.!’m;ham;r ngn;‘ur(or
am ns ”
ﬁffﬁﬁﬁm I:;‘?h&:fh,q»omm duo fatera unius ,ag &
ah,cruntaqualia u;oll:‘uslamihu;;k_:r‘?ls'af & ah,&angaluu uni
aqualis anguloa altenjus,ut pro afii eft , igitur per quartam pomi
adﬁbhﬁﬂamxhsdid,ﬁbgpitdtﬁrﬁo,!gwgb&ﬁ?a
qualicer capiunt dedireéto, qu fuit probandum.

PROFOSITIO QVINTA,
Si fuerintbrachia sequilibris inzequalia , qualis
bus poderibus appenfis, ex partelogioris fiet motus.

Bradiainzqualia Jongimdinenon , probatur fic. Ex parte
Jongioris defcribitur circulus maior, & fic ;\nmg:rofupmﬁﬁonl tertid
:,M’ eft fecundum fitum grauius.  Aliud commentuma
h:mmmgmmluﬁoms.probmdﬁ eft primo,qpeordaril aqua
mﬁfwbrmn inzqualium, arcus minoris circuli,maior cftarcuima

arculiSitdtacg ciraulus minor a b ck,csius cGum d, & kgl dr
m& maior, cuius centrumb . Bt fic portioab ¢ fimilis portioni cf
i; conflitvantur trianguliacd & eg h Cum igitur per diffinitionem
W‘?‘"‘) angulus fuperarcuma b ¢ ¢t xqualis angulo fur
!;M tg ‘?o peruicefimam primam teren Euclidis,angulus (u
sk »"&M‘”"?‘, #qualis angulo fuper arcum ef g , quare per nonam
- sangulusheft xqualis angulod. Coum igitur per rricelima
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ke ficut dgulush adqua
twor angulos rectos, in
4 efporno ad cotam ore
‘b 2;11[«&11 per ulumi
i Euclidss, co o
tuor redtifuper h,occupanttotam illam fuperficiem, ut poteft dx?:
F decimaterna primi Bucli
dis. Igitd angulus, qui
et xqualish, chaber ad
quatuor retos ficutefg
angulusad oram illam
ar am, per 1
dichaberad quituor res
&os,ficut abecad toam
b illam draumferenns é:
illud g prius.lgiur
abcarcus adiuam ane
cumferencam jracfgar
cusadfuam
tam, g permutatim
md:gmunbmmﬁn-
clidis. Sicurabcarws,
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i 2d femidiamesrum pee

ntam Archimedis.
’%mr ficura b carcusad 3: arcum, fraad ad

: linexad eg lincam ut prius fuit probati,
eh,doeademelt V':’E:{‘ ::3 :g,& a L\f d e fgfecundum proportios
Sunt ‘;l““'z;u.n 2d ficminor ¢h,erita beminorefg,8acminoreg
nem unanm m wqualem cordx c¢, Eftigitur efg linea

rcus ada b carcum fed maioreft proportio e fgar
3 2d ef lincam, ut probat Prolemacus primo
iy il quinto,cLue ct cocJulide prima Almagefti Alb-
maiordi pﬁ)pOﬂ:O(fga ef gefgadabe; uare per ofauam
i Buclidis mmcﬁmmrdiaranabc,&d illis fubtenduntur cor«
sales , pakes 1giUr
molumus. Si autem L
~ofitiorem Prolemaxi /
|4 <
@ proporaio bd or \\/

5:,1«! 2b cordam minor \/

ot rnoni bd arcus [,\

24 baarcum . Divido am e
angulii abdindyoaquas T
L2 per lineam b e ¢, et pro= N

\
fcue dbadba per tand

(axi,k;ldcsocﬁ g\am‘:;, 4 !

igitur decft maor ¢a. Duati it efad pundii medium ad L d

mwﬁ'“ll’“"“mlé:vmdim risfu;xt.m.Cumigimracmm

Eﬁx inea per decimamodauam primi Eudidis | Excume angus

re polumus, U
F
maholineas acd &ca &¢
obrufus,co extrinfecus oft ad f reum, & c ¢ v cftef :
: N Iongia‘ sper

P majoreit proporuo
arcuuns, G cordarum Jde-
fcbam airculis fuper qué
funcab&bd (orb.r inxe
L quarum brevior o
ab longiorbd dicoer
}qw'a igiturangulusabe <
txqualis angulo ¢ bd,
ericaclinea xqualis cd li- \
nex, per ukelimamquins
umf' per wicelimiodias \
wam tereq Buclids Exd el
neafehaberad ¢a ineam,
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fcfiemaior
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ccf«abiu &ww:naﬁtfvuih::mcf,g.g‘? mr‘“‘ﬂ'

h, cfufqadh maior fit govno el
m‘bﬁ Pportioc ek&oﬂ.
mr':'é?.?'"m;fa”"ﬂm g(om,,“ ol
pmpomocheéﬁom adceg m«'ﬂi cgc’cwr b;a;?::mé
¢ mangn.ltladcnum\gufmn thicucta lincarad lincam
caper primam fexn s.Et proportio fectorum eft feur,
l:accanguhndecgﬁ?'gul:dm pcflulmnunfau Eulidis, igitur
proportioangulihcead angulumec lmcfadh
£0 conun&im uxcﬁnunngéliwam g'qu mm“’&‘
conduﬁoaddmoms(,am ni, maior el propomoanguhhce:dur
lumecg, G linexfaad lmmc a fed per decimamquined quin Eus
Ell:dh,ndm clt multiplicandum & multiplicorum ptoporuo Igitur
duplus angulushetg qui eftd g cin maiorip jone fe habebit ad
%mccg,qdugl;_mhmzf;,mzd(d mmudhnnmu,%
m per ) mampnmam nti 5
addxmn’nsCam nd, major ¢ s .mﬂ

¢<a,qdelmcxadulmom,ﬁddeafca,dﬂumbd :dbacor&,pc

tertiam fexti Eudidis,ut priusargumentatumeelt, cog b d
xqualuwm,;xrhmmbt,&dbarcus,dhdbaumm ﬁm:d:b

angulusad bceangulum,per ulumam‘um&»d!dns.&mrmﬁﬂtﬂ

ppomodbarmsadbamum qdbcordxadba
quod demonitrare curauimus.  Aliter eciamprobari pon:h primum
pramiffum cum alfumptione duaru propoggl\mn aliquzhmna
turalivm quar primacft , Duomarmumcordarum
bftﬂ,t'umsm ms;xmdusplmdlﬁzdmdlofuxcovdx-ﬂhm
fitio fundarur fuper regulam,qui cft, Quocquor linex ab uno pundio
ad alium ducitur,quax recta cft breuiflima &arcualium line
arum longior eff,quax magis i linea diredte protradia .
amcmptmplopoﬁnoﬁ:
m"g:nnm teren Euclidis, omnill lincarum
gcr ad arcum,lla eft longiffima,qua protra
dxad meditm fui arcus. mﬂnsi itur propofi
tur aermiffum primum. Singduo circuli.a be maior cuins cﬁfgd-
gf g minor,cuius centrumb, &fnzamgemrda
g.tbamnabcmmeﬂamdg.@mmm m&hn!mm E""
zmrdamm:c&cg,quzp«o&aumpmm
perpendiculares fuper |{hs,em¢rgOdmlongtorhn Nam (i
mahsalma m,&e nfunt srquales per quard primd
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05 alitacemin pundtoi & protrahatur linea 2i,qua per
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bihpcrarcum:bc.‘mmtun_cib !‘:fotrnr:qualc;,cocpww

dimetri.quarum addita ueri med,(oqﬂmnbd,gqu.:lgsdwbqo

Jincisbi Xid Sed &bd &a f<mi¢uqmn(umzquala,xgmridlu

aqualis duabus lincisai&id, g “

efi conera uicclimam primi Euclidis. Non igi

nur traniihit arcus al ¢ fuper arcumabe, nec

tranfibainfra cum , quiafific, une il& ia

ﬁmzxxda!omibma‘m ia, & per confes

quens bd forer major afdem .quod falfum

it & conera uiceliomam primi Euclidis Relin
qucrgoﬁxpnanalaranmﬁt extra ardt |

abgjigiur lineaml longior erit linea mb,
quareper primam propofitions praaffums
s;“;ia'(\falt"‘{?mmlxma < fu
andum.  Iitis igiturprae miflis acce-
d?'"‘!d%m:ammmmluﬁoms‘iigim regulaabe,& fitac lone
T Cga by K°.ibit|§phbusappmﬁspondtnbun quxﬁmb&c,ﬁa
poivs 'a‘:mf"i‘l'uo nntmum(up«cmmmduobmkirmll deg &
e gg‘r&amv hnndc&f%:apiauutmmdnaab xquales ar
“ ooy prosahatur cordah L k. Jremn capiantur circa carcus <
Gaaleicn CWJ.QOOrJAnmﬁmq-aliscotdchle&ix_igimn
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PROPOSITIO SEXTA,

Cumunius ponderis fintappenfa, & a centro mo=
tus inzqualiter diftent,& i remotum fecundum di=
ftantiam propinquius acceflericad directionem,alio
non moto fecundum fitum,illo leuius fict.

Centrum motus dicitur hic punétus in brachio librae, circa qué bear
chia librae vertuntur.Si igitur unum pondus ponderatin bradhio, plus
diﬂameiccmromomsnﬁ:nliod ente in alio brachio, & fint xgue
grauia fiwne remorius appropinquatad diftantam, uel ad direbond,
moto appenfili ad fum equalem, quod privsin remoiori parte fues
#it acque sraue, aunc eft leuius, quia cunc 3 feiplo, § privs it feuld . i:




{ sor el defcenfus Bt enim femicirculus minor,Grunc fuit, Al
¢d comimentum. Siruepd

~ulabacaclongion, g2 b Girgglinea di
s regel redtionss aed,arcumdu
= cancurGp quarta ca ara
centruim 2, circumducat

etiam portio circuli cgh

k, doneclineak g zﬁ:c di
fanslinex hb ¢ fitduplis

linca ba, erunt tunc per

certiam Buclidisba &k e

& g e xquales-Dicocrgo

Eb g‘:c e pofita ;le_quz-

ia,& ¢ ponaturin htug,

uicicente bype infitu g

it Jewius fecundum fd,

G bin fuo i, Scatuatur

circulus g d k,in quo fiat
arcusg Leapienshe
re&o,cuiarcuifitbm oes
qualis,dudtaig lincalhn,
erit aruugh maor arcu
gLguod probabieur.Per
ractaemlineakho, eriie
ﬁ,h& go arcus fimiles
finiontm arcuum fi=
milium, propter ‘I;oc, @
angulus h k g conftitutus
fuper arcumh k 2. & conspletur circulus. eft idcmg:lm feiplo conftituro
fuperaraumodk g.fi complererur diraulus. Cum enim angulusfk op-
mfxncordxhg,mdcm?ng_ulusqui &opponitur cordx og,ent per
;lmmpnmm terty Buclidis angulus conflitucusfuper arcum gh
:,q:“‘?::%xgcmﬁﬂmu fuper arcum g o,quare arcus gh &g ofunt
roemer um igitur g h it araus matoris circuli g 0 crit proba:
h&g‘m:lcundmmrﬁhqmox'go.«goghnﬁ maior o gl fed
5‘" g mlwupaum e diredto,eo @ ox utracgg capith elgitur po
“d“"d" e pg: ;\,d)lkpxuldd'mw&i Gedelcendens perg |, & per
3 4 s x:e‘:'bmACumi i r:_ponntu:inpun
n&0 - o er quartam fuppolition€ gpc pon-
beuiius eft fecundum fitum,§ b in uoﬁlu,&hz i gd

. us.
C iy  Propos

enim circa corim efemis.
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lﬁﬁnt ilia, alterum autem circ o
&altert mdumguluu&uazmm
“Ohlbﬂtappmdxmr,gmuusm:fmm&nnﬂum.

A Wnplml%b “ﬁm Mhba;ﬁ

“‘“Ihtisima lomm, 1 fecundix ‘&mhfwam

m‘ﬁ m,fn pmdtrt,ftd nonin
quapl' ot RO et 5 podin B g i
us declinac circumuo
eftfecundsi [ieum,at eius defcen(us fic reior. Illa ppalitio fuit inuenta
dequodamcxpmmuuofaﬁoad ptobanonlparmkwnd.r Cumu-
aﬁwnuol:mrxp«m,an ita effex,pofuitin xquilibra pondera 2xqua
lia,cuius erun filo compofia,qua motum habent 3 oo
s ppter perpendiculorii flexus incognitis experimentii
hl qum fzpmbuo

f diafu,q f«undun
p‘odnfbnmlmfd:ornv
tus ppter perpendicula,

ex eI nunis i
ncabc defcribunt urriic




e uius eft feamdum feum &G
3 '&d‘th umu(;?gd I«um:’: Eur:us quantitatem deferibarur
fermici Caisnte) centrum, & ita,@p diamerer £ agfic perpendiculas

' mluufg&:,r:l‘ 1git angulus cotinue mancbit retus.Ma
ri;:_W ::.u:'in endo,delcribirarcume g,quuF :‘q:: znu‘:

B fiappédatur fuper hypotenufai s

ot ‘“"""“ﬂ.‘ﬁgﬁffzr c‘a inho fitu leuviuseft, & b per praemilla, p
e esantum daftac 3 linea directionis ficut beopbdifatran

prer fautequia ce&ag funt linex aquediftantes, & de axque gl‘:uehln
:‘ é:uﬁm’forct in b termino regule,ut patetper probationt l:ﬂdcfun ue

- jus,{giour € munus graueeft fecundum ficum G d,d fuic probandum.

PROPOSITIO OCTAVA.
Si fuerint brachia libra proportionalia ponderis
busappenforum,ita,ut in breviori grauius appenda
wur,xque grauia crunt fecundum ficam,

Sipondus grauius tantum tralet in termino breujori,quantum bras
chium Ibrxlmm infuoloco.& fimiliter pondus mi:[us inbreuiori,
tuncdico,ficu nt fecundum fitum,quando non effent fic fecundix
naturam, necefl1rié erunt pondera fecundum fitum aqualia,quia pons
dus & brachiii hicualet per oppolitum tomum rebiquit,quia propter nets
trum pondus declinae, it patet in propofitione hujus prima. - Aliud
commentiz.Situt prius regula ba c,cuius centrum a,& fine appenfa b
& fiteg proportiobad ¢ eandg ca ad b 2.Dico,qp non faciet motum in

muﬁg?;&guhn&muxdgml&&?dmpg?c,bm‘dzt
Bepabnin s > s, fined m & efperpidiculares fuper
miﬁ:u,;_‘;g"' Per uic nonam & decimamquintam prie

admn:dﬁag: 2>
amfoai Bucidis i
cutdasdaejnad;
stSebodand F e
50! add
e
dus 344 pondes Sie
Rimqualisac
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IEPRS SPRRELDSR TN
stguanbre »
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; almdwmm-npondax' in
bm‘m 8! Ta- 3 de 4 -
e e ..,
inguncell B <Msﬁﬁﬂ‘mﬁ’ accha iy

Aliter potelt argumencari communter

wurefle aqualia.
-Sicuth m“idbwmp«m&dnhpﬂ
quod i

.ismieﬂdm,fc
’u ia‘tkumhmndmnqmmm heogpdm&: z
Inbauadmotuscommakcmdm%onh;n d%ha
dhngummmum ergo pondmrnonﬁlﬁxdtlumt u@‘ﬁ;;
demmodocita ﬁ umentandum,quod ad nullum pundtis
leuaresln igicur falfy grapbus wk,cpbﬁ:ﬁxnkuxcg&mw
arerin ((ll ‘"ﬂb‘ o
ulc g ch xqultcpoudai,&:n,_ ' ﬁ 3
&&'t“l::a‘(‘nis:utlpm“gn:n W leﬂlt_ per .
uahantum
dd, poé%hddcmdad
¢r:,r' pa‘f';i':%:?-. bioffccdelendere
ecolcquens eft us per fertiam.
dadhg per prius argua, Igiur guantum




; am hurius, fed confequens proba
hkus"unit:l(i;:g’pnf‘f fu?mb,m«omn,iamr bacxque
4 o ficum, quodfmtproban_dum.mxcrgofumm
aRace ntin fua cum probationibus, ex quibus pals
nlkgaxurlﬂuonduho ad probationem
«lt,propeera (.sduﬁohzbam:tll' i, ficut lutt:g(oq)rzﬂ'um,;hggf
ilh.us,mlh proba:;‘oillins concluftonis,necetam ualet probatio
enim nORL intelligendo primam conclufionem , ficut exponcbarur
ﬁ'ﬂ;*d-” &"f:x omnia pocelt ifta coclufio fic probari. Sitinregula
i “mrp:na,(uf dantur pondera {nrquahac maius b mie
:‘:a.‘.‘“;’ oba kundumlp{’oponr‘:’:o«’ngr‘ng; b{‘:\(ehzn a::: 3;
Brachium. SitigH d pondus xqualebponderi,& hitda
! Hntg,&.s;:’gl%:::l ﬁ'c’i’ pondus plus ponderat & d pondus fecandd
2 pordonembaad da perprimam huius,fice pondus plus ponderat
pmdus(cmndumnnd«mpro o ,coqpbd pgn«ﬁrra fune
P & d a &acbrachia equalia Jgitur per nON2M quing Eudidis
mﬁnbus axqualiter pondmgquodmpcopo&um.

PROPOSITIO NONA.
Siduooblongaunius grofficiei per totum fimilia
&pondere & quantitate xqualia, appendantur, ita,

utalterum erigatur,& alterum orthogonaliter depen
deat,jta ctiam ut termini dependentis, & medij alte-
rius,cadem ic3 centro diftantia fecundum hunc ficix
xquegrauia fient,

WVrum pondus fecet brachium tranfucrfirm, & aliud pondys des
pendeat defoenfii werfo, & fit cerminus illius inaquali diftantia 3 centro
ot cum medio alterius quia ficut illius extremum plus dcentro dis
ftas iea iftius medium, Probatur fic Grauitas naturaliscft aqualis utco
i propofinum & violentum, fimiliter,quia femicirculi funt sequales,
gl};’o:vk grauia fecundum fitum funt appenfa.  Aliud commenti.
iul:ncda" rgulacuius centruma, & erigarur pondus oblongum b d,au-
~ uris f fecundum fiouem uereut ift& onzont,; Ay
nhhozauhm pondusoblongum ce.findge af&ac xquales , Dicogp

pondera appenta fune xque grauiafecundum fium. Ad cuius cuss
deseiam probo primo,q fi ex parteb fieret motus,uc fiad li)uqudw‘ng
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pondeatingquantn inf
S e ]
mam huius,utprius,ergo k1 fehabetad g duplumacfe
mﬁ«ad&aw d &b afimul fumpea, fune
aceoqpdf&f biunt ia igiturk 1 & gh in ifis| )
cadem ratione quieliber duze

bd
partes po sm lﬂm'mﬂ’abalgu 9'?“

rertiam huius-Ee quot fune in ce,tor
¢¢&¢b?nuﬁlis‘;iﬁ£mnts
dere & finaliter

S
PROPOSITIO DECIMA.

Si canonium fuerit fymmetr@ magnicudine, & fub
ftantiz eiufdem, dividaturty in duas partes inaquas
les,& fufpendatur in termino minoris portionis pon
dus,quod faciat canonium paralellum epipedo ori=
zontis, proportio ponderis illius,ad fuperabundan=
tiam ponderis maioris portionis canonsjad unn?ar:,_




¢l ficut proportio totius canonij ad duplum longitu
dinis minoris portionis..
: ; od brachiil libraequiaefiregula, Symmeeri
memp ot ";,ﬂ'g:“d?; fit squale brachio , zona cemagnitirdine efuf
ot 2% mme& pondere,& paralellt J.axquediftans, epipedo i fu-
deminquanis ee Sic xquilibra xquelonga, & omnia xqualia , &
P"ﬁo:'gm seque groflum, fit utrunds & xque graue- Sit ergo longi-
:nzwn;niufwi“fq fex palmaris, & collantur poft hoc quaruor palmi d
no.Manifeflum i quoniam brachium longius,cft graviustriplici
;.;d;m.l'xm ui:mTongms grauius dicitur naturaliter, quia breujus

\almos, ficut fic, pro ponderofitate cuiuf a;;rmd_ atur
unlu:; d{;o: terminum breutoris partis- Arguitur fic ,Tllu pondus

it canonium pararellum epipedo orizonts, ficut patet, quia cum li=
nea redta perpendicularis eredta fucrit 3 fuperiori plano orizontis,ad ca
nonium confttuitangulos redtos,manifellume prolpoﬁnonr prima

per Eudidem,canonium farpe paralellum empipedo fialtera parseflet
grauior altera,alia cam fequeretur ficug aliud canonium motu contras
nopacer luppolitione fexea ergo aque graues funt partes alternarum fe
cundum Grum qd (1 fic eft unc addirio addat ponderi, tunc minor erit
cnonn inclinano, Sicut ifta probat geometrice ita poﬂluntomm pba-
o pauflae per ppornond llani linearir, &angulon fuorin coftructorit.
Aliad comentum. Sitcanonsiii-regula b a ¢ ciufdem grofficiei undicg,
& civfdem compolitidis et ita quachibet dua partes eiufdé , equales fine
axque graues [mpliciter fumaturggad aqualisa b eft igitur d ¢, cuius
medil fiee excellus ab ¢ bracha), fupra brachii a b fufpendet, igit podus
inbwerminojitag B bac reguli xquediftare orizont, ticdico,qp g
pondusfebabrad d e pondus,ficuch ¢ linea ad bd lincam. Cum eninm
amocis g &d < pondenibus, b d foret equediftans orizonti, fed per uld

mam conculiGem
pramiflam de fific 5 “ > e =
urcanar pide. T ] I 1
rlquf‘m w“t‘(n
ret, i {dpendercour
N € PUNto med o,
Egieur per couerfam
Oaux Pm farum
grondus eftad d¢
"Sf(\fm pros

POMtioaZ e a brachy
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P&OP'OSITIO VNDECIMA, vy
Sifuerit proportio ponderis in termino mir
portionis fufpenfiad fuperabundantii ponderis

foris portionis ad minoré,ficut proportio totius lon-
gitudinis canonij ad dupla longitudin€minoris por
tionis,crit canonitl paralellit empipedoorizonis,

ior difpofitio & fiatmotus primo ex
emnrigraliudis onsrebeiRoliamiil
orfzont,igitu T t
od in ndszm ’x’on?f):t:ba gﬁad be,igitur f,qnm&
Je g, quod fallum eft,non igitur e MOtUS €X parte ex F
cheemotus,addatur f ad 2 ita g toum faciant @ oS ot
mnd,dimpuptzmiﬁ'am?gaddc,ﬁucbadbd n&wg




zmmu’gmm wm,wra

fg&
et .
pROPOSITIO DVODECIMA.
Exiis manifc(tum eft,quonid fi t:ucm. canoniu (?m
metril magm’zudinc ,&zona ciufde notu 15gitudine
& pondere,& diuidat in du;.xs partes ma:qualcs das
fas, unc po(ﬁbilccﬂt nobis fnucnfrc p'ondus. . qyod
cm fufpenfum fueritA termino minoris portionis,ta
alellum empipedo orizontis.

ciet canonium par
batio fatis pater & diciis Sit canoniiiba ¢ ciufdé groflicie
,,-.L";’j}gm'.( Ly bradhiii norum,ut fitba longis
:’uu?nisdmmm : i
100 S CA

dus,quod fufpen i equedift: -
ti Procrabam em lineamd ¢ orthogonaléfuperbe, & xqualem linex
de&protraham]lineibe hypotenufam.producambe ultrain continu
um & diredt.donecconcurrantin pundo g cum lineac m:zqm
diftans lined e, crunt igitur per uicefimamnoni primi idis trians
gﬂibde &bcg fimiles,quare per quarti fexti Euclidis, ficutgead de,

per confequens ad d cfibi xqualeiac badd b, igitur per pramiffum
cg fufpéumin rerminob, fadet canoniti clle 1qui£hm onzonti. %ﬂ
Eter ant cognofcemus ¢ g,confiat ex uicclimaprima feptimi Eudlidis,
exquo emibi funt quacior proportionalia;quorit tantis unum ¢t igno

{ 2 &
z—b
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,adfhmngmrdmu &odoad

‘a:d,fua‘un riginc,quod i m‘g,mw&af&‘,,'

PROPOSITIO  TREDECIMA.

- Si fuerit canonium datum longitudine, liuﬂ}mdi <
ne,& grauitate, X dividaturin duas partes inxquas
les, Jfueriteg fufpenfum 3 termino minoris portionis
pondug %ﬂ uod faciet canonium paralellum
empipe: tis,longitudo uniufcuiuip portio
data erit.

Probatur liclongitudine totius canonij nota. & pondere noto, Pone
pedem cirdini in centro mtdnmom &(onﬁimcomlumﬂawndm-
fm tionam, quae fecabie nﬂ'ﬂuooncmqmliaqu de bras
chio ron,pamauv!rdmzaqunurpordo ablaca 3 crmino ubi




e sccedicur brachium bradhio,unde fequirur
P""‘MA,?::; :"‘:cﬂmm Sitenim canonium paralellum orie

,ﬁmm._ oneaadins brachium fit a ¢, fitgg roum canonium dacum
,,'_m,c:nu: e ;E’g-' & fufpendatur in terminoad terminum b pondus
&fitad xqu eudoa beritdata, & per <onﬁ3&lm longitudoca ctiam

:ﬁmll;:zawf wnim canonium bf aqualis grofficia, & eiuldem

= - canonio beitag belit primum Gnonium unum,
?al;‘mrz ?‘PO nderiscum €o pondere, Verum, quiaad hoc zbf
ic diriganar,0pOrtet longitudo fua fuerit nota ideo ad illam fic deve
ke Saut d c pondus notum ad e pondus notum,& per confequensad
bfnoazm,itac blonginidonota ad bf longitudinem , & produ@um
Siuide p“'d( pondus,& numerus quotiens oftendittibilongiudinem
bf.Cumigitur prauflabf fc habcrad d:llﬁcq( beadbd,igitr pere
mutatim per decimamdextam quint Euclidis ficuef cad bearacbad d
bjigitur comiandim per decimamoauan quin Euclidis, ficucf cad
beitachad db, igitur be eft medium proportionale incer fc&bd.
Muldipkcaiginur fongitudinem b ¢ per feiplam & productum diuide
per longinu fe,quxnoca eft,co gram f b G bcfunt note ,& nue
micrus quotiens per uicelimamprimam {eptimi Euclidis «ff longitudo
bd cuius medietas longirudo b a,quar fuberahitur i longitudine be,&
remincelongitudo ac,nunc ergo oft urrungg braduum notwm,
au m. &tﬁidt.

fas f 2 &« 236 ¢

‘L)f 'lf

Excuffum Norimbergze per, 2B,

Anno domini m, b, xxxI11,

325







Part 3: Facsimile of Benedetti’s Chapter on Mechanics
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Crizssavsr Mim[u,cr.rdléuﬁinﬁmi,lzh«&.

nicis , at cum watwrs g l/h:,’ﬂit(  fergpr el mosan 3’ Pl

Litensin apertum emittere foleait, nec ingemie ant grati fie

animi poftens inwidere ,fi guid ¢t contigerit comperni e prius

tenebris inselutiom : cunms tam multaspfe ex alsorum diligentia
Jit confequat pun P ancul quadi fictioragve vear xok ingrata bss

i 122 byfee methangcss coerfantur pufouiam ante Lac tentata,
ant fatss exallé explicatasn meduum proferre volus : qu/ wusands defiderim ,vel
Salrews uom ocio ingenicls argnmentum aliquod exbiberen: atque vel boc viso mods me

wnzer Luinamas vixijfe teilazum reinguerem .

De differentia fitus brachiorsm libra.
CAP. 1.

Mz pondus pofitum in extremicaze alicuius brachij libra maiorem, aut mi-

-
norem grauitazem habet, pro dinerfa ratione fitus ipfius brachij. fic exempli [
aria.B. centrum , aut , quod dividic brachia alicoius librae; &. A B, Q. vértica- o2
ﬁ: linea, aur, verectius dicam , axis orizontis, &. B. C. voum brachium dicte li- -‘ oy
brae, &in. C. fir pondus, &. C. 0. linca inclinationis , [ce idnend. C. verfus cen- A 4 6

trum mundi , cum qua, B. C. angulum rectum confticeac in puncto. C. Exiftente
igitur in huiufimodi (it brachio. B. C. dico pondus. C. gravius futcrum , quam
in alio quolibet fitu. quia fupra centrum. B. omnind non quicfter, quemadmodum
in quouss alio fitu facerer. Ad quod incelligendum, fi dictum beachicm, in firw. B,
F.cum eodem pondere in pundto. F. & linea sineris feu inclinationis dicti ponderis
fir. F.u.M.per quam lincam dictum pondus progredi non poteftynifi brachium.B.F.
breuius redderctur . Vnde clarum erie
quod pondus. F. aliquantulum (upra cen A
trum, B, mediante brachio. B. F. nititur, ("
Eft quidem verum,quod pondus. C. nec

ipfum etiam per lineam.C.O. proficifee-

tur , quia iterextremitacis brachij eft cir-

i5,&.C. 0. in vno quodi puncto cit

cns. Sichociter.A.C.Q.Opor- € N

: 4
et nanc praefupponere pondus cxtremi- =

tatis brachij deberctanto magis cécro. B. \

innizi,quanto magislinca fux inclinazio-

nis { ponamus.F.u.M. ) propinqua critdi \

€to centro, B, quod (cqacna cap. proba- c‘\_

bo, ve exemph grawia,fit.F.fper.u.pun- )

[ - .| ¢ ~
Gum medij ex equo inter. C. et B. qua- (o) M
propter. u. B, xqualis erit.u. C. vnde fe-

ok RS
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10. BAPT. BENED.

43
z_lmdi&n nderilim firurum pro pafte.F.C.quam pro'ea,quer eft. A.F. &
.munus fupra ¢ pio dictaparte. E. C. quam pro parte. A. F.quicturum; &
dicum brachium quanto magis orizontale erit 4 fitu. B. F.taned minusfupra dictum
cenerum. B.quiccer, & hac ratione granisquoque erit, & quanto magis vicinum
erit .giun.a dicto.F.tantd magis fupcr centrum. B.quoque quicfeet,vnde tizo quo-
queleuius exiftet . Idem dico de omni ficn brachij per girum inferiorem. C. Q. vbi
potidus pendebit centrd. B.didum centrum arerahendo, quemadmodum fuperivs
illud impellebar . Hee verd ominia cap. fequensi melius percipicntur . \

De proportione ponderis extremitatis brachj libra
5 i dimer[o firw ab oriziontali.

C~A P T L

Rororrio ponderisin. C.ad idem pondusin F.crit quemadmodum totius
brachij. B.C.ad panem. Buwpolitam inter centrum & lincam. F.u M. indlinatio-
is , quam pondus ab extremitare. F.liberum verfis mundi centr@ conficer<t.Quod
wt facilivs incelligamus imaginemur dlterd brachiom librz.B. D. & i extremo. D.
locatum ali pondus minus pondere. C. vi. B. u. pars.B.C.m nor ¢ft.B.D.cla-
. xé cognolectur ex.6.1ib.primi de ponderibus Archimedis, quod fiin punto.u.col-
. Jocatum erit pondmni‘r us.C.libea nihil penitus a fitw orizontali dimousbitur., Sed
ﬁiindac eft quod pondus. F.zquale.C.fitin exeremo. Fuin firn brachij B.F.qud ve e
in fitw ipfivs. B.u.orizoneali . Ad cuius red cuidentiam imagineaur fild.
F.u.perpendiculare,& in cuius extremo.u.pendere pondus,quod eratin. Fovndecla
rum exit quod cundem effectum gignet, ac i fuiffecin.F.quod, veiam diximus re-
manens affixum panéto.a.brachi). B.u.tantd minus graue cft ficw ipfius.C. quanto.u.
, Buminus cft ipfo. B,C.1dem affero fi brachium effet in irw. . B. quod facile cogno-
fcere porevimus, (i imaginemur filum appenfom ipfi. v.brachij. B. C. & vique ad. e
perpendiailaréin quo extremo appenst effer pondus equale ponderi. C. & liberl
_abc.beachifB.c.ynde libea orizoncalis mancbit. Sedfibrachium.B. . confolida-
eum fuiffce in tabs fire cum orizontals B. D.
& app&lo pddere.Cuin. e. lincro 2 filo,nec A
aitederet, neqs defcenderet . quia tantum F
eft quod ipfian fir appenfism flo,p pender
ab.o.quantum quod ab ipfo liberum appé
nfum tuiffer.c.brachij. B. c.& hoc procede
et ab o quod partim pendercea centro,
B. & fi brachid effEtinfieu, B.Q totom pd C B D
dus cenero. B.remancree appenfum,quem-
admodG in fiew.B. A, rotl dicto conero an.
niteretur o vade fis ve hoc modo pondas
magis ase minas fit grauc , quo magis
aveminys a centro pendet,aut cadem ng-
eur: 2tqs hare oft caufa proxima , & perfe,
j‘ & it ve vaum ldcnm., ;\(\ndu\in VIO €0~ %) M m
ciad; medio magis aut minus grave cxi-
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fiat . Ex quamuis appellem latus. B.C.orizontale , fupponensiliodangulum reum
cum. C.T;.‘fzcae,\'gdc angulus.C.B.Q.fit ve minor fitrecto, ob quantitarem voius
anguli gqualis ¢i,quem dax.C.O. cr.B.Qin centro regionis cleméraris conftiradc,
ho¢ tamen nihil refert,cum dictus angulus infenfibilis fir magaitadinis. Ab iftis au-
gem rationibus clicere poffumus, quod fi pun@us.u.crit ex xquo medius inter cen-
trum. B.& extremum.C. pondus. F.aut.M.pendebir,aut nitetur pro medicrate dicto
cenero, B.& fi dicdtum.u.coit propivs.B.quam punéo.C.pendcbirab iplo,aut rirecur
ipliamplius qui ex medictate, & fi magis verfus . C. minus qui ex medictate nitet.

Quod quantitas cuinflibet ponderis,aus uirtus mosensre-
[pectu alterius quantitatis cognofcatur beneficio
erpendicularium duGarum aceniro
libra adlineam snclinationis

CAP IIL
X ijs,qu i nobis hucufque fune di&a, facile intelligi F‘xtﬂ,qqmmbs B ot £

E qua feré perpendiculasis efta centro. Bad lincam. Fou. inclinationis, caeft, .c,p-z.fl? g
qux nos ducitin cognitionem quantitatis virutis iplius. F.in huiafmodi firu, confti  s5e

euens videlicet linea. Fou.cum brachio. F.B.angulum acutum.B. F.u. Ve hot tamen, s
meliusintelligamus, imaginemu libram.b.o.a.fixam in centro.0. ad. cuius erema

fint appen(a duo pondera,aut dux virtuces moucntes.c.ct.citatamen g linea incli-
nationis.c.ideft.b.c.faciat angulum rectum cusn.o.b.in pundo.b. lincxverd inclina o
tionis.c.ideft.a.c.faciat angulum acotum, aut obtufium cum.o.a.in puncto.a.Imagi-¢ o
nemur ¢rgo lincam.o.t.perpendicalarem linee.c.a. inclinationis, vade. 0. t. minoe N
€rit.0.2.¢x.18. primi Euclidis. fecctur deinde imaginauone 0.3. in pun&o. i. ita i
o.i.xqualisfit.o.& puncto.i.appenfum fit pondus aquale ipfi.c.cmus inclinationis
linca parallela fit linex inclinationis ponderis.c.fupponendo tamen  pondus 2ut vir
tutem.c.ca ratione maiorem effe e2,qu cft.c.qua.b.o.maior eft.o. t. abque dubio
ex.6.lib.primi Archi.de ponderibus.b.o.i.non moucbitur fienyfed filoco.ouiimagi
nzbimur.o.zconfolidatam cum.o.b.& perlincam.r.c.attract amvirtuce. ¢ fimiliter =y g0’y
quoque contingst ut b.o.t; communi quadam [ientia,non moueatur fity. Eftcrgo “pa M

quod propofisimus veram quantitatem alicuius ponderisrefpe@uad eam , quecit - O
aleerius debere deprahendi a perpendicularibus, qux & centrolibraad lineas incli "‘ AL 4
nationis exiliunt. Hine auzem maorefcie facillime, quancam vigoris, & vis pondus,
aut virtus.c.ad angulum rectum cum.o.a.minimé crahens, amiecas. Hinc quoque co - -
rollarium quoddam fequetur, quo d quantd pmginquiuscti: cenerum.o.libre cen- et T°
tro regionss clementans,tantd QUO qUE minus €Ik grauc. % ‘

.
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144 10. BAPT.'BENED.
: Qn_umdmdxm ex fupradiélis canfis ommes flaterarim €5
tiellinm caufedependeant .

CAP. IIIL ,L

«
V‘S brachij longlodnh’;uim fatera,aut vedtis,maior brevioris,ab ijs,qur in fiy
perioribus capitibus diximus, ideftg nitatur pendeatist magis ant minvs 3 &
cenero pondus in extremitate brachij maioris politim,oboritur. Quamobrem illud
3 nobés primo eft: cognofcendum , ffareras ;aue vectes, puras mathematicas li-
neasnon drg,kdmmlla,hmcquc exiftere corpora cum mareria coniunsta. Nane -
igitur imaginemur.n.s.cam fuperficiem efle, quat fecunidum longitadiner axen fa
# eerx fcindit. & fupponamus ipfius centrum cffe primam in.i.8& maius brachi
. oz minos aucem. i, 0. 5% lincam verticalein. i. 0. qua tanta fic, quanca eil {
do,aut craffitics ipfins facere 3 fperior latere ad inferius,ad fciliorem intelliger
tiam,{upponcndo.n.s.parallclogripiam. Pofitis igitur duobus pondecibus
busin éxtremitatibus brachiorum,expericnia innotefcit,g pondas 2.
fum, viol entiam fui«pondma;vpcnﬁ) ad.n.fed nos volomus inceltigare cansd
huius ¢ 3 nemine voquamlitcrarum monamentis, @ fCiam, Condgiarad 257w
fusits Tam diximus ftaeram, aut vedtom marerialem offe &.ns.cius fuperficiem me- . o #6os
diam,fupponeado.i.cffe ceatrum quo nititur dicta ftacera auc vedtis; Cum hocere o o adhe
fa‘?fchabca,lhr.u.s.ct.mt.linc:'mdimzionum ponderum , & imagincmur, ¢
icta pondera pendeant 3 pundtis.u.ct.n.vereucra pendent, ctiam fiappen/a effcns
fub.s.ce. x. quia pundtum.u.& pundtum.n.ita coniuncta funt cum.s. crx.ue qui vod
trahit dlecrum quoque rrahat, Imaginemur quoque duas lineas. i. u: in. cticgog
Lefaciatangolum.o.i.c.xqualem angalo.o.i.n.Hinc clare nobis patebir, fi quss ipi
c.pondusipiiusa. (g aquale cft erian.) appenderet,id candem plané vim habe
ret,quam pondus ipfius.n.habet, & flaceram neque firlum, neqae deorlom moue-
ret, quia ambo pondera ad centrum. Lmedianabas lincis.c.l.ct.n. ex ¢quo annite-
rentts , fed dicto pondercpolitainaulings.. 1. per quam pondus concro annititur, |
magis orizonealis quam.es.fic,& lincasinclinationis ongius diftansa centeoi.
quaimlinea.c.c.vnde huinfmodi pondus magis quoque liberum a centro.dreluleat.
m:gnqucrnd QU CUIT CTAL iN.C.IALIONE COMIM, Ui piimo & fecundo -
capreibus dixishus,& ob hanc cavfim fuperaz poodus polituminn. Sed i centram
' e de. i crinin.o. imaginabimus duas lineas.o.s.ct.o.x.& fupponems quod pondera po-
o O {3ta fine in.s. ex. x.vende exiftente magis orizoncali hnea.o.s.quam erinox.& linca
% ) sanclinationis longius diftance i contro.0.quim linca.ctucius pondus crit quogs
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grauins, quia tantd mines pendebit 3 centro. 0.& ratiocinando, vt faperins dixi-
mis,inoenicmus cundem cife@um verum effe. 1n Rateris,redte & propricappelia
1i poreft.xdsant.no.u.onzontalis,fed m omni vectium fpecie,hoc titum per quan
dam fimilitudinem diccrur.Idem contemplari licet fupponendo centrum in medio
inter.o. eti.quod voufquilque ex fe ablque aleerius auxilio facile preftare poterit.

De qubufdam rebus animaduerfione dignis.
CAP. V.

N On omittenda mihi vidétur quadam , quxr ad tra&ationé vedtium admodum

fune neceflaria. Quod auzem quarimus , in co confiftir, quod aliqui vectes
adhibeanzur ad opus, quorum centrum, quod Graci hypomochlio appellant voum
niis iphius vedtis , & pondus , quod furfum clenari debe, inter ipfa-
et extrema iacet, propinguum tamen hypomochlio, ve exempli gratia, (i vectis
effet infralcripta figura.o.s.u.x.cuius hypomochlion effet in punéto.o. & pondus in
punto.n.clarum etit, g cum elevari debear.n.oportebit quoque opera manus cle-
wari.u. Nunccoafiderandum eft quomodo pondus.n.annitatur ad.u. Hanc ob can
fam imaginabimur rectas lincas.nom.in.en.t et quaruman.i.verfios mundi cen
trum fit pofita,et.n.x.faciar angulum.i.n.e.xqualem angulo.in.o.Nunc ponendo ali
quam virtutem in..xquali inclinatione ad [uperios conftanee,ve.n. ad inferius ( re-
MO tAMEN Grauitare materix vedis)huinfmodi vinm.‘xo:uuclﬁwndmi lus.n.com
muni quadam fcientix notione fuftinebit. & i podusipfius.n, ctin.x. ¢ direéto fo-

.o.:ommpondmfupcrhypomochliofchz ez, & tanea virtws iplius hypomo-

<hlij fafficerce ad refiftendum peo faftinendo,quanta eft gravitas ipfius ponderis,
fed ipfum irerum ponamus in.n.ibi claram erit, quéd fi alia vireus 2 paree inferiori
ad fiuperiorem vectis non OpPONILUL,EXCCPLO amen hypomochliooportebit virta
te cuufdam partis ponderis.n. (abfque confideratione ramen, vt iam dixi , ponderis
marcriz vedtis) ve vedtisa parte.s.u.deprimatur,& dixi vnius coinfdam partis
deris.n.quia alia cinfdé ponderis pars aonicitur ipfi hypomochlio. o. medidte linca
o.n.quaangalosteétos cam.o.x.non facic. Siautem puu&o.t.o;?;oum fefe huiul~
modi refiftentiave vedtis non deprimatur,clarum erit communi [cicntia, ¢ virtus
ponderis.n.divifa erit per medium xqualiter, cuius vna medictas fuper. o.quicfcet,
& alia fuper.tmediantibus duabus lineis.n.o.cr.n.t, Imagineasur nanc refiltentiam
r.ablazam cfle,pofitama; in.c.clarum quoque erit, ¢ malor pars ponderis. n. ipfi. c.
annitetur beneficio lincan. e.quim ipli. o.cum linea.n.i. inclinationds ipli.c.fitpro
pinquior quam.o. uia omnis reliftentia aucin. Lautin, e aut in. t. autin. u. cltloco
centii,quemiadmodum eft.on&e alter alterius operainuatur. Si vero cadem refiften
tia pofita erit in.u.clarum quoque crityg minor pars ponderis.n.annitetur ipllu.qud
ipfi.o.cum dicta.ni. centro.ulongivs quam i centro.o.diftet, & proportio pastis
;w-.dcnx.n.unn.ad propot-

tonCm partis pondenisndn - o r— *
wnonene fccﬂdum P")I,‘f‘l‘ 3 | ..'\. K

ooncm EHIUX‘J.'JHLU ST . 5 7
o.n.i.fed fecundum propot | saneerm frit
tionem. u.i.ad.i.o.quod cla ° i e ¢ st _,.12“1
vé comprahends potelt ab et /Wn
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huius effelus conuerfo, ideft,ve quemadmodum nunc fupponuntur.o.ct.n.cffe duo
centra quibus fultinet pondus.¢. ipfius.n. imaginemur. n. cffe quoddam centrum 4
quo pendeant duo pondera. o. ct. w.fic inuicem proportionara,ut fiint.u.tet .i. 0.
certe horum ponderum caufa flatera. o.s.quam vectem appellabamus a nulla parte
inclinabitur. Redeuntes nuncad propofitum, dicemus ¢ annitenee pondereiplios,
n.oinus ad.u.quam ad.o.ideft ad.t.minori vi opus erit in. u. quim in.t. ad aztollen-
dum pondus iplius.n. & fic per confequens quanto longius erit punctum.u. ab.t.tan
o minori quoque vi egebit, & confequenter quando vis,aut refiftentia inuu.ita pro
portionata erit illi,qua eft ipfius.o.ve cft.o.i.ad.u.vedtis non moucbitur . Sed quan
do erit proportio maior;refiftentix ipfius,u.ad cam, qua et ipfius . 0.c3,que eft. o,
i-ad. i u. tunc vedisa par-

teiplius.us. clewabitur , i >

YO nA e
vero proportio minor effce H
quim,o.. ad. i. u. runc ve-
¢tisab cadem paste depri- \
metur. . i & ¢ !}

Deratione cuin[dam uis adanéts,
CAP VI

? Vibafdam in locis veuntur quidi quodi inftruméto piftorio ad fubigédi pa.
{tam,vnius tancum hominss ui adhibita, qua quidem machina cum mihi di-
contemplatione effe videatur , efus aliquam razionem proponcre volui,pro cu-
us deferiptione imaginemur planum, in quo fedet ille,qui voluit paftam , & in quo
ipfa pafta cft repofita. T. S. D.& triangulum.T. A. S.immobile perpendiculares
J;lc fuperficiei diéti plani;angulo autem. A.coniun@um lignum. A.E.ve femidiame
trum mobilem,& xqualem perpendiculari ipfius erianguli,unde. A. loco centri erie
et. D. O.fie femidi -.xxlir ftam contundit,& ab cius extremo.O. ( quod. O,
quando. D. O.orizontalis cit,in bafi dicti crianguli reperitur ) veniat lignum. O. V.
cum. A.V.fit equale perpendiculari imaginate ab angulo. A.bal.T.S. deno-
mdns uevulgo dicif feu Aexilein.0.& in.V.vt clleuare atq; deprimere femidiame
trum. D.O.poffit,ct. V.O.fitzquabis. A.V.er. V.medium fit inter. A ct. E.vnde. A V.
cum.O. V.aquales crunt. A. E.font deinde duo ligna perpédicularia ab. A.ad bafim
fixa, & immobilia inter fe adeo diftantia, vt inter ipfa pertriledc.0.Voet. DO, fapra
& infra , nedeuict femidiamerrum. D.O.In exeremitate deinde ipfius. E-fit lignum
quoddam tenue, vt digitus polex,ad angulos rectos cum. A. E.quod ab aliquo,qui
antediétam machinam ftet ; manibus tencatur, qui quidem homo idipfum lignum,,
ideft femidiametrum. A.E.a fuperficic mrianguli dicti,ad fe trahendo, & deinde ver
fis cundem triangulum impellendo, vim quandam maximam mediante femidia
metro. D.O.faper paftam excitat. "
Pro cuius rei contemplatione volo vt fecundam hanc fubfcriptam figuram. b.a.
w.x.imaginemar , in qua.u.exprimaz. A,primx figure,&.a.denotet. 0.&.0.V. &. x.

3 E.it:ﬁnmmrcd:m.u.a.bafcm triangulia.u.o.cui.o.tperpendiculanis didte bafi,
ua.

rur. Huculg; igiturano.aqualis erit.o.x.& ipli.o.a.imaginemur ctiam. . 0.
vique ad.b.ita productam ve.0.b.xqualis fit.0.2. ponamus ciiam pondus in.a.impel-
& Y lere
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Jere verfas.uvade linea cisinclinationis it femper.a.u.fupponamus etiam. 3. 0. b.
effe librd,aut flateram , aut vedtem, &. 0. citis centrum, vade vis,aue virtus ipfius.a.
propostionalis erit ipfi. 0.1 refpettu virturs , auc vis imaginatz in. b. inclinazionis
perpendicularis ipfi.b.a.qua quidem virtus, aue vis in.b. proportionalis erit ipfi. b.
©.ex tetio capite huius tratarus ; Si ergo fuiffer pofita in. b. virus quadam ad aa-
gulum reétum , trzhenslincam.b.o.tam proportionatam virtuti perpendiculan ip-
fins.a.quam eft.o.r.proportionata ipli.o.b.fatera.b.o.2.non moueretur, fc:x'}'xruis
portio maior in.b.[aperarct.a.cam autem thcrix.o.x.:qxxhs ipli.o.b.idé planc cuc-

D
\J
2 o]

st - E/
pict, communi quadam [cientia,ponen- / s
do virtutem.b.in.x.Quantitas ergo virru
tis in.x. qu [uperare debet refiftentiam P
ina.quasp .n.contraponitur, dcbc(h;- &
bereal lum maioris proportionis l
ad refiftengiam, quxin. 2. angulum re-
Gum cfficerct cum. 2.0. €3, qua clt.o. & A | 19}
2d.o.x. -~ it d
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SDeth:[dum erroribus Nicolai Tartales circaponder.s
corporum €5 eortim motus squortm eligni d: {/m
fucrunt & Jordano frrlplor( quodam antigs.

C

!

('1 Vm magis amici veritatis cfic dcbc:unus q«um cuiufquam hominis
.2, modum Ar#fto.feribit,decegam hoc loco quofdam crrores Nicolai
dcpond::nbmcorpomm& velocitatibus motusm Jocalium. Ee primam decipitur
is in. 8, lib.fearum diserfarum inuentionum in (ecunda propolitione,cum non ani-
maduerterit quanei momenti fine extrinfece refiftentiz.

Sabicéum quoque tertix propofitionis ¢ft malé demonftrarum,
né ex cius demonftratione iam dicta corponbus hxtercogencis , 2u
comingeret,quod ad velocitatesartiner.

Inquare propofitione,quod ad difputidi proponit n! )cnm.ud ¢ mel
lbcnkqdu, quod Archimedes in.g. .propof firtonc lib. primi de p

Sed infecunda parte quineg propofitionis non uidet g uigore it
ipfe difpucar, nulla clicitur ponderis differcritia. quia fi corpus. B.defcendere debee
/ per arcum.il.corpus. Aafeehdere debet per arcum.usaxqualem, & fimilem. cadem

o ,,,'M quoque ratione (ieaaram, vz ¢ft arcus.i. L vnde ve eft facilé corpori.
perarcam.i.ldifficile ira eric corpori. A.afcendere perarcom us. Hee aueem quin
ta propoficio Tartalex cft fecuda quarltio a lordano propolica.

Qudd autem ad primum corollarium dicte propolitionis attinet,verumille qui
dem feribit,cius tamen effcdtus canfa &2 lordano prius,& ab iplo poftea cirata,na-
tura foa vera non cft.quia vera caufa per [eab co ontur,g d centro libre dependeat
vt primo cap.huius tradtatus oftendi. Secundum vero corollarium falfum efle, ijs ra
nombmquas nunc i J.Mung:m p.‘m.)xt. lm-g.mmur. U pm Centro regionis cle-
mentaris,& libram.b.o.2.0bliquam refpecta ad.1z. & brachiis xc qualibus conltitem,
& pondera in.a.ctinb.ctiam zqualia.lincae aueem inclinanonum fine. a. w. e b
imaginemur ctiam lncam.o.u.& A cenero.o.libre duas.c.t.c.o. ¢. porpendiculares
inchinationum lincis; vnde pondus infins.a.in huinfmodi fit tam ctit propoitiona
tum ponderi. b, 1:111 proportionara erit linc.0,t.linci.0.¢,0% ¢ ¢ tertio cap. hu-
ius tractatws prodaui, fed linca.o.emaior eft linea.o.¢.quod fic probo. Imaginemur
triangulumuab, cxrcunﬁnpm m effed drcalo.a.n.bcuius.c. fit cencrum , g erit
€xcra lineam.u.0.cum .\.ppommr.a.o b.obliquam effe refpetnad. wo . Imagine-
mu'dun..czcmrru.c lincam.c.o.s.vfque ad circunferentiam, que perpendic ula-
ris crit 1pfi. 2. boexeertia lib. 3. l:udx.hpof‘cumz;..ncmm duaslineas.c..ct.c.b. ha
bebimues cx.8. hb.px.mx,:n"u‘um. o.xqualem angulo.b.c.o.Vade ex. 25.lib. 3.
arcus.asaqualis eritarcus.b.s.fid fi mummbjmur. u. 0. ad circunferentiam vique
p'o;.ucum clarum cric qarcum.s. b.fecaret in punéto. n. vnde arcus. n.b.minor crit

reun. & fic etiam angulus.nub.minor erit angulo.n.u.a.cx ultima Lib. 6. Tmagi-
nemur nunc alivm quendam cmulun.;ums.o.u.l.x Hameter, cuius circunferentia

duo punéta.c.ctt. pravergradiaf,cam in ipfis fine angaliredl, quod quiliber ex
feratiocinando colln:r ¢ potclt,fi. yo.lib. 3.in mentem resocaverit. Sed cum angu-
Jus.0.u.t.fit maior angulo.0.1. 6. AICUS.0LMAIOT Crit 2r0.0.¢. €x ViKima.6.vnde cor
,s da.o.t.maior erit corda iplius.o.e.ex conucr 6.3 7.1ib. 3.quod ¢t propoficum. Pon-
; ‘::::_k"'" dusigituripfius.a.in bui imodxh.lw)ndg_u,h.\ _v_.;guj-\g 1it.Quod & dircctoijs
Foumes TEPUEDAT QU artalca in 2.parte quing propofitioris ediferit , & pet confequens
s W nag 44" 3 cor0llan Galfatem ollcndn,uc;m quogque,quarin 6. propolitionc latet.quiaca

- 3 pro-
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ius.b.cadem it cum

1c cfto.tad.o
e noftiam cadsre po
um o

5.0.2.8 Clus reli-
oftca beachicio
Lt reftorum
rA.Logni R
m.o, t.

Memus. CAP VIII:

Q
Dicunt enim anguli o

h.a.f.d H.:;.n:':nuh { 7
anzulo.d.b.f.alara- e [

tione non cflc quam y ] :
per n conta- \n_

fecunda ,-x.»rx‘x}un:;;,1'\-;|bum,nuximmnquuquc crrorcminfec contingt.

s duord circulorl, / \

vein fuafigura feribic | /‘ N
Tartales; id quod fal- i C.' I\

ifimumeft. Quiob |\ / 7\ z
a3 ) \ % \

' - b A\
figura ficlibra, B. A. //Q
& cius centrum.C ct. - 4 I \

is,ct. Auct.B 3 | \
x inclinationit.
Imaginemur deinde 1\‘-
lincam.B.K. paralicld
Z.xqualem angule
H. A. F.adelto. g I

( quia.H. u.
fune ) cum ex.29. libr.

-uclidis angu- JHyD
lus. .
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lus u.A. C. aqualis fie
angulo.K. B. T. &an-

ulus, C, A. F. xqua-
1sangulo.T.B.Z.nlc
comparatio cft inter
angulum.D.B.F.& an
gulom K.B.Z. miltili-
neos,qui quidem duo
angoll, comunem ha-
bene angolem miftili 4\
ncum.K. B.F.quapro- “*|
peer fi angulus. K. B.Z,
miftilineus maior eft
angulo, D.B. F, mifti-
linco per angulom.
K.B.Z.contingentix,
circulorum crgoangu
lus miftilincus com-
munis. K.B.F. xqualis
crit miftilineo , angu-
Jo D.B.F. parsvide-
Jicee fui tot0 . Omnis
aueem error in quem
Tm.xlca, IOIJIHUMI;
lapfi fucrune abeo,
lincas inclinationum

pro parallelis viciffim HD
famplcrunt , cmana- w

uit.

Septima propofitio Tarralex, qu eft gnta quaftio Tordani mihi videf excipien-
dla rifu,cum pondus iplius. A.ponderi ipfus.B.ex:ftens equale, grauius fir pondere
ciufdem.B. ratione minoris aperture anguli contingentix in. A.quam in. B. in quo
idem error commireitur, qui in pracedenti commiztebatur, cum feilicee iple putet
lincas. A.Eect.B.D. figurz ab co confiltz ibi inuicem effe parallclas , quae ctram fi
aquidiftantes effent(vnde angulus, E.A.G.minor effet angulo.D.B.F.) non camta
men ob canfam huiufmodiargulorum differentia cavfa effee differencix grauicatd
ipforum. A.ct.Bob ca qua cap.¢.huits radtacus pofii.

Odtaua autem propofitio,qux ¢ft.6.quxftio lordani longé melius demonftratur
ab Archi.in.6.lib.primi de ponderibus, cum neca Tordano,nec a Tarealxa probara
fucrit,cum fjdem non probaucrine pracedentes, quas in dicta.8. Taralea citar, qui
neque ctiam probat nopam. 1o. 1 1. 12. ¢t.1 3.cumad precedences probandas mini
mwé acceficrit.

Quartadecima verd,quar eft. 10.queftio Tordani,duas ob canfascft falfz, quarum
vna ¢ft ol fupponendo.A. D.E.G.B.cfle voum brachium libre,et. A.punétom cétri
cinfdem,et.D.pondusgquale ponderi. E.& lincas inclinationam. D.K.ct.E. M.) an
gali. K.D.E.ct.MLE.G.lib: inuicé 10 fant gquales;ciillc angulus it inerinfecus,hic
vero extrinfeces & oppolites didto intrinfeco val® miguliterminai &, D.E. 3.D.K.
et E.
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ct. E. M. lincis produtis vique ad centrum regionss clementaris,ynde difus angu-
1us. M.E.G.maior cft alio,ex.16 lib.primi Eucli,Qua ratione fit, vt hanc ob caufam
E.grauius it ipfo. D.cum minus dependeat 3 cenro. A.ve primo cap.huios tractarus
iam dixi. Alia quoque cftratio,qua dictum . E. grauius fit ipfo. D. qug quidem cft
maior diftantia 3 centro. A.librz , per fimiles rationes capit. 4. huius tractatus ci-
tatas.
Decimaquinta quog; nil penitus valet, que eft.x 1. qugftio lordani,cuius Autho-
vis opufculum opera Traian: Bibliopolg Venetifs ¢ tencbris in lucem emerfit.

Quod [ummaratione fateraper aqualia interualla
Sint disifs .

CAP IX.

I\l Agna cum ratione dividGeur ftatere per interualla gqualia , inlibras, aut in’

vicias 5 aut \}uoquo alio modo. Nam fit ftatera exempli gratia . a. b.
& punétum, ¢ cam fuftinet fit. c.& vasillud,ep continetid, quod ponderari debet
f.imaginemur nunc quod pondus brachij.c.b.ab una parte,& pondus brachij.c.a.cl
co, ¢ clt dicti vafis.fabalera pmc,limcaul’g,qmbmﬂum:.b. ¢. et orizonta~
lis.cui fic orizontali mancnti imagincemur ad pundtum. 3. adiunétum cffc pondus,
veluci ynius librg. & ad punétum.d.tam diftanti i.cutelta.abipfo.c.alivd quoque

pondus vaius librx additd effe,vnde chi quadi {cientia ftatera,non moucbitur fitu.

qa exiftentibus duobus hifce ponderibus xqualibus,altero ind. & alteroinaremo -

12 cum effent.d.b.ct.fabfque dubio.a.d.non mutaret {iram,fed. d.b. e, £ infitu, in
quo reperiuntus,d centro pacibus viribus predita funt. Addendo igitur.d.b. ipfi. d-
ct.fipfla:fumma carum , 2qualibus quoque viribus conftabunt . ex commuini fen-
tentia, qua habet fi gqualibus addasgqualia,, tota quoque fient gqualia. Siverd
ponderi ipfius . 2. aliud adderctur cidem gquale, haberemus in. 2.duplum pon-
dusci g cltipfius.d.fed volentes vt folum cum pondere ipfius. d-fatera tetorizon
walis,fi dictum pondus iplius.d.longe diftabiz & centro.c.per duplum ipfius.c.2.ideft
iplius.c.d. id g volumus affeque~

mur, beneficto fupradictarumra a [ b1 5
tionum,adiuti opera fexeg lib.pri .
mi de poderibus Archimedss. Et

fi quis aliud quoq; pondas adiun
geretipfiaxqualeilli priori, ad C—
cfficicdum,vt ftatera femper ori

zonealis mancren,oporteret , vt podus ipfius.d.ab.c.losg? diftaret, ita ve huiufmodi
diftantia tripla effce prima, & fic per quofdam quafi gradus interualla reddcrerntur
equalia. Quodd
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Quodlineacircularis non habeat concanum cum con-
wexoconiuniium,€5 quod Ariflo.circa proportio
L
nes motuum aberrawerit.

CAP X.

4

e iy A Riftorelesin principio queftionum Mechanicarum ait lineam, quar terminat
i M circulum videtur conuexum habere coniunéum cum concauo,quod falfum

11 A Lot cth.uia huinfmodi linea parees nullas fecondum latitudinem habet, ( vt :_pfc exiam
s 5 Jaset CODRrmat) fed cft idem contexum ciccult linea verd quax terminus cft fuperficiei
Y r.2, 2 ambientis , & ampletentis circulum eft cadem ' concavisas dicta fuperficici cun
A red el o dem circalum ambientis, quz nullam conuexicatem habet. & ha dux fineliner >
S A 2 s quarum vnadiucrfa cft ab alia,neque altera aleerivs, quod ad convexum,& 2d con-

) f
. wt'z zﬁ cauam attinet.
’_-\J, Sed illud, quod Ariftoteles fribir de duplici refpe@u motus vaius puncti fecun
Z 2 dum vnam datam proportionem, non [ufficis, ille enim fic ait.

Sit proportio fecundam quam latum fereur, quam haber. A.B.ad A, C. ctA.qui
dem foraue verfus.B:A. B.verd fubeerferatur verfus.M.C.latum auterm fit. A yquidé
ad.D.vbiaacem eft. A. B.verfiss. E. Quoniam igitur lationis crat propoceio, quam.
A.B.haberad. A. Conccefic cft &. A.D.ad.A.E.hanc habere eationem. Simile igi

VS neellirit  turcit proportione paruam quadr ilaterum maiori. Quamobrem ctc.
V! Nass, - Cui refpondco,punctum.A.quod mouetur inlinca. A.M.ab.A.verfus.M.vique
want & ad.F.non moueriab aliqua proportione determinaga m. is quam ab alia: vnde nd

% ‘;‘4,_,’ folum poflumus imaginari dictum punétum. A.moucri al WAviquead. F, ewfdom
A Ao remae VelOCitatis fob 2lia quadam proportione,fed ctiam fubalia,qua 1am datx coneracia
7 fit,veeft proportio ipfius. A.C.ad. A. B.imaginites moucri. A.ver(us.C.ct. A. C.ver

“';;( o /hr“ fus.B.M.delatam. Dico etiam idem. A.moweri vique ad. F. fecundum proportio-

= Leatt A2 0021 pemiplius.A.O.ad. AN.Quamobrem imaginemur 3 puncto.F.lincam, F. H. cum

{A"lw'“‘.'."' linca.F.A.cfficere angu-

A e DA e ok i

o et PLA &2 punito.Alline ;

:ML‘ A.H.(ﬁthcx.A.F. face- B O Tl) — \‘\V?A-

ey reangulli rqualéangald / 7
O.A.i"‘flx'llrdz:ngulus.H. || A

aqualis erit angulo. O, Rl

cx. 33.libr. primi Eucl. S / s

& triangulii. A.H.F.¢qui - / [
|

3 ”
angulum erit triangulo. o’
A.O.P.Quam ob causi e ol W
cadé propogtio erit ipli* M R
e C

A.H.ad F.H.qug Eiplins
A.0.3d. O.P. punctum
igitur.A.vique 2d. F.mouctur fecundum proportionem etiam ipfics. A.0.24.0.
Huiafmodi igirur conlideratio,ab Ariftotele facta, nallius ¢ft momerii,

Qudd
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Quod Aristo.inprima mechanicaram qusilionwm eius quod
inquirit,ueram caufamwon attwlerit.

CWAUP /X I.

Virrens Ariftoteles vade fiat,ve e librar, qua brachia habenealijs longiora,

fint exactiores cxteris, ait hoc cuenire ratione maioris velocitatis extremo

rum carundem.Quod verum non eft;quia hic effectus nil aliud éft,quam clarius pro
poncre ob omnium oculos obliquitatem brachiorum i linea orizonzali, & oftende-
re ctiam faciliusd dicto orizoneali firu exire brachia iam diéta. Qua quidem per fe
neque a velocitate, noque & carditate motus , fed 3 ratione vedtis, & 3 ma-
iori interoallo inter fecundum fitum extremorum A primo proficifeuntur. Ve cxeme
pli graia, imaginemur magnam libram. A.B.orizontalem, cuius centrum fic . E. et
pondus. B.maius fit pondere ipfius. A.vnde conceditur,quod ob hanc rationem di-
<ta libra fitem mutabis, qui chundui firus fit in.H.F.lmaginemur ctiam parui qui-
dam libram.a.c.b.orizonealem,qu pondera habeat.a.ct.b.xqualia duobus ponde
ribus alterius libre & {ecundus ficus fit inh.f. ita ramen veanguli circa . e. xquales
fint ijs, qui funt circa. E.ideft.b.c.ffit gqualis. B. E. F. Nunc dico fitum +H. F. exa-
tioré fururum & clariorem fitw. b.e.fratione interualli.B. F, maioris, intcruallos
b.f.quod.B.F. in cadem proportione maior et ipfo.b £ in B. Esmaius cft.b.c.
quod autem interuallum. B. F.breuiori,ant longiori temporis fpacio quam.b.£lit fa
&um, nil planc refere. Ratione veétis deinde, dico g fi lupponcmus duas libras pa-
res xqualesd; inomnid alio refpectu,prater quim in brachiorum longitudine, pon-
dus.B.maiorem vim habebirad deprimendum brachium. E. B.quim pondus.b.quia
Jibre mareriales , cum fuftincanturab, E . c. & non 4 punito mathematico , fed
a linca,aut fuperficie naturali in Maceria exiftente. vde aliqua refiftentia ipfi mo-
tui brachiorum oritur,& hanc ob caufam, fupponendo hanc refiftentiam xqualem
tam in.E.quam in. e.clarum crit ob ca,quar in cap. 4. haius traiares oftendi. B.cum
minus dependeat ab. E.aut minus quoque eidem. E. annitatur , ponderofum magis

« futurum,quam.b.& hacde canfa moucbiz ad(pmem inferiorernymaiori cum agilia
s

te;brachium.E. B.multo magis ctiam illud ip
gulum. B.E.F.quam crit angulus.b.e. L facict.

}Z\/

> B ! e

A L\j é\@_\c‘/_—“
oF

m deprimet,idelt maiorem ceiaman

o

=gy .
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De wera caufa[ecunds, €5 tertic quailionis mechanics
ab Arsflotele nonper/[peiia.

CAP XIL

{cribit.
Cur fiquidem frfom fucrit (partam quando deorfum lato pondere quifpiam id
admouet rurfusafcendic libra: (i auzem deorfum confticutum fuerit noa alcendie,
{ed manet? an quia furfum quidem fparto exiftente plus libre exzra perpendiculum
fi(fparrum enim eft perpendiculum)quare necefle et deorfum fernid , quod plus
clt,quare & cxrera.
Sed vera caufa, vade fiat , vt i fpartom fuerie furfom , & brachivm vnam
ipfius libre deprmendo, & idem liberum deinde permintendo , adfium ori-
zontalem redear,non folum cft maior quantitas ponderis brachiorum qua iam prae :
cetgrdfa it viera verticalem lineam, fod ctiam eft longitudo brachij clevari,que vl
tra verticalem lincam reperitur,vnde cius extremi pondus redditur grauius in pro-
portione, quam in hoc exemplo proponam, fir. A. B. librain fitu orizontali, cuios
£ fit. Efuperiplam. & deprimentes brachiumipfios. A.vique ad. F. cius fiws
it in.F.Havnde medsum plictum.G.pretergreffum entlincam verticalem, V.Z.ver
fos.B.quae.V. Z. fecabit brachiam. F.G.in puncto.D.vnde. D, H. loagius crit ipfee
F. . Nunc nobis fupponendum cft id, .
quod veriffimum cxiftit, dictam fcilicet li H
bram in fie.F.H.ctid i {aftincaror 2 pun-
&o. E. idom tamen furaram ac fi fuftenta-
rewr in puncto. D. yndefequitur, quod v
pondus appenfom ex ipfa. H. ita grauivs
reddatur 5 ipfo.F. in cadem on;oc-
tione,qua maioreit. D. H.ipfo. D . F.ob ENL ]

rationcs quas in primas huius eraltarus ca- 0O 3| /'(9_ A

A Riftoeeles infecunda qualtionum mechanicaram qurens illius rationem fic

pitibus pofus,ve ctiam fi. D.H. quod mace
riale eflc fopponitur, nullam plané graui- p—— _l B
tatem haberer, (olustamé exceflus vis pon | / ‘D
derisinH.pofiti, longé maior pondere in (17
F.collocato promaiori longituding ipfius =
D.H. fufficiat. ad preftandum v Liba ad F
ficum orizontalem redeat.

Infecunda deinde huius queftionis par -
e 1Ll ik te,in qua feribit libram in fitu,in quo poli
s B resom “' ta cft firmam manere,toto cglo aberrat,quia neceffarid oft,ve omnind cadat,edufy;
ar 7 é >, qué fparrum furfum remancat : ablato tamen omai impedimento ,quod nalla cgee
iy ~meta ok probatione,cum natusa (ua clanffimé patcat.
! Caufa,deinde,vera tertiz quritionis non eft ca, quam Ariftozeles ponit, fed hu-
infmodi cffeas ab co,quod capitibus. 4. ct. 5. huius tatatus propofui originem

habct.
Quod
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QuideAriflotelisratiosn 6. quaflione pofita non fit admittends.

CAP. XITL

Olens Arifloteles rationem proponere,vade fiar,ve nauis velocius moucatur

cum antennam altiorem quam cum depradfiorem habet, id ad vedtis ratio-

pem refert, quod verum nd oft. Huiufmodi enim ratione nauss tardius potius, quam

velocius ferni deberer, quia quaned aleius eft velum,vi venti impulfum, titd magis

proram ipfius navis inaquam demergit. Sed huinfimodi effcctus 2 maiori potius

quantiate venti quam recipit,quim ab alia aliqua canfa oritur,quia vencus liberius
vehementiusds in altiore parte,quim in deprafhione vagatur & perflac.

,é')\_ﬂbd rationes ab Ariflotele de olana qualione conficte
" [ufficient es non fins .

CAP. XIIII

Arionesetiamab Ariftotele propofitx pro indaganda o&aux quxftionis ve-

R ritate , in qua querit vade fiat, ve corpora rotund figare , ad voluend( fin
faciliora reliquis,quarum regolutionum corporm tres fpecies aliignat, quard voa
eft . ve rotarum currudaliera vo rotarum putcorum,aut trochlcarum,quibus hauri-
tur aqua;& tertia,vt parvorum vaforum a figulis fabricatorum, futficiCees nd fnt.
Incipiensautem 3 prima dico dubium non ¢fle,quin tangente corpore aliquoro
tundo aliquod planum mediante folo quodam punéto contingat, quemadmodum
probar Theodofius in. 3.lib.primi & Vitellio in7 .lib.primi, & ducédo per centrl
fphre lincam vlque ad pundtum contactus,ipfa eric perpendicularis plano contin-

genti (pheram diclam, ve probat 4 Theodofius in.q.lib.primi Alkazéin.2 5.quar-
1, & Vitellio in.7.primi.Verum ctiam cft omnem inclinationem ponderofam huiuf

modi corporis homoggnei toram hanc lincam xqualiter omni ex parte circundare;
quidem rei ex cmplas incarta defcnere pofliznus mediange figura circulari
hicfu ta.a AL catconigua linex re G budin puno.a.vade.c.0.2.perpendicn
Jaris erit ipl.b.diex. +.11b. 3. Encli.& tansdl pondens habebimus a paste.a.u.c.quan
tum ab ipfan.c. Nuacigiar fi imaginabimur dudtum ¢fit centrum verfus.u. per
Jincam.o.u. parallclam ipl. a. d. clarum nobis
big; vila difticulcare aue refiftentia idé e
.auia huinfmodi centrum ab inferiori T o
) Tiorem,nunquam mutabi (i:}lm "
refpoituds x few inzerualli,qug inter iplum
lincamdue.a.d. intercedir, p quidem centrum
in {e colligittotum ondus figure.a.n u& be A
nelicio linc.c. sdipfum punco. a. in li- "‘ U
nea.b.a.d.committit, prodedtum.a. nil refert,
vr magis,aue minas verfis iplam, d. aut verlus
b.dirigaf;itave ¢l non oporteatve huius figure
podus,vna vice,magis cleuctur, quim aZu:lld 1
feaper gqualiter fuper line m.b.a.d.quicicat. —z
AY 3 Siq,

cuuse
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Sitq: femper diuifum i linea.a.0.c.per madium , fequitur communi quodam con-
ceptu, nallam nobis difficultatem oborituram, dictum centrum ad quam volocri-
mus partem docendo , quemadmodum a qualibet alia figara,qua perfocie rotunda
non cilit,emergeret; Ve exépli grasia,fi imaginabimur peneagonum. K., h.t.l.quie
feere fup candg lined.ab. Kiita ut primi ror@ larws. 1.K.n linca.b. K.cxiédad, ducé-
do poftci centrum.o. (ponamas.) verfus.l.dubium noneft,quin oporrear,ve dictin
centrum, 0. lincab.d.cleuctur,ab cademas magis diftet, voluens fe perarcd vaum
circuli,q p fuo femidiametro habeat.o.K.que maior eft ipfa.o.a.ex.13. Ii. primi Eu
cli. vode 12 punéto.K.imaginabimus lincam. K. c. refpicientem centrum regionis
clementaris,dubium non eft,quin fi velimas transferre céerum hoc 3 priori fire v L
ad dictam lineam,oporeeat addere pondus pard iplius.L.quea Loce K. ¢.rus feéea,
auealiquid de ipfo pondere parris ceneri detrahere. quod quibafisis o dis fiae, ar-
duum certé eft ad efficiendum;neque hoe ctiamaccidie figure pert: .- rotunde ,
cum cétrum g perfodtdin medso iptins poaderis cltyreperiatur femper inlinea por-
pendiculariipts plano, in quo animaducrrendum cft, p etiam i iplum planum p-
pellem;pro plano tamen perfecto intelligi noloyfed pro fuperficie pertecte {phe

€a circa centrum 3 corponbus grauibus cxpetitums nam razions magnxe amplitud
nis huiufinodi fuperficici,nallam differentiam notazu dignam i pertes aliquo pla
no cxigui interualli ad curuitazem cinfdem foperficici un.xrgiluu poterimus. Scd ue
redeamus ad fcrmonem de revolutione figure rotandae fofceptum , clusgicur erie
quamlibet minimam vim(ve ita dicam)qug trahat,aut impellas eentrum.o.v o fus.n.
huiufmodi iguram revoluturam,cuius media pars ad wahendum, aut impellendum
punétum.c.fulficiere; Imaginemur autem g It
nea.n.0. . cffcelibra quedi in figura perfecte

rotunda.a.n.c.u.pofita,& vis,, qug trahere cen
trum deberer, d-‘::ﬁ cffer pu?mdium,ruius \.\
medictas appenfa effet extrem tati. w diame-
ai.n.o.u.clard crit, ¢ abfque vila difhculrate
reuolucrer figuram fuper lineam.b.a.d.verfus.
\

d. quia huiusvis,aut pondus nullGcontrapon M
dus haberet vitra centrum.o.uerfus, n. g cen-
trum. o.perpetao quielcie fup. ain linca. c. 0.
a.permediam dividente femper totum pon-
dus figurg fuppofitg. Taned facilivs ergotota
dictavis ap -
plicata cen
ro,ipsii ver
fu&ml:nhis
ncam
g::al]cl.i ip
:;a. d.dictd
m re-
ubl“:‘acr.&
fi inca qua
dictum cen

trum trahi- ] ¢
wr 4b iplo \,
b.a.
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b.a.d. non 2quediftaret, fed furfim traheret faper.nane fubter , aliquid de fi:a vi vie
tweed; amiceret,& tanto plus,quanid inclinata mags effce verfisa.o.c. & tandem
cum cffet viita cum.a.0.c.aut :3 fuperius,aut ad inferius quantalibet ui, ctiam fi in-
finita,figuram exira fizam primer linc.2.0.c.non mouerct, fed (i farfom teaheree fe
iungeret cam a linca.b.a.d.non ob id tamen efficeret,ut centrum.o. exiret exera pri
mam lincam.a.o.c.

Sccunda vero (peciestribas revolutionum modis,ablque axismutatione confta
re porefhideft modo,quo resoluuntar rrochlex mediante fane, & quoreuolumncur
aliqua rota,in quibus aliquod animal incedis; & quo revoluantar ille,quz in homi
nis mana circunaoluuntur medio alicuius manubeii infexi. Hi omnes modi cum
circulari figura magis qui cam alia quaais, faciliores cuadunt. Ex primod fi priorem
modum confiderabimus,ve mediante fune queliber figura, qua circalaris non fic ,
voluatur,{upponamus exemplo debere reaolni pentagonum equiangalum.a.c.i.o.
u.circa centrum.c.mediance fane. qu.a.¢.d.p. neceflario occurrent(in hac hgara an-
gulorum,larerumd; difparium) plurcsinzqualitates,que reuolasionem ciufdem fi-
gurz irregularem efficient; quarum vaa erit,quod duse partes funis,ideft. 9.q. ct.i.p.
non erunc in vaa cadem s inzer fe diftantia femper,quod facile intelledtu erit,fi ima
ginabimur ductasefle lincas.a.i: u. i et i ¢ v. i fumis duo pondera habebitalterum
altero maius,fois extremis appenfa,vade debeat figura virtute ponderis maioris cie
cunuolui: dicte dur partes. v.q.ct.i.p.cinfdem funis,midi centrum,dum firmz ma
nebung,refpicientifed permittentes pondera liberaymaius,efficiens vt circunvolua.
wur figury; efficiet,ve aliquando vnum cxlateribus,ciufdem Aigure mundi quog; cen
!rum:clrm i, vein
figura. A ficg; etiam
linea.i. c.o.(pro exé-
plo)erit menfira di.
ftantix fanfum intc
ipfas, & demdecircd
voluendo ctiam di- ¢
ftabunt incer fe perli
NCad.LAauL LU Ve \
figura.B. fnotuit exé //\ \
plo, & fic criam ali- = S \/ X
quando crunt magis ~o
Jxﬂ.l::\, .pumhn}.\ A 1 B
t. 1. & minus quam.i. g P
A:nENGUAM LRMEN Minus quan.t.i.ncque magis qui
i.a.autiu qux unt equales ; Qux qudem varietas, ~—
in hanc,& in illam parcemimpeller parees penden- \ \
tes funis , vode equaliter nontrahent, Idem dico, fi :
extrema.q.ct.p.cifent quoque femper in vna cadéd;
diftantia; neque 2 corpore paderofo effentattraéta,
quia alix partes iplius.u.quet.i.p.ex fupradictis ratio-
nibus vnam cadem; diftantiam nd femper feruarée
vode ficret vt cum ]xun(isangulisum.u. p-quing.
eraherét femidiamerros. €.i:0.6:6.2:C. 0. e, C.0.quid nd
femper traherent ope {ea virtute angali xqualis |§:i.
<. p.Haec autem ingquaalitas communis cft omnibus

figu- | i
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figuris re&@ilincis tam paris, quim difparis numeri. Sedaliam quandam maiorem
ingqualitatem habene ha figure numeri difparis,qua eft,quéd quido linca. t.itam
W.q.quim iph. i.p.
ﬂ"&dicuhrl‘s facrit,

= [
et quido.t.i. cum
diis pastibus funis g
angulos retos con-
ftirucrir, tic ratione / 3

15gitudinisipfins.c. ¢ —
i maioris quam . t. / ‘\‘/'_1
c.(quia cum fit.c.ig- 5
qualisip.cactca ./'/\
majoripl. C.trea il | T Y
ctiam maior fivipfa. g o
c.t. ) pondus aut vis 2 A
ipfius.p.fisperabited P
qu cftiphius. q. fed :

quando.t. crit in oppofita parte,ct.i.in 2, qur clt
ipfius. q. e3dem ob caufam foperabiz.p.& fic mo
eur fcice ivegularem, & nd vsformem; & obid
ctiam perarduum, praterictas,quosinfliguat an-

i in partem pcn:nnr:m afcendétem funis,qui-

vnum ¢x Jateribus vnitarcum func.

Aliam ingqualitatem habent figurx pares, qux
etiam in imparibus cemitur,etfi aliquantulum di-
uverfaquae b co oritur, quod fincs fit modo ma-
sis.modn minus propingue centrojqu inrqualis

iftantia,maiorem minoremd; vim fuper dictam
centzum ob rationes in fecunda parte cap. decimi
huius rra &atus propofitas, gignit, Null
ex ijs inxqualitaribus circulan figore contingit. lud verd , quod de pentagonis fi-
gures dixi,omnibusaliis figuris difparibus accommodari poteft,

Secundus modus ¢t carum rotais,in quibus aliquod animal incedit,qu fi cir-
cularesnon eflcot,taned difficilius voluercitor,quamno pmamcsJ,,c‘;lm);;l,‘.x(nh

vod cum per fe patcat,non demonfirabo, Sicrgo quantd plurcs angulos habebie
1&: figura,tanto 3d circunvolucadum hoc modo agilior erit. Circularis igitur fi-
gura,qur ex infinitis angulis efficitur,omnizm agillima crir.

Terrus modus eft carum rotarum,, qua manubrivm habent, quae etiam quantd
pauciores angulos habebunt,tanto quog; difficiliores reddentur, tam rationc inimi
Citizzauam exercet cum vacuo natura,quim violiti,quam anguli atri faciunt,cum
expellendo,vt ipli occupent locum, quem ipfeatrimplebat. Quod nullo modo po
teft cucnire circulasi figar.

Nunc nobis ad dicendum reftae de fpecic revolutionis rotarum, qua parallele
fune orizon:i,quibus accidit pofle volus primo tertiog; modo fecand Ipecici,& ob
id fi circulares non crungyeadem fubibunt incommoda,de quibus in fecunda illa (pe
cic loquuti fumes. fed circulares rotx huivs tertie fpecici ad revoluendum crunt re-
Liquis c6 faciliorcs,g vno fold polo nitantur; Quod alijs nequaquam conceditar,
Super

Z
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Super hac tertia {pecic formari poreft problema vnde fae, vt quiefeens huiuf-
modi rota parallela brizonsi fuper vnum puncum,& quaneo fieri poteft exiftensg-
qualis,fi cam circunuoluamus maiore qua poterimus ui, & cidem poftea dimiezen-
tes non perpetuo circunuoluatar . S

Hoe quidem,quatuo fit ob caufas.quarum prima cft,quia huivfmodi motus,cius ‘
rota non fit nacuralis. fecunda eft, quia ctiaméi rota fuper punddum mathematicum
quicfcereroporterct ramen e fuperius alter haberet polum, qui ipfam orizoncalé
tencret, qui quidem munimentoaliquo corporeo indigeret; ynde fricatio quedam
confequeretur, ¢x qua refiftentia prodiret.

(’l["c.r ia cft, quia atr contiguus cam perpetud aftringit, hocd; modo cius motui
refiftic. -

Quarta eft,quia quglibet pars corpored,qued {e mouctur,impetu cidem i quali«
bet extrinfeca virpire moucnte imprefio,habet naturalem inclinationcm ad reétum
jter, n00 autem curvum,vade fi & diea rota particula aliquafug circunferentix difi@
geretur,abfque dubio per aliquod temporis {patium pars fcparata reto itinere fer
retar per acrem, Ve cxemplo a fundis, quibus iaciuntur I:Eédcs,ﬁlnpto,cognof“
re polsumas, in quibus, impetus motus imprgffus narurali quadam propenfione
rectam iter peragit, cum cuibrates Lapis,per lincam redtam contiguam giro , quee

rimo facichar,in punito,in quo dimiffus fusit,rectum iter inflituat , veration: con-
E:n:nx'um eft. ;

Eadem, quoque ratione fit, ve quantd maior ¢ft aliqua rota,tan:& maiorem quo
que impetum,& impreflioncm motus ciuscircunferentiae partesrecipiant, vade fg
pe cucnityvt dum cam fiftere volumus,id ¢ labore & cam difficulcate agamus ; quia

. quantd maior eft diameter vnius circuli,tantd minus cursa cft ciufdem circunferen
tia,& tantd propiusacceditangulum ciofdem circunferentix ad quantititem duo~
rum angulorum reorum reulincorum,ideft circunferentia ad retitudinem linca
rem. Vinde carundem partium dictx circunferentix mogus ad inclinatioocm Gbia
natusatributam, qua cit incedendi per lincam rectam,magis accedit.

Quod eAriflotelis ratio nona quaflionis
admittendanonfic.

CAP XV.

V Era ratio nonz queftionis & fecunda parce decind cap.huius traatus, & noo
¥ alindeaceerfini debets

Quod driftoselis rationes de decima quaflione

fint resicienda.
J
CAP. XVL
Riftotelis rationes,vnde fiat, ve facilius moueantur libra vacu, plend

ad propofitam difputati nonp nt; quia
propor tjolx’us l:oimm's mouentis fuper mobile;quod ipfe nom ot
ic
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Sitexempli gratia libra. 2. i. e. quar in vtraque extremitate vnciam vnam lem
ponderis obrinca, & fic Iibn.n.i.n?:;uxlis priori,qua pro fingula extremiraze vod
mﬂﬁ libram habeat. Ariftoteles admiratur, quod addendoipfi.c.mediam pon
deri inciam,bn;hinm.i.c.vtlodnscsdn,quim adyjci¢do ipst medid vncd iph. u.
brachij.i.u. Quod i daabus caufis proficifcitur, quarum prior clt;magua differencia
pm‘pm-xionis vnius hibex ad mediecatem vnius vnciz,ad proportionem vnios vnciz
ad iplam medictarem, quia i pondus adiedum exeremo.u.dimidse cffee ibra , &
cum cadem earditate beachiam moueret,optimo iure in admirationem poffet Ari -
flocclesduci. Sed hoc fieri non poffetquia ipfum deprimerct cum cadem quati ve
locirate,qua media vacia brachium.i.c. Dixi atem quafi , quia noanihil difcriui-
nis intercederer,quod proficifcirur & fecunda ratione . Exhae, refitentia oft , que

soritura fparto, quia quanto maius poatis continet libra,tantd magis premit (520
tum in loco,in quo fultinctur;vnde maior refiftentia in circunuolutione ciuld: Ipae
thinloco,in qeo quicir,cxoritur,quia ipfism cft corpus materiale. Siquis avzem
vellet,ve brachinm.i.u.cadem agilirate,qua.i.c.defcenderet,oporeeree, vi propot-
tio dimidix libeg adictx pondert ipfius..
quod cft vniusLibre, vim faam habérer, 4

4 e
excederetrefiftentiam fui fpatti ( me- £ O
io brachiorum maiorum js qui fanc. 3.1, . :
€. ) itd proportionatam , vt proportionata Vol U
cftvis dir;mz vacix ipii. e.:’:o»th,rdiﬁm O‘i’ —i-)
tix fui fparti. Hui{mod: rationes cumro -
tis grawioribus lewioribusqu,& ifs,qug i cor

1bus quibuflibet grauibus impclluntur,accommodare fuerinr, titubantem intel
gﬂlﬂ confirmabun.

¢ De ueracanfa. 1 3.quaitionis mechanica.

CAP. XVII.

Era ratio, cur multd longius corpus aliquod graue impellator fonda , quam
mang,inde oritur, quod circenuolucndo thmﬁr:a y maior impraeilio tnperus
motusfitin corpore graui, quam ficree manu, quod corpus liberatum deinde cum
fiscried funda, natura duceiter ffl 3 puncto,i quo pmliqijr sperlincam contiguam
giro,quem poftremd facicbar, fufcipie. Dubirandumd; non cft, quin dita tunda
maior impetus motus dicto corpori imprimi poffit < ex multis circumadtibes, ma-
ior femper impetus dicto corpori accedat . Manus autem cigfdem corpors motus
dum illud ipfim circunuoluitur ( pace Ariftorelis dixerim) centrum non cft, ncque
fianis cft femidiameter. mmo manus quam maximé ficri potett in orbem cicrar;
ui quidem morus in orbem, vt circumagarur ctiam ipfum corpus, cogit, quod qui-
m corpus, naturali quadam inclinatione, exiguo quodam IMPEty 1am incgpro,
velletrecta irer peragere,vein fubleripea figura paret, in qua.c.fignificat manuin.a.
corpus.a.b.lincam rectam rangentem girum.a.2..2.quando corpus liberum rema-
net.  Verum quidem eft,impreiium illum imperum,continud paulatim decrefeere
wade ffatinvinclinatio gravitaris civfdem corporis fubingredicur , qu fife mifcens
cum imprellioas fictaper vim,non permittityvelinca.a.bilongo tempore redta per
e

mancat,
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maneit, fed citd fiat curea, com didom corpus.a. duabus virtutibus moueatur,qua-
rum vna cft,violcntia impradla, & alia patwra,contra opinionem Tartalex, quine-
gat corpus aliquod mocibas violen
to & naturali timul & femel moaeri

fle.Neqg; eft filétio pextcreddus
r::c in re gdi notatu dign’cffcitus,
qui ciufinodi cft, ¢ quanto magis
crefcit imperus in corpore.a.canfa
tus ab angumento velocitatis giri
ipfius.c.tatd magis oportet,ve fen=
tiaz (¢ trahi manus 2 dicto corpore
a.mediante fune,quiaquantd ma-
jor impetus motus ipfi.a.cft imprel
{iss, tantd magis dictum corpus. a.
adrectum iter peragendum incli-
natur,vnde ve re@a incedat, taned
maiore quoque vi trahic.

Y
De decimatertia quastionea.
CAP XVIIL

D Ecimartertia quatio ad ve&tem omnino eft referends. Imaginari debemos

axem cylindrici iugi,hypomochlion effe, Quod reftat;illod ipfum totum de
pendet 2.4.quintod; cap.huius trataws. Vna tamen differentia inter hant machi-
nam,ve&emd; reperitur, qua cft,g ivgum aliquam refiftentiam pro coniunctione
calcata in Joco, in quo voluitur, magis quam hypomochlion veéti cificiaz.

De decimaguarta quaflione.

CAP XIX.

Ationes etiam decimaquartz quaftionis dependent ab ijs,quz fnt vedis,vt
R excmpli gratia fit lignum.a.b.c.d. frangendum in medio, annitendo genibus
in punétum.o. clariflimé tunc videbimus,g tenentes manus longe 4 medio, in locis
a. ct. ¢ . facilius minorid; cum labore illum frangemus,quam fi cafdem vicinas me-
dio ciufdem ligni in loas.c.ct.i. poncremus. Cuits rei rationes cxdé funt ol ifs,que
primis huius tractacus capitibus propofitz fucrunt.Imagincmur lincas reétas doceas
a puncto.o.ad loca.a.e.det.c.hinc manifefté perfpicicmus corum,qua iam diximus
ratione, ¢ loca.c.ct.i.mediantibus duabus lineis.c.0.¢t.i.0.magis annitentur.o. cen
tro,quam loco. a.ct.c.duard lincard.a.0.ct.c.0.beneficio;vade vim quog; maiorem
h;ﬂ)x;( a »

[
ina.ct.c. < A 3
quzl!l n /
[XIAR 4 o b
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De ueraratione. 17. quaflionis.
CAP XX.

D Ecimafcptima quarftio ab Ariftoecle haud bend percepta fuit, quiais nonac-
commodat partes vectis fuis locis. Quamobrem imaginemur duos vedtes.
2.0.1.¢1.0.¢.0.quotum centra , qua hypomochlia appellantur fint. 0. & pondera,
qua fune actollenda fint.a.ct.c.inter fe 2qualia,& diftantic fint.a2.0.ct.c.0.01bi inuicé
zquales,fed.o.n.xqualis fit ipfi.o.uzclarum crit,g ad elevandum.a.oportebic depri
. mere.ndad elevandum.c.oportebit arollere.u.Ee quia omnia fupponuntur 2qua

soun Shaney  lizyclarum quoque erit,commu-

A pat nif:icmiaﬁ,lgn_umdvimuucm 53 /
o= . n.quanta fufficictadattollen A
o a.inu.quog; fuffe@uramad ele- C ° o>

vandum.c. quia ¢l xqualibusan 1
gulisijs,quibus duz virures. a. é 5 ']
€1.N.3NNITUNTUL.0.CENtrO, itd. €. ¢
et.u.¢ contrario foo centro.0.an
nituntur. & omnes rationos pro
veitea.o.n.quarto quintod; huius trada-
tus capitibus citaez, vedti.o.e. u. vt fatis (@
rﬂéa dixi in dio capit. s .conucnire pof-
unt.

Nuncficali rs ligni cindenda fe-
cundum vmulgs“?ul:.d.c.f.g. & fit cuneus

a.bvc,qui vi mallci. P. vique ad.t.x.pence r (3

trarit. Hinc clarum erit , quod apertura

im.rligoi, poftquam infigitur concus fe \p ¢ ]
cundum venas,longior crit parte.x.b.t.cu g 1! 3

nei, que ingrefla cft. Oportet nunc ima- \

ginari duos vectes fimiles fupradicta. u. c.

0. in hunc modum, vt puné&ta.i.f: ligni fint
Joco.u.exeremi iphi® vedtis, ct.t.x.Joco vir
tutis applicatzipli. v, & refiftentia circa
pun@um.m.loco ponderis.c.vedtis.o.c. .
dati , & pars. K. quafi immediara poft.m.
verfus extremitatem. fie ligni,fit loco hy-
pomochlij.o. Hinc fice vt quanto longio
res erunt linezd.m.K.ct.r.m.K.taned quo

que facilius victuees.ux.impellenc.ir,

o
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De uera€s intrinfeca caufatrochlearum.
CAP XXI seuy | )

P Rointelligenda vers,& intrinfeca ratione, vnde fiar ur multitudo rotularum o
trochlcis caufa fir,ue exigua vis furfum Jaut ateollat podera magna . hna
inemur duas hic fubferiptas trochlas explicatas tranfuerfaliter in hunc modu
1deft fic parad tignd.a.b-bixem & parallclii orizonti. cui fint rotulx appenfeab infe
tiori parte ad fuperiorem huicd: eregione oppofic”fitaliud tignt.c. quod moueri
poffitab imo ad fumum,fisper quod totidem fint rotulx aut radij, ¢ anncxa poltea
fuacrit funis punéto.. b, fixo, cam faciendo pertranfire per rotulas tim a paree .m
riore,quam ab inferiore; & appenfum deinde cum erit paruo illi gjgno. . d. mobili
pondus. E.ducendo poftmodum extremum.f.finis tranfeuntis per rotulas,idem pla
né fict quod a trochlgis fimul unitis fieri folet . Cuius quidem cffectus ratio fub o+
ftram cognitionem cadet facilius in huivimodi figura. Imaginemur feparatim fta.
teram.g.h.cuins cétrum fit.K.ita firum,ue brachiom.g kit duplam ad brachium. K.
h.fupponendo igitur in punéto.g.pondus,aut virturem moucntem unius libre, & in
h.duarum librarum,abfe; dubio hx dux wirtutes in huiufmodi diftantijs 3 centro
¢quales inuicé eriit,ob rationes prioribus capitibus iam allatas,& ftatera orizonealis
manebit. Vnde clarum erit,q quieuis etiam exigua virtus adiundta ipfi. g: moucbie
fateram extra orizontalem fitum . Nunc fi punto.i.ex 2quo medio mter.g. et. Ko
applicata evit virts ipfius.h.non amplius confiderato brachio.K.h.inclinante uirtus
te 1pfius.i.candem partem verfus, in quam inclinabat,quando erac in.hfed uirtusip
fius.g.inclinet contrario modo, diucr{og: ab eo,quo inclinabat privs;clarum quog;
erit,communi conceptu,& ob e2,quz cap. s.huius racatus fanc dicta. g, b femper
in codem fira ablque motw mnl'uram,hamjiﬁumm imus mobilem , &
primam. Imaginemar nunc  punéo.c.fixo defcendere K. qu fulciat pun
@um.K.cxeremum diamerri.g.K.quam intelligo pro diametro wnius ex rotulis infe
rioribus trochlex; & fit.n.l.m.diameter vnius cx rotulis fuperioribus alterius parui
tigni defixi 2 parte inclinationis iplius.g-& pacallela diametro. g. Ku cuius diametri
centrum fixum fie.l.& fit coniunctum.g.pundtum, 3 fune cum punéto.m.qux t per«
pendiculacis it primo diametro.g4.K.quim fecundo.ovmaideit ita veangulinm.g.

4 I m e
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afint redi. virrutem ipfius.gapplicatam efle extremo.
mmm inclinatione mm% ad infcn,:cmspamm,quz quidem virtus
communi quodam conceptu eandem poffidebit vim fultentandi immobilem diame
trum.g.i.k. quam habebar, qfi cratin.g.com inclinatione ad foperiorem partem,
& ficetiam dameter.n.lim.non magis ab una,quimab alia parce declinabit, quia
cum quardam virtusi tacur aqualis medietari virtuss ipfius.i. quie virtusip
fius.i.oim mhtrdmiddm dimidia fui ipfius paree, fequitar.
n.m.debere immobilem permanere. Nunc fi alia dizmerter rotulz mobilis crit de-
fampta,quz fit. p.q.0.cuius centrum fit.q.in fitw paallelo ipfi.n.l.m.& fic collocaca,
vt coniungendo.o. i-m.n.0.c.0.0.p.fing recti: fi imaginaci fucrimus oril
larum effe pondusipfi®.nuin.o.cli cadé inclinationc ad deprafliocem partem,illudip
fm,ac i effet in.n. communi concepeusfine alicuius diametri muzatione prafabic.
Exfi centrum.qfixum effet,& extremo.p.appoficum fuiffet pondus ipfius.o.cum in
clinatione ad fuperiorem idem etiam plané preflaret,ctiam i nallum ullius
diametri fitum, communi fcicntiamutarct, cum extremum. m. deorfam fit doctum
d.g.uirruee dimidie par cis ipfits.i.& ab alia huic imili. m. quoque deorfum fie tra-
&Gumab. 0 : quod quidem.o.deorfiem eft alteratum,ob incimationem ad fuperius
3 uirtuee pofita ponendo centrum.q.fixum. Sed (i loco centri fixi,imagina
bimur in.q. aliquodxquale ipfi. i. quod duplum critinuirtute ad cam, quae
cftipfius. p.& ipfius quoque. g: fequetur etid cadem immobilitas horum trium dia-
metrocum. Quia cum Z(Iuiufu»dipmdmfmvim in.g. cum inclinazione con=
traria vireuti i ipollet dimidize pares iplius.q.é tic ci quar oft ipfivs.o. i« .
-ihcrqnhm-c mab.nv‘mwr:;iu}:g.qgod.m.dcodum wrudiz; idcie
wmﬁ;u:,n m habebit virous in.q.ferendi deorfum diame tn;_m.p. n.;ann
quoque ipldruntp.et.o.xquales,& equalicer difances Lquiplam ad fupe-
fiorem partem udsubu:. Quamobrem necafcender, nec dcﬁqtolt’!ﬂ‘ neclocumy
mutabit. Sapponamus nunc quarram diametrum rotules.t.r. qua fie fecunda rowa
tarum fixacum, parallela ipfi. p.o.& in co fite,quo coniungendo cxarema.r.p.angali
o.prctp.rsfing redti, & imaginemur virtorem iplius.puéperiri ins.cum inclinatio (]
ne tamen contrariaideft deorfum verfus,exchis idé quoque plant fequetur , idelt g
nuila harli quatuor diametrorum moucbicur. quia eundem cffedd o inclinatione .
deorfurm verfus eficerce dicka virtus in.s.quem in. p.cum inclinatione firfam verfus.
et iam diGum cft virturem ipfius.g.dimidium virowis ipfius.itrahere.m. qua medid
ity te.n.astrahit.o.codem robore,ct.8 cadem vi trahic.p.medio ipfivs.. Huculque (cic-
et G sint tificE nouimus ponidus,aue virtutem iplins.s.qu cft dimidiom ipf®. i. faftrocre vim
e :z’;" “* _ipforum.i.ct. g. nam quaer tantum, quanta ipfamet virtus ipfius.s.cffe confpicitur.
of . elmb m fiadiundtg nobis effent dox alix diametri comijfdem plané conditionibus ijfdé
w04 radionibus veentes,cognofceremus quod cadem medicras ipfios.ifexies tantum pd
Gea mtiront ¢ deris, quanea ipfa exifterer, feftinerce. Vnde manifeftd cuadic, g cidem medicesti
e st aBf” 852 jphius.i.ins.nonnibil virueis addendo, dicte diametrijillicd moueréeur fiu. Et quit
 reat’ § ooz in liberpunéto,aliquam diametrum habene, neceffario fequitur o infe-
e Sg%. *f; vioresad fperioresaccedere debeant. Attamen fi foree execemum immobile ip-
ey seektes o< fiusfunis non pendet i punto.c.trochlex fiperioris,fed alligatam fucne ad media
aget, danrem s inferioris trochlex ut ad punctum.i.ope unius trochleg fuperionis immobilis ve in f
I Fn.A.vidcre liceryclare patebit g i tribus virtutibus 2qualilivs pondus in.i.poficd
s hallasm 7 fultinchituchoc et 3.g.ab.id& ab.k. quard vnaqueque tertia pars eritiplius.i.in con
it ’{ &ontraniam parté;hoc ¢l certia pars reliftentiz. proprerea g cx xquointes fe diftit.
i ap: A nade Bele
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g iet. K:Qua proymmgcbimvimsp«mim. hoc modo s Nanw.
cilet tertia pars refift entig, quemadmodum privs mediacrat. Idem hfemde.mi
©0.p.r.ct.5.Sed cum oporeeat pondus,q.tancum effe ve faffizidc refiftenixin. o. ¢t.p.

ipfum fuftinere, idcircoipfum q.fublefquialter erit poderi in.i.pofiti Qus-

Pproprer.s.quinta pars crit .et.q.Deinde fi adhuc. deo diametrivapsin-
ferion,alter vero fuperioraddici facrine cum pondere 2quali.q. ad medium disme-
tri inferioris,tunc pondus.s.erit feptima parstriom i.quéc certij additi,ex

s t ¢

fupradidis rationibus.. E¢ quia virtus falti
nenstotale pondustrochle inferioriap-
penfum in tot dividitur partes aquales ,
quoe fne diametri orbiculorum erochle®
inferioris,quando extremum immobile fit
nis alligarum fueriz ochleg faperios , ve
puta in punio.e.com verd alligatum fue-
rit trochlex inferiori,virtus primi diame- .
tri.g.LK.trochlex inferioris femper fefqui A
altera erit vnicuique aliorum diametror(;

ideo virtus refiftensic alterius exeremi mo

bilis funis,puta.s.fubmultiplex erit totalis

ponderis,co modo quo diximus, cuius vie E
tus, feu graviras dividirur feu diftrubuitar
dizmemsinferionstrochlex ve dictum eft.

Depropriacaufa.s 4.quaflionis.

CAP. XXII.

Fra cavfa cffectus,qui vigeimaquarta quaftione exprimitur,adhuc a nemine
(quod fciam)animaduerfa fuir.icet non fit admodiam ardua vel obfcum.Ima
inemur ergo duos circulos.c. £ et. b. g. concentricos,itaq; fimul coniunétos,ve fi ip
Fomm vnws feratur in orbem,alius quoque circumagatur,co modo,quo carruum ro
tx voluunitur. Etimagincmuvr primd fuper lincam.£i.reuolui maiorem,& quando
idemarculus erit ind.di%tam incam.f.i.tangere circunferentiam civfdem ‘ii;cp‘un-
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foc.ynde linea.g.m.mediante.K.continget circunferentiam circuli minoris in pun
&o.bs X, 3 4-primi Encli is etitiphi.f.l.quia ex. 17.tertii, anguli.f et g
fnﬂ:qnlu.x.css,m e':;‘:’pnm m.&fmpgnﬂ‘l‘clx.& fic mmt.k.l.cgum. fig. cx
cadem ﬁmi&.hxﬂom@ arcus.g.butranfierit lincameg. K. maiorem ipfa,
eft, quia dum mouetur, punétum ipfius.g.b.virtuee revolutionis iplius.f.c.
omne puncum Gufdem arcus.g.b.viterius verfus. K.quam fi moneretur virtuee re-
wpolutionis iplius.g.b.fuper lincam. g, m.defertur. ve exempli gratia , quando virtute

revolationss maioris circuli, centrum.a.reperitur in fitu lince. LK. punétum.g.conte |
cerit iter.g u.& punétum.b.iter.b.K.ctiam reliqua omnia punéta inter.g. b. magna
itinera egerint, cum 3 magno circulofintante delara. Imaginemur quoque hos cir
culos effe delatos virtute revolutionis circuli minoris,& parté.g.tredte, g-m.dimen-
fam fuifle ab arcu.g.b Quido crgo.b.eritint.fatum erititer.bt.ab ipfo.b.et.g.fa-
cietiter.gun.qug itinera alijs muleo beeuiora fiant, quia brewioribus eruribus rewolu-
€a fune dicta punéta,& ficdico de reliquisomnibus punétis inter.g.ct.b, &inhocca
fu Leritin.q.& punlum.c.eritin.e.Quamobrem omnia panda cotingen-
tix inter.f.ct.c.non folum non crunt delata anted, fed potius 2 primo fita retrorfum
erunt repulfa. Vnde non eft,quéd in cantam admiracionem ducamur i dum reuol
uitur circulus maior,arcus.g.b.circuli minoris,totam lincam. g. K. tranfire viderur,
& dum rewoluitur minor,apparet arcam. f.c:maius iter quam 1i.r'.zd. ¢. non facere,
cum maiore fefe in orbem ferente, quodlibet punctam arcus.g.b. ad vnam candéq;
em duos morus obtincat.vt cxempli gratia punctam. b.non folum mouctur ver
m.qudd circa.contrum.aferatur,cum ipfum etiam centrum moucatur verfus.m.
fed quia preeer hoc deferantur quoque i circulo maiori verfus. m. vique ad lincam.
kL verd minor circulus in girum ducitur,habet quodliber punctam arcus. fic.
duos mozys contrarios,quorum alter verfis.i. virrure revolutionis circuli minoris,
&alter exco, @ difus circulus maior circa centrum.a. voluatur, vade omae pundd
circuli maioris cum reéta.fi.cecrorfam pellitur verfis.x. ;




DE MECHAN. 157
De uera caufa.3 0.questionis .
C A P. XXIIIIL.

Era ratio , cur homo dum fedet ( non tamen Tarcarum more ) fi velie
fcfe in pedes erigere,calcancos retrahit, ve efficiat angulum acorum,cum fg-
mornibus coxisd parte inferiori,& ventrem inclinat , ad conftituendum ctiam angu
Jum acutum in fuperioni parteyea eft; ve totius corporis pondus’, exgquo, ideftab
oppolitis partibus circundet lincam ream, qua tranfit per locum, in quo conquic
fcune pedes verfus mundi centrum.ideft,ur edatur equilibrium ponderis ipfius cor-
poris circum lineam illam, qug fub pedibus inferwt pro fparto. Vinde aperiendo,
dcinde dictos duos angulos circa dictam lined,abfque vlla difficuleate erigitur cor-
pus,& abfque periculo in alterutram parcem cadendi.

De ratione.3 5.€5 ultima quallionis.
CAP. XXV

Era ratio, quare,, que reperiuntur in vorticibus aquarum , femper’ verfus
medium spfarum vertiginum vnjuntur , inde promanac , quod media
vertiginum femper depreffiora funt . vade quod dicta corpora ad medium acce-
dant,nihil aliud cft,quimipfa corpora fuo pondere gravitateque defcendere,figu
ra enim vorticibus cft quali conica,, & concaua cum angulo deorfum,& gyro bafis
furfum. Arque hac vera eft huius effeétus caufa, & non ea quam Ariftoccles ponit,
& quo aliarum omnium quxftionum , quas ¢go opilf rationcs fint bené propofica.

DISPYV-
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Qualiter circwlus defignari pofiur alios duos cireulos
propofios includens.

CLARISS. PETRO PIZZAMANO.

Vperioribus dicbus per tuas literas & me quafivifti, ve modum tibi feribere vel-
lem,quo circulus defignari poffic circunfcribens alios duos propoficos circulos.
Qua inre v ubi fatisfaciam quod maximé cupio itarem accrpe.

Propolii circuli fine, aut inter fe contigui, aut interfecantes vel feparati.Efto pri-
mi contiguos effe,qui fine.d.b.et.f.q.quor.d.b.maior fit et.f.q. minor, eorii vero
tentra fint.a cr.0.punctl aurem cotingenig iti.Ndc prrahat.b.a.0.q.per céera co
rum ab vna circunforehsia ad aliam qug quidem Linca tranfibit per pundtam. i. ex
1 1.terti) Eucli.deinde d diametro masori abfcindacur. i e, ad equalitacem minoris
femidumetri,quo facto fomarur diftanzia inter.c.ct.b.circino mediante fiod; cen
t20.0.[cindatur,alio circini pede,circunferentia maioris circuli in punéo. u. 3 quo i
menee concipicmus duas lineas.v.a.d.ct.u.o.Ltranfeantes per corum centra.a. ¢z, o,
vique ad circunferentias in punétis.d.ct.£ iplg eriitinuicem gquales,eo quod.c.i.si-

ta fusit zqualis.o.fct.o.nequalis.cb, quare, u. frqualiseritb.ifed wd cod 2qua
{:Lb.i.crgo.u.d.n]ualiscrit u.£& circulus, cuius wd.vel.w.f.eric femidiamcrer,con-
tiguus eritipfis propofitis circulis ¢x conucz{o. 1 1.iam dictx . Idem dico pio cireue
Iis fc inuicem fecantibus . Sed
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Sed fi circuli propofiti feiunéti fuerint,fumator.b.i.diameter maioris, qui fiat fe-
midiamcter vois circuli arca centrum. 0.& hic circulus vocetur. h. x. coniun
tur deinde femidiameter.o. i. minoriscircali cum femidiamerro.a.i. circuli majo-
§is, & cx husufmodi compofita linca, fiat vnus femidiameter.a.x.circuli.x.n.concen
trici cum majori, & 2 pun&to.xinterfe@ionis horumcireulorum irofno quod fein.
uicem interfecens) ducantur per corum centra.x.2.ct.x.0.vique ipforum circun-
ferendias in pundtis.d.ct.fdog
lincx, vode hadbebimus. x. d.
zqualem.x. £ co quodtamiin
x.d.quasn in. x. £ reperiuntar
diametni,& leaidiametri am-
borum circoloram,fa&o deni
Quc Cenerpas, valus circali,cu
ius tomidiameter gqualis fic
vni carum.x. d. vel, x. £ (olu-
tumn erir problema, dicta ra-
uonec.

Si verd diftantiz duorum
propoficorum circuloram tanca fserit, quod fecundi circuli nequeant fc invicem
tangere, vel fecare,tunc alia via incedendum erit, que talis eft & generalis. Divida-
tur tota.q.b.per @qualia in puncto.z.circa quod fignérur duo punéta b ipfo equidi
fiaoniaK.ct.p.diftantia vero.a. K. facta fit femidiameter efle vnius circuli. Kox. circa
cencrum. 2. diffantia autem. 0. p. femidiameter aleerivs circuli. p. x. circacen-
trum. o. qui quidem circuli e inuicem fecent in puncto. x. 2 quo com dode fuc-
ving. x.2.d.et.x.0.f per centra dictorum circulorum,ipfe crunt inuicé gquales, co
cumub.K.xqualisfit.q.p.igitur.x.d.et.q.p.erunt invicem ¢quales, fed fix.xqualiscft
Gp-quare.x.fequalis crit.x.d.tunc f.x.centrum fuerit vaius circali, caius femidia-
mcr fie vna dictaruim, problema folutum erie. .

Talis ctiam foluno commo-
dacntad inucnicodun dictum
circulum cuioflis magnsudias,
dawo ramen ¢ clus diameter, ma
ior fit.b,z. cum n noftsa poreita
te fis accrpere puandta.K.et.p. pro
xima velremota abipio.z.ad li-
bicum. Vade ablque vila diuifio
ne iplius. g be per mediam, fas
erittignaic puncta.K. et p. dua-
bus ditanzijs medisnubas. b . K.
et q. po 1w 2qualibas, &
Clada g eopouas,

U Db f Gy Aansins salef Jater eut' Y A

Figuram
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. tipollemus ctiam Abfgydivifione ipfius,t.x.confti

364 10. BAPT. BENED.

F uram uperficialem ellipfi fomilem , ex datis axibus cir-
gty cino mediante delineari poffe.

" AD EVNDEM.

Iguram fuperficialem ellipfi fimilem,ex datis axibus,circino mediante delinea
F re cum volueris,ita faci G :
Sit.c.c. femiaxis maior.a.c.verd minor, ad angulum redtum inuicem coniundi,
tunc.a.¢.producatur vique ad.o. Itags.a.o.maior fit quam diftantia incer.o.ct.c.qug
quidem.a.0.poffet ctiam dari, deferibarur poftea circulus.a.d.b.circa centrum.o. 2
quo pundo procrahatur emidiameter. 0. b. quz cum.a. o. angulum rectum confti-
tuat,qug.0.b.crit quidiftans.c.c.ex.28.primi,ducaur poftea.b.c.d.ct.o.c. d. vnde
angulus.t.c.d.¢qualis cricangulo.o.b. d.cx.2 g.ciufdem.ex quinta autem anguli.b.
et.d. fune inuicem :gula, quare ctiam
& anguli.d.et. ¢. inuicem gquales erunt,
& ex.6.cinfdem.t.c.oqualis erit.e.d. duca 4
tur poftea.d.x.h.perpendicularis linez.c.
c.ita diftans fub ipla.c.€. Ve arcus circula- /
s circa.t. delineatus ex femidiamenro. £
d. aptus it cam fecare, fumpto poftea.r,
tam diftanze ab.c. vt. t. reperitur ab ipfo
e.ct.z.ab.c.vi.0.ab codem, ducendopo- B
ftea duos alios arcus magnitudinis priordl \
¢irca centra.r. ct. z. habebimus propofi-
tum,
Sed cum quis valuerit prius arcus mi-
porum circulorum delincare circa maio«
rem axem,fiant cuiufuis magnitudinis,ve
in fecunda figura videre eft,pofito tamen quod ecorum diameter , minor fit minore
axc iplius figure, qiorum circulorum vus fit.c.d.circa.t.cius centrum,deinde in axe
minori fumatur.a.x.xqualis.cr.& smmh.\tur.t.x.qug per ¢qualia diuidacur in pune
&o.n.2quo poftea ducatur. n.o. ad angulosrecos
cum.t.x.vique ad interfeétionem cum.a.c. in pun-
&o.0.minori axi produdta cum oportucrit, quod
quidem punétum.o.centrum eritarcus.d. a. maio-
15,00 luod.o.t.:\]ual'u cffct.o.x.ex. 4. primi Eu-
cli. vnde,0.d. xqualis effet.0.a.& circult etiam in-
uicem contingentes in punéto.d. ex. 11. tertij tam
in prima , quam in fecunda figura , fumpto denig; |
punéto.s.tam remoto ab. ¢. quam. 0. reperitix a?)
codem,ipfum, centrum crit alterius arcus oppofi-

tuere angulum.x.t.0.xqualé angulo.t.x.0.vade ex
6.primi haberemus.o.taqualem.o.x,
De
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';(Emm & arcuum poffumus geometricé demonfirare quod valde de.
Cras .
- Quaproprer fit circulus.b.a.c.q.in quo fit triangull equilacerum.b.c.n.& quadra
tum. b.a. q.u, cuivs periferiam probabo longiorem cffe periferia trianguli. Siccnim
diameter circuli.b.q.qui ctiam erit diameeer quadrat, vea e {cire poces. Sit ctiam
| b.commune tam anguli quadrati quam trianguli. vade fequitur quod dictus
diameter fecabit latus.n.e.rianguliad reétos & per equalia in.t. Nam cum arcus.b.
c.aqualis (it arcui.b,nex.a 7.0ermij; remanct vt arcus.q.c.cqualis it arcui. g.o.vnde
‘angulus.q.b.c.zqualis crit angulo.g.bun.cx. 2.6. cinfdem, quare ex. 4- primi 2oguli
ad.t.crunt reétien taequalis crigiphize. yediximus, .
. Deinde.b.e,ct.quadeinuicem fecit in pancto. o.vtex e claram patet, ducatue po
fiea.q.c.vnde h::aum angulum.b, ¢.q.reQUms X. 30188}, ¥ € ¢X. 1 3.primi.qe
o. Ivgxx cricipfa. .cJongior ¢t ipfi.c.t. quare.q.0. longior critapla.te.
t probemus poftea,b.a.oJongiorem eflc ipfa. b.e. producatur.b.a. ia quod. 2.
walis it ipfi.a.0.ducaturdy 0.p et.a.c.cum auter ¢x iam dida. 30.ternyj Anguios

2.0.reét" fityeric angules.o.a.pimilizer reét” ox. 13, primi,vode cx.5.0¢.3 2. ciufdé
ﬂ)gﬂmpao.crit dimidivm reéi,& fimiliter,exijidem,angulus.b.q.a.cft dimidivia
¢t quare angulusa.p.o.xqualis erie angulo.a.q.b.fed angulusa.c.b.xqualis clt an
gulo.2.q.b.ex.20.t¢1ti), ergo angulus. b.p,o.xqualis erit angulo.b,c.a.angulus verp
a.b. ewcommunis cft amboius wranguls, 3.b.c.ct.0.b.puquare €x. 3 3  primi gl
ba.c.ct.b.o.p. reliquiex duobusrectis xqua
les inuicem crune . Quare ex quarta fextr, |
.18, quinti proposnio.b.o.ad.b.p.crit, vt
b.a.ad.b.clod exad, prumib. o.maior eft
ipfa.b.a.quarc cxa g,quinti.b.p.maior crig
ipfa.b.c.fed.b.pxquatur iplis.b.a.coma.o
ex hyposcli,crgo. b a. cum.a.o.maior erit
ipla.b.c.fed.q.0.maior erat ipfa.t.c.ve fupe
s vidimus, quare.b.3.cum.3.0.¢1.0.q . ma
jor eftipfa.b.c.cum.c.r. hoc cft dimid
perifeng ipfius quadrati, mai® erit dimidio
penferic ipli® cridguli propofiti,quarc ex 4
diéta tota periferia dicti rrianguli, fimiliter

robarem de omnibus alijs figuris regulari

Emcodcmdrwlo infcriptis.

CONSIDERATIONES NONNVLL.E IN
Archimedem.

Dodl flimo arque RewerendoDomino Vincentio
‘eMercaro. )

K caillas duas Archimedis propofitioncs, quz in translatione Tarealex fine
fub numeris, 4. ct. 5 . & impreflione Bafilex fubnumeris. 6.ct. 7.vhi
tradtac

.@, Voo tibialiisdixi verom c'ﬂ,inu!lcaum {cilicet non omnind quicfcere cir
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tradtar de centris librayfeu farera - A (pice igitur n.4. fapradicta, quod cumappen-
{c fuctin: omngs ill# parees ponderum, parabys longitudinis iphius.). K.in qua volo
vea pundtis.c.et.dimagineris duas lincas.e.0.ct.dninuicem equales, & feré pere
pendiculares irﬁ.l. K. hog eft refpicientes mundi centrum ; imagineris etigm. 0.0,
qua fic paralicla ipti.l.k.qux diwifa fizip punétosi. fupra.g. Hinc nulli dubjum cric,
cum.g.fucritcenrum touus ponderis appenfiipfiLK i. fimilirer erit centrum
cum direéte locatum fic fupra.g hoc eft in cadem diretionss linea, quod quidem
nonindiget aliqua demonftratione,, cum pet fc {atis pateat. Vnde ex communi
concepru.o.crit cenerum ponderis appenft ipli.L.b. et.u, exit centrum ponderis ap-
peafi.ipli h.K. Scimus niii. i, effe cétrum duorum, hog et iplus.).h. &1pfias.h.k.con
tinuatorum pee toram. | k. Nunc ergo fi confideremus. .k diuilam efie, hoc cftdi-
Gundtam in punito.h. i hilominus.i.c cffc ditorum poaderum,
& quod tancum cft,ipfam cffe continui, quantum divifam in dicto punto.h. ncque
ex hoc, pundum.i.critmagis vel minus centrum duorum ponderum.Lb.ct.b. k.que
rum vaum pendet totum ab.o.aliud verd rotum ab, u. & hoc modoin longitudine,
o.u.diuila vt dictum cft y habebimus propofitus.

Rliquam propofitionem tibirelinquo . i y

11l vero propolitio, quam tibi dixi Archimedem tacuiffe in huiufmodi materia
eft, quod fi duo pondera zquilibrant ab exsremisalicuius (tater, in cextis prafixs
diftantijs 3 centro . Tunc dico fi corum ¥no manente alterum MOUCHUr FEMONIES
ab ipfocentroquodillad defeender, & i viciniusipfi centro appenfua fscrit afcen-
det. Hicenim propofitio quotidic omhibus inlocss videtur, ipfam vero pato Ar
chimedem pratermiliffc ob facilitatem, cusn ab antedicta ferd dependear.

Sit exempli grasia. ftazera.a.u.cuivs centr yinfiti.& rau. & appenia, ftin.
gicem habeant Viuiacti a6 invicem habene. Nunc dico quod i pondusiplius.u,
politum fucrit viCinils centro Ve puta in,0, inmoto exiftente pondcre, 3. quod bra-
chium.i.o.n.afcendet, & & conuerfo, fi remocius pofitum fuerie, defeendert.

Ponat ergo vt dict eft in.o.vicinius cétro, quapeopeer brachivm. i. 0, brewi® eric
brachio.i.u.vnde MinoE proportio erit ipfius.i.0.ad.ia.quim.iu.ad cundem.a.l. &
confequenter quam i iplius.a. (quod fit.o.¢.) ad pondus ipfivs.u.Quare i cx
pondere.n.c.dcmpta t'ucril.c}r:n cius, ita quod reliqua paren.fc habeat ad pondus
o.vt fe haber.t.0.ad.i.a. tunc ftacera non mouchitur j addita verd parce. €. ¢xcom=
muni conceptusa.defcendet vade.o.afcenderet conucrium verd ex Gmilibus rario-
wbus per te concludes. o

0
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In co quod i me peri ,mh:mdonadEwaiu,zaﬁmnrﬁdsﬁ«;em.amEm
totius citet fextum | Pergei, quem nunquam vidiaws,, fupponacd; ca,qur ned
ipfe nec alius vnquam quod fcimus probauit .

Defideras cnim demonftrationem illins Archimedes dicit inter primam ,
& fecundam propofitionem fecundi libri, vbi ractae de centris grauum , propres
rea quod illed fupponit pro manifefto. ?

Sit cnim figura hic fubferipta , feré fimilis parabolx pofire in. 2. propofirione di
&i libri, vt inimpreflione Bafilecnfi habetur,fintd; divifie duizia.b.ct.b.c.per zqua
lia 2 pundlis.x.ct.u. procradisd. £x.cr.u.iad b.d.qua invicem etiam erons parallcle
ex. 70.primi Eucli.vnde ipfa etiam,diametri erunt ipfarum portionum: vt ex co col
ligere cft,quod in4g.primi lib. Pergei probatur. Imginando poftea ad punéta.b,
f.ex. Ltres contingenees, manifeftum ent pundum.buillud effe quod terminat altis
tudinem huiufmodi partionis,et. f.et.i. rerminantia altitudines partialium, eiy: @
cundi ipfius Pergei, co quod diétx coritingentes paralelle erunt ipfis bafibus ; Wide

i infcriptieafdem habebunt altitdines,quas portiones ipfix , quod erit ex )
mente Archimedis. Ezficdeinceps poteris maltiplicare angulos figurx rectilines i
in parabola, qua defignata crit vt defidetat Arclumedes, qui quidem dicir, quod
protractz cum fucrine alix deinceps poft.fi. ipfx invicem gquidiftantes eriie, dimife-
Gue perzqualiaab.d.b. quod quiuis vetd fit, v ab Eutotio non (atis demiltrar® {
eft,com fopponat.a.f. b.equalem effe ipfi.b.i.c.probare volens cius diametros rqua
leseffe lhfz:t aliqua cicata rarione , que quidem ratio efict converfum. 4. propofis
tionis libri de conoidalibus. Sed oporrerct nos etid videre.6.Lbram ipfius Pe rgei,
& propeerea tibi non fatisfacerem . .

Efto igitor, ut inuenta fit linea. K. cuins inuixquale i quadeato ip
fius.u.c.inuenca ctiam fir linea.h. coivs produ@tum cum.f. x.rquale firquadratoip:
fius.a.x.vnde ex conuerfo. 49. primi ipfrus Pergei pottio iplius. K.ad.b.c.eric ue ‘
iplivs.b.c.ad.b.d.& ipfius.h.ad.2.b.ve ipfios.a.b.1d.b.d. Bric igitor ex. 1 4.fexei Bucls '
x:adnmm. b.¢. 2quale produdto ipfics.K.in.b.d.& quadratom.a.b. xquale produ-

ipfius.h.in.b.d.& ex primma fexti,ira erit ipfius. K.ad.h.ve produdti quod firex.K:
h.b.d.adpmdu&wniplymh.imb.d.hocennqudmiipﬁm.b. c.ad quadrarum iy 1
fius.b.a. ex. 16.¢t.11.quint, hoc oft vt quadratt ipfius.u.c.2d quadraram i[ﬁus.a.r.
hoc eft ot produdtum ipfivs.k.in.u.iad produdnm ipfivthin.x.f, Nunc iphius.k.
adheRt ve produdti ipfius.K.in..i.ad productam ipfius.huin.fx.crgo ex. 24. fexti,

—

& commun: conceptu, proportio (i?émk.ad.hcompoﬁta erit €x ca qua ipfios. u. i. $
ad.f.x.& exea quripfius.k-2d.h. Cum ergo dempta fuerie portio ipfius. k.ad.h.
(vt fimplex )2 proportionc ipfius.k.ad.h. (vt compolita) rcﬁ";mm nihd erit, Qua-
re.t. x.xqualis erit ipfiui. :
ﬁ:lcd Ruod.ﬂn:quh’s fivipfi.m.i. Videroin Entotio , quia hoc fatis fui natura
et
Sedaccipealivm modum breui ad probandum.f.x.effe 2qualem ipfi.ui. !

Finge lincam.c. bvg. contingentem in punéo . b. prolungatssque diametris £,
x.ct.u.L.vique ad contingentem ipfam, habebis.£e.zqualemi pl.EX ct.g.iophi.u. i,
Ex.35.primi Pergei,produdta poftea.x.v.habebis ex.2.fexti Eucli.x. u. parallclam
iplia.c.fed.c.g.parallela eft iplimeta.c.ex quinea fecundi ipfius Pergei,quarc ex. 3o
primi Buclid.c. g. parallela crit ipfi.u.x.& ex. 34 ciufdem aqualis erit.c.xipli. u. g
wnde.fx. ctiam :&;ul is erit.u.i. ex communi concepru.

Sed nc quid defideres probabo.fa.zqualem cileipli.m.i. Tam igicur feis quod

cum
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cum (it.£.x.2qualisiphad. vetibi probaui , & inuicem paralicle ideo. . i. paralicla

ericipfi.x.n ex.3 3. primi Euclidis. Vnde ex. 3o. eiufdm:nlkla erit cviam ipfi.a

fed cum.x.u. diuifa fitab. d.b. per xqualia,eo quod dividita.c.eodem modo, qug
iphi parallcla eft ex. 2 fexti. Reliquatibi confideranda relinquo . cum vero ambue. .

x.ct.u.i. parallele fine ipfib.d. fequitur quod camex. 34.primi viaquaegs.fum.ct. .
o aqualis fit medietati ipfiusx.u. crunt inuicern aquales.
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Minime dubitabam tibi non fatisfacere Eutocium in, 3 . propoficione fecundi
lib.de centris Grauvium Archimedis ,cum citet.6. librum d . clemenzis conicis, ad-
de quod i aliud inipfo.6. libro ab co cirato non effet magis ad propofitum , quam
¢a qur abiplo citata funt , nihilominus adhuc irrefolusus maneres.

Confidera igitur candem ipfam figuram prazcedentem ; pro alia verd parabola fi
mili dictr, accipe fecundam figuram ipfius tertiar dic propofitionis. Deinde ima
ginabis duo lazera.o.z.ct.0.p.divifa effe per xqualia i pun 2is.g. ct. K. protractisd;
diametris.g.y.ct.K.u.que, vt in prcedenti probaui , (unt inuicem zquales, fcire
debes quod fimiles i::abol: inuicem alixz non poffunt effe, nifi cx qua diamectros
Eropor(ionzlﬂ fisis bafibus habeant , fimiliterds pofite, hoc eft, ut proportio ipfins

d.ad.a.c. fit cadem qu ipfius.o.r.ad.x.p. & quod anguli ad.r.finc 2quales angulis
circa.d. Notentur ergo primam panéta communia ipfius.o.g.com.y.t.& ipfius.b.x
cum.f.m.charaleribus.e.ct.n. Nunc igitur fcimus.£m. 2qualem effe.m.i.toamd;.f.
i.parallelam effeipli.a.c. Idem dico de.y.cucrianguliqix.foctg.y. o cffe imiles
wiangulis.n.m.b.ctut.0.qu0d it2 probatur, nam €x.ig . primi Euclid. anguli ad. n.
funt inaicem xqualcs, ex. 29.verd ciufdem anguli.fx. n. ct.n.b.m. fimiliter zquales
ita ctiam.n.f.x.ct.nm.b. ;

Idem dico infecomda figura, vade ex.4.fexti Eucli.proportio.n.f.ad.m.o.exit c2
dem qug.fxad.bum.& ip(gu:.a.f.:d.x.!'.vt.n.md.m.b.ex. 16.quinti. Q:gdu. 10
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ciofdem eritvt.a.d.ad.d.b. Idem etiam dico in fecunda parabola, fed ipfids.X.0.2d
o.r.eftve.ab. ad. b. d. ex. 6.fexci Eucli. vade ex.1 1,quinti.n.f.ad.f.x. erit vi. e y.
ad.y.g. Sedin precedenti iam tibi dixi.a.b.mediam proportionalem effzincer. h.
a.b.t Sit nunc.z. pro fecunda parabola, ita ut.h. cft pro prima,vnde.o.x.crie media
rtionalis inter.z.ct.0.n& ex.1 1.quinti ita erithad.abatz.ad x.o& ex. 2 2
m.m z.ad.x.g.& quia cx,16. fexti. a.x.media proportionalis eft inter. et fy
x. cum {upponatur produdtum.hlin.f.x.zquale effc quadrato. 1. x.Idem dico . x. g
mediam cile proportionalem inter.z.ct.g.y.quare ex.1 r.iam difa,iea erit.a.x. ad.r.
x.vi.y.g-ad.x.0.& ex cadem,ita eric iplius.fnadab.uty. ead.x.o.& ic.fnad.d.a,
vtywadxr fed.fmad focft vy ad.y.ecx 8. quini vode.finad.a.ducric ve
y-t.ad.x.r. Idem dico de corum duplis.
Ex jjfdem rationibus dico ita effc.b.d.ad.b.m.ve.0 r.ad.0.t.& ex.17.quinti. d.m. H
adbam.ytrtadeo. Reliquatibiconfideranda relinquo. i

‘
Inreliquis verd propofitionibus illius lib. nullo pa&to poterisdubitare:Verum ne .
in. 4. aliquid tibi noui cxurgar , te [cire volo corollarium. 20, in libr. de quadraru
ra parabolg docere poffibile effc inferiptionem retilinea,ca tamen conditione 1d
dict Archimedes. '
In quinra poftea animaduertendum eft,quod prima pars,probat rantummodon de
centro trianguliyet. 3. pars probar de centro pendagoni, ateipfo deinde poces pro-
bare de centro nonanguli: fic de careeris: co quod cem probatum fuerit de cenro
figurzin mediolocatz i conflitura poftea fuerint fimiles figura in portionibus la- 1
teralibus habebitur propoficum in infinirum.
Idem intclligendum cft in. 3. propofitionc quamuis exemplum viecrius non ex- s
tendatur quam ad peneagonos. 3

Sextaverd ppofitio ubi facilis erie,qua nihilominus pot deméfirari hoc m fili
ect. Sint.4.quititates.a.b.c.d. ipfivs Archimedis fupponédo.a.pro figura rett linca
infcripra in parabola,et.b.pro refiduo ipfius parabolg et.c.protriangulo.z.b.c.in me
dioiplius parabol ct.d.protriangulo. r. Nunc cum. 2. maior fit.c.prout totum ma- 1
ius cit fua parre, idco ex.8.quinti maior proportio habebit.a.ad.b. quam. . ad. b.
Cum aotem.b.minor fic.d.ex fuppofito,idco ex eadem dida,maior proportio habe
bit.a.ad.b.quam.c.ad.d.cum ver6 centrum cuiufis figura plenz neceflario fit intra
ipfam figuram, idcirco centrum refidui ipfius parabole intra iplamreperictur. g 10 d
ira clard p fe cft,quéadmodi quoduis aliud axioma, & quia died cenerdi ex.8. primi
de centris, neceflario eftin linea.b.hiinter.b.ce.h. Sic i gitur.g.vnde ex cadem. 8.ita
ctit.g-h-&d.hc.vt.:.ad.b.crso. -h.ad.h.c.maior propostio erit qui.c. ad. & hoc cft
quam.b.h.ad.f.ex.12.quing, Ecd cli.h.b.maior fitipfa.h.g.proat omne rotum ma-
ius cft fua parte, ideo maior proportio habebit.h.b.ad.h.c.quam.h.g. ad.h. e. vade
multo maioré qui.h.b.ad.fex coi cocepru,quare. hue.erit minor ipla.fex. 10.quid.

Septima verd et. §.propolitio nallius tibi crit difficuleatis.

Quame
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Quamuis Eutotins feribat uper duas vitimas libxfecundi de centris grauid, nihil
mirot ipfum tibi non fatisfacere. Accipe igitur quod cgo nunc tibi mitto.

Archimedes co in loco primi fupponit in penultima diéti libri quatcor lincas
proportionales.a.bs ¢.b: d.b: ex. c.b: fupponit etiam quod proporrio quz ft ipfius.
¢ b.ad.c.a.cadé fit que ipfivs.£ gad tres quinrasipfius.a.d.& quod proportio com
pofiti dupliipfius..b.cum quadruplo iplius.b.c.cum fexcaplo ipfius.b.d. cum eriplo
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ipfius.b.c.ad compofitum quintupliipfius. a.b.cam decuplo ipfius.c.b.cum decuplo
ipliog.b.d.com quincuplo ipfius. boe.cadem fit quipfius.g.h.ad.a.d. & valt proba-
re.fb.efle duas quintas ipfius.a.b.

autem dicit proportonem ipfius.a.c.ad.c.d.& ipfios.c.d.ad.d.c.offe vripfius
a.b.d b.c.& cerera verum ducit ex.1 9.quinti Eucli.co quodcum ex hypochefi fie
ipfins,a.b totalisad,c.bororalem veiphus.c.b. partialis lumpe ve pars ablcifa ab.a,
b.pronunc ) ad.d.b, partialem ( abfcifam ab.c.b.)eritex.19.ditaiphius.a c.(relidai
ex.a.b.)ad. c. d. (refidoum ex.c.b. )y ipfivs.a.b.ad, c. b, &ita probabitur de pro-
portionc iplius.c.duad.due. cadem ratione .

Cum verd ex.18.quinti fit ipfivs.a.b.cum.c.b.ad.c.b.ve ipliusa.dad.d.c.crgoex
23. civfdem,ita crit iplivs.a.b.com.c.b.ad.d.b.yvta.d.ad.d.c.& ex ij{demrationibus
¢€adem proportio eritwpfius.c.b.cum.d b.ad.b.c.vt.and.ad.d.c.quod inquit Archi. 1
Virum ctiam erit € ex,13.quint ) cum dicit candem proportioncm cfleipfivs. a. d,
ad. d.c.qug dupli primi anteccdentis cum fimplo fecunds anrecedentis ad duplum
primi (wq:?cqvenm cum fimplo fecundi confcquentis, hoc cft dupli ipfis.a. b, ca
fimplo.c.b.d.ad duplum ipfius.d.b.cum implo.c.b.hoc et dupli.a.b. cumriploip-
fius.b.c.cum fimplo.d.b.ad duplum ipfius.d.b.cum fimplo.c.b. Nunc duplum.a.b,
cum eniplo.b.c.cum implo.b.d. fignatam fit charuéterc. D. foum veré conle quens,
hoc eft duplum.d.b.cit timplo.c.b.fignificetur a charadtere. B.hinc proportio ipfins i
a.dad.d.c.eritve.D, ad. B.

Inquiz nunc Archimedes ,ﬁquisﬁ*mcrct:liquod maius antecedons xquale (i
licet duplo ipfius.a.b.cum quadruplo ipfius.b.c.cum quadruplo ipfius.b.d. cum do-
ploipliys.b.c. « omparareed; illed cum cofequente. B.claro m cffee ex.8.quinti quod
tale anteceders matorem proportionem haberet ad.B.quamad. D.hoc cft maiorem
quam ipfius.a.d.ed.d.c.ex.12.quinti.

Nunc i [ mpea fiacrialiqua linea, puta.d.o.cui.a d.dii habeat proportionem
maiorem, Larum erit ex fecunda paree decimg quint quod. d.o.minor crit ipla.d...
Corrige igirur impreflionem Batileg locando charaéterem.ovinter.d.ct. c. co quod
ibi pofituin non fuit.

Volo nunc quod ditum maius antecedens xquale Kilicet duploipfivs.a. b, com (]

adruplo ipfius.b. c.com quadruplo ipfius.b.d.cum duplo ipfius. b. c. fienificerur 2

# charattere. A Hirc habebimas proporionemipfis a.d.ad.d.o.ur. A.ad. B, ]
Ex.18.quinti poftea habebimus. A. B.ad. B. ve.2.0. ad. d. 0. & proportionalitate
T cuerfain1g.didi ita crit. A.B.ad.A.vea.0.2d 2.d. Sed hoc vitimum ancecedens in
fe continerid quod Archimedes &ribithoc clt d iplum ipfius.a.b. quadropldipfius
b c. fexcuplom ipfivs. b.d.& triplumiptivsb.c. Confequens vero.A. contince du
plum ipfiusa.b.quadruplum iplius.b.c.quadruplum ipfius.b.d.& d iplom iptius.bue,
Ex fuppofito deindc ipfius Archimedis & ¢ x conacrfa proportionalitaccin. 19,
dita, verum cft id quod dicit Archimedes, vid licer quod ezdem proportio cft
iplius.a.d.ad.g.h, quod quintupli ipfivs.a.b.cem quinteploipfivs. buc.uni decuplo Y
iplius.b.c.cum decuplo iphius.b.d.(quod quidem antecedens (iifcetar pee.Y.
ad duplumi ipfios.a bicum quadruplo ipfius.b.c.cum fexcuplo iphius. b.d. cum triplo
iplisb.choccftad.A B
Entigitur.V.ad. A, B.ve ipfius, 2. d. ad. g- b.fed fuperias vbifignamm ef. T.iam
probatum fuit iza ofle, A.B ad. A.ve ipfius.a.0.5d.a.d. Ergo ex.a j.quinit Archime
des verum Kribic, hoc cft quodita erie ipfius. V.ad. A. vt iplius.a.0.ad.g.h.
v  Clarum perfe ciiam oty id quod Archumcd.dicit hoe cft quod. V.ad. A, oft ve
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quinque 2d duo, cum quodlibetingredicatium inco firo. V. ad quodlibetin-
gredicntium in compolito. A. fit ve quinque ad duo. Quare cx.13. quinti verum
dicit. Vnde.2.0.ad.g.h.crit vequing; ad duo cx.1 1. ciufdé ve inquit Archimedes.
Corrige impreffionem vbi {criptum eft, rurfus quoniam.o.3.quia oportet dicere
Rurfis quoniam.o.d.
Archimedes igicur verum dicit, quod ipfiuso.d.ad.d.a.cft ve iplius.B. ad.A.cx
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conuerfa tionalitatein. 19. quinti,cum.a.d.ad. d. o, iam probatum fuit { vbi
B.) indl! ut.A.ad.B.

Sed in principio huius fpeculationis probarum iam fuitiea effe ipfius. d.a.ad.due
vtipfius.D.ad. B.vbi notatum eft. M. quare ex.2 3-quinti, Archimedes verum diciz,
quod.d.o.ad.d c.critve.D.ad. A,

Sed cum.d.o.ad.d.c.fc habeat ut.D.ad. A.erit ex conuer(a proportionalitate fam

A dicta.d.c.ad.d.o. vt A.ad. D.per cuerfam vero erit. dic.adia.ove. A. ad foum reti-
duvm.quod refiduum comgonimrcx fimplo.b.c.cum triplo.b.cum duplo.b.o.quod
i te iplo videre poteris detrahendo  numeros ipfarum quantitaium quzin. D.
reperiuntur, ex numeris carundem, qua in. A. quod quidem refidoum (ignificetnr
acharactere.E. Vnde ex conuerfa proportionalitate verum dicic Archime. hog eft
quod itafe hab ebit.o.c.ad.d.c.vt. E.ad. A,

Cumautem fit..b.ad.c.b.ve.c.b.ad.d.b.& ita.d.b.ad.e.b. cx {uppofito, idco cx
17. quinti verum dicit Archim.hoc eft quod ita crit ipfius.d.c.ad.c. b.ve.a.c.ad.c.b.
&vrc.dad.db.& ex.1 3, civfdem eadem proportio crit tripliipfius.c.d. ad erjplum :
ipfius.d.b. qur dupli ipfius.d.c.ad duplum ipfius.c.b.ve inquit Archi.

Ex qua. 1 3. compolitum ex.a.c.com triplo ipfius.c.d.cum duplo ipfius. d. ¢. can
dem proportionem habebit ad compofitd ipfius.c.b.cum triplo 1pli*.d.b.cum duplo
iphius.c.b.quam ipfius.d.c.ad.c. b. Sed horum compofitorum primum fignificerur 1
per.H.fecundum vero fignificatum fuit per. E.vnde.H, ad.E, fc habebir ve.d. . ad
e.b.led.Ead.A.iam dictum cft effe ve.0.¢.2d.d.c.vbi fignatum eft. ». quare cx. 23 .
quinti eadem proportio erit iplius.o.c.ad.c.b.qur.H.ad. A. vtiple inquit.

X Ex.18.poltea ciufdem ita erit.0.b.ad.e.b.ve.H. A.ad. A.

Nora ctiam ¢ft quod fi colle@x fucrint omnes partes compofiti. H. A. hoe
eft duplum.a.b.cum duplo.b e.cum uadraplo.b.c.cum quadruplo.b.d.cum fimplo
a.c.cum triplo.c.d.cum duplo.d.c.h:l( bitur eriplom.a.b.triplum.b.d.& fexcuplum
b.cvt iﬁfcdim - Quod autem hoe verum fir , cum diftinétx fuering omnes parecs ,
vt in fubfcripeis his lincis videre oft, videbis quod fi ex.H.detracta tucric implox.a,
€.qu quidem poftea iunda vai ex partibas quadrupli.b.c.iplivs. A.refuliabiz nobis 1
vniintegra, a.b. Vnde habebimus triplum iplius. 3.b.& in. A. remancbiteriplum ip
fius.c.b. Deinde fi ex.H.auferatur wriplum iplius.c.d.& ipfum addatur trbes pasu-
bus quadrupli.b.d. ipfius. A. habebimus tres vices.b.c qua fi iungantur tribus, que
remanchant in. A, vedixi, habebimus fexcuplam iplius.b.c. & in.A.remancbicfim .
p lum.b.d. com duplo ipfius. b. €. Vnde fi cx. H. dempeum fuent duplum ipfius. d.
€. quod quidem iungatar cum duplo ipfius, b.e.habe bimus duplum ipfius.b.d.quod
coniun&um cum fimplo.b.d.quod in. A. relictum fiscrat , habebimus wiplum ipfivs

d.b. Verum igicur cft quod inquit Archimedes, hoc cft,quod. H. A eiteriplumip-
fios.a. b.fexcuplum ipfius.b.c.& triplum i plins.b. d.
Verum ctiam dicitex cofve {upra probatum cft yquoda.c: e.d: et.d.e. fehabebie !
in continua proportionalitate, quare ex conuctfa proportionalitace crunt fibi inui-
cem continux proportionales.
Nungautem cum.a.c: c.d.ct. d.e.fint continua proportionales in ca proportione
in qua font.a.b: c.b: d bs et.e.buvin principio dixamus, erit ex.22.quinti.a.c. ad. d.
evt.a.b.ad.d.b.& fic ctiam.c.b.ad.e.b. Vide ex.24. cifdemaa.d.ad.d.c.entve. 2.
b.cum.b.¢. 3d.d.b.& ve. c.b.cum.b.d.ad.c.b.& cx. 13. didti ve.a.b. cum.b.c.bis
fumpto, & cum.b.d.ad.c.b.Quare ex conuerfa proportionalitate, v fchabet. e. d.
+a.ita fe habebir.e.b.clid.bad d b.c.b.c.duplicaro & ci. b. 2. veinquit Archi
medes, Nunc antecedens vocetur.M.hoc eft. b.c. cum.d.b.conlcquens vero, hoe
) 8 ¥ cit
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eft.d.b.cum duplo.b.c.cum fimplo.b.a.vocetur. N.
Animaduertendum tamen cit quod impreffio mendofa. eft ubi dicit.
vmaqueque.c.b: b.d. & cxtera,
proprerea quod dicendum eft ita
vinquag.c.b:b.d.
Nuncex.18.quiati, quemadmodum f¢ habet.a.e.ad.d.a.ita fe habebit. M.N.ad.N.
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Vbi autem fcriptum eft )
5 ad verunque fimul.b.d: d.a.cum dupla.b.c.
dicendum cft ira,

ad viranque fimul.b.d.b.a.cum dupla.b.c.

Inquit deinde Archi.quod ficut fc haber.e.a.ad.d.a.ita {e habebit duplum.M.N.
2d duplum.N. Quod quiden verum eft ex.x 3.quind, huivfmodi veré antecedens
& confcquens, Archi.manifeftat ex fois partibus, fumendo duplum.c.b.cum duplo
b.d.pro duplo.M. & duplum.b.d.com duplo.a.b.cum quadruplo.b.c.pro duplo.N.
que limul iun&a equantur duplo.c.b.cum duplo.a. b. cum quadruplo.b.d.cum qua-
druplo.b.c.ex quo 2quabuntur. A. vocentur igitur hac omnia.A. potius quim du~
plum ipfius. M.N.

Verum etiam (cribit,vbi dicit,quod proportio.c.a.ad tres quintas ipfius.a. d. crit
vt. A.ad tres quintas dupli. N.ex.2 2. quinti. Sed cim ex uppofitoita {e habear.f.
i;ad tres quintas ipfius.a.d.quemadmodum.b.c.ad.c.a. critex. 16 quinti verum ¢

icit Archimed. hoc eft, itafe habere. b. c.ad.fig.vteaadtres quinias iplinga.d.

Exper. 11. ciafdem verum etiam erit quod ficut (¢ habet.c.b.ad.fig. ira ft habe-
bit.A.ad tres quintas dupli. N. quod quidem duplum.N.fignificerur pee. Q.

Sed fuperiusiam demonftratum foir ( vbi.X. ) quod.o.bad.b.c.itafe habebarve
H.A. 2d. A.& niic demum probatam fuit ira effe. A.ad res quintasipfius. Q vr.e.b.

y 2d.f.g.Quare ex.2 2.quinti ita erit. H, A.ad rres quintas ipfius. Quvt.0. b.ad.f.g.ve
idem inquit.

Sed. H.A.2d.Q. ( vr ex fuis partibas videre eft) ita fe habet vetres ad duo €21 34

quinti, vt inquit Archimedes. A .

Ipfectiam dicit proportionem. H.A.ad tres quingas iplius. Q. efle ve quinque

adduo. Pro cuiusrei cuidentia imaginemur tam.H. A.quam.Q. diuifaper quing;
artes zquales, vode ex.16.quinti habebimus quamlibet quinzam parté 1pligs. Q.
xqualé cffe duabus tertijs viufcuiufque quint partis.H. A. ynde tres quinex i pfius
Q, crunt, ex communi conceptu, fex certix vnius quinte ipfius. H. A  hoceft duz
quinex.ipfas H. A. Quarc.o.b.ita (€ habebiad.f.g. v quinque ad duo ex commu

ni cheeptu,cum.o. b.ad.f.g.probatum fueriz fe habere ve.H.A. ad tres quineas iplius
Q. (vbi.Y.) fed iam probarum fuit ( vbi.~. ) quod. oaadh.g. eratetiam ve
quinque ad duo, hoc cft quod. £ h. crit dux quintg iplius.3. b. Quodclt ;impmixum.
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398 10. BAPXTEENIED.

In vitima verd propofitionc fecundi lib. de ponderibus Archi. hoc modo inzclli
gendydeltvefidicerdts o o M -
Sit paraboles.a.cuius bafis fit..c.fizd.d.c. re@a parallcla dice bafi.a.c. diameterds

b.t.

Inquit dcind:}ouod linea contingein.b. parallcla ctitipfi.a.c.cr.c.d. quod proba

bimsshocmodo. =

Cum.b.f. diameter fit ct.a.c.bafis, clarum erit ex definitione quod.b.fdivider. 2. .

er xqualia in’.&r\/ndccx7.vcl ctiam ex.46. prigi Pergei. dye.diyifa erisper cqua

23 diameeroibof- Quare verum dicitex quinta fecundiiplios- Pérgei hoc ¢ft quod
dicta contingensin puncto.b paralicla ericambobus.a.c.ct.c.d.

Inquit poltea quod diuifa cum facrir pars diantetri qug intér.d.eta.c.pofitacht

(hoc cft.g.£y perquinque partes equales, quarl parium media fith.k.dinifzeslam

imaginarione fit in puncto.i. ita quod propostio ipfius.h.i-ad.i.K. cadem iz quein-

ter duofolidaqquorum voum(illud ﬁ.lEm 2quorelatio incipit, hoceft antecedens)
R pro fiza bafi tencat quadratum ipfivs.a.fcutus ctiam folidi altitudo compofira it cx
duploipfius. d. g.cum figplo. a, £ Aliud vero folidum habeat pro fua bafi quadra-

tum iphius.digieus Verd aliitudo compolita fit ex duplo iplius.a.£.com fimplo d.g.

Inquitnunc Archi.quod com ita factum fucrit,oftender pundtum. i. cencrum e
portionis abfil; a tota fcétione,quodraftd nominat fignatiichzradteribus.a.dee.c.
Sit igitur nune.m.n.inqui, rquilisdiametro.b.feun.oxqualisb.g.fitd;. x.mme

dia Pfo"oﬂlomll\ln'll'l’-l"l;lmcl-l'\-()-((.(.n.iﬂ conunua pl'Op"l.’;ll‘ﬂ.ll:!l!C P'):l 0.0

hoc eft quod ¢ proportio qua clt spfivs.o.nad.mr.cadem fit 1p r.ad.n.oHine

habebimus. 4. lineasin continua proportionalitate (ibi inuicem coniunctas.m. i: X.

n:0.0.C.EN. )

A Vultciiam quodalincad.b.incipiensab.iverfus.g.alia linca abfiffa fie , cul li-
nex,ita proportionata fir.f£ h.vt.e.m.cft ad.tn.que quidem linca fignaca fit.i.r.

Dicit poitea quod diameter.b..f. erit fortaffe axis vel aliqua reliquarum diame-
trorum , quod quidemin. 46. primi Pergei videre eft, cumomncs diametri fincin-

uicem paralicliiphi axi.

Cumpoftea icics quod.a.f.et. d.g. funt intenee dultrdue, ibi vultidem infr-
re,quod Pergens vocat ordinate, vtex. 11.¢t. 49 . primi ipfius Pergei videre li-
cet, vade ex.20.cinfdem propordio.b.fiad.byg.crit ve quadiati . 2. £ad quadratum
ipfius.d.g.veiple dicit,

Sed ita evit quadrati.m.n.ad quadraef.x.n.cx. 18.0xti Eucli.Quare ex.1 1.quin-
ti quadrasam jgfius.m.n.ad quadeeunriplius.n.x. candem habebic proportionem,

uam quadeatum iphivs. 2.f.3d quadratum iplus.d.g. Vadeex. 18. & cx communi
a'ti-:ia,cadcm proportio crit iphus.m.nad.nx.qug iplivsa.fad.d.g.ye inquit Arch.

Quaptopatf proportio cubi ipfius.m.n.ad cobum iplius.n.x.cric vecubi iplius. 2.
f.ad cubum npﬁm.d.g.vr etiam dicit ex communi (cientianee noa ex. 36.vndecimi.

Inquit g:ﬂca quod proportio tetius fc&ionis.a.b.c.ad portionem.d.b. c. qadem
eft qu cubi iplioscat.ad cobum ipfius.d.g.quod verunteft,vealias tibi monfraui in
diuifiont parabolx fecundum aliquam propofitam proportionem.

Quando autem dicit quod proportio cubi ipfius.m.n ad cubum ipfius.n.x.cadem
eft quz ipfius. m.n.ad.n.t. verum dicit ex. 36. vndecimi. Vadeex. 11.quintiitale
habebit toralis fe&io.a.b.c.ad portioncm.d.b.c.vt.m.nad.n.t& ex.17. ciufdemita
eritipfius.m.c.adne froftiad.c.cad fe&ionem.d.b. ¢. quemadmodum ipfe di-
cit. Scd quiafiperius,ybi.Adpla.fh.(qua et cres quintziplivs.f.g.addrirarela-

ta fuic
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ta fui vem.t.ad-t. idcireo ex, £ 1. quinti ica eris ipfius fruftia & ad fe@ionem.d b

¢. vt tres quingg iplius.f.g.ad.ir

Inquit deinde quod propostio corporisiam upradi@i, quod pro fua bafi habeae
quadrasum iphivs.a.f.alitudinem vero compofitam ex duplo Plll&d-s cum limplo
a.f.ad cubum ipfius.a.feadem crie qua dupli ipfivs.d.g.cum mplo.a.t.ad-2.£Quod
quidem verum oft ex. 33 \ndccxml & ex prima fexti,

Sed fuperius( vbi, «.) iam probauimus eandem proportio nem effc.inter.m.n &
n.x. qua inter.a.tetd.g.ideo cx commfa monahurc ita erit iplius.x.0,ad.n.
m. yeiplios. d. g, ad. 3. Bfed dupli.x.n.ad lm.&n.cﬂvxdupl;.#.g.pd.d.g.Qg
recx.; 3. quint dopli.x.nad.m.n.cor ve doplid,g.ad.af.& ex.18.ci i3 erie

dupli.x.n.cum fimplo.m.n.ad.m.a.yt dupli, d.g. cum fimplo.a. - Quare folidi

Solidum  maws UL et s bt S A SR
Cilbus et i —Eng }",._'_', ety
Cubus  malowr et v o L Erreimrid
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iam di@i ad cubum xg:im. a.fiex. 11. quinti eritve duplix.n.climplo.m.n.ad.m.n
4 ius autem vbi. £ . demonftratum fuit ita effe ipfius.m.n.ad.n.t.ve cubi.m.n.
ad x.n. &inter. «. et. & probatum fuitita efic cubia.f.ad cubum. d. g. ve
cubi.m.n.ad cobum. x. n. Vade ex. 1 1. quinti.m.n.ad.n.t.erit ve cubi.a. £ ad cubum

“% proporio
icit poftea quod cadem io erit inter cubum. d. g. & corpus illud quod
pro bafi m«zu&mn ipfius.d.g. altirudinem verd vt d?&um c;‘.p:n ux eft inter
d.g. & compofitum ex duplo.a.f.cum fimplo. d. g. quod compofitum cft altitudo di
&a,& veri dicit exratione fuperius allegaca pro reliquo corpore & cubo ipfius.a.f:
Quare etiam qtiemadmodum. t. n. fe habet ad duplum ipfius.o. n.cum fimplo.t.n.
exlifdmndouibmfuwtdi&is,vbilogmni fumus dex.n.com.m.n. '
Difponantur nfic omnia tali ordine , ita vt. . pritum it corpus quod pro fua ba 1
{i habeat quadratum ipfins.a.f.&c.
Et.y. fit cubus ipfius.a.f.ct.s. fit cubus ipfius.d.g.ct. z.fi corpus quod bafim ha-
bet quadrarum Ipfius.d.g.altitudinem vero vt fupradictum cit,ct. p. fit compofitum 1
dupli.n.x.com fimplo.m.n.ct. L. fit compofitum dupli ipfius.n. 0. cum fimplo. . n.
Sed.ulocara fie & regione. p.ct.y.& regione.m. n.ct.s.& regione.nut.ct.z. & regione.ls
& habebimus proportionem iphius.u.ad.y. ve.y.ad.m.n.& ipfius.y.ad.s. vt.m. n. ad.
n.t. quod fuperius iam demonftratum fuit, vbiy, et.s.ad.z. ita fc habebit vt.ncad. '
1. vt vitimo probarum fuit. Quareex.23. quinti ita {chabebit.u. ad. z. ve. p.ad. L.
quemadmodum dicic Archi.
Ex quia vt (e habet.uad.z.ita falta fuit.h.iad i, K.vbi.R.ideo ex.11. quintive [ "
habet. h.i.ad. i.X. ita fc habebit.p.ad. L veipfe dicit : Ex ex.18. quinti ita crit. h. K.
ad. K.i. vt.p.Lad.L & ex communi concepru.g.f.fc habebitad. h. K. vt qu'mn;;!nm
ipfius.p.lad.p.). & ex.22.ciufdemirafe g}bﬁ)ibf- .2d.i.k.ve quintuplum ipfins. p.
Lad.L quintuplum autem ipfius.p. | .compofitum cft ex quintuplo ipfius. n. m. cum
decuplo ipfiusin.x.cum quintuplo ipfius.n.t. cum decuploipfius. n. 0. ve & te facilé
COMpUtAre potes.
Verum etiam erit ex comﬂnmiﬁ:iemia?uod.s.f. ad. fk.cftut quintuplum iplius 1
p-lad duplum ipfius.p.l.eo quod fuperius fuppolitum fuit.h.K.cffe quintd mediam,
wvnde. k. f. relinquebatur pro duabus quintis inferioribus, duplum autem.p. 1. com-
pofitum cft ex duplo ipfius.mn.cum Zuplo ipfius.n.t.cum quadruploipfius. n. x. &
cum quadruplo ipfivs. x.o. .
Ex conuerfa proportionalitate deinde ita fc habet,i.K.ad.i.k.ad.f.g.ve.L.ad quin.
tuplumipfius.p.l.et.k.f. ad.fig. vt duplum ipfius.p.l.ad quincuplum ipfius.p. L. Vnde
ex.34.quinti.iEfc habebitad.f.g.ve dupla Kﬁus. pl. cum fimplo. I. ad quincuplum |
iplius. Y‘l. Deinde cx conuerfa proportionalitate quintuplam ipfius.p.l. fc habebic
ad dt‘l}) um ipfins.p.l.cum fimplo.l.ve.f.g.2d. £ i. Sed compofitum dupliipfius. p. L
cum fimplo. Laquale eft dup& iplius.m.n.cum quadruplo ipfius.x.n. cum fexcuplo [
iplius.o.n.cum triplo ipfius.n.t.vt per te compurare potes.
Superius cnim fumpta fuit.i.r.ad quam ita f¢ haberer. £ h. hoc eft tres quinea ip-
fius.£.g.vt.m.2.ad.t.n.Quare ex conuerfa proportionalitate ita fe habebit.nr.ad tres
quintas ipfius.f.g.ve.t.n.ad.c.m. Et quiz.o.n.{umpta fuit equalis ipfi.b.g.ce.m. n.ipfi
b. f. ideo.m.o.cx communi fcientia xqualis erit ipfi.g.f. Vnde proportio.r.i.ad tres
quintas ipfius. m.o.crit ve.n.t.ad.c.m.ve inquit Archi,
Sed vbi. 8, iam probavimus ira fc habere.i.f-ad.f.g. v duplom ipfi®.p. Leum fim-
fo.Lfc habet ad quintuplum ipfiss.p.Lhoc cﬂ.i.t.aim.o.n duplum ipfius.p.l.cum
gmplo,l.ad’ quingplum ipfius.p.l.
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Habemusigitur nunc omnésillas conditiones quas Archimedes in prarcedenti
propofitione fupponit. Vnde ex razionibas ibi allegatis fequitur.£r.cllc duasquin.
s ipfius.mun. hoc eft ipfius.f. b. Quapropeer pun@um.r.centrum erit ponderisto-
tius fectionis parabola cx.8. fecundi lib.de ponderibus eiufdem Archimedis.

Inquit nunc Archimedes,quod exiftente. q. centro ponderis ipfins parabol. d,
b.c. partialis, centrum trufti erit in linea re&a. q. . £, ita remotum 3 centro, r. quod
Empoﬂio.q.l’.ld partem illam ipfius.r.f.quae reperitur inter centrum. r, & centrum

wius frufti xqualis ¢t proportionitotius parabole ad partialem. Quod quidem ve
rum cft ex.8.primi libri cinfdem.

Inquit etiam pun@um.i.illud effe,c0 zuoda:m probatum fie.£. r. duas quintas ef-

fe iplius.£.b.idco.bur.tres quineas crit iplius.b.£ ve sple dicic.
Solidem  mams w ? I T . AL R,
C\Lbu.t malorr ,_.__(’ '__u ——
Cubus  maicr R ' A
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Sed.q.b. fimititertres quinee et ipfius.d.b.ex. 8. pradita. Quare.q.r.res quintz
erit ipfius.f.g. ex. 19. quinti. 1
igitur hoc modo cum. £.b.corum ad rotum.b. r. irs fe habeat v ableifs
fum.b.g.ad ablciffum.q.b.ex.ret.8. dict primi libi ciufdem ideorefiduum.£g.c%
£b.ad refidoum.t.q.ex.b.erie vt rotum. £b.ad.cotum.r.buex. 19.qainei Eucli,
Sed iam fiub, & probauimus ita (chabere frultum.a.d.¢.c.ad parabolam.d.b . ve
ot ad.t.nded vantaden.ica ailfumpea fuit vbi.A. Jir.ad quam fic fe haberet. 2
broc eft tees quine ipfius £, g hoc eftq.r.quare ex.t 1. quine proportio frufti . a
d.c.cad parabolam partialem eri¢ ve.q.r.ad.r.i. Eiftente igitur.r. centro coxius ps
rabole et,q. centto partialis,ergo d.centrom eri frufti propofit .

Sed fi nullo folido incercedent e,voluerimps centram.i.frufti.a.c. citiusinaenire -
inueniemus primé centrum.r.totius figura ex.8.(ccundi ciufdem conftituendo.b.r.
tres quineas totius axis.b.f.& centrum, q.parabole.d.b.c.partialis fimiliter.

Nunc igitar manifeftum ' cft nobis, candem proportionem fore ipfius.q.r.
ad. r. i qua frufti. 2. ¢. ad portionem. d. b. ¢. ex. 8. dicta.. Vnde ex comuncta pro-

jonalitate itaf¢ habebit.qi.adirvtab.cad.d.b.c. fed ve.ab.c.ad.db.edtafe
n.n.ad.nt.co Tod vnaquirque harum duarum proportionum fefquialtera
et joni.£b.ad.b. g.coguod.fb.ad.b.g. ita fehabet.ve. m. n. ad. o. n. quare

m.n.ad.tita fe habebit ve.gui.ad.ri.vade difiunctim.m.t.ad.tn. ita [¢ habebic ve
q.rad.r.i. Jungatuc igitur.ri.qua quidem.r.i.ica fe habeat ad.r.q.vtt, o ad. £ m.ve
“habeaturcentrum frufti.”
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DEFENSIO NOSTRA CONTRA ANTONIVM
Bergam, & Alexandrum Piccolhomincum -

HuftriDomsino Horatio Muto.
Nn- eaqur olim contra Antoniom Bergam , fermone Tralico feriphiy
N S

hoc v num erat, quod ipfe Berganon viderat quendam nocatt dignur
7 Cnorcmip(iusl’wtolhgmind, vbiipfe Alexanderarguit quendamau-
thorem in tracatn de magnitudine cerre & aquae pag.37- linca. 3&.ita di
» Cens, & crit major aqua. Qs
uo




