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a  b  s  t  r  a  c  t   
 
To answer new scientific and  ecological questions and  monitor multiple forest changes, a fine scale characteriza- 
tion of these ecosystems is needed, and  could imply the mapping of specific species, of detailed forest types, and 
of functional composition. This characterization can be now provided by the novel Earth Observation tools. This 
study aims to contribute to understanding the innovation in forest and ecological research that can be brought in 
by advanced remote sensing instruments, and  proposes the guild mapping approach as a tool to efficiently mon- 
itor  the varied tropical forest resources. We  evaluated, in tropical Ghanaian forests, the ability of airborne 
hyperspectral and  simulated multispectral Sentinel-2 data, and  derived vegetation indices and  textures, to: dis- 
tinguish between two different forest types; to discriminate among selected dominant species; and  to separate 
trees species grouped according to their functional guilds: Pioneer, Non Pioneer Light Demanding, and Shade 
Bearer. We then produced guild classification maps for each area using hyperspectral data. Our results showed 
that with both hyperspectral and simulated Sentinel-2 data these discrimination tasks can be successfully accom- 
plished. Results also stressed the importance of texture features, especially if using the lower spectral and  spatial 
Sentinel-2 resolution data, and  highlighted the important role of the new Sentinel-2 data for ecological monitor- 
ing. Classification results showed a statistically significant improvement in overall accuracy using Support Vector 
Machine, over Maximum Likelihood approach. We proposed the  functional guilds mapping as an innovative 
approach to: (i) monitor compositional changes, especially with respect to the effects of global climate change 
on forests, and  particularly in the tropical biome where the occurrence of hundreds of species prevents mapping 
activities at species level; (ii) support large-scale forest inventories. The imminent Sentinel-2 data could serve to 
open the road for the development of new concepts and  methods in forestry and  ecological research. 

. 
 
 

1. Introduction 
 

Tropical forests host the largest biodiversity of terrestrial ecosystems 
and  have  a fundamental role in the carbon cycle. Improving the  moni- 
toring of tropical forests is an important research issue, relevant to the 
implementation of climate change related agreements and  reporting 
duties, to biodiversity conservation, and to the definition of sustainable 
schemes for timber extraction. The understanding of ecological mecha- 
nisms can also benefit from improved forest monitoring, as in the  case 

 
 

⁎  Corresponding author at: Impacts of Agriculture, Forests and Ecosystem Services 
Division, Euro-Mediterranean Center on  Climate Change (IAFES-CMCC),  via Pacinotti 5, 
Viterbo 01100, Italy. 

E-mail address: gaia.vagliolaurin@cmcc.it (G. Vaglio  Laurin). 
 
 

of the dynamics of tree  species distribution in different ecosystems, 
community structures, and  spatial distributions of functional traits. For 
both  applied and  scientific purposes,  the  use  of Earth  Observation 
(EO) is fundamental, allowing extrapolation of local field  information, 
difficult to collect, to the large extents typical of tropical forests. EO sys- 
tems that allow  for credible measurement, reporting and  verification 
are particularly critical  for the  successful implementation of REDD + 
(Reducing Emissions from   Deforestation and   Forest   Degradation) 
efforts  by the United Nations (UN-REDD, 2013). 

The initial  remote sensing focus in forest research, a few decades 
ago, pointed toward the detection of deforestation and forest land  con- 
version, and  the  coarse characterization of different forest types.  These 
tasks  have  been successfully accomplished using  optical data,  which 
are  now  a consolidated tool  to monitor, at large  and  medium scales, 
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different forest features (i.e. extent and  changes, productivity, health 
conditions), thanks to the availability of free, multitemporal, and global 
satellite datasets (Hansen et al., 2008a; Hansen et al., 2008b; Margono 
et al., 2012; Zhu, Woodcock, & Olofsson,  2012). 

In recent years, a more detailed characterization of forests is needed, 
to  answer new  scientific and  ecological questions  and  to  monitor 
change in many attributes, such  as the  occurrence of specific species, 
and  of detailed forest types and  their functional composition. This im- 
proved forest characterization can be provided by new  EO tools, thanks 
to the  fast technological advancements of this sector. 

Satellite open access  data presently available (e.g. Landsat, MODIS), 
however, do not allow for very fine ecological mapping and monitoring, 
due to limited spatial and spectral resolutions. Despite these limitations, 
some studies using  multispectral satellite data,  often in conjunction 
with microwave data, have been able to derive valuable forest informa- 
tion  such  as the  characterization of forest classes and/or successional 
stages (Foody, Palubinskas, Lucas,  Curran,  & Honzak,  1996; Vaglio 
Laurin et  al., 2013); or carbon stock  estimation until the saturation 
limit (Cutler,  Boyd, Foody,  & Vetrivel, 2012; Foody,  Boyd, & Cutler, 
2003a; Gibbs,  Brown,  Niles, & Foley, 2007; Vicharnakorn, Shrestha, 
Nagai, Salam, & Kiratiprayoon, 2014). Additionally, some hyperspectral 
systems are  available on  orbital level  such  as Hyperion and  CHRIS/ 
PROBA: even  if spatially limited, they brought new  perspectives for 
tropical rain  forest studies (Thenkabail, Enclona,  Ashton,  et al., 2004, 
Galvão,  Breunig,  Santos,  & Moura,  2013,  Saini et al., 2014; Somers & 
Asner, 2013). 

With  airborne sensors, such  as LIDAR and  hyperspectral, more de- 
tailed forest information can be locally derived, with examples includ- 
ing fine  scale  biomass (Chen, Vaglio Laurin, & Valentini, 2015; Clark, 
Roberts, Ewel,  & Clark,  2011; Dubayah et al., 2010; Pirotti,  Vaglio 
Laurin, Vettore, Masiero, & Valentini, 2014; Vaglio Laurin et al., 2014) 
and  biodiversity estimations (Carlson, Asner, Hughes, Ostertag, & 
Martin, 2007; Féret & Asner, 2014; Leutner et al., 2012; Vaglio Laurin 
et al., 2014); forest types (Chan & Paelinckx, 2008) and species compo- 
sition (Féret & Asner, 2014). However, airborne imagery is character- 
ized  by high  variability, due  to different atmospheric and  flight 
conditions, or sensors used; the  generalization of these local findings 
is rarely possible and  the high  data acquisition cost prevents the use of 
airborne tools over large  regions or for monitoring purposes. Forest re- 
search and monitoring has both the need of open access new  high qual- 
ity satellite data, suitable for repeated monitoring over large  areas,  and 
of local data collected with innovative sensors, which are under contin- 
uous  development and allow for technical and scientific advancements. 

Forest  types have  been defined by the Convention of Biological Di- 
versity as a group of forest ecosystems of generally similar composition 
that can be differentiated from other such groups by their species com- 
position,  productivity and/or crown closure (https://www.cbd.int/ 
forest/definitions.shtml, accessed on June 4th 2015).  The identification 
at fine  detail of forest types,  successional stages, health conditions and 
symptoms of vegetation stress, is critical  to provide useful  information 
for management and  conservation planning (Barbati, Corona,  & 
Marchetti,  2007; Marchetti,  Vizzarri,  Lasserre,  Sallustio, & Tavone, 
2014). Vegetation types can be used as a surrogate for modeling the dis- 
tribution of species and  communities  (Foody, 2003b); their mapping is 
important as certain types are more susceptible to change due  to cli- 
mate variability or anthropogenic pressure than others. In the  tropical 
forest region there is a scarcity of fine  scale land  cover  data  and  forest 
type maps (Vaglio Laurin et al., 2013), and this information is especially 
relevant to those areas interested by the REDD + (Reducing Emissions 
from  Deforestation and  Forest Degradation) program incentives. 
Hyperspectral airborne data  already proved very useful for detailed for- 
est type  characterization. Asner et al. (2011); Kumar,  Schmidt, Dury, 
and  Skidmore (2001); Thenkabail, Lyon, and  Huete (2011) and  Ustin, 
Roberts, Gamon,  Asner, and  Green  (2004) provided detailed insights 
on principles and  ecological applications of image spectroscopy, which 
is based on the fine  spectral differences captured in hyperspectral data 

and  allow  the very fine  characterization of forests. Almost  two decades 
ago Martin, Newman, Aber, and Congalton (1998) discriminated among 
temperate forest types in US using  Airborne Visible/Infrared Imaging 
Spectrometer (AVIRIS) data, and  since then many advancements have 
been made through the detection of vegetation biochemical differences 
(see  Kalacska  & Sanchez-Azofeifa, 2008; and  Kokaly, Asner, Ollinger, 
Martin, & Wessman, 2009). Even if image spectroscopy technique is 
not  new,  its application in tropical forests for forest type  and  species 
mapping is limited by high airborne survey costs, and is more challeng- 
ing than in other ecosystems due to the high number of spectrally sim- 
ilar species, an irregular phenological behavior, and  a complex canopy 
structure with complicated scattering mechanisms (Baldeck et al., 
2014; Clark,  Roberts, & Clark,  2005; Papes  et  al., 2013; Somers & 
Asner, 2014). Species  mapping has proven potential for monitoring in- 
vasive  or commercially valuable species (Asner et al., 2008; Asner G., 
R.E, Ford, Metcalfe, & Liddell, 2009; Somers & Asner, 2013). The ESA 
Sentinel-2 (S2)  launch represents a very valuable opportunity for the 
fine  characterization and  monitoring of forest types on  large  scales 
(Baillarin et al., 2012), and  even  if this is not  an hyperspectral sensor, 
its innovative features can add  value.  Sentinel-2 offers a multispectral 
sensor with 13 bands from  443 to 2190  nm, and  a 10 day repeat cycle. 
The three S2 red  edge  bands are especially promising for their ability 
to detect fine  differences in chlorophyll pigments; higher chlorophyll 
content can  indicate higher canopy density or complex community 
structure, or higher nitrogen content in plant tissue (Alvarez-Añorve, 
Quesada, & De la Barrera, 2008). Despite its potential, the usefulness of 
S2 for ecological monitoring has been poorly investigated, especially 
in the  tropical biome; examples of research based on  simulated S2 
data include the monitoring of vegetation status in grassland and savan- 
na in North America (Hill, 2013); the leaf area index estimation in crops 
in Europe (Richter, Atzberger, Vuolo, Weihs, & d'Urso, 2009), and in four 
different biomes (Lee, Cohen, Kennedy, et al., 2004); the  estimation of 
leaf  chlorophyll content,  leaf  area  index and  fractional vegetation 
cover in a Spanish region (Verrelst et al., 2012). The texture features ex- 
tracted from S2 bands are also expected to be very useful  in forest type 
classification, as demonstrated by previous studies using  textures in 
tropical forests for this  purpose (Li, Lu, Moran,  & Hetrick,  2011; Lu, Li, 
Moran,   Dutra,  & Batistella,  2014). Texture  features, which inform 
about the spatial relationship between the  central pixel of the analysis 
window and  its neighbors, can enhance the  features of interest, reduc- 
ing heterogeneity in the  same land  cover  type  and  preserving features 
boundaries. However, the absence of guidelines for the selection of the 
features of interest, which are dependent on the  imagery and  bands 
used, the landscape under investigation, the size of the moving window 
(Lu, Batistella, Moran,  & de Miranda, 2008), limit the extensive applica- 
tion  of these useful  techniques. 

Tree species discrimination is of great interest to support conserva- 
tion and more sustainable timber extraction practices. Examples of spe- 
cies identification with high  resolution hyperspectral data  are found in 
Costa Rica forests, using  the  HYperspectral Digital Imagery Collection 
Experiment (HYDICE) sensor  (Clark et al., 2005; Clark  & Roberts, 
2012); in Hawaiian rainforest, where Asner and Vitousek (2005) identi- 
fied  invasive species by quantifying water and  leaf nitrogen concentra- 
tions  with airborne spectroscopy; and  again  in Hawaiian forest where 
Féret and  Asner (2012) used  hyperspectral imagery and  LiDAR (Light 
Detection and  Ranging) to map  individuals of nine  tree species, and 
Somers and  Asner  (2012) used  time series analysis to detect native 
and invasive species. To perform species mapping very high spatial res- 
olution sensors are needed, to detect single crowns. In tropical areas the 
presence of very large  crowns helps,  but only the  very high  resolution 
future hyperspectral satellite missions will support species mapping at 
reasonable costs  over large  areas. 

Among the different vegetation characteristics studied using remote 
sensing, one  which received much attention is plant functional type, 
which describes groups of plants with common response to certain en- 
vironmental influences (Lavorel, McIntyre, Landsberg, & Forbes, 1997; 
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Lavorel & Garnier, 2002). Functional types are employed in global vege- 
tation and climate change models (Smith, Shugart, & Woodward, 1997; 
Woodward & Cramer, 1996) because model parameterization is difficult 
for single species; in this context the Diversitas initiative of the Interna- 
tional Geosphere–Biosphere Programme is currently working to refine 
plant functional classification for the improvement of Earth System 
models (Canadell, Pataki,  & Pitelka,  2007). Evidence of climate change 
impacts on tropical forests is increasing, and these impacts can produce 
immediate changes or subtle modifications. Mortality of large trees in- 
duced by drought has been documented in Amazon and Borneo  forests 
(Kumagai & Porporato, 2012; Phillips  et al., 2010); an increase in above 
ground biomass and  increase in forest dynamics in response to global 
warming effects have been observed in South American long term mon- 
itoring plots (Baker, Swaine, & Burslem, 2003; Lewis et al., 2004). While 
the  effects of extreme events –such as drought and  fire  induced wide- 
spread tree  mortality- can be detected by optical data  (Zhang et al., 
2013), the  monitoring of forest modifications induced by long  term 
moderate changes in climate variables, such  as a change in functional 
composition, requires the use of different data  and  approaches. This is 
an important research area  as the magnitude of functional changes 
cannot be inferred using  structural variables, and  climate variability 
and  anthropogenic disturbance are  expected to increase in coming 
years,  especially in the West African region (Christensen, Hewitson, 
Busuioc, et al., 2007; Sheffield & Wood,  2008). Some research has al- 
ready illustrated climate-related functional changes. For instance, in 
the Amazon region drought disturbance is a major determinant of 
forest composition, with differential responses observed in relation 
to ecological groups and  drought types (Karfakis & Andrade, 2013). 
In Panama, Condit, S.P, and R.B (1996) analyzed forest compositional 
changes after a sequence of dry years  and  seasons, finding that a de- 
cline  in the moisture-demanding guild  indicates that a change in 
composition precedes a structural change. Anthropogenic activities, 
such  as logging,  can also modify the guild  composition of forests in 
favor  of fast growing pioneer species, as observed in an Indonesian 
Dipterocarp forest (Yoneda, Nishimura, Fujii, & MUKHTAR, 2009). 
Assessing forest guilds  composition is important also to better un- 
derstand forest growth dynamics: in Ghana, these dynamics were in- 
fluenced both by functional composition and  resource availability 
(Baker et al., 2003). 

Different kinds  of functional groups have  been proposed (Reich 
et al., 2003); Clark and  Clark (1999) suggested that in tropical forests 
the  number of groups is potentially very high.  One approach of func- 
tional grouping relates plant response to illumination condition, such 
as shade tolerance (Mulkey, Wright, & Smith,  1993). According to this 
approach Hawthorne (1995) classified West African forest tree species 
in Pioneer (PION), Non Pioneer Light Demanding (NPLD), and  Shade- 
Bearer  (SB) guilds.  The guild  concept has  been used  for many years 
(Simberloff & Dayan,  1991; Terborgh & Robinson, 1986), but  many 
questions related to the structure of ecological communities are still de- 
bated, including the processes that promote different dominance of 
patches of particular guilds.  In this  respect, the  study of disturbances 
using  remote sensing and  in situ data  is promising (McDowell et al., 
2015), as it can clarify the processes that contribute to shape the varied 
patterns of dominance by different guilds.  Studying forests using  the 
guild  approach and  developing guild  mapping initiatives can support 
community ecology  science as well  as ecosystem management. The 
guild  approach has already proved effective in tropical areas to assess 
the  effects of disturbance, such  as selective logging  (Hawthorne, Sheil, 
Agyeman, Juam,  & Marshall, 2012), or  forest fragmentation  (Hill & 
Curran,  2005). In Central Amazonia, remote  sensing and  in situ data 
were useful  to understand the complex large-scale structure of an old- 
growth forest, which resulted driven by disturbance and recovery cycles 
(Chambers et al., 2013). 

In Ghana, Sheil, Salim, Chave, Vanclay, and Hawthorne (2006) found 
a trade-off between mature tree size and their shade tolerance or guild, 
influenced by disturbance, while Fauset,  Baker,  Lewis, et al. (2012) 

observed a shift in guilds  composition, they proposed, as a response 
to long  term drought. Forest  monitoring can  also  directly benefit 
from a guild approach, as the proportion of trees belonging to differ- 
ent  guilds  provides an indication of successional forest conditions. 
For Ghana  this  has  been illustrated in previous research, through 
the  development of a Pioneer Index  (Hawthorne, 1996; Hawthorne 
& Abu-Juam, 1995). Similarly,  guilds  have  been helpful in other in- 
vestigations such  as the usefulness of different types of secondary 
vegetation to local communities (Marshall & Hawthorne, 2012); for 
framing the physiological responses of different tree species to 
light  (Agyeman, Swaine, & Thompson,  1999); for  understanding 
tree  allometric relationships (Sheil et al., 2006); and  to explore 
tree species diversity (Bongers, Poorter, Hawthorne,  & Sheil, 2009). 
However,  the  number of studies addressing guilds  composition to 
monitor and  understand forest functional changes is still limited, and 
additional research and   monitoring efforts   are  needed especially 
under the present climate change threat. 

The present research has three main objectives. The first is to evalu- 
ate the ability of airborne hyperspectral data and simulated S2 data, and 
derived features (vegetation indices and  textures) to distinguish be- 
tween two slightly different forest types in Ghana: wet evergreen forest 
in Ankasa  Conservation Area, and  moist semi-deciduous forest in Bia 
Conservation Area. Our hypothesis is that the two areas are distinguish- 
able with both hyperspectral and S2 data, thanks to the different forest 
structures and  phenological characteristics, even  though a significant 
number of trees of the same species are found in both forests. The sec- 
ond objective is to evaluate the ability of hyperspectral and S2 datasets 
to distinguish among selected dominant tree  species, belonging to dif- 
ferent guilds, in each area. We hypothesize that this task can be well ac- 
complished using  hyperspectral data  and  that less accurate results can 
be obtained using  simulated S2 data,  due  to its more limited spatial 
and spectral resolutions. The third objective is to test the hyperspectral 
and S2 datasets for the discrimination of functional guilds, identified as 
Non  Pioneer  Light Demanding (NPLD), Pioneer (PION), and  Shade- 
Bearer  (SB), according to Hawthorne (1995). We expect that the spec- 
tral variation among different guilds  is larger than that among species 
belonging to the  same guild,  and  thus that the  trees in our  areas can 
be discriminated, classified and mapped according to the guild they be- 
long  to.  For classification, performed using  hyperspectral data,  we 
adopted and  compared Maximum Likelihood and  Support Vector Ma- 
chine approaches. This third objective is closely  connected to the  aim 
of improving forest monitoring and  assessment. Knowledge of abun- 
dance and  cover  of forest guilds  is useful  for biodiversity assessment, 
particularly in tropical forest.  Coupling  forest inventory and  thematic 
maps, obtained using  remote sensing data,  can support this  effort  in 
two main ways. The first one is the use of thematic maps to improve for- 
est inventory estimates. It is well known that, given  a sampling effort 
(the number of sample survey units), application of stratified sampling 
techniques to environmental resources leads  to more precise popu- 
lation estimates than the non-stratified ones. In the case of stratified 
sampling, like multi-phase forest inventories, the area is divided into 
relatively homogeneous subareas (called strata) and  each  stratum is 
sampled separately. The single stratum can be obtained directly from 
thematic maps, like e.g. the guilds  map.  The second option comes 
from  estimating the relationship between remotely sensed data 
and  forest attribute selected from  field  inventory, in order (i)  to map 
this  forest attribute over  the  entire region of interest, or (ii) improve 
the  precision of inventory estimates: for methodological details, see 
Corona  (2010). 

Overall,  these objectives are useful  to understand to which extent 
advanced airborne technology is capable of providing very fine  resolu- 
tion  information on  forests,  for  example for  tracking subtle forest 
changes in relationship to climate variability, and which part of this in- 
formation is lost or preserved when using spatially and spectrally coars- 
er data  such as the new  satellite S2, which on the other hand allows for 
broader area  coverage and  absence of data acquisition costs. 



 
 

2. Materials and methods 
 

2.1. Study areas 
 

The Ankasa Conservation Area (Fig. 1) is located in south-western of 
Ghana,  covering an area  of 509 km2; it is composed by the Nini-Suhien 
National Park and  the  Ankasa  Resource Reserve.  It became a wildlife 
protected area in 1976. The climate is characterized by a bi-modal rain- 
fall pattern, from April to July and from September to November; an av- 
erage annual rainfall between 2000  and  2200  mm; a mean monthly 
temperature typical of tropical lowland forest and  ranging from  24 °C 
to 28 °C; and  a relative high  humidity throughout the year, from  about 
90% at night to 75% in early afternoon. The vegetation of Ankasa is char- 
acterized as wet evergreen forest, with high  floristic and  structural 
diversity and  restricted to the  highest rainfall zone  in Ghana  (Hall & 
Swaine, 1981). Species  typical of this  forest zone  include: Cynometra 
ananta,  Lophira  alata,  Heritiera utilis,  and  Protomegabaria stapfiana. 
Two species that are very common in the semi-deciduous forests of cen- 
tral  Ghana,  Celtis mildbraedii and  Triplochiton scleroxylon, are  absent 
from  Ankasa.  The landscape is characterized by the  presence of low 
hills with an average elevation of 90 m a.s.l. and swampy areas. The geo- 
logical substrate of the reserve is mainly granite of the Cape Coast com- 
plex. Parts of the southern portions of this forest were selectively logged 
from about the 1960s to 1974, but logging intensity was low due a small 
proportion of valuable timber species, and  most of the  forest was  un- 
touched (Hawthorne, 1989). 

The Bia Conservation Area (Fig. 1) is located in the  Juabeso-Bia Dis- 
trict in southwest Ghana  close to the border with Ivory Coast, covering 
approximately 306 km2. It comprises the  Bia National Park (northern 
part) and  Bia Resource Reserve (southern part) and  covers the  transi- 
tion  zone  between two of Ghana's forest types, moist evergreen forest 
in the south and moist semi-deciduous forests in the north. It is charac- 
terized by a bimodal rainfall peaks, between May and June and between 
September and October; a mean annual precipitation ranges from 1500 
to 1800  mm; and  a mean monthly temperature ranges between 24 °C 
and  28 °C (Hall & Swaine,  1981). Some  of the  most common species 

are:  Baphia nitida,  Celtis mildbraedii, Pycnanthus angolensis,  Triplochiton 
scleroxylon, and Terminalia superba (Hawthorne, 1995). The topography 
of the  study area  is generally hilly with elevations ranging between 
168  m and  238  m a.s.l. The geological formation corresponds to the 
Lower Birrimian. In Bia National park no systematic logging  activity oc- 
curred in the past decades, while selective logging was relatively intense 
in southern Bia Resource Reserve  until  the beginning of the nineties 
(Hawthorne et al., 2012). 
 
2.2. Remote sensing data  and photointerpretation 
 

Airborne hyperspectral data  were collected in two consecutive days 
on March 2012, in strips covering parts of the study areas,  with an AISA 
Eagle sensor with FOV equal to 39.7  urad,  a signal-to-noise ratio of 
1250:1, set to record 244 bands with 2.3 nm spectral resolution in the 
400–1000 nm range, and resulting in a spatial resolution of 1 m after ra- 
diometric correction and  orthorectification (Fig. 2). The Fast Line-of- 
Sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) algorithm 
(Felde et al., 2003) was used  to perform the  atmospheric correction of 
the  strips. Fifty-two noisy  bands out of the 450–900 nm  range and 
four bands between 759 and  766 nm  range were removed, obtaining 
186   bands.  We   used   Minimum  Noise   Fraction  (Green,  Berman, 
Switzer, & Craig, 1988) to remove or reduce the  noise  in the  spectral 
curve  of each  pixel;  for each  strip we retained only the  MNF compo- 
nents (9 to 15) in which the crown shapes were still visible and not con- 
fused by noise, excluding the other noisy ones; we finally converted the 
MNF bands to the original scale so that we can calculate the spectral in- 
dices,  as in other  studies (Galvão, Formaggio, & Tisot, 2005; Shafri, 
Hamdan, & Izzuddin Anuar,  2012). For the present analysis we  per- 
formed a systematic sampling, selecting one  band every  15 to obtain 
13 bands, to ensure that the bands were evenly distributed across  the 
450 to 900 nm  spectral range. Furthermore, using  bands from  the full 
dataset we computed the following vegetation indices: Normalized Dif- 
ference Vegetation (NDVI) and Simple Ratio (SRI) (Sellers, 1985), Atmo- 
spherically Resistant Vegetation (ARVI) (Kaufman & Tanré, 1996), Red 
Edge  Normalized Difference Vegetation (ReNDVI)  (Sims & Gamon, 

 

 
 

Fig. 1. Location of Ankasa (ANP) and Bia (BNP) Conservation Areas. 



 
 

 
 

Fig. 2. Hyperspectral data collected over Ankasa and Bia Conservation Areas in a false color 
composite of 829 nm (R), 604 (G), and 465 (B) bands. The yellow polygons represent the 
delineated crown species. 

 
 

2002), Vogelmann Red Edge (VReI) (Vogelmann, Rock, & Moss, 1993), 
Photochemical Reflectance (PRI)  (Gamon, Penuelas, & Field, 1992), 
Red Green Ratio (GRI) (Gamon & Surfus, 1999), Carotenoid Reflectance1 
and  2 (CRI1, CRI2) (Gitelson, Zur, Chivkunova, & Merzlyak, 2002), and 
Anthocyanin Reflectance 1 and  2 (ARI1, ARI2) (Gitelson, Merzlyak, & 
Chivkunova, 2001). MNF and  vegetation indices were computed using 
the ENVI software (Excelis); criteria for band assignment are described 
in http://www.exelisvis.com/docs/spectralindices.html (accessed on 
22nd October 2015). We also  computed Gray Levels Co-Occurrence 
Matrix (GLCM) Mean,  Variance,  Homogeneity, Contrast, Dissimilarity, 
Entropy, Second  Moment and  Correlation textural features (Haralick, 
1979) using  a 5 × 5 window size, consistent with crowns dimension 
in our sites (generally comprised between 5 and 15 m radius). 

Aerial  photographs,  used  to identify and  delineate tree crowns, 
were acquired simultaneously with hyperspectral data with a Rollei 
H25  camera equipped with a Phase  One  Digital Back. Images were 

 
georeferenced and  orthorectified using  a lidar  DEM available for the 
study areas (Vaglio  Laurin et al., 2014) in ENVI software (Excelis); 
orthophotos were acquired at 0.1 m spatial resolution. 

Using hyperspectral imagery we simulated most of the  data which 
will be collected by the multispectral sensor mounted on the ESA S2 sat- 
ellite  mission, launched on 23rd  June 2015  (Fig. 3). Due to the  limited 
spectral range of our hyperspectral data (450–900 nm), bands 1 and  9 
were not simulated, as well  as all the  bands (10, 11, 12) included in 
the  short wave  infrared portion of the spectrum.  The  remaining 8 
bands were simulated using  the Spectral Response Functions (SRF) 
and  the approach developed by  D'Odorico,  Gonsamo, Damm,  and 
Schaepman (2013). Bands  were centered at 490, 560, 665, 705, 740, 
783, 842 and  865 nm. All bands' spatial resolution was set to 10 m, re- 
sampling with nearest neighbor algorithm the four bands (705,  740, 
783 and  865 nm) simulated at 20 m according to SRF; in fact, for test 
purposes we chose  to set the spatial resolution equal for all the bands, 
even those which are planned at 20 m in the actual S2 sensor. According 

 

 
 
Fig. 3. Simulated Sentinel-2 data derived from hyperspectral strips collected in Ankasa and 
Bia Conservation areas. False  color composite of bands 8 (R), 3 (G), 2 (B). 

http://www.exelisvis.com/docs/spectralindices.html


 
 

the  available bands, we were able to calculate four vegetation indices 
(NDVI, SRI, RENDVI, ARI1) and  the  Gray Levels Co-Occurrence Matrix 
(GLCM) textural features (Haralick, 1979) using  the  smallest possible 
(3 × 3) window size. 

Using 10 cm resolution orthophotos we delineated the  crowns of 
species for which identification was unequivocal for their phenological 
characteristics in the surveyed period, and which were covered by qual- 
ity data  (haze and  cloud  free).  This species identification (including 6 
species listed in Table 1, and other 15 representing the different guilds) 
was possible thanks to the 10 cm resolution of the orthophotos, which 
allowed the  identification of species-specific traits related to crowns 
structure, foliar texture and  color, and  in some cases,  flowers; when 
the  species identification was  uncertain, that species was  discarded 
from the analysis. Identification was guided by ground truth, plot data. 
Results where then  reported  to  the   1  m  resolution co-registered 
hyperspectral images (Fig. 2), overlaying the  interpreted tree  species 
with hyperspectral images, and  consequently to the simulated S2 
dataset. To refine the  results of the  photointerpretation, we used  field 
data  provided by the  ERC Africa GHG FP7 EU funded project, which 
collected data  in different surveys carried out  in 2012–2013. Overall, 
during the  surveys, 4.7 ha (899 trees) were surveyed in Ankasa  and 
3.89  ha (575 trees) in Bia, collecting information on species, height 
and diameter at breast height (DBH) for trees N 20 cm DBH. We also col- 
lected field information on lianas  presence: this helped during the pho- 
tointerpretation to exclude crowns on which lianas  were densely 
superimposed, which however were few, spread between the more 
globular and discrete tree crowns, and characterized by a different tex- 
ture due to their different architecture. We did not have  accurate geo- 
graphical coordinates for single  trees, but we  checked if the  species 
with larger crowns identified in the  orthophotos were also recorded 
(with large  DBHs) in the  field  records. The use of photointerpretation 
with ground truth data  was the only possible solution in complex eco- 
systems like the  one under analysis, where the number of species and 
complexity of vertical canopy structure make a correct and spatially ex- 
tensive mapping of the crowns unfeasible. 

 
 

2.3. ROI delineation 
 

Two  Region  of Interest  (ROI)  of about 26  ha  were selected on 
hyperspectral imagery inside the reserves, avoiding boundary zones 
(exactly of 258,346 1 × 1 m pixels  for Ankasa and  259,353 for Bia). In 
simulated S2 dataset these two regions corresponded to 2588  and 
2593 pixels, respectively. These ‘area ROIs’ were used to test the separa- 
bility of the two  wet  evergreen and  moist semi-deciduous forest types. 

ROIs of crowns of three dominant species per  site were identified, 
with dominance due to high number of individuals in the upper canopy 
layer  determined by  visual  inspection of  high  resolution imagery 
(Table 1); crowns were further screened to retain only the larger ones, 
evenly distributed  spatially, with species equally represented, thus 
obtaining a similar number of pixels  for each  species. These  ‘species 
ROIs’ were used to test the separability among canopy dominant species 
inside the  Ankasa  and  Bia sites. 

ROIs of crowns for  15  species,  almost equally represented  and 
belonging to PION, SB, and  NPLD guilds,  were also delineated to obtain 
in each  area  a similar number of pixels  per  guild  type  (Table 3). The 

PION species included: Alstonia boonei, Elaeis guineensis,  Lophira  alata, 
Myrianthus arboreus, Terminalia  superba, Triplochiton  scleroxylon;  the 
SB: Berlinia spp., Celtis mildbraedii, Cola gigantea, Cynometra ananta; 
and  the  NPLD: Albizia spp., Heritiera utilis, Piptadeniastrum africanum, 
Protomegabaria stapfiana, Pycnanthus angolensis,  and Uapaca guineensis. 
These ‘guilds  ROIs’ were used  as a preliminary test for the separability at 
guild level per area, and then to produce the guilds  maps by means of the 
two different classification approaches. Ghana has more than 300 large for- 
est tree species (Hawthorne & Gyakari, 2006), so this is a first examination 
of this  approach. For classification purposes, a ‘Shadow’ class of similar 
size was  also delineated in each  area.  All the  classes  (NPLD, PION, and 
SB) were randomly partitioned into 70% training and 30% validation sets. 
 

 
2.4. Classification  procedure 
 

We adopted and  compared the results of two classifications. Maxi- 
mum Likelihood (ML) approach (Richards & Jia, 1999) was  selected 
due to its broad diffusion. Support vector machine (SVM) is a supervised 
non-parametric statistical learning technique, which is known for the 
ability  to generalize well  even  with limited ground truth, and  often 
used to improve the classification of remotely sensed imagery, including 
airborne hyperspectral (Féret & Asner, 2012; Mountrakis, Im, & Ogole, 
2011; Paneque-Gálvez et al., 2013). With ML technique, training multi- 
dimensional data are used  to find  the  so-called optimal separation hy- 
perplane, i.e. the  hyperplane that separates the  dataset into  a discrete 
predefined number of classes  in a way consistent with training sample, 
maximizing the  distances between different classes in order to mini- 
mize  misclassifications (Burges, 1998). To perform ML we used  ENVI 
4.5 (Exelis). For SVM we adopted the  R package e1071 (R Core Team, 
2013); the  optimal gamma and  cost parameters were identified using 
tune.svm  function. For both Ankasa  and  Bia gamma was  equal to 0.1 
and cost equal to 10. ML and SVM results for each  area  were compared 
using  the  Z test  (Congalton & Green,  2008); test  values N 1.96 (at  95% 
confidence level)  indicate that the  confusion matrices under compari- 
son are significantly different. 
 

 
2.5. Data analysis  steps 
 

The first step was to analyze the separability of Ankasa  and  Bia for- 
ests.  We  used  the Jeffrei–Matusita (J-M) separability measurement 
(Richards & Jia, 1999) and  the  ‘area  ROIs’ to test the  ability  of 
hyperspectral, simulated S2 data,  and  the  vegetation indices derived 
from  these datasets, to distinguish the  two  different forest types. The 
value  of the J-M measurement ranges from  0 to 2.0 and  indicates how 
well the selected ROI pairs  are statistically separated; values above  1.8 
indicate that the ROI pairs have good separability (Richards & Jia, 1999). 

As second step, we repeated the separability analysis at crown level 
for the 3 dominant species in each area, using ‘species ROIs’, represented 
by a relevant number of pixels (N 40 in simulated S2 data) and belonging 
to different guilds, using as input the same hyperspectral, simulated S2, 
and  derived features. This test highlighted the  separability of different 
species (and their guilds) inside each  area. 

We finally used  the ‘guild ROIs’ to investigate the separability of dif- 
ferent guilds  over the entire airstrips, by means of hyperspectral, simu- 
lated S2 and derived features. 

 
Table 1 
Selected dominant species for Ankasa and Bia areas, pixels in hyperspectral and simulated Sentinel-2 data, and guild type. S2 = simulated Sentinel-2. NPLD = Non Pioneer Light Demand- 
ing; PION = Pioneer; SB = Shade-Bearer. 

 

Ankasa conservation area     Bia conservation area  
Species name Hyper pixels S2 pixels Guild  Species name Hyper pixels S2 pixels Guild 

Cynometra ananta 4607 57 SB  Pycnanthus angolensis 4670 55 NPLD 
Heritiera utilis 4373 59 NPLD  Terminalia superba 4578 52 PION 
Protomegabaria stapfiana 4452 45 NPLD  Triplochiton scleroxylon 4739 56 PION 



 
 

When the  separability threshold (set to 1.8) was not reached with 
bands or vegetation indices as inputs, we added texture features as in- 
puts. To avoid using  a very large number of textures we adopted a sim- 
ple and  semi-automatic approach for selecting the most relevant ones 
for each  separability task  (forest type,  species, and  guilds  distinction). 
We first stacked (joined the features in a stack, ie. a single  file for pro- 
cessing purposes) all the  textures of a given  type  (e.g. mean, variance 
etc.) and  ranked their J-M scores (by type stacking); layer  stacking and 
J-M analysis were performed with ENVI (Excelis) software. We then 
stacked the textures according to the band they derived from,  and 
again  ranked the  J-M  scores obtained (by band  stacking). We  then 
added to the original bands or vegetation indices (if the  latter per- 
formed better than bands) a number of progressively higher texture 
features, until  the  1.8 set threshold was  reached. The added textures 
were those having the higher rank  in by type stacking, generated from 
bands (maximum four) that obtained better scores in by band stacking. 
Finally, we produced tree  guilds  maps, one per  area,  from  the 
hyperspectral imagery. 

 
 

3. Results 
 

3.1. Differentiation of forest types based on spectral  properties, vegetation 
indices, and texture 

 
We tested the J-M separability of the two Ankasa and Bia areas using 

the 13 systematically sampled hyperspectral bands and derived vegeta- 
tion  indices. J-M with 13 bands as inputs resulted N 1.99, and  the  same 
result was obtained using all the computed vegetation indices. To iden- 
tify the  most informative spectral regions we tested J-M measurement 
separately per  each  index; most of them obtained scores well  above 
the  1.8 separability threshold, with the  exception of three indices with 
scores  between 0.63 and  1.52 (ARI1, CRI1, and  SRI). We repeated the 
separability using  only  the highest scoring vegetation indices, REPI 
and SGI indices, obtaining a J-M score N 1.99. Overall, these results indi- 
cate that the  two areas can be easily  discriminated using  both  original 
hyperspectral data and the derived indices. The most informative spec- 
tral regions were the red edge  and  the green. 

The J-M scores for the eight S2 simulated bands were equal to 0.70; 
the score increased to 0.98 when the four vegetation indices were used 
as input. To increase separability we added texture features. The semi- 
automatic procedure of texture selection resulted in the selection of var- 
iance,  contrast, and  dissimilarity from  bands 1, 2, and  3. The J-M score 
obtained using  these textures and  the  4 vegetation indices as inputs 
was equal to 1.89. These results indicate that the two areas can be dis- 
tinguished by simulated S2 data, using  derived features (vegetation in- 
dices and textures), while the task cannot be accomplished using the S2 
bands or vegetation indices alone. 

3.2. Differentiation  of dominant species  based  on  spectral  properties, 
vegetation indices, and texture 
 

The results presented in this section are related to the differentiation 
of dominant species.  Three  species were considered in  each  area: 
Table 1 illustrates the results obtained from the delineation of crowns, 
with number of crowns for each  species comprised between 12 and 
38; the separability of the dominant species in Ankasa and Bia areas ac- 
cording to different inputs is reported in Table 2. 

Hyperspectral sampled bands and  derived vegetation indices were 
not able to perform the species distinction in Ankasa. The texture selec- 
tion  procedure previously described resulted in the  addition, to the  13 
hyperspectral bands, of mean, variance, second moment and correlation 
textures derived from  bands 1 (465.05 nm), 5 (504.42 nm),  and  6 
(639.99 nm). Results,  illustrated in Table 2, indicate that in Ankasa the 
discrimination between species is only possible with the addition of tex- 
ture variables. Texture features were particularly useful  in the  species 
level analysis, as some of them were able to enhance crowns edges in 
the  imagery (Fig. 4).In  Bia, hyperspectral bands or indices were only 
able  to distinguish the  two  NPLD species pair, but  vegetation indices 
produced J-M scores  close to separability threshold for all three pairs 
of species compared. The procedure of selection of texture features 
resulted in the  addition, to vegetation indices, of mean texture from 
bands 1 (465.05 nm), 8 (711.17 nm), and  9 (746.93 nm). In contrast 
to what was  found for Ankasa,  with the  addition of texture, all three 
pairs  had J-M indices N 1.8, indicating good separability, and  in general, 
the Bia pairs  were more distinguishable than the  Ankasa ones. 

For simulated S2 data (Table 2), neither the bands nor the vegetation 
indices were effective in discriminating species in any of the  areas.  In 
Ankasa separability was reached when using  in addition to bands, sec- 
ond moment, variance, and correlation from bands 1, 2, and 5, according 
to the results of the texture features selection procedure. In Bia the tex- 
ture selection resulted in the  selection of correlation calculated from 
bands 2, 3, and  4; with these inputs separability was reached. 

Even if simulated S2 results should be interpreted with caution for 
the limited number of pixels used in the analysis (Table 3), they support 
what was found with hyperspectral data, namely that the pairs  distinc- 
tion in Bia was easier in comparison to the one in Ankasa, and  that the 
pair  composed by two  NPLD species showed different behaviors in 
each  area. 
 
3.3. Guilds differentiation and classification results 
 

The results presented in this section are related to the differentiation 
of guilds,  and  the following classification exercise. Table 3 provides in- 
formation on  the  number of pixels  belonging to each  guild,  in each 
area,  for hyperspectral and  simulated S2 data,  while the separability of 
guild in each  area  according to different inputs is reported in Table 4. 

 
 
 

Table 2 
J-M scores for pairs of selected dominant species per area, belonging to various guilds (species here are indicated only by genus name, for complete name refer to Table 1). S2 = simulated 
Sentinel-2. NPLD = Non Pioneer Light Demanding; PION = Pioneer; SB = Shade-Bearer. 

 

Ankasa conservation area  
 Hyper bands Hyper vegetation indices Hyper bands + textures S2 bands S2 vegetation indices S2 bands + textures 

Cynometra (SB)–Heritiera (NPLD) 1.49 1.46 1.97 1.02 0.83 1.80 
Cynometra (SB)–Protomegabaria (NPLD) 1.37 1.45 1.81 1.01 0.36 1.97 
Heritiera (NPLD)–Protomegabaria (NPLD) 1.29 1.14 1.80 0.99 0.72 1.98 

 

Bia conservation area  
 Hyper 

bands 
Hyper vegetation 
indices 

Hyper bands + textures Sentinel-2 
bands 

Sentinel-2 
vegetation indices 

Sentinel-2 bands + textures 

Pycnanthus (PION)–Terminalia (NPLD) 1.67 1.75 1.84 1.22 0.57 1.93 
Pycnanthus (PION)–Triplochiton (NPLD) 1.61 1.79 1.87 1.29 0.57 1.91 
Terminalia (NPLD)–Triplochiton (NPLD) 1.90 1.98 1.99 1.55 1.29 1.95 



 
 

 
 

Fig. 4. Ankasa hyperspectral data. On the left  hand the hyperspectral strip over Ankasa 
Conservation Area: false color composite of 829 nm (R), 604 (G),  and 465 (B) bands. On 
the upper right hand a zoom of the left  image for the white. Delineated region; on  the 
lower right hand the same regions is shown using a false color composite of variance 
textures from bands 1 (R), 5 (G), and 6 (B) which highlight crowns edges. 

 
In Ankasa, the hyperspectral sampled bands were not able to sepa- 

rate  guild  pairs; vegetation indices were successful for both SB–PION 
and  PION–NPLD pairs,  with SB–NPLD resulting very close to the 1.8 se- 
lected threshold. To reach full guilds  discrimination the combination of 
spectral bands with a subset of the  vegetation indices (SGI, PRI, EVI, 
NDVI, RGRI) was needed. In Bia, nor hyperspectral bands neither indices 
were successful while, as in Ankasa, the combination of the two sets was 
able to separate all the guilds pairs. In both areas,  the pair most difficult 
to be distinguished is the SB-NPLD one, and SB–PION is the easiest one. 
This is consistent with the  amount of spectral difference among guilds, 

 
 

Table 3 
Number of pixels from several trees species belonging to different guilds per area. S2 = 
simulated Sentinel-2. NPLD = Non Pioneer Light Demanding; PION = Pioneer; SB = 
Shade-Bearer. 

 
Ankasa conservation area  Bia conservation area 

 
which is expected to be larger between SB and  PION, with NPLD being 
intermediate between SB and  PION. The larger SB–PION difference is 
in accordance with the different leaves pigments and structure associat- 
ed  to the  two opposite illumination conditions (shade and  sunlight 
exposure). 

For simulated S2 data,  the bands and the vegetation indices showed 
low separability values in both areas. For S2, we did not tested the com- 
bination of bands and indices as the latter are computed using the eight 
simulated bands (while for hyperspectral data the indices are computed 
using  other bands than those thirteen sampled). Therefore we added 
textural features to the S2 bands: for Ankasa the selected ones were cor- 
relation from bands 1, 4, and 6; for Bia correlation from bands 1, 2, and 5. 
The number of pixels  used  in these tests was low (Table 1), but most of 
the results confirmed what was found using hyperspectral data with re- 
spect to easiness of the separability task for the different type  of guilds. 
 
3.4. Guild maps 
 

We  produced guilds  maps for the entire hyperspectral airborne 
strips of Ankasa and Bia areas, using as inputs the combination that pro- 
vided better separability (bands and vegetation indices), and as training 
and  validation the  ‘guilds  ROIs’. Overall  accuracy values and  K coeffi- 
cients for the  confusion matrices obtained from  ML classification are 
presented in Table 5. Results  from  SVM are presented in Table 6, and 
the corresponding maps in Fig. 5. The Z test values were significant for 
both Ankasa (2.28) and Bia (4.66) areas, indicating that SVM statistically 
significantly improved the  classification results compared to the  ones 
from ML. 

We did not  attempt the  production of guild  maps with simulated 
Sentinel-2 data  due  to the  limited number of available pixels,  but  the 
separability analysis in Table 4 indicate that guild maps could  be possi- 
bly obtained also with these data, especially if exploiting the additional 
bands, here not simulated, which are planned for the S2 sensor. 
 
4. Discussion 
 
4.1. Forest types 
 

Our first hypothesis, regarding the capability of hyperspectral and S2 
data  types to distinguish Ankasa  and  Bia forest types,  is supported by 
the  results of J-M measurements obtained in tests using  hyperspectral 
bands or simulated S2 vegetation indices with textures. These  forest 
types discrimination results confirm the  known ability of airborne 
hyperspectral data  to perform detailed forest type mapping, and  are in 
line with other research in the tropical biome which evidenced the ad- 
vantages of using  hyperspectral data: for instance, Thenkabail et al. 
(2004) used  Hyperion imagery to classify  nine  rainforest types in 
Africa; Held,  Ticehurst, Lymburner, and  Williams (2003) used  both 
hyperspectral and radar remote sensing to map at high resolution trop- 
ical mangrove ecosystems; Kalacska, Bohlman, Sanchez-Azofeifa, 
Castro-Esau, and  Caelli (2007a); Kalacska,  Sanchez-Azofeifa, Rivard, 
et al. (2007b) used  image spectroscopy to estimate the diversity of dry 
forests in Costa  Rica. Forest type discrimination using  S2 simulated 
data  was  less clear,  due  to the  lower spatial and  spectral resolution. 
The positive S2 result stresses the impact that the forthcoming mission 
could  have  in ecological mapping and  monitoring. We had  to add  tex- 
ture information to simulated bands in order to obtain separability. 

For S2, it is expected that the  availability of additional bands, espe- 
cially those in the  short wave  infrared region carrying carbon (lignin, 
cellulose), nitrogen, and  water content information, together with the 
planned multitemporal acquisitions and thus the ability to capture phe- 

Guild   # of 

  species 
Hyperpixels      S2 

pixels 
Guild   # of 

species 
Hyperpixels      S2 

pixels 
nological differences along  time, will further improve the ecological 
monitoring power of the  S2 sensor, opening new  roads in forest and 

NPLD     6  2576 30  NPLD     3  2354 26 
PION  2  2487 31  PION  4  2369 28 

    SB 5  2632 29  SB 3  2346 27 

ecology  research. 
Using  high  spectral and  spatial resolution inputs, we  found that 

vegetation indices from  the red  edge  and  green regions resulted in 



 

 Hyper bands Hyper vegetation indices Hyper bands + veget. indices Sentinel-2 bands Sentinel-2 vegetation indices Sentinel-2 bands + textures 

SB–NPLD 1.31 1.53 1.83 1.21 1.87 1.80 
PION–NPLD 1.74 1.90 1.99 1.47 1.94 1.97 
SB–PION 1.71 1.86 1.98 1.54 1.17 1.97 

 

 
Table 4 
J-M scores for pairs of guilds per area. S2 = simulated Sentinel-2. NPLD = Non  Pioneer Light Demanding; PION = Pioneer; SB = Shade-Bearer. 

 
Ankasa conservation area 

 

 Hyper bands Hyper vegetation indices Hyper bands + veget. Indices S2 bands S2 vegetation indices S2 bands + textures 

SB–NPLD 1.53 1.77 1.82 1.23 0.77 1.96 
PION–NPLD 1.78 1.90 1.92 1.41 0.45 1.97 
SB–PION 1.76 1.86 1.91 1.62 1.11 1.97 
 
Bia conservation area 

 
 
 
 
 
 

better J-M scores,  being  highly  informative: they alone  provided forest 
type separability. The vegetation indices were calculated from the orig- 
inal 186 bands, so their information content was not necessarily a repli- 
cation of what was  included in the  13 regularly sampled bands. The 
green spectral portion is partly linked to photosynthetic pigments, but 
also to non-photosynthetic anthocyanins, which absorb light in this re- 
gion and  are associated with the resistance of plants to environmental 
stresses such  as drought, low  nutrients, and  high  radiation (Viña & 
Gitelson, 2011). In our  study, the red  edge  and  green indices were 
able to capture the specific differences in canopy density and resistance 
to drought: these differences are occurring between wet evergreen and 
moist semideciduous forest types,  with the latter type in Bia being char- 
acterized by less complex and  more open forest structure and  species 
adapted to cope with water scarcity, compared to those in Ankasa. 

At the lower resolutions of the simulated S2 bands, texture informa- 
tion  was necessary for the discrimination of Ankasa  and  Bia forests, as 
well as for the dominant species and  guilds  distinction tasks. With  our 
semi-automatic empirical method we were able  to identify the  most 
useful  features, which resulted to be different according to the  sites 
and  the different levels  of analysis (area, species, and  guilds  levels). 
However, in our S2 tests the correlation, which is a statistical measure 
of the  linear dependency of gray levels  on those of neighboring pixels, 
was  the  most frequently selected feature (four cases  out  of five) and 
alone   provided separability in  three cases; while with respect to 
bands, band 1 and  2 were the  most frequently selected, again  in four 
cases  out  of five. The texture usefulness is in agreement with several 
studies conducted in tropical forests that already stressed the  impor- 
tance of texture for land  cover  classification (Li et al., 2011; Lu et al., 
2014; Rakwatin et al., 2012; Vaglio Laurin et al., 2013), or for estimating 
forest attributes such  as biomass and  biodiversity (Culbert et al., 2012; 
Cutler et al., 2012). 

 
4.2. Dominant tree species 

 
The discrimination of the selected dominant tree  species in Ankasa 

and  Bia forests required the use  of textures with both data  types 
(Table 3). Hyperspectral data  are known to allow  the discrimination of 

selected tropical species, thus the results we obtained using this dataset 
confirm our hypothesis, and  are in agreement with previous research 
based on the full 400–2500 hyperspectral range (Asner & Vitousek, 
2005; Clark et al., 2005; Clark & Roberts, 2012; Féret  & Asner, 2012). 
We based our tests on the limited visible to near infrared range, which 
in certain cases  is successful too, such  as in the study conducted in 
Malaysia by Hasmadi, Kamaruzaman, and  Hidayah (2010), that 
performed tree  species mapping with hyperspectral data  in a range 
(500–850 nm) similar to the one we employed. 

Refuting  our   second  hypothesis,   the  species  discrimination 
succeeded not  only  with hyperspectral but also  with simulated S2 
data.  The large  crowns (most N 10 m radius) characterizing our  sites 
can have  a role in this positive result, reducing the impact of the  lower 
spatial resolution of this dataset. 

We recognize that in tropical forests, especially the more disturbed 
ones, lianas,  epiphytes and  other non-structural elements have  the po- 
tential to confuse the hyperspectral tree signature, as previous research 
shown (Castro-Esau, Sánchez-Azofeifa, & Caelli, 2004; Kalacska  et al., 
2007b; Sánchez-Azofeifa & Castro-Esau, 2006; Zhang,  Rivard, 
Sánchez-Azofeifa, & Castro-Esau, 2006). Additional remote sensing re- 
search is needed to properly address this topic and to better understand 
the  impacts of non-structural forest community elements on research 
and  monitoring results. 

For our preliminary assessment of guild separability using 
hyperspectral inputs (Table 2) we emphasize that a few token examples 
from the  hundreds of species in each  guild  have  been taken, and  these 
results cannot be seen  as representing the full range of species in each 
guild  accurately. In Ankasa  the  threshold was  barely reached for the 
two  species belonging to the  same guild  (NPLD), while species from 
different guilds obtained much better J-M scores. In Bia it was more dif- 
ficult to separate the  two NPLD — PION pairs,  compared to the  species 
from  the  same guild  (NPLD); this  was  also observed using  simulated 
S2 inputs. We expected to find  more differences in the foliar biochemi- 
cal composition of species from  different guilds  than from  the  same 
guild, as the photochemical and pigments composition is largely  deter- 
mined by the solar radiation to which the leaves are exposed. However, 
during the airborne survey period (dry season) certain species – even if 

 
Table 5 
Percentages of user and producer accuracies, overall accuracy and K coefficient for Ankasa 
and Bia guild maps, using Maximum Likelihood classification algorithm. NPLD = Non  Pi- 
oneer Light Demanding; PION = Pioneer; SB = Shade-Bearer. 

 
Ankasa conservation area  Bia conservation area 

Table 6 
Percentages of users and producers accuracies, overall accuracy and K coefficient for 
Ankasa and Bia guild maps, using SVM classification algorithm. NPLD = Non Pioneer Light 
Demanding; PION = Pioneer; SB = Shade-Bearer. 
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 Producer 
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User 
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SB 84.88 88.10  71.76 88.78  SB 87.72 89.49  79.35 90.06 
NPLD 88.86 87.71  88.75 60.43  NPLD 89.25 91.33  87.26 78.72 
PION 93.88 88.47  87.41 88.89  PION 96.55 90.08  94.92 86.64 
SHADOW 95.61 98.37  93.12 99.28  SHADOW 96.31 98.24  93.98 98.85 
Overall accuracy 90.73   84.30   Overall accuracy 92.34   88.53  
K coefficient 0.97   0.84   K coefficient 0.92   0.88  



 
 

 
 

Fig. 5. Guild maps obtained using hypespectral bands and vegetation indices as inputs and Support Vector Machine classification approach. 
 
 

belonging to the same guild – show marked and different phenological 
features, such as deciduousness or flowering; these phenological differ- 
ences in the two NPLD Bia species, observed also in orthophotos, explain 
the  high  separability.  In this  view,  the collection of multitemporal 
acquisitions, planned for the forthcoming Sentinel-2 mission, becomes 
especially important for species discrimination. 

 
4.3. Functional  composition (guilds) 

 
Results  from guilds  analysis are preliminary and  more species from 

each  guild  will have  to be sampled before any guild-wide signals can 
be confirmed. If future work confirms or reinforces these differences, 

quantifying changes of patterns of dominance of different guilds  will 
be possible in tropical forests with hyperspectral data, and  there is the 
potential to perform the same task with forthcoming S2 data (Tables 5 
and 6). Patterns of change in guild dominance from wet to dry forest di- 
rectly indicate response of the plant community to past disturbances; in 
other words this will provide a metric for stages of secondary growth, 
with strong potential for improved forest management (Hawthorne, 
1996). The better SVM classification results in comparison to the ones 
from  ML, obtained for both  areas,  highlight the importance of machine 
learning approaches for performing complex analyses. 

The availability of sensors capable of identifying guild is relevant in 
ecology, especially in regions which are under increasing anthropogenic 



 
 

and  climate change pressure such  as West  Africa, with forests at risk 
of functional change and  shifts in species ranges. Mapping efforts  con- 
ducted at species level might be not  feasible in tropical forests, where 
hundreds of species occur: guild dominance mapping may offer a con- 
venient alternative for monitoring forest functional changes, even  in 
areas where plant taxonomy is incomplete or hard to pursue. Presently, 
the  detection of functional changes by means of hyperspectral data  is 
practically unfeasible due  to high  airborne data collection costs, which 
limits the  area  coverage, and  the need of specialized expertise for pro- 
cessing and  interpretation. However, technological innovation already 
allowed the development of hyperspectral sensors suited to be accom- 
modated in drones (Suomalainen et al., 2014), and examples of commu- 
nity  forest local monitoring by drones at reduced cost are  already in 
place  and  could  be replicated (Paneque-Gálvez, McCall, Napoletano, 
Wich, & Koh, 2014). Thus, in a near future, these technologies could  be 
employed to support hyperspectral based monitoring in specific sites 
of high  ecological value  or critically threatened, as well as to calibrate 
satellite-based data used  in larger scale monitoring efforts. 

We separately carried out the guild classification in Ankasa  and  Bia 
because the two hyperspectral strips covering these areas were collect- 
ed under different atmospheric and aerial survey conditions. Additional 
tests are thus needed to better assess the  applicability of the  method 
over  larger extents. It is expected that using  a satellite sensor such  as 
the  S2, which collects data over broad regions, will solve the problems 
arising when an aerial  survey, necessarily fragmented into different 
flights, is conducted. 

The separability results obtained in guild level tests using S2 data are 
preliminary but encouraging (Table 4), allowing some optimism for fu- 
ture portability of the procedure proposed here,  especially considering 
that additional information will  be provided by the full band set. It 
could  be  advisable to  provide to end  users,  together with imagery, 
preprocessed derived features that can increase data utility (i.e. textures 
and  vegetation indices), eliminating these processing steps, and 
allowing a wider range of users,  especially in developing countries in 
tropical regions, to benefit from the new  EO opportunity. However, S2 
will generate big data  streams requiring large  storage facilities and  ex- 
pert knowledge, a fact that has to be properly considered when plan- 
ning S2 data use. 

Furthermore, a guild  mapping approach can  effectively support 
large-scale forest inventories, which were the  basis in the  last decades 
for providing the  information necessary to fulfill reporting obligations 
under international agreements such  as the  FAO Global Forest  Re- 
source Assessment, the Kyoto protocol, the United Nations Conven- 
tion  on Biological Diversity (Corona, Chirici, McRoberts, Winter, & 
Barbati, 2011). 

Traditionally, the principal aim of national forest inventories is sup- 
plying  information on forest timber availability and  productivity. De- 
spite this, in recent years,  more and  more attention has been given 
to forest biodiversity, as is shown, for example, by the consideration 
of deadwood among principal inventory attributes (Rondeux et al., 
2012). 

Linking inventory data  to ecologically meaningful forest categories 
like functional guilds  brings substantial advantages for forest assess- 
ment, since: (i) it allows improved understanding, interpretation and 
communication of data on biodiversity variables by enabling compari- 
son of ecologically similar forests; (ii)  it enables a more detailed and 
richer analysis of indicators in a specific forest habitat (e.g. the relation- 
ship between the vertical structure of forest habitat and vertebrate and 
invertebrate fauna diversity); and (iii) it provides a suitable basis for es- 
timation by ensuring that different forest habitats are adequately repre- 
sented in the inventory field plots. Under such operational perspectives, 
the  portability of the  main results by  the  present  study (i.e. those 
concerning guild  mapping) is proved by both the  general representa- 
tiveness of selected test  areas,  the  input data  availability and  the feasi- 
bility of the  proposed elaboration procedures. Such results emphasize 
a significant potential of the Sentinel-2 images for improving large- 

scale forest monitoring and assessment efforts  in tropical and subtropi- 
cal countries, like e.g. those under the mechanisms by UN-REED (2013). 

Guild dominance mapping should improve the  precision of the in- 
ventory estimates, either supporting the  initial  stratification of the in- 
ventory field  sample (Corona, 2010) or by coupling the  mapped data 
(used as auxiliary information) with the field sample data  (e.g. biomass, 
merchantable timber) by model-assisted (Corona et al., 2014) or model- 
based (Meng, Cieszewski, & Madden, 2009) inferential procedures. 

In conclusion, this study contributed to an understanding of how for- 
est and  ecological research is likely to be helped by advanced remote 
sensing instruments, and  proposed the  guild  mapping approach as a 
tool to help  efficiently monitor the  varied tropical forest resources and 
their changes. This approach could  be of special use in the  near future, 
with the  availability of S2 multitemporal data  over broad regions, and 
could  support a better understanding of the  response of forests to a 
changing climate. 

Hyperspectral high resolution data are possibly the best tool to con- 
duct  forest change studies, especially if coupled with sensors able to 
provide information on vertical forest structure, such  as LiDAR. Several 
satellite hyperspectral missions, with open access  policy for scientific 
use, are under preparation: the  EnMAP (Environmental Mapping and 
Analysis Program) by the  Space Agency of the  German Aerospace Cen- 
tre, the HyspIRI mission of the National Aeronautics and Space Adminis- 
tration of the  United States,  the  continuity of PRISMA (Hyperspectral 
Precursor of the Application Mission) led by the Italian  Space Agen- 
cy, and  the  HISUI HIS sensor for launch on ALOS-3 satellite by the 
Japanese Space  Agency. Furthermore, micro- and  mini-satellites 
will certainly have  a role  in future hyperspectral EO missions 
(Guelman & Ortenberg, 2009). Thus, it is clear  that in the  coming 
decade our  way  to  observe and  study forests might be  radically 
changed by the  availability of these new  data.  However, in the  mean- 
while ESA Sentinel-2 will certainly produce very detailed forest informa- 
tion, with additional opportunities coming from  its joint use with the 
already available Sentinel-1 microwave data,  paving the  road  for the 
development of new  concepts and  methods in forest monitoring and 
ecological research. 
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