Pressure-driven amplification and penetration of resonant magnetic perturbations
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We show that a resonant magnetic perturbation applied to the boundary of an ideal plasma
screw-pinch equilibrium with nested surfaces can penetrate inside the resonant surface and into the
core. The response is significantly amplified with increasing plasma pressure. We present a rigorous
verification of nonlinear equilibrium codes against linear theory, showing excellent agreement.
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I. INTRODUCTION

Ideal magnetohydrodynamics (MHD) is routinely used
to study highly conductive, magnetically confined plas-
mas [1]. However, fundamental difficulties in 3D ideal
MHD arise from the existence of pressure-driven infinite
currents around resonant rational surfaces [2, 3]. His-
torically this led to the conclusion that pressure must be
fractal [2] or stepped [4]. Recently a new class of 3D ideal-
MHD equilibria with nested surfaces has been proposed
which allows for smooth pressure [5]. This class of equi-
libria exhibits current sheets at resonant surfaces that
produce a jump in rotational transform. For this class of
equilibria, all current densities are integrable and nested
surfaces are preserved for arbitrary three-dimensional ge-
ometry. In particular, nonlinear 3D ideal-MHD equilib-
rium codes can be verified for the first time.

In this paper we consider, within this new theoreti-
cal framework, the linear and nonlinear ideal plasma re-
sponse to a resonant magnetic perturbation (RMP) in
a screw-pinch. We investigate the details of the struc-
ture of the current sheets and that of the pressure-driven
Pfirsch-Schliiter current. We show that the RMP is am-
plified to large values as 3 is increased and that the
perturbation penetrates inside the resonant surface. We
perform an exact verification of nonlinear MHD codes
against solutions to Newcomb equation. To our knowl-
edge, these are the first equilibria with nested surfaces
and smooth, finite pressure gradient across a resonant
surface ever computed. Implications for experiments are
discussed, in particular regarding equilibria where island-
healing mechanisms are at play.

II. IDEAL RESPONSE TO AN RMP AT =0

In this section, we review and extend recent results
on the calculation of the linear, ideal plasma response
to an RMP in a screw pinch with zero pressure and no
flow [5]. We show that the existence of flux-surfaces in
the perturbed equilibrium is ensured by the presence of
an axisymmetric current sheet on the resonant surface,
which corresponds to a discontinuity in the rotational
transform. A non-axisymmetric current sheet is also es-

tablished as a necessary mechanism for a complete island
shielding. The spatial structure of these currents is pre-
sented in detail. This section prepares the background
necessary for Sec. III, where we provide novel predic-
tions for the penetration and amplification of an RMP in
finite-8 equilibria.

A. Equilibrium

The axisymmetric, ideal-MHD equilibrium in a screw
pinch with zero pressure and no flow satisfies
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dr
where B, is the axial field, + = RBy/rB, is the rota-
tional transform, By is the poloidal field, and 27 R is the
length of the cylinder. The equilibrium is fully deter-
mined by the value of the axial field at the origin, B, (0),
the rotational-transform profile, ¢(r), and the major and
minor radius, R and a. We choose

)|+ (1)

o(r) = to — ¢1(r/a)? + A¢/2 for
to — ¢1(r/a)? — Ae/2 for
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with ¢ and ¢ such that ¢(r) jumps across the rational
ts = 1/2 at r; = a/2, namely, ¢(rs) = t; = A¢/2. The
solution for B, (r) can be obtained by integrating Eq. (1)
from r = 0 to r = 75, and then from r = r; to r = «q,
after imposing pressure continuity, [[B?]] = 0, across the
resonant surface. Here B is the total field and [[-]] is
the jump across the surface. As a matter of fact, a finite
jump in transform, A+ > 0, translates into a jump in both
the poloidal and axial fields, [[By]] # 0 and [[B.]] # 0.
By virtue of Ampere’s law, this implies the presence of
an axisymmetric current sheet on the resonant surface
(from now on denoted as DC current sheet). A discussion
on the structure of this current is provided in Sec. IIC.
For A+ = 0, there is no such current and all equilibrium
quantities are continuous and smooth. In that case, how-
ever, the equilibrium is not an analytical function of the
boundary, namely, a perturbed equilibrium due to an ar-
bitrarily small RMP and with persistent nested surfaces
does not exist, as we shall now see.



B. Linear response to an RMP

The linear plasma displacement,
é = grer + 5960 + Ezez ) (2)

induced by a non-axisymmetric, radial perturbation with
a single Fourier harmonic,

&' (r=a,0,z) =&, cos(mb + kz) , (3)

to the boundary satisfies the linearized force-balance
equation,

3j] x Bo +j x dB[¢] =0, (4)

where By is the equilibrium magnetic field and the
linear, ‘ideal’ perturbation to the magnetic field is
IB[€] =V x (€ x By), and 0j[€] = V x éB[€]. This re-
duces to Newcomb’s equation [6],

d d€ B
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where £ = £(r) cos (mf + kz). The functions f(r) and
g(r) are determined by the equilibrium,

f= B~ es)%kr? (6)

g= é(kzzr2 +m? — 1) + B2(+2 — ?)2k%¢%r | (7)
T

where k = —n/R, ts = n/m, and k = r/(R? + r??).

Figure 1 shows the result of numerical integration of
Eq. (5) for an m = 2, n = 1 perturbation and for dif-
ferent values of A¢. The linear radial displacement is
continuous and smooth provided As > 0, i.e. provided
that there is a DC current sheet. However, for a contin-
uous #(r) that contains the resonance, + = ¢5, Newcomb’s
equation is singular and the solution that is regular at
the origin is £(r < rs) =0 and &(r > rs) # 0, i.e. the ra-
dial displacement is discontinuous. This class of solutions
is obtained by the linearly-perturbed, ideal equilibrium
codes that are used to study non-axisymmetric boundary
perturbations in tokamaks [7-9] and stellarators [10].

A discontinuous plasma displacement is inconsistent
with the assumption of nested flux-surfaces: in fact, mag-
netic surfaces overlap if the displacement anywhere has
|d¢/dr] > 1. As can be inferred from Fig. 1, there must
be a critical value for the magnitude of the DC current
sheet above which |d¢/dr| < 1 and thus for which the
solution is consistent. An expression for the gradient of
the displacement at the resonant surface was estimated
analytically in Ref. [5],

€s
&l =245 0
where &, = {(rs) and ¢/ is the shear around the resonant
surface. Equation (8) can be obtained by studying the
asymptotics of Eq. (5) for small values of & = |(¢—¢5)/#4].
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FIG. 1: Solutions of Eq. (5) for an m = 2, n = 1 bound-
ary perturbation and for As =4 x 1072,1072,1073, and the
singular case A¢ = 0 (discontinuous curve). Colours merely
indicate the inner (r < r,, blue) and outer (r > r,, red) parts
of the solution.

Since & scales with &,, we see that £, is proportional
to the boundary perturbation and inversely proportional
to A¢. The sine qua non condition for the existence of
equilibria is |¢/| < 1, which translates into A¢ > Atpin,
where

Af’min = 2*{965 . (9)

The continuous transform limit becomes a consistent so-
lution as Aty — 0, i.e. for infinitesimally small per-
turbation or infinitesimally small shear.

This analysis is linear and a priori limited to small
boundary perturbations, £,/a < 1; however, the pre-
diction remains valid for the nonlinear calculations, as
shown in Ref. [5].

We would like to note that even for a small, local
change in the transform profile, i.e. a small jump A,
the global solution is significantly different and the dis-
placement penetrates inside the resonant surface all the
way to the origin.

C. Structure of the current sheets

In general, a current sheet is present on a given flux
surface if there exists a magnetic field discontinuity across
this surface, [[B]] = BT — B~ # 0. In fact, by virtue of
Ampere’s law, j = V x B, this current sheet is given by

J=[B]] x 1 d(x —x) (10)

where 11 is the unit vector normal to the surface and x,
parametrizes points on the surface. We remark that j is
strictly speaking a current density and that any physi-
cally valid current density must be integrable, so that the
total current is finite. This is the case of Eq. (10).



In the system under consideration, namely a perturbed
screw-pinch equilibrium, a discontinuity is present in the
equilibrium field, By, and in the perturbed field, /B.
The former gives rise to an axisymmetric or DC cur-
rent sheet, while the latter produces a non-axisymmetric
current sheet with a helicity corresponding to the reso-
nant mode numbers. The fact that [[Bo]] # 0 is a conse-
quence of the discontinuous rotational transform defining
the equilibrium. The reason for [[0B]] # 0 is less obvious.
The general expressions for the three components of the
linearly perturbed field, 6B = V x (£ x Bg), as a function
of the radial displacement, &. = £(r) exp [i(mf + kz)], are

m

5B, = B~ )6 (1)
By = (1)~ e TBL ) (12)
5B = ~halr)6 — g B~ r)E (13)

where
h(r) = By + 5y (krBo + mBs) (14)
ha(r) = B! + 2= T By +mB.)  (15)

r k272 4+ m2

are defined by the equilibrium. In the particular case of
continuous transform, the solution for ¢ is discontinuous
at ¢+ = ¢, thus it follows that [[§B]] # 0 from Egs. (12)
and (13). In the case of discontinuous transform, the
displacement £ is continuous and smooth, but there still is
a jump in 0B because the products (¢—¢5)&, and (6—¢4)&,.
are discontinuous. This shows the general existence of a
non-axisymmetric current sheet.

An important question is whether these current sheets
are field-aligned, and if they are, whether they are aligned
with the field on the inside or on the outside of the sur-
face. We first consider the DC current sheet, which is
given by

ipc = [[B]](r —74)6 — [[Bllé(r —rs)2 . (16)

The force produced by this current sheet and the equi-
librium magnetic field is

ipc x By = ([Bel|By + [[B.]|BZ)é(r —rs)E  (17)

where + indicates either side of the surface. This force is
non-zero in general, which would seem to contradict the
fact that this is a force-free equilibrium. However, the
sum of the two forces vanishes,

ipc xB{ +ipc x By =[[Bjlls(r —r)f =0 (18)

since the equilibrium satisfies [[B2]] = 0 by construction.
This means that the current sheet is not aligned with
either of the fields on each side of the surface, but rather
aligned with the average surface field.

In general, the average j x B force produced by the
total current sheet and the total magnetic field is also
zero. Using j = [[B]] x Ad(r — rs), we have that

jx (B +B7) =[[B*|la— (B +B7)-a[B]] =0 (19)

since both [[B?]] =0 and B - A = 0 are satisfied. There-
fore, the current sheets are aligned such that the forces
acting on each side of the surface are equal and opposite.

IIT. IDEAL RESPONSE TO AN RMP AT >0

We now consider the ideal response to an RMP in a
screw-pinch with finite pressure and no flow. We show
that even at modest values of 8 the perturbation can
be significantly amplified and, as a consequence, pene-
trate inside the resonant surface with values exceeding
the boundary perturbation amplitude. The results are
confirmed by linear and nonlinear calculations.

A. Equilibrium

The axisymmetric, ideal-MHD equilibrium in a screw
pinch with finite pressure and no flow satisfies

dp 1drp_, N
dr+2dr[BZ(1+ﬁ RQ)] +

r¢? B?
=0, (20)

and is uniquely determined by the value of the axial
field at the origin, B,(0), the rotational-transform pro-
file, ¢(r), the pressure profile, p(r), and the major and
minor radius, R and a. We choose

e(r) = o — ¢1(r/a)> £ Ae/2 |
p(r) = po[l = 2(r/a)® + (r/a)"] ,

thus a continuous and smooth pressure profile such that
p(0) = po and p(a) = 0. The solution for B,(r) can be
obtained by integrating Eq. (20) and imposing the conti-
nuity of the total pressure, p+ B2 /2, across the resonant

surface. Since p is continuous, this condition is [[B?]] = 0.
We define 8 as computed at the origin,
2p(0)
= 21
B B2(0) (21)

and variations in 8 will correspond to variations in p(0).

B. Linear response to an RMP

The linearized force-balance equation still reduces to
Newcomb’s equation, Eq. (5), with the functions f(r)
and g(r) given by

f="Fls=o, (22)
9= glp=o + ker’p’, (23)



where f|g=0 and g|g=o are given by Eqgs.(6) and (7), re-
spectively. Thus the effect of the pressure gradient ap-
pears only in the function g(r). As we shall see, this new
term fundamentally changes the behaviour of £ around
the resonance surface.

Figure 2 shows the result of numerical integration of
Eq. (5) for an m = 2, n = 1 perturbation, for a given
value of A+ and for different values of 8. The pertur-
bation is significantly amplified around the resonant sur-
face, even at modest values of 3. For example, at 8 = 1%
the perturbation is amplified by a factor of £,/&, ~ 3 on
the resonant surface and penetrates all the way into the
core with values exceeding the boundary perturbation,
&/€. > 1, for a significant fraction of the inner plasma
column r < ry. We also observe that the peak of the
amplified perturbation is always occurring very close to
- but not exactly at - the resonant surface. In order to
quantify the amplification and penetration of the RMP,
we define two quantities,

€s
Arm = 24
P {a ( )
Prmp =1 :i , (25)

where r, is the radius at which £(r.)/¢s = 1/e. The
meaning of Ay, is quite obvious. The value of P,y
measures the percentage of inner plasma column (r < ry)
in which the perturbation is still larger than &;/e. For
example, at S = 1%, we have A, ~ 3 and P, ~
40%. Figures 3 and 4 show the dependence of A,,,, and
P,p,p on . Notice that the maximum amplitude of A,
and P, depends on the magnitude of the DC current
sheet, or A¢, that is assumed in the initial equilibrium.
The question of what sets the value of A¢ in a plasma is
discussed in Sec. V.

An important question is whether the initial axisym-
metric equilibrium is interchange stable; for otherwise the
results are not meaningful. A necessary (but not suffi-
cient) condition for interchange stability in a screw-pinch
is given by the Suydam criterion [1],

2p' 2 1
pom(ZE) L :
o rB242 )/ s < 4 (26)

and the corresponding stability limit is shown in Figs. 3
and 4. While the actual stability limit can be reached
slightly before Eq. (26) is violated, as can be seen from
the lack of data points in Figs. 3 and 4, both the ampli-
fication and penetration of the RMP are already signifi-
cantly large before this limit is attained.

Analytical understanding of the behaviour of the dis-
placement around the resonant surface can be obtained
by studying the asymptotics of Newcomb’s equation. Ex-
panding Eqgs. (22) and (23) we have that

f~ecia?, (27)
g~c2+0(z), (28)

for small 2 = |(+ — ¢5)/¢.|, and where
¢ = (EB?»&QTQ) , (29)
co = (2E¢2rp’) . (30)

Inserting the antsatz & ~ z® into Newcomb’s equation,
we find a quadratic equation for «, with solutions

1 1

a=-3+y7-Ds (31)
where Dg = —cg/cy is the Suydam parameter, Eq. (26).
At 8 = 0 we have that Dg = 0 and thus, from Eq. (31),
a € {0,—1}. This explains why in Fig. 1 the displace-
ment has finite &, even for continuous-transform: the so-
lution & ~ z° does not diverge for x — 0. However,
at finite 8 > 0, we have that 0 > Dg > 1/4 and thus
&~ Az 4+ Aox®2) with

1
—1<a1<—§<a2<0, (32)

which necessarily implies that the displacement diverges
unless x is never zero, namely, if and only if At # 0.
Moreover, in order for the perturbed equilibrium to be
physical, the DC current sheet must be sufficiently large
to ensure that the sine qua non condition, |¢'| < 1, is
satisfied. This shows how important is the existence of
this DC current sheet.
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FIG. 2: Solutions of Eq. (5) for an m = 2, n = 1 boundary
perturbation and for different values of 3, from 8 = 0% (lower
curve) to 8 = 1% (upper curve). For all cases As = 1075,
Colours merely indicate the inner (r < rs, blue) and outer
(r > r, red) parts of the solution.

C. [-induced Pfirsch-Schliiter current

In addition to the current sheets established on the
resonant surface, a pressure-driven Pfirsch-Schliiter cur-
rent is expected to develop around the resonant surface.
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FIG. 3: Amplification of the RMP on the resonant surface as
a function of 3. Circles: A¢ = 5x1073. Stars: As = 1x1073.
The vertical dashed line indicates the critical 8 above which
the Suydam criterion is not satisfied.
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FIG. 4: Penetration of the RMP inside the resonant surface as
a function of 3. Circles: A¢ = 5x1073. Stars: A = 1x1073.
The vertical dashed line indicates the critical 8 above which
the Suydam criterion is not satisfied.

Here we derive an analytical expression for the perturbed
parallel current around the resonant surface in response
to an RMP in a screw pinch. We show that the Pfirsch-
Schliiter current can be large but is always integrable and
bounded by £p’/As.

For simplicity, we consider only the axial component
of the perturbed current, d7,, which corresponds to the
perturbed parallel current, §j; = (Bgdjg + B.0j.)/B, in
the limit of a dominant axial field. The conclusions are

the same in the general case where djy is also considered.

The perturbed current, 6j = V x (V x (£ xBy)), can be
computed from the equilibrium field, By, and the surface
displacement, &, which can be obtained from Newcomb’s
equation. One arrives to a general expression for dj, of
the form

8j. = To(r)é + Th(r)& + To(r)E” (33)

where Ty, T1, and T5, are well-behaved functions. In
particular, their behaviour around the resonant surface
is To(r) ~ Ti(r) ~ 1 and Ta(r) ~ O(x). The corre-
sponding behaviour of the radial displacement and its
derivatives is, for small 8: & ~ 1, ¢ ~ O(z~1), and
¢" ~ O(z~2). Thus it would seem that the current den-
sity around the resonant surface behaves as 1/x, indepen-
dently of pressure. However, it turns out that the large
terms in Eq. (33), i.e. those that scale as 1/x, balance
each other by virtue of Newcomb’s equation, Eq. (5), and
the only large term left is

8j. ~&p'Jx < &p' /A . (34)

Numerical evidence of this is shown in Fig. 5, where the
profile of 67}, is computed from the solution of Newcomb’s
equation and by using Eq. (33). From the top panel in
Fig. 5, one can see that the Pfirsch-Schliiter current is
bounded even at r = r5. The middle and bottom panels
in Fig. 5 confirm the 1/a-type behaviour at 5 > 0, exactly
as predicted by Eq. (34).

To our knowledge, this is the first equilibrium with
nested surfaces and smooth, finite pressure gradient
across a resonant surface ever computed. As of now,
however, these calculations are linear. We now show how
nonlinear codes can also compute this class of equilibria
and retrieve the linear results in the appropriate limit.

IV. VERIFCATION OF NONLINEAR CODES

Presently, the widely-used, three-dimensional, non-
linear ideal-MHD equilibrium codes VMEC [11] and
NSTAB [12] are restricted to work with smooth func-
tions and thus cannot handle discontinuities in the mag-
netic field (or current sheets). The SPEC code [13] does
allow for discontinuities. SPEC formally finds extrema
of the multi-region, relaxed, MHD (MRxMHD) energy
functional, as proposed by Hole, Hudson and Dewar
[14, 15]. In MRxMHD the magnetic topology is dis-
cretely constrained at a finite number, N, of so-called,
“ideal” interfaces, where discontinuities in the pressure
and tangential magnetic field are allowed. The volumes
encapsulated by these ideal boundaries undergo Taylor
relaxation, thus MRxMHD equilibria are not globally
ideal; however, MRxMHD has been shown to exactly re-
trieve ideal MHD in the formal limit N — oo [16], and
SPEC was recently used to compute, for the first time,
the singular current densities expected to form in three-
dimensional ideal-MHD equilibria [17].
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FIG. 5: Perturbed parallel current around the resonant sur-
face, for B = 0 (dashed lines) and 8 = 0.5% (solid lines).
Top: 03} as a function of the minor radius. Middle: §3/¢ as
a function of the distance = to the rational. Bottom: same as
middle but in log-log scale. The dash-doted black line in the
bottom panel has slope —1. Colours merely indicate the inner
(r < rs, blue) and outer (r > 75, red) parts of the solution.

An exact verification of the SPEC code against solu-
tions of Newcomb’s equation, Eq. (5), was presented in
a recent letter for the case of zero-pressure [5]. Here
SPEC is employed to perform linear and nonlinear, ideal
equilibrium calculations for the perturbed screw pinch
with finite pressure. In the “ideal limit”, i.e. very
large N, the MRxMHD energy functional reduces to
W = [[p/(v—1)+ B?/2] dv. Equilibrium states are
obtained when the gradient of this functional, F[x,b] =
Vp — j x B, is zero, where x represents the geometry
of the internal flux-surfaces and where b denotes the de-
pendence of the equilibrium on the prescribed bound-
ary. Given an equilibrium state, ie. F[x,b] = 0,
the first order correction to the internal geometry in-
duced by a boundary deformation, 0b, is defined by
VxF - &4 VuF - 6b = 0, which is essentially Newcomb’s
equation generalized to arbitrary geometry, and the so-
lution is & = —(VxF)~! - V,F - 6b. Figure 6 shows a
comparison of the SPEC linear solutions and the corre-
sponding Newcomb solutions, for different values of .
Each cross in Fig.6 corresponds to the radial displace-
ment of each ideal interface considered in SPEC. The

agreement between linear SPEC and linear theory is ex-
cellent.

Generally, nonlinear solutions to F[x, b] = 0 for a given
boundary are found by iterating on the linear correction,
ie. x;11 = x;—(VyxF) 1. F, where i labels iterations. We
perform a convergence study of the nonlinear SPEC equi-
libria towards the corresponding linear prediction as the
boundary perturbation &, is decreased. Excellent con-
vergence is shown in Figure 7, with the error scaling as
e ~ O(£2). The agreement arising from this verification
exercise is of unprecedented nature and may shed some
light on how to reconcile the recently observed discrepan-
cies between linear and nonlinear equilibrium codes that
assume nested flux surfaces [18, 19].

A verification of the VMEC code against the same lin-
ear theory has also been carried out recently in the case of
zero-pressure [20]. VMEC cannot strictly compute equi-
libria with discontinuous rotational-transform; however
nested flux surfaces are enforced by the representation
of the magnetic field, and thus the solution that is ob-
tained for the radial displacement, £(r), is continuous and
smooth, and always satisfies |£'| < 1. In fact, the VMEC
solutions show a similar behaviour to that in Fig. 1 for
the case of zero-pressure, when either the radial resolu-
tion or the shear are increased [20]. Figure 8 shows how
VMEC calculations can reproduce a similar behaviour to
that in Fig. 6 for the case of finite pressure. In partic-
ular, the phenomena of amplification and penetration of
the boundary perturbation are observed as 3 is increased.
In any case, while VMEC seems to qualitatively repro-
duce the ideal response to an RMP, an exact agreement
with Newcomb’s solutions may require explicit handling
of discontinuities in the magnetic field.

3.5
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FIG. 6: SPEC linear solutions (crosses) and Newcomb solu-
tions (solid lines) for an m = 2, n = 1 boundary perturbation
and for different values of g, from 8 = 0 (lower curve) to
B =1.1% (upper curve). Here A¢ = 1.4 x 1073,
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FIG. 8: VMEC perturbed equilibrium solutions for an m = 2,
n = 1 boundary perturbation and for different values of 8
ranging from 8 = 0 (lower curve) to 8 = 0.68% (upper curve).
Radial resolution corresponds to N = 512 flux-surfaces.

V. DISCUSSION AND CONCLUSIONS

We have shown that three-dimensional ideal-MHD
equilibria with nested surfaces, arbitrarily smooth pres-
sure gradient and discontinuous-transform across reso-
nances are well defined and can be computed both lin-
early and nonlinearly. These states, we believe, may rep-
resent the only possible plasma equilibrium states with
magnetic surfaces that are both nested and resonant.

Experimentally, it has been observed that under cer-
tain parameter regimes, magnetic islands forming around
resonant surfaces in stellarators are healed [21]. Mecha-
nisms responsible for self-healing of magnetic islands have

been suggested [22, 23] and related to similar island dy-
namics observed in tokamaks [24]. However, regardless
of what mechanism is responsible for island-healing, the
resulting plasma equilibria should then be described by
the class of equilibria considered herein. And our predic-
tions seem to indicate that, in such a scenario, an RMP
will be largely amplified around the resonance and will
penetrate all the way into the core.

Two questions that remain to be answered are (1) what
sets the value of A¢, and (2) how can these states be
accessed?

Question (1) was partially answered in Ref. [5] by
showing that there is a lower bound on the DC current
sheet, At > At,min, which ensures that flux-surfaces are
preserved. It remains to be investigated whether an up-
per bound exists. A close examination of the Rosen-
bluth solution [25] for the nonlinearly saturated ideal
internal kink in a cylindrical tokamak, which is an ex-
ample of three-dimensional ideal-MHD equilibrium with
nested surfaces, is presented in Appendix A. The analysis
shows that this equilibrium marginally satisfies the sine
qua non condition, |£’| < 1, and thus this suggests that
the current sheet on the resonant surface corresponds to
At = Atpin. However it may well be that other states
with A¢ > At are also accessible, e.g. non-ideally.
This will require further investigation.

Question (2) may be answered as follows. Assume that
a plasma is initially in a perfectly axisymmetric state, i.e.
with no resonances, and where the rotational-transform
is continuous. Then the mechanism able to generate a
jump in transform must obviously not preserve the func-
tional +(¥), where ¥ is a flux-surface label, e.g. the en-
closed toroidal flux. Any non-ideal effect may provide
such mechanism, although usually at the price of open-
ing up an island; however, if the island is subsequently
healed and a shielded state with nested surfaces is ob-
tained, the final state may present a jump in the trans-
form. Another much less intuitive mechanism was de-
scribed by Eyink and Aluie [26], who showed that even
within ideal-MHD, where the plasma is assumed to be
infinitely conducting, the breaking of Alfvén’s theorem is
possible. In fact, the frozen-in-flux condition that is usu-
ally attributed to ideal plasmas results from combining
Faraday’s law and Ohm’s law; however, in the presence
of current and vorticity sheets, these two laws do not en-
sure the conservation of fluxes [26]. Such proof would
suggest that a jump in transform could in principle be
accessed even within ideal-MHD, although this also re-
quires further investigation.

Acknowledgments

This work was carried out under the auspices of the
Max-Planck-Princeton Center for Plasma Physics.



Appendix A: Current sheet in Rosenbluth’s solution
for the nonlinearly saturated ideal internal kink

The nonlinearly saturated ideal internal kink in a cylin-
drical tokamak was calculated by Rosenbluth et al [25]
and is the classic example of three-dimensional ideal-
MHD equilibrium with a resonant surface. This state
results from an initially unstable axisymmetric equilib-
rium with a rational surface at ¢ = 1. The final, ideally
stable equilibrium has nested surfaces with an axisym-
metric boundary, a current sheet on the resonant surface,
and an inner helical plasma column with helicity n = 1,
m=1.

We now show that: (1) the solution for the displace-
ment, &, of the flux-surfaces obtained by Rosenbluth
marginally satisfies the sine qua non condition; (2) the
conservation of toroidal flux is only ensured to zeroth or-
der in &, thus making an equilibrium with a jump in ¢ of
order A¢ ~ & consistent with Rosenbluth’s solution; (3)
the current sheet predicted on the resonant surface has a
DC component and thus is consistent with the existence
of a jump in transform.

The nonlinear solution for the displacement is given by
Eq. (23) in Ref. [25],

/

£(z,0) = /Ow {m - 1]d:z:’+h(9)

where 6 is the polar angle and £ is the radial displacement
of a flux surface originally situated at a radius x with
respect to the resonant surface (z = 0 is the original
radius of the resonant surface). The new radius of a flux
surface starting at z is then, by definition,

(A1)

r=x+&(z,0) (A2)
which is Eq.(22) in Ref. [25]. From Eq. (A1) we find the
gradient of the displacement at the resonant surface,

23
o =-1, A3
0x lz=0 (A3)
which marginally satisfies the sine qua non condition for
the existence of equilibria, namely [£] < 1.
The nonlinearly saturated state is found by evolving
the plasma parameters under ideal constraints. Among

these constraints is the conservation of toroidal flux,
which is imposed in Eq.(19) of Ref. [25],

/ rdrd@z/ rdrdf
TH T

c

(A4)

where the helical and cylindrical areas of integration, 74
and 7., are defined for a given flux-surface. Equation
(A4) represents the conservation of areas and thus corre-
sponds to the conservation of toroidal flux in the limit of
constant B,. Then, in Ref.[25], Eq. (A4) is differentiated
with respect to z, giving

or or.

where the last equality comes from the fact that r. = =
by construction. Finally, combining Eqgs. (Al) and (A2)
into Eq. (A5), one gets

X

fao CET ORI

In Ref. [25], the term & in Eq. (A6) is neglected, leading
to a fundamental relation,

(A6)

]—1/2

o =z~ 1,

1@ +90) (A7)

which corresponds to Eq.(24) in Ref. [25]. However this
relation is, as we have shown, only valid to zeroth order
in €. Therefore, the conservation of toroidal flux is only
enforced to zeroth order in £. In other words, any solu-
tion that violates flux conservation up to order £ is still
consistent with Rosenbluth’s solution.

Finally, we briefly consider the structure of the current
sheet in Rosenbluth’s solution. As stated in Ref. [25], the
integrated current sheet has magnitude

[ aar =g (%)
and since g(0) ~ €2 cos® (6/2) we have that
/ Jdr ~ € cos* (0/2) . (A9)

According to Eq. (A9), the magnitude of the current
sheet scales linearly with £, as in our theory [5]. More-
over, a Fourier decomposition of the function cos? (6/2)
reveals the presence of m = 0, m = 1, and m = 2 compo-
nents in the expression for the current. Thus, there is a
"DC” component (m = 0) in the current sheet, consistent
with the existence of a jump in the rotational transform
of order A¢ ~ &.
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