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Abstract. The parallel and the oblique firehose instability are generally3

accepted as the leading mechanisms shaping the boundaries of the protons’4

pressure anisotropies observed in the solar wind for p‖ > p⊥. However, it5

is still an open question which instability dominates this process. Only re-6

cently, first attempts were made to study the linear growth of the parallel7

firehose assuming more realistic bi-kappa velocity distributions instead of tra-8

ditionally used bi-Maxwellians. We apply a newly developed, fully kinetic9

dispersion solver to numerically derive the instability thresholds for both fire-10

hose instabilities. In contrast to former findings, we observe that the pres-11

ence of suprathermal populations yields a growth amplification which low-12

ers the instability threshold of the parallel firehose. This is due to enhanced13

cyclotron resonance. For the first time, we also look at the oblique firehose14

threshold and find a contrary picture. Here, the presence of suprathermal15

particles leads to an increase of the instability threshold. The enhancement16

of the parallel firehose and the suppression of the oblique firehose are expected17

to be of relevance in the solar wind and may alter the competition between18

both instabilities. Based on our findings, we propose a method how solar wind19

data could be used to identify the instability mechanism dominating this com-20

petition and shaping the observed anisotropy boundary.21
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1. Introduction

Since Parker [1958] formulated a first model to explain the gross features of the solar22

wind, a lot of progress has been made in improving our understanding of this complex23

and diverse plasma system. However, many properties of the solar wind are still rather24

poorly understood, making this an intriguing field of ongoing research. In contrast to25

other astrophysical plasmas, the solar wind allows direct access by spacecraft measure-26

ments. Hence it is a good test bed to validate models which can hardly be examined in27

earthbound plasma experiments.28

A special condition given in the solar wind, which is difficult to reproduce in experiments,29

is its low collisionality. The typical mean free path of solar wind particles close to the30

Earth orbit is of the order of 1 AU (see, e.g., Meyer-Vernet [2012]). The absence of colli-31

sions enables the formation and preservation of anisotropies in the pressure components32

parallel and perpendicular to the background magnetic field. Such anisotropies provide33

a source of free energy giving rise to kinetic plasma instabilities which feed on the free34

energy and eventually lead to a reduction of the initial pressure anisotropy.35

Using Chew-Goldberger-Low theory [Chew et al., 1956], it is easy to show that, assuming36

adiabaticity, a spherically expanding, collisionsless plasma such as the solar wind rapidly37

develops an excess of parallel pressure. The resulting anisotropy gives rise to the firehose38

instability. An unlimited growth of the anisotropy is then prevented since the firehose39

instability will keep the plasma close to a state of marginal stability which is determined40

by the firehose instability threshold. Space observations revealed that the proton pressure41

anisotropies encountered in the solar wind are indeed confined to a clearly constrained42
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parameter space which is most likely shaped by the presence of kinetic instabilities[Kasper43

et al., 2002; Hellinger et al., 2006; Bale et al., 2009]. In the realm p‖ > p⊥ and β‖ ≥ 1,44

the constraint is believed to be either due to the parallel propagating firehose instability45

(k⊥ = 0) or the oblique firehose instability (k⊥ 6= 0). Both instablities can be present si-46

multaneously and show comparable growth rates over a wide range of parameters[Hellinger47

and Matsumoto, 2000]. This poses the question which of both instabilities is the domi-48

nant one limiting the observed pressure anisotropies. Recent investigations with hybrid49

expanding box simulations showed that the saturation mechanism of the parallel firehose50

instability might be too weak to keep an expanding plasma at marginal stability[Hellinger51

and Trávńıček , 2008]. Instead, it is the saturation of the oblique firehose which ultimately52

prevents the pressure anisotropy from unlimited growth. However, this finding might not53

apply to the real solar wind since, due to numerical limitations, the simulations assumed54

unrealistically fast expansion. Slower expansion might favour the parallel firehose, in-55

stead[Hellinger and Trávńıček , 2008]. This is also supported in a more recent work by56

Yoon and Seough [2014]. By combining a kinetic-fluid model of the solar wind with quasi-57

linear instability theory in a one-dimensional setup, Yoon and Seough [2014] found that58

the parallel firehose stops the adiabatic growth of the pressure anisotropy before it crosses59

the threshold of the oblique firehose instability.60

Although the saturation mechanisms of both instabilities are nonlinear in nature, the cor-61

responding linear instabilty thresholds are expected to play an important role since they62

determine the state of marginal stability. However, plotting numerically derived linear63

thresholds over the pressure anisotropies measured in the solar wind gives only rough64

agreement between data and theory, which is not completely satisfying neither for the65
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parallel firehose nor for the oblique firehose (see, e.g., Hellinger et al. [2006]). There can66

be several reasons for this discrepancy. Since the expansion of the solar wind is constantly67

driving the firehose instability, a simple linear treatment excluding all nonlinearities aris-68

ing from high magnetic field amplitudes might lack important effects. Usually, the linear69

approach is also combined with the assumption of homogeneity which is questionable in70

the presence of turbulent fluctuations[Hellinger et al., 2015]. In this case, expanding box71

models should rather be applied in order to fully capture the nonlinear saturation of ki-72

netic instabilities and their interplay with turbulence.73

And even if exclusively linear effects determine the observed anisotropy boundaries, there74

are still many challenges which complicate an accurate fitting of theoretical thresholds.75

For further discussion on this matter, see Sec. 4.76

A major limitation which narrows a realistic description of solar wind properties is the77

frequenctly used restriction to bi-Maxwellian particle velocity distributions of the form78

fα =
1

π3/2

1

v‖α

1

v2
⊥α

exp

(
−
v2
‖

v2
‖α
− v2

⊥
v2
⊥α

)
, (1)79

where v‖ and v⊥ are the particle velocities parallel and perpendicular to the background80

magnetic field. The thermal velocities of the particle species α are defined by v‖α =81 √
2T‖α/mα and v⊥α =

√
2T⊥α/mα where Tα and mα are the particles’ temperature and82

mass. Due to the lack of collisions in the solar wind medium there is no solid fundament83

for this assumption, and, as is revealed by space observations, proton velocity distributions84

indeed exhibit non-thermal features such as beams and suprathermal particle populations85

following power-laws instead of Maxwellians.86

For the sake of a less cumbersome theoretical treatment, solar wind data which deviates87

too strongly from a bi-Maxwellian model is often discarded, as is the case, e.g., for the88
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proton anisotropy analysis presented in Kasper et al. [2002], Hellinger et al. [2006] and89

Bale et al. [2009]. Allowing departures from the bi-Maxwellian assumption increases the90

amount of accessible data giving further insight into the complexity of solar wind processes91

away from thermal equilibrium, but the theoretical analysis requires more sophisticated92

numerical tools.93

In 1968, Olbert and Vasilyunas found that commonly observed suprathermal populations94

can often be fitted by kappa distributions[Olbert , 1968; Vasyliunas , 1968]. Non-thermal95

high-energy tails are directly measured throughout the solar wind[Gloeckler et al., 1992],96

from the solar corona[Ko et al., 1996] to the termination shock[Decker et al., 2005], as well97

as in planetary magnetospheres[Paschalidis et al., 1994; Krimigis et al., 1983; Leubner ,98

1982]. For anisotropic plasmas, the kappa distribution can be written in the form99

fκα =
1

π3/2

1

κ3/2

1

θ‖αθ
2
⊥α

Γ(κ+ 1)

Γ(κ− 1/2)

(
1 +

v2
‖

κθ2
‖α

+
v2
⊥

κθ2
⊥α

)−(κ+1)

(2)100

with 3/2 ≤ κ ≤ ∞ and with the modified thermal velocities θ‖α =
√

2κ−3
κ

T‖α
mα

,101

θ⊥α =
√

2κ−3
κ

T⊥α
mα

. Γ(x) denotes the gamma function. For κ −→ ∞, this distribution102

degenerates to the bi-Maxwellian while for decreasing κ it assumes more and more distinct103

high-energy tails. Due to their frequent appearance in space plasmas, kappa distributions104

enjoy growing interest in the space plasma community[Pierrard and Lazar , 2010]. The ori-105

gin of the observed high-energy tails is still in the focus of current research. They appear106

in association with high-amplitude plasma waves and turbulence[Hasegawa et al., 1985;107

Leubner , 2000; Yoon, 2012] and, remarkably, κ-like power-law distributions can be derived108

as quasi-equilibrium solutions in the frame of Tsallis statistics which presents a possible109

generalization of Gibbs-Boltzmann statistics to systems with long-range forces[Tsallis ,110

1988; Leubner , 2002; Silva et al., 2002].111
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It turned out that the presence of suprathermal tails in a plasma can significantly change112

the dispersion properties of kinetic instabilities (see, e.g., Xue et al. [1996]; Leubner and113

Schupfer [2000]; Lazar et al. [2011]). Even slight departures from a bi-Maxwellian can114

alter the instabilities’ growth rates and hence the corresponding thresholds, if resonant115

populations are affected.116

In this paper, we revisit the thresholds of the parallel and the oblique firehose instability117

and we demonstrate that especially for low β‖ the linear thresholds in kappa-distributed118

plasmas show obvious deviations from bi-Maxwellian setups. We also discuss how this119

could be exploited to identify the instability mechanism which is responsible for the120

anisotropy boundary observed in the solar wind in the regime T⊥/T‖ < 1.121

For the numerical calculations, we make use of the recently published fully-kinetic disper-122

sion relation solver DSHARK [Astfalk et al., 2015] and we compare our findings to former123

results obtained by Lazar et al. [2011].124

The remainder of this paper is organized as follows. First, we discuss linear kinetic theory125

of small-amplitude waves in bi-Maxwellian and bi-kappa plasmas. In section 3, we focus126

on the linear instability thresholds of the parallel and oblique firehose and we analyze the127

effect of suprathermal populations on their dispersion properties. And finally, in section128

4, we summarize and discuss our results.129

2. Linear Theory

The firehose instability was first derived in the context of kinetic magnetohydrody-130

namics (see, e.g., Rosenbluth [1956]). However, despite the traditional consideration as a131

fluid instability the firehose is generally of resonant character and requires a fully kinetic132

treatment[Gary et al., 1998]. A careful inspection reveals that especially for low beta,133
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β‖ . 1, this is of paramount importance since a fluid approximation yields a dramatic134

underestimation of the expected growth rates.135

To derive the dispersion relation of waves in a magnetized, homogeneous and collisionless136

plasma, the Vlasov-Maxwell system of equations is employed. Linearizing the equations137

and using Fourier transformations, the dielectric tensor ε can be derived which describes138

the plasma’s linear response to small-amplitude perturbations. Solving the general dis-139

persion equation for wave propagation in plasmas,140

0 = det

(
c2k2

ω2

(
k⊗ k

k2
− 1

)
+ ε

)
, (3)141

then gives the dispersion relation ω(k). In general, this formalism can be applied to142

plasmas with arbitrary distribution functions. For Maxwellian plasmas, it is helpful to143

introduce the plasma dispersion function144

Z(ξ) =
1√
π

∫ ∞
−∞

exp (−s2)

s− ξ
ds (4)145

defined by Fried and Conte [1961]. The components of the dielectric tensor for a bi-146

Maxwellian medium can then be written as given, e.g., in Brambilla [1998]. Assuming147

bi-kappa distributed particles a modified plasma dispersion function148

Z∗κ(ξ) =
1√
π

1

κ3/2

Γ(κ+ 1)

Γ(κ− 1/2)

∫ ∞
−∞

ds

(s− ξ)(1 + s2/κ)κ+1
(5)149

was introduced by Summers and Thorne [1991] and expressions for the components of150

the corresponding dielectric tensor were derived in Summers et al. [1994].151

For purely parallel propagating modes (k⊥ = 0), it is easy to show that the dispersion152

relation greatly simplifies to the parallel kinetic equation153

0 = 1−
k2
‖c

2

ω2
+ π

∑
α

(ωpα

ω

)2
∞∫

−∞

dv‖

∞∫
0

dv⊥v
2
⊥

(ω − k‖v‖) ∂fα∂v⊥
+ k‖v⊥

∂fα
∂v‖

ω − k‖v‖ ± Ωα

. (6)154
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For a bi-Maxwellian plasma with fα given by equation (1), this can be rewritten as155

0 = 1−
c2k2
‖

ω2
+
∑
α

ω2
pα

ω2

(
β⊥α
β‖α
− 1 +

(
ω

k‖v‖α
+

(
β⊥α
β‖α
− 1

)
ξα

)
Z (ξα)

)
, (7)156

where ξα = ω∓Ωα
k‖v‖α

.157

For a bi-kappa plasma, we get158

0 = 1−
c2k2‖
ω2 +

∑
α

ω2
pα

ω2

(
β⊥α
β‖α
− 1 +

(
ω

k‖v‖α
+
(
β⊥α
β‖α
− 1
)
ξα

)
× (8)159

2κ−2
2κ−3

√
κ−1
κ
Z∗κ−1

(√
κ−1
κ
ξα

))
, (9)160

with ξα = ω∓Ωα
k‖θ‖α

.161

The lower (upper) sign in ξα is for right- (left-) handed circularly polarized waves. For162

the parallel firehose instability, right-hand polarization is considered.163

3. The firehose instability

In the existing literature, the thresholds of the parallel and the oblique firehose insta-164

bility are frequently discussed and compared to solar wind data (see, e.g., Kasper et al.165

[2002]; Hellinger et al. [2006]; Bale et al. [2009]). However, the analysis is mostly restricted166

to the core protons which are fitted by bi-Maxwellian velocity distributions. Data which167

deviates too strongly from the bi-Maxwellian model, e.g. due to the presence of beams168

or nonthermal high-energy tails, is often discarded. Using bi-kappa distributions in both169

data analysis and theory may enable a more complete understanding of the solar wind170

dynamics.171

The dispersion properties of the parallel proton firehose in bi-kappa setups were inves-172

tigated in Lazar and Poedts [2009] and Lazar et al. [2011]. The implications for the173

instability threshold were also briefly discussed. However, the threshold was only con-174

sidered in the fluid approximation and an erroneous conclusion was drawn from a flawed175
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Taylor expansion in Lazar et al. [2011]. Thus a reconsideration of the parallel firehose176

threshold is in order. A more recent paper, Viñas et al. [2015], also describes the parallel177

firehose in bi-kappa distributed plasmas, but the discussion is restricted to anisotropic178

electrons, only. We want to focus on the proton firehose, instead.179

To our knowledge, the oblique firehose instability has never been investigated in bi-kappa180

setups. The reason for this might be the increased numerical effort. However, this chal-181

lenge can be overcome by using the newly developed dispersion relation solver DSHARK182

which is based on the findings of Summers et al. [1994]. In this work, we present and183

discuss the numerically derived thresholds for the parallel and the oblique proton fire-184

hose instability in bi-kappa distributed plasmas. Throughout the paper, the electrons are185

assumed to be isotropic and Maxwellian with βe = 1.186

3.1. The parallel firehose instability

The parallel firehose instability shows positive growth rates for propagation angles |θ| .187

20◦. However, the maximum growth rate is always found at θ = 0◦, so the dispersion188

relation of the dominant mode can be derived by applying the parallel kinetic equation,189

equation (7), for a bi-Maxwellian or, equation (9), for a bi-kappa plasma, respectively. By190

using the large argument expansion, |ξα| � 1, in the plasma dispersion function,191

Z(ξα) = − 1

ξα
− 1

2ξ3
α

− 3

4ξ5
α

+O
(
ξ7
α

)
, (10)192

and keeping all terms up to order O(δ3) in equation (7), where δ ∼ ω
Ωα
∼ kv‖α

Ωα
, we recover193

the dispersion relation of the fluid firehose instability,194

γ(k) =
k‖vA√

2

√
β‖ − β⊥ − 2, (11)195
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which can also be obtained from kinetic MHD. We see that in the fluid approximation the196

parallel firehose is purely growing and there is an analytic instability threshold given by197

β‖ > β⊥ + 2. (12)198

However, equation (11) is mathematically ill-posed since γ ∼ k implies the possibility of199

infinite growth rates. This problem can be removed by keeping higher order terms in the200

expansion [Davidson and Völk , 1968; Yoon, 1995].201

Solving equation (7) directly with a numerical solver gives the dispersion relation for the202

fully kinetic parallel firehose which is different from the purely fluid-like firehose instability203

in two aspects. The kinetic firehose is oscillatory, ωr 6= 0, and especially for low β‖, its204

growth rate is significantly enhanced by anomalous cyclotron resonance which becomes205

important for |ξα| ∼ 1. For a detailed study of the resonant nature of the parallel firehose,206

see Gary et al. [1998] and Matteini et al. [2006]. Naturally, the growth enhancement also207

has an impact on the corresponding instability threshold.208

In Fig. 1, we plot the fluid threshold together with numerically derived thresholds209

allowing for different maximum growth rates, down to γmax/Ωi = 10−13 (compare with210

Fig. 1 in Matteini et al. [2006]). Apparently, the cyclotron resonance destabilizes the211

plasma also in regions where the fluid mechanism does not drive the instability. We212

also note that especially for low β‖, the location of the threshold crucially depends on213

the chosen maximum growth rate. When comparing thresholds to solar wind data, the214

best agreement is usually found for maximum growth rates between γ̃max = 10−1 and215

γ̃max = 10−3 [Hellinger et al., 2006], where γ is normalized to the proton gyrofrequency,216

i.e. γ̃ = γ/Ωi. This is rather empirical and there is still a lack of a physical justfication217

for the relevance of these time scales (we will further comment on this in section 4).218
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However, for the following considerations, we will continue using γ̃max = 10−1...−3 as219

reference thresholds since these are the limits often used in the literature.220

Lazar et al. [2011] came to the conclusion that a decreasing κ index leads to an increase221

of the parallel firehose threshold to higher pressure anisotropies. Hence, the plasma is222

expected to become more stable in the presence of suprathermal particle populations. This223

conclusion was based on the large argument expansion of the modified plasma dispersion224

function in the parallel kinetic equation. As we saw earlier, the fluid approximation225

gives a rather inaccurate model for the instability threshold of the parallel firehose for226

low β‖. Furthermore, we found that Lazar et al. [2011] missed one term in the applied227

large argument expansion. Redoing the calculation with equation (9) and keeping all228

terms up to order O(δ3), we recover the same fluid threshold, equation (12), as for the229

bi-Maxwellian case. Hence, the fluid mechanism of the parallel firehose instability is230

not sensitive to the presence of suprathermal particles but solely depends on the overall231

pressure anisotropy. This result can also be obtained by looking at the force balance of a232

perturbed magnetic field line in an anisotropic, perfectly conducting plasma. A particle233

flowing along a bend in the field line will feel the centrigual force FC = mv2
‖/R where234

R denotes the curvature radius of the bend. This is opposed by the force acting on the235

particle’s magnetic moment, Fµ = ‖∇(µ ·B)‖ = mv2
⊥/2R, and the magnetic tension force236

which we approximate as FB = B2
0/4πR (see, e.g., Treumann and Baumjohann [1997])1.237

Hence the system becomes firehose-unstable when the centrifugal force exceeds the sum238

of the other two forces. We add up the contribution of all particles by integrating over239

the particle velocity distribution f . The instability condition then reads240 ∫
d3v

mv2
‖

R
f >

∫
d3v

mv2
⊥

2R
f +

∫
d3v

B2
0

4πR
f. (13)241
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For a bi-Maxwellian distribution, given by equation (1), we immediately recover the fluid242

threshold, equation (12). For a bi-kappa distribution, equation (2), we get243

2κ

2κ− 3

mθ2
‖

2
>

2κ

2κ− 3

mθ2
⊥

2
+
B2

0

4π
. (14)244

Using the definitions for θ‖ and θ⊥ this turns into the well-known fluid threshold, equation245

(12).246

In Fig. 2, we present the thresholds of the resonant parallel firehose for different bi-kappa247

setups which were derived with the fully kinetic dispersion relation solver DSHARK. For248

maximum growth rates γ̃max = 10−2 and γ̃max = 10−3, we clearly see a lowering of the249

threshold to smaller anisotropies which is very distinctive for β‖ . 1. So, instead of250

stabilizing the plasma, high-energy tails enhance the instability in this regime. For a251

maximum growth rate γ̃max = 10−1, the picture is reversed. Here, the presence of high-252

energy tails pushes the thresholds to higher anisotropies, making the plasma more stable.253

For high anisotropies, the bi-Maxwellian setup obviously dominates over corresponding254

bi-kappa scenarios while this is vice-versa for low anisotropies. This was also found by255

Lazar et al. [2011]. For reference purposes, we fitted analytical curves of the form given256

in Hellinger et al. [2006] to the numerically derived thresholds. The corresponding fit257

parameters can be found in appendix A.258

Since the fluid mechanism of the instability does not depend on κ, we conclude that the259

sensitivity of the threshold to the κ index, which we observe for low β‖, is related to the260

cyclotron-resonant nature of the parallel firehose instability. In order to get some insight261

into the cyclotron resonance mechanism, we solve the parallel kinetic equation, equation262

(6), following the usual Landau procedure (see, e.g., Gurnett and Bhattacharjee [2005]).263

Applying a low growth rate expansion, γ � ωr, which is a reasonable approximation along264
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the γ̃max = 10−3 threshold, we can find the resonant growth rate265

γres =
1

∂<(D(k‖, ω))/∂ω

∑
α

ω2
pα

ω2
r

πGα(v‖)

∣∣∣∣
v‖=vres

, (15)266

where267

Gα(v‖) = −2πω

k‖

∫ ∞
0

dv⊥v⊥fα − π
∫ ∞

0

dv⊥v
2
⊥

(
v‖
∂fα
∂v⊥
− v⊥

∂fα
∂v‖

)
. (16)268

The term in the second integral can also be written in terms of the pitch angle θ as269 (
v‖

∂fα
∂v⊥
− v⊥ ∂fα∂v‖

)
= ∂f

∂θ
. Eqs. 15 and 16 show that in the low-growth approximation270

the efficiency of cyclotron resonance depends on the total number of resonant particles271

(first term in equation (16)) and the pitch angle anisotropy at the resonance velocity,272

vres = ω+Ωα
k‖

(second term in equation (16)).273

We found that in low-anisotropy setups, such as the one shown in Fig. 3, the resonance274

velocities related to the unstable wave number range are far from the core of the velocity275

distribution. The resonant particles are located in the tails where kappa distributions276

are generally more populated than Maxwellians. The first term in equation (16), which277

depends on the number of resonant particles, is always negative [Gurnett and Bhattachar-278

jee, 2005], hence it causes a damping of the waves. However, for low-anisotropy setups,279

we see an enhancement of the parallel firehose instability in the presence of suprathermal280

populations. We conclude that the destabilizing effect of the pitch angle anisotropy must281

be dominant here and even overcome the damping term.282

For high-anisotropy setups, such as the one shown in Fig. 4, the resonance velocities283

in the unstable wave number range generally move closer to the core of the distribution.284

Why this leads to a dominance of the Maxwellian setup remains an open question which285

must be addressed in the future.286
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3.2. The oblique firehose instability

The oblique firehose instability was first discussed in Yoon et al. [1993] and Hellinger287

and Matsumoto [2000] as a kinetic instability which can occur for T‖ > T⊥ simultaneously288

with the parallel firehose. However, in contrast to the parallel firehose instability, the289

oblique firehose is non-oscillatory and has maximum growth at strongly oblique angles.290

Its growth rates can be comparable to or even dominate over the parallel firehose insta-291

bility.292

Hellinger et al. [2006] presented the thresholds of the oblique firehose instability in a bi-293

Maxwellian setup. It was found that along the γ̃max = 10−3 threshold, the parallel firehose294

linearly dominates in the low-β‖ regime while for β‖ & 7 the oblique firehose takes over295

(see also Fig. 1 in Matteini et al. [2006]). Along the γ̃max = 10−2 threshold, the oblique296

firehose instability starts to dominate around β‖ ∼ 5.297

Relaxing the bi-Maxwellian assumption and allowing for bi-kappa distributed ions, we298

observe that - similar to the parallel firehose - the threshold of the oblique firehose insta-299

bility is sensitive to the presence of high-energy tails. This is not unexpected since the300

oblique firehose also undergoes cyclotron resonance [Hellinger and Trávńıček , 2008]. How-301

ever, its behaviour differs from what we found for the parallel firehose. Here, the presence302

of suprathermal ion populations leads to a stabilization of the plasma. At least for the303

illustrated maximum growth rates, the threshold is always shifted to higher anisotropies,304

regardless of the propagation angle. Exemplary thresholds are shown in Fig. 5. For305

reference, we fitted analytical curves to the thresholds and present the fit parameters in306

appendix A.307

Since a finite propagation angle with respect to the background magnetic field gives rise308
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to more complex physics, the origin of the observed behaviour is not evident and re-309

quires a more rigorous study of the cyclotron mechanism for obliquely propagating waves.310

However, this is beyond of the scope of this paper.311

4. Conclusion

In this paper, we investigated the thresholds of the parallel and the oblique firehose in-312

stability in plasmas with bi-kappa distributed ions. Since measurements of solar wind ion313

distributions often show pronounced high-energy tails, bi-kappa distributions were found314

to be a useful extension to traditionally used bi-Maxwellians.315

In contrast to former work, Lazar et al. [2011], we found that the resonant parallel firehose316

instability is enhanced by the presence of suprathermal ion populations in low anisotropy317

setups with γ̃max . 0.01. We suggest that this is due to the increased pitch angle318

anisotropy at the corresponding resonant velocities, causing stronger cyclotron resonance.319

In addition, we found that the oblique firehose instability threshold is also sensitive to the320

presence of suprathermal particles. However, in contrast to the parallel firehose instabil-321

ity, the threshold is always shifted to higher anisotropies, regardless of the propagation322

angle. Again, this is supposed to be due to the cyclotron resonant nature of the instability.323

However, due to the increased complexity imposed by k⊥ 6= 0, the detailed nature of the324

resonance mechanism is not obvious and calls for further investigation.325

We conclude that in plasmas with suprathermal ion populations the parallel firehose in-326

stability is enhanced while, at the same time, the plasma is stabilized with respect to the327

oblique firehose. The differences between the thresholds in bi-Maxwellian and bi-kappa328

distributed plasmas were found to be significant under typical solar wind conditions, thus329

this effect is supposed to be of relevance in the solar wind and may alter the competition330
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between the parallel and the oblique firehose instability. The influence of high-energy331

populations is most important for low β‖ . 1. However, also for higher β‖ it can be332

crucial since it extends the linear dominance of the parallel firehose instability over the333

oblique firehose to higher β‖.334

Even slight deviations from a bi-Maxwellian were found to lead to significant shifts of335

the thresholds. This adds another degree of freedom in fitting instability thresholds to336

the pressure anisotropy boundaries observed in the solar wind. Further ambiguity can337

arise, if electron anisotropies and heavy ion species are included as well (see, e.g., Michno338

et al. [2014]; Hellinger and Trávńıček [2006]). So, as long as there is no reliable argument339

for a meaningful limiting maximum growth rate, which properly reflects the competition340

between the drive and the suppression of the firehose instabilities, we cannot hope for341

an accurate and physically correct description of the observed solar wind anisotropy con-342

straints. Also, there is no argument for the assumption that the threshold is set by the343

same maximum growth rate over the whole range of parallel beta. This complicates the344

matter further.345

In addition, there is still uncertainty concerning the presumed dominance of the oblique346

firehose instability in the solar wind. We propose that the different responses of the par-347

allel and the oblique firehose to the presence of high-energy tails can be used to solve348

this outstanding problem. With a suitably large and well-resolved set of solar wind data,349

it should be feasible to produce proton anisotropy diagrams for different kappa indices,350

say one for low kappa, where there are large high-energy tails present in the measured351

distributions, and one for very high kappa where the observed distributions are close to352

bi-Maxwellian. The location of the anisotropy boundary for T⊥/T‖ < 1 could then give a353
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clue about the leading instability mechanism shaping the boundary in the solar wind. If354

the boundary lies at lower anisotropies for lower kappa indices, the parallel firehose most355

likely limits the anisotropies. If the boundary is moving to higher anisotropies, this would356

confirm the expected dominance of the oblique firehose instability.357

The most promising way to make further theoretical progress on this matter, is the appli-358

cation of expanding box simulations. They can naturally model the competition between359

the parallel and the oblique firehose instability under realistic solar wind conditions. Fur-360

thermore, as was found by Matteini et al. [2006], they self-consistently give rise to the361

development of high-energy tail distributions which, as we have shown in this paper, will362

alter the linear growth rates and the thresholds of the firehose instabilities. We therefore363

hope that our findings will help to understand the outcomes of past and future expanding364

box simulations and complete our knowledge of anisotropy driven instabilities in the solar365

wind.366
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Appendix A: Fitting analytical curves to the instability thresholds
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Hellinger et al. [2006] suggested that firehose instability thresholds may be fitted by an

analytic relation of the form

T⊥
T‖

= 1 +
a(

β‖ − β0

)b . (A1)

Find below the corresponding fit parameters (a, b, β0) for various thresholds of the parallel374

and oblique firehose assuming different κ indices and propagation angles θ.375

Notes

1. We assume a perfectly conducting plasma here.
376
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Figure 1. Instability thresholds of the resonant parallel firehose for different maximum

growth rates, γ̃max = γ/Ωi, compared to the fluid threshold. The electrons are isotropic

and Maxwellian with βe = 1
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Figure 2. Instability thresholds of the resonant parallel firehose for different κ indices

and maximum growth rates, γ/Ωi = 10−3 (solid lines), γ/Ωi = 10−2 (dashed lines) and

γ/Ωi = 10−1 (dotted lines),compared to the corresponding bi-Maxwellian scenarios (κ =

∞). The electrons are isotropic and Maxwellian with βe = 1
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Figure 3. Growth rates of the parallel firehose instability in a low-anisotropy setup

with β‖i = 2.0 and β⊥i/β‖i = 0.6 (left), and the corresponding distribution functions with

highlighted resonant regimes (right). The electrons are isotropic and Maxwellian with

βe = 1. Velocities are normalized with respect to the Alfvén velocity, vA = B0/
√

4πnimi.
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Figure 4. Growth rates of the parallel firehose instability in a high-anisotropy setup

with β‖i = 2.0 and β⊥i/β‖i = 0.03 (left), and the corresponding distribution functions with

highlighted resonant regimes (right). The electrons are isotropic and Maxwellian with

βe = 1.Velocities are normalized with respect to the Alfvén velocity, vA = B0/
√

4πnimi.
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Figure 5. Thresholds of the oblique firehose instability for propagation angles θ =

45◦(solid lines) and θ = 70◦(dashed lines) for γ̃max = 10−3 and γ̃max = 10−2, assuming

different κ indices. The electrons are isotropic and Maxwellian with βe = 1.
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PFHI, θ = 0◦ a b β0

Maxwell -0.487 0.537 0.560

κ = 12 -0.438 0.475 0.503

κ = 8 -0.429 0.486 0.423

κ = 6 -0.417 0.498 0.350

κ = 4 -0.387 0.518 0.226

κ = 2 -0.274 0.536 0.042

Table 1. Fit parameters for the γ̃max = 10−3 threshold of the parallel firehose instability

with θ = 0◦, in the range 0.1 < β‖ < 50.0.

PFHI, θ = 0◦ a b β0

Maxwell -0.701 0.623 0.599

κ = 12 -0.656 0.596 0.567

κ = 8 -0.623 0.579 0.569

κ = 6 -0.625 0.585 0.501

κ = 4 -0.625 0.593 0.379

κ = 2 -0.632 0.589 0.139

Table 2. Fit parameters for the γ̃max = 10−2 threshold of the parallel firehose instability

with θ = 0◦, in the range 0.1 < β‖ < 50.0.
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PFHI, θ = 0◦ a b β0

Maxwell -0.872 0.495 1.233

κ = 12 -0.899 0.502 1.213

κ = 8 -0.937 0.509 1.097

κ = 6 -0.947 0.505 1.088

κ = 4 -0.977 0.496 1.068

κ = 2 -1.230 0.464 1.206

Table 3. Fit parameters for the γ̃max = 10−1 threshold of the parallel firehose instability

with θ = 0◦, in the range 1.0 < β‖ < 30.0.

OFHI, θ = 45◦ a b β0

Maxwell -1.371 0.996 -0.083

κ = 12 -1.444 0.995 -0.070

κ = 8 -1.484 0.994 -0.061

κ = 6 -1.525 0.993 -0.052

κ = 4 -1.613 0.990 -0.026

Table 4. Fit parameters for the γ̃max = 10−3 threshold of the oblique firehose instability

with θ = 45◦, in the range 1.0 < β‖ < 50.0.
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OFHI, θ = 45◦ a b β0

Maxwell -1.371 0.980 -0.049

κ = 12 -1.440 0.979 -0.034

κ = 8 -1.477 0.978 -0.024

κ = 6 -1.514 0.976 -0.012

κ = 4 -1.594 0.973 0.017

Table 5. Fit parameters for the γ̃max = 10−2 threshold of the oblique firehose instability

with θ = 45◦, in the range 1.0 < β‖ < 50.0.
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