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Abstract: This paper describes an updated Fourier based split-step method that can be applied to a 

greater class of partial differential equations, than previous methods would allow. These equations 

arise in physics and engineering, a notable example being the generalized non-linear Schrödinger 

equation that arises in non-linear optics with self-steepening terms. These differential equations feature 

terms that were previously inaccessible to model accurately with low computational resources.  The 

new method maintains a 3rd order error even with these additional terms and models the equation in all 

three spatial dimensions and time. The class of non-linear differential equations that this method 

applies is shown. The method is fully derived and implementation of the method in the split-step 

architecture is shown. This paper lays the mathematical ground work for an upcoming paper 

employing this method in white-light generation simulations in bulk material.  

 

1 Niche of the New General Split-Step Method 
 

This paper presents an updated methodology that is based on the Strang Fourier Split Step scheme and 

that can model complicated non-linear equations in all three spatial dimensions and time. These non-

linear equations contain a distributional coefficient of a derivative term. This paper provides the 

mathematical support of the white light generation simulation whose results are discussed in [1]. 

Amongst a wide plethora of fields, these non-linear equations mostly arise in physical and 

mathematical disciplines. Notable examples include the generalized non-linear Schrodinger equation 

in Non-Linear Optics [2-4] that incorporates self-steepening effects and other important non-linear 

equations in Plasma Physics [5,6], Fluid Dynamics [7,8], and General Chaotic and Dynamical Systems 

[9,10]. 

In order to provide a methodology that can accurately simulate the additional complexity in all spatial 

dimensions and time, the Split Step Fourier (SSFM) approach [11] is taken as a basis. This approach is 

a Fourier based methodology that can employ the FFT algorithm. This is attractive due to the reduced 

amount of operations necessary and the increased accuracy over finite difference and Runge Kutta 

methods. In summary, the computational time, the implementation ease, the low amount of operations 

and the adaptability of the newly derived extended SSFM offers an attractive alternate to other 

numerical schemes. 

The Split-Step Fourier Method has been extensively explored in one dimensional systems such as the 

one-dimensional cubic Non-Linear Schrodinger Equation (NLSE) that models the substantive spectral 

broadening of light (accordingly named supercontinuum generation) as it propagates in fiber. Past 



studies focused primarily on estimating step-size dependent error and deriving adaptive step-size 

algorithms for the implementation of the method [12-14]. Other studies explored the stability of the 

method [15] or its application around certain bound solutions of a NLSE such as soliton formation 

[16]. However, extensions of the method itself have not been comprehensively explored until now. For 

example, the method needs to be extended so it’s applicable to beyond cubic NLSE type equations and 

in all spatial dimensions and time. Taking the previous example of optical spectral generation; cubic 

NLSE equations model well supercontinuum generation in 1-D systems but do not model all the 

intricate processes that occur in Bulk material. The added terms and effects that need to be considered 

while propagating light in Bulk material in the generation of new spectral components for White-Light 

Generation (WLG) yield far from cubic 3-D NLSE type equations.  

This first paper will be followed by a subsequent publication applying this method to a simulation to 

model the propagation of white-light generation in bulk material [1].  

2 Derivation of the General Method 
Split-step methods are based on modelling the non-linear equation in an iterative fashion in one 

propagation coordinate. Operators are defined as terms of the non-linear equation. Per propagation 

step, the non-linear equation is decomposed in a series of coupled equations in terms of each operator 

(named flows of the equation). The method scales with 3rd order accuracy in the propagation 

coordinate. 

To start the derivation of the new extended method, first a discussion of the type of solutions that the 

method aims to find will be carried out and the general form of non-linear partial differential equations 

the method can be applied to will be presented. Operators will be defined and the application of these 

operators will be discussed, especially the new operators introduced in this extended method. The 

Fourier domains in which these operators are applied in for the best numerical accuracy will be shown.  

2.1 Non-linear Partial Differential Equation Types Supported by Method  

 

The method models integrable bound of the L-2 normed [17]  solutions of the corresponding non-

linear equation. The necessity of this condition is because the Fourier integral for these functions 

always exists, which is needed since this method uses the Fourier transform and its properties. The 

general form of non-linear equations of which is considered writes as: 

𝜕𝑢

𝜕𝜍
= ℘𝑢 + ℚℕ𝑢 

 

(1) 

This equation is defined in a unit-less coordinate system and for unit-less quantities. Where, 𝑥, 𝑦 are 

the transverse unit-less coordinates, 𝜏 is the unit-less time coordinate. 𝜍, is the unit-less propagation 

coordinate. 

 ℘ is composed of a series over derivative operators (∇,
𝜕

𝜕𝜏
), shown in Eq. (2) . ℘ can be described as 

functions over derivative operators, where the functions correspond to the series convergence if the 

deriviative operators are replaced by variables in Eq. (2). This is in accordance with operator analysis 

theory [19]. Appendix 0.2 discusses in more detail the consequences of when the series does not 

converge to a functional form within the context of the complete methodology. 

℘ = ∑ ∑ 𝑐𝑛𝑗𝛻𝑛 𝜕𝑗

𝜕𝑗𝜏

∞

𝑗=0

∞

𝑛=0

 (2) 



∇𝑛 ≡
𝜕𝑛

𝜕𝑛𝑥
+

𝜕𝑛

𝜕𝑛𝑦
. The 𝑐𝑛𝑗 are complex constants.  

ℚ = (c1 + c2

∂

∂𝜏
) 

 

(3) 

c1, c2 are complex constants.  

ℕ = β(𝑢, 𝑣(𝑥⊥, 𝜏)) 

 
(4) 

β is a function whose arguments are the independent coordinate variables in space and time and 

distributions, e.g., based on the absolute value of 𝑢 to an arbitrary jth order. Where, the notation 𝑥⊥ to 

mark the set of unit-less transverse coordinates is used. 𝑣(𝑥⊥, 𝜏) represents a set of functions over 

𝑥⊥, 𝜏.  

The reason for why such a specific form of non-linear partial differential equations is considered here 

is that this corresponds to pertinent generalized non-linear Schrödinger equations central to the study 

of non-linear optics.  For example, the methodology developed in this paper was used to simulate the 

non-linear propagation of light in bulk material described in [1], using the equation factoring all 

pertinent higher order effects described by [18]. The equation used in [1] is of the general form: 

∂𝑢

∂𝜍
=

i

4
(1 +

i

𝑎

∂

∂𝜏
)

−1

∇⊥
2 𝑢 − i𝑏

𝜕2𝑢
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i

𝑎

𝜕

𝜕𝜏
) [𝑐|𝑢|2𝑢 − 𝑑 (1 −

i

𝑒
) 𝜌𝑢 + i𝑓|𝑢|2(𝑚−1)𝑢 ] 

 

(5) 

𝑎 − 𝑓 are physical constants and 𝜌 is a function based on 𝑢1. The first two terms, 

i

4
(1 +

i

𝑎

∂

∂𝜏
)

−1
∇⊥

2 𝑢 − i𝑏
𝜕2𝑢

𝜕𝜏2 , can be described in the following series representation2, and is, therefore, 

in the form of ℘ shown in Eq. (2): 

i
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(6) 

Where, 𝑐𝑛 = 0 when 𝑛 ≠ 2, otherwise  𝑐𝑛 =
i

4
. 𝑑𝑛𝑗 = 0 if 𝑛 ≠ 0 or 𝑗 ≠ 2, otherwise, 𝑑𝑛𝑗 = −i𝑏.  

As well, since [𝑐|𝑢|2𝑢 − 𝑑 (1 −
i

𝑒
) 𝜌𝑢 + i𝑓|𝑢|2(𝑚−1)𝑢 ] is in the form of ℕ and i (1 +

i

𝑎

𝜕

𝜕𝜏
) is in the 

form of ℚ. Therefore, Eq. (5) is of the same form as Eq. (1). 

There are two reasons for why ℘ is defined as in Eq. (2) and not in a functional form. Firstly, to 

increase the breadth of relevance to other useful generalized non-linear Schrödinger equations. The 

second reason will become clear later in this section.   

2.2 Operator Definitions and Representation in Relevant Domains 

 

The coefficients of Terms in Eq. (1) will now be grouped into a series of operators that are applied in 

an iterative sense along the propagation coordinate in the goal of producing a solution taking 𝑢 

inputted into the first slice of the propagation coordinate as the initial and boundary conditions of the 

                                                           
1 The derivation of Eq. (5) and the physics involved is explained at great length in [18], [1]. Here the equation is 
presented to demonstrate why the form of Eq. (1) is important to consider.  

2 Using the complex valued binomial expansion of (1 +
i

𝑎

∂

∂𝜏
)

−1

. 



equation. In order to accomplish this goal, the operators will first be defined, then a method for how 

they are applied will be derived with 3rd order accuracy or higher. The operators are chosen such that 

they are accurate and simple in their application. It is shown later (section 2.3) that this is 

accomplished if terms in Eq. (1) are grouped together into operators by the domains of application. 

Since the structure of the term depends on its domains of application, terms in an operator happen to 

have the same structure as well. For example, coefficient terms of Eq. (1)  that are composed of a 

constant coefficient multiplied into a differential operator are grouped together into an operator 

because these terms are simplified in the Fourier domains (i.e., by domains of applicability). Other 

coefficient terms that are composed only of functions and distributions over complex numbers (and 

not operators) are grouped together into another operator because they are all applied in the original 

domains. The third operator consists of the remaining terms which are composed of a functional or 

distributional coefficient over complex numbers multiplied into a derivative operator. It will be shown 

that these terms are applied in a mixture of Fourier and original domains and are of a more 

complicated nature than the previous two operator types. This third operator will be explored 

extensively in section 2.3-2.5. 

The coefficient ℘ is taken as the straight forward linear operator. This corresponds to the first operator 

described in the previous paragraph. The terms in ℘ are grouped together into one operator because it 

can be shown that the derivative operators can be replaced by imaginary numbers if this operator is 

applied on 𝑢 in the Fourier space. Also, this is true for the exponential version of this operator which is 

used to model the terms of Eq. (1) whose coefficients are covered within this operator (the way it is 

applied is shown rigorously in section 2.3). This is of great benefit since in its Fourier space ℘ is a 

function over numerical variables instead of derivative operators and can be easily evaluated. This is 

demonstrated in Appendix 0.1-0.3.  This is also in accordance with the use of the Fourier 

representation of the linear operator as is done in traditional pseudo-spectral techniques [13]. 

Therefore, -i𝑤 is substituted for 
∂

∂τ
 and −i𝑘𝑥, −i𝑘𝑦 for ∇x

1, ∇y
1   ((𝑘𝑥 , 𝑘𝑦, 𝑤) are the angular frequencies 

of the time and spatial variables) obtaining ℘  in the inverse space: 

℘(𝑘𝑥𝑘𝑦, 𝑤)  = ∑ ∑ 𝑐𝑛𝑗((−𝑖𝑘𝑥)𝑛+(−𝑖𝑘𝑦)𝑛) (−𝑖𝑤)𝑗

∞

𝑗=0

∞

𝑛=0

 
(7) 

Where, the above series can converge to a functional representation over a certain range in (𝑘𝑥 , 𝑘𝑦, 𝑤). 

Appendix 0.2 lists convergence conditions for when it is possible to have a functional representation in 

the inverse domain. In fact, this is why ℘ was defined in its series representation from section 2.1.  

 ℚℕ is split into distinct operators labelled as α1, α2. ℚℕ can be expanded as: 

ℚℕ = (𝑐1ℕ + 𝑐2 (
𝜕ℕ

𝜕𝜏
+ ℕ

𝜕

𝜕𝜏
)) = 𝛼1 + 𝛼2 

(8) 

𝛼1 = 𝑐1ℕ + 𝑐2 (
𝜕ℕ

𝜕𝜏
) (9) 

And, 



𝛼2 = 𝑐2ℕ
𝜕

𝜕𝜏
 (10) 

ℚℕ is decoupled into an operator solely defined on distributions, and an operator defined by a 

distribution and a derivative operator. This decoupling provides an accurate way of modelling the total 

term as will be seen later in this section. The α2 operator is novel and the operator and the method of 

its application is not present in previous split-step methods. 

α1 is a non-linear operator and composed of functions and distributions over complex numbers and not 

on derivative operators. α2 is named the augmented non-linear operator.  It is composed of a 

distributional coefficient over complex numbers to a derivative operator. 

In contrast to ℘, it would be of no benefit to consider α1 in any inverse space, since it is already over 

complex numerical variables and not operators. Hence, its exponential form used in section 2.3 is 

applied in the original space α1 was defined in. If α1 is defined over derivatives of functions of 𝑢, as is 

the case if using Eq. (5) and in [1], the derivatives are evaluated in an analytic way with Fourier 

operations; The Fourier identity for the derivative outlined above is used and the term is transformed 

back into the time domain. For functions in α1 that are defined in terms of satisfying an additional 

differential equation, as is also the case in [1], the appropriate time domain integration method is used, 

i.e. Runge-Kutta, etc. It will later be demonstrated that the complexity of α2 can be reduced and then 

suitable domains to apply it in will be found, as done for ℘, α1. 

Now, that operators corresponding to terms in Eq. (1) are defined, the next section will derive the 

method in how they are applied to simulate Eq. (1) with third order accuracy.  

2.3 Flows of the Non-linear Partial Differential Equation under the 3 Operator 

Decomposition 

 

This section will now derive and show how a given chosen set of operators (that cover all terms in Eq. 

(1), in this case chosen as in what is described in section 2.2) are applied within their domains of 

application to solve Eq. (1). Eq. (1) is broken up into a series of differential equations involving 

℘, α1, α2 .  Meaning that each operator (consisting of coefficient terms in Eq. (1)) acts as the 

coefficient of 𝑢 in its own first order ordinary differential equation w.r.t the propagation coordinate. 

Each equation is the named the ‘flow’ of the operator. Analytic or near analytic partial solutions  

𝑢℘, 𝑢α1
,𝑢α2

, for these differential equations involving ℘, α1, α2 are obtained. These equations are 

solved in a specific order. The solution of one equation acts as the initial value (in terms of the 

propagation coordinate) of the next equation.  When applied in the shown specific order, within the 

step being considered, they yield an approximation of 𝑢 coming out of the propagation slice into the 

next slice. This methodology was adapted from [12, Eq.8-10] to account for three operators instead of 

two. The specific ordering, named Strang symmetrisation [11] is needed because each of the three 

operators have a nonzero commutation relation to the others. Therefore, their ordering influences the 

result introducing numerical error. The step-size error is then proportional to the square of the 

propagation step size [11]. The flows are now shown in the specific ordering they are applied in [1]: 

1. {

𝜕𝑢℘(𝜍)

𝜕𝜍
= ℘𝑢℘(𝜍), ∀𝜍 ∈ [𝜍𝑘 , 𝜍

𝑘+
1

4

 ]

𝑢℘(𝜍𝑘) = 𝑢(𝜍𝑘), 𝑢 𝑐𝑜𝑚𝑖𝑛𝑔 𝑓𝑟𝑜𝑚 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑠𝑙𝑖𝑐𝑒
 



2. {

𝜕𝑢𝛼2(𝜍)

𝜕𝜍
= 𝛼2𝑢𝛼2

(𝜍), ∀𝜍 ∈ [𝜍𝑘, 𝜍
𝑘+

1

4

 ]

𝑢𝛼2
(𝜍𝑘) = 𝑢℘ (𝜍

𝑘+
1

4

) 
 

3. {

𝜕𝑢℘(𝜍)

𝜕𝜍
= ℘𝑢℘(𝜍), ∀𝜍 ∈ [𝜍

𝑘+
1

4

, 𝜍
𝑘+

1

2

 ]

𝑢℘ (𝜍
𝑘+

1

4

) = 𝑢𝛼2
(𝜍

𝑘+
1

2

) ,
 

4. {

𝜕𝑢𝛼1(𝜍)

𝜕𝜍
= 𝛼1𝑢𝛼1

(𝜍), ∀𝜍 ∈ [𝜍𝑘, 𝜍𝑘+1 ]

𝑢𝛼1
(𝜍𝑘) = 𝑢℘ (𝜍

𝑘+
1

2

)
 

5. {

𝜕𝑢℘(𝜍)

𝜕𝜍
= ℘𝑢℘(𝜍), ∀𝜍 ∈ [𝜍

𝑘+
1

2

, 𝜍
𝑘+

3

4

 ]

𝑢℘ (𝜍
𝑘+

1

2

) = 𝑢𝛼1
(𝜍𝑘+1),

 

6. {

𝜕𝑢𝛼2
(𝜍)

𝜕𝜍
= 𝛼2𝑢𝛼2

(𝜍), ∀𝜍 ∈ [𝜍
𝑘+

1

2

, 𝜍𝑘+1]

𝑢𝛼2
(𝜍

𝑘+
1

2

) = 𝑢℘ (𝜍
𝑘+

3

4

)
 

7. {

𝜕𝑢℘(𝜍)

𝜕𝜍
= ℘𝑢℘(𝜍), ∀𝜍 ∈ [𝜍

𝑘+
3

4

, 𝜍𝑘+1]

𝑢℘ (𝜍
𝑘+

3

4

) = 𝑢𝛼2
(𝜍𝑘+1)  

Where the final  𝑢℘(𝜍𝑘+1) calculated from the 7th step becomes 𝑢 entering the next slice labelled 

(𝜍𝑘+1) in the propagation direction and the above 7 steps are repeated iteratively. Fig.1 visually 

represents the above iteration. The methodology of generating u, how the operators ℘, α1, α2 are 

applied, the ordering of how they are applied and to what they are applied to have just been shown. 

However, the above procedure can be simplified because the above differential equations can be 

solved analytically or “close to” analytically for all operators, yielding: 

For the first step: 

 

𝑢℘(𝜍) = 𝑒℘(𝜍−𝜍𝑘)𝑢(𝜍𝑘) 

 

(11) 

Coming out of the first step then: 

 

𝑢℘ (𝜍
𝑘+

1
4

) = 𝑒
1
4

℘∆𝜍𝑢(𝜍𝑘) 
(12) 



 

For the second step: 

 

𝑢α2
(ς) = e

∫ α2(𝜍′)d𝜍′
𝜍

𝜍𝑘 𝑢℘ (𝜍
𝑘+

1
4

) 
(13) 

 

The integral arises since the α2 operator contains functions based on 𝑢, where 𝑢 is a function of 𝜍. 

However, since the interval [𝜍𝑘 , 𝜍
𝑘+

1

2

 ] is considered to be small and 𝑢 and its derivatives are 

considered to be slowly varying relative to the step size of 𝜍, a mean value theory [20] can be 

employed. Where, the value of α2 in the exponent with 𝑢 given from the end of the previous operator 

step is used. 

 This gives a value at 𝜍
𝑘+

1

2

 (at the end of the step) of: 

𝑢𝛼2
(𝜍

𝑘+
1
2

 ) = 𝑒

1
2

𝛼2(𝑢℘(𝜍
𝑘+

1
4

))∆𝜍

𝑢℘ (𝜍
𝑘+

1
4

) (14) 

At the end of the third step: 

 

𝑢℘ (𝜍
𝑘+

1
2

) = e
1
4

℘∆𝜍𝑢α2
(𝜍

𝑘+
1
2

) 

 

(15) 

At the end of the fourth step, again employing a mean value theory and using the value of 𝑢 coming 

from the previous step for all functions of 𝑢 in α1 at 𝜍𝑘+1, the following is obtained: 

𝑢𝛼1
(𝜍𝑘+1) = 𝑒

𝛼1(𝑢℘(𝜍
𝑘+

1
2

))∆𝜍

𝑢℘ (𝜍
𝑘+

1
2

) 

 

(16) 

At the end of the fifth step the following is obtained: 

𝑢℘ (𝜍
𝑘+

3
4

) = 𝑒
1
4

℘∆𝜍𝑢𝛼1
(𝜍𝑘+1) 

 

(17) 

At the end of the sixth step: 

𝑢𝛼2
(𝜍𝑘+1 ) = 𝑒

1
2

𝛼2(𝑢℘(𝜍
𝑘+

3
4

))∆𝜍

𝑢℘ (𝜍
𝑘+

3
4

) (18) 



And at the end of the final step: 

 

𝑢(𝜍𝑘+1) = 𝑢℘(𝜍𝑘+1) = e
1
4

℘∆𝜍𝑢α2
(𝜍𝑘+1 ) 

 

(19) 

The proof of the integration of these steps is discussed in appendix 0.4. The proof is constructed by 

showing that the Maclaurin series of the exponential functions shown above satisfy the corresponding 

differential equation. Once this is shown, the fact that this series converges to the above exponential 

forms concludes the proof. An example proof for these steps is shown in appendix 1 for a convolution 

type operator. 

The following scheme is then equivalent to: 

𝑢(𝜍𝑘+1) = 𝑒
1
4

℘∆𝜍𝑒
1
2

𝛼2∆𝜍𝑒
1
4

℘∆𝜍𝑒𝛼1∆𝜍𝑒
1
4

℘∆𝜍𝑒
1
2

𝛼2∆𝜍𝑒
1
4

℘∆𝜍𝑢(𝜍𝑘) (20) 

Where, the non-linear operators dependent on functions of 𝑢 are calculated at 𝑢 outputted from the 

previous operator step.

Figure 1: Graphical representation of steps 1-7. 𝑢𝑘−1 is calculated from the output of the slice 

numbered 𝑘 − 1 and is used as the initial 𝑢 in slice 𝐾. The updated 𝑢 from the previous iterative sub 

steps in slice K is used to calculate the operator values for the pertinent sub step. Each operator is 

applied in intervals equivalent to the slice length divided by the amount of times the operator is 

applied in the slice.   

The above ordering can be modified to fulfill different symmetrisations. In general, terms that are fast 

varying relative to others should be the ones most extensively split in the symmetrisation, as one 

would need to “sample 𝑢 interacting with these terms” more often. The symmetrisation is not a hard 

constraint and is dependent on the problem and the computational resources. Different 

symmetrisations have different convergence speeds with respect to the propagation coordinate step 

size.  



From the above, the operator is an argument of an exponent. This is defined as the exponential form of 

the operator.  The exponential form of each operator is multiplied with u. This is equivalent to the 

Maclaurin series expansion of the exponential with respect to the propagation coordinate (valid 

everywhere in that domain) multiplied into u. Appendix 0.3-0.4 outlines in more detail how this 

procedure is done. Appendix 1 details the proof for why the above differential equations integrate to 

the Maclaurin series of an exponent with the operator as an argument. The specific case of how the 

Maclaurin series is applied to the α2 operator will be discussed in section 2.4-2.5. In the case where 

the operator is defined only as functions of the independent domain variables the numerical value of 

the exponential can be computed directly and then multiplied into 𝑢 at the appropriate domain 

coordinates.  

It can be derived (contained in Appendix 0.1-0.3) that the Maclaurin series expansion of the 

exponential form of an operator that is a series of derivative terms with constant coefficients, 

multiplied into 𝑢 in the original space is equivalent to the inverse Fourier transform of the exponential 

of the representation of that operator in the Fourier space (i.e., frequency space) applied to the 

representation of 𝑢 in the Fourier space. If the representation of the operator converges to a function in 

Fourier space, the exponential form of that operator in Fourier space will be the exponent of a function 

over independent numerical domain variables (instead of differential operators) and can be computed 

directly in this space. Therefore, it is not prudent to evaluate the Maclaurin series expansion of the 

exponential operator of ℘  in the original space. Each term of the Maclaurin series will consist of a 

series expansion of derivative operators acting on u. therefore, numerical differentiation will have to 

be employed and both truncation in the terms of the Macluarin series and the series representation of 

each term will have to be employed. Instead, the exponential of ℘  representation in its Fourier space 

can be used. If the representation of ℘  reduces to a functional form, then the exponent can be directly 

calculated. If not, each term in the Maclaurin expansion will have to be calculated in this Fourier space 

for each domain value and both truncation in the Maclaurin series and truncation in the series 

representation of each term of the series will have to be used. However, numerical differentiation is 

avoided and this is a better approach than evaluating ℘ in its original space where it is defined in 

terms of derivative operations. The error then only depends on the numerical Fourier transform 

algorithm being implemented and the step size in the propagation direction. The Fourier error can be 

reduced if certain conditions of the sampling step sizes are maintained (i.e., the Nyquist criterion).  

In the exponential form of the α1 operator the function is applied in the original domains without need 

of a Maclaurin expansion since there are no derivative operators, and all is defined in terms of 

functions of the independent variables already. 

2.4 Application of the 𝛂𝟐 Operator and its Representation in the Relevant Domains used in 

its Application 

 

The complication factors in, in how the α2 operator is applied. There are several ways in which this 

operator can be implemented. The operator can be implemented in the original domain and then 

truncated after some terms in the Maclaurin series expansion with respect to α2 
of the corresponding 

exponential. This yields time derivative operator terms that act on 𝑢. Less accurate finite difference 

methods would be required to evaluate the derivative terms acting on 𝑢 after the expansion.  However, 

as mentioned in the previous paragraph for greater accuracy and reduced computational requirements, 

an equivalent version of the α2 operator that has no Maclaurin series expansion required should be 

used.  



The exponential expression of α2 is simplified by first expanding the exponential operator in its 

Maclaurin series w.r.t to the propagation coordinate (where the step size 
1

2
∆𝜍 is included in the 

constant c2 of α2 for ease of writing):  

eα2 = 1 + c2ℕ
∂

∂τ
+

1

2!
(c2ℕ)2

∂

∂τ

2

+
1

3!
(c2ℕ)3

∂

∂τ

3

… (21) 

 

It is worth noting that the derivative term and ℕ is assumed to be re-arrangeable in the product terms 

and power terms in the above expansion. However, ℕ  does not commute with the derivative term so 

this is not completely true and an approximation. The next section covers this in more detail. For now, 

this approximation is assumed. ℕ is calculated with the mean-value approximation outlined in steps 1-

7. 

Now, it can be seen that ( 𝑅 = c2ℕ)  : 

eα2(𝜏,𝑥,𝑦)𝑢(𝜏, 𝑥, 𝑦) = [1 + 𝑅(𝜏, 𝑥, 𝑦)
∂

∂τ
+

1

2!
𝑅(𝜏, 𝑥, 𝑦)2

∂

∂τ

2

+
1

3!
𝑅(𝜏, 𝑥, 𝑦)3

∂

∂τ

3

… ] 𝑢(𝜏, 𝑥, 𝑦) 

 

(22) 

The left hand side of Eq. (22) can be obtained by carrying out the following integral operation below3, 

where 𝑤′ is defined as an additional independent variable, and u(𝑤′, 𝑥, 𝑦) as equivalent to the 

distribution given by the Fourier transform of 𝑢 to the inverse variable domain of 𝜏 (ie, u(𝑤′, 𝑥, 𝑦) =

u(𝑤, 𝑥, 𝑦) )4: 

                                                           
3 By the use of Fourier identities for derivatives. 
4 The Fourier constants in front of the integral are omitted for clarity.  



∫ [1 + 𝑅(𝜏, 𝑥, 𝑦)(−i𝑤′) +
1

2!
𝑅(τ, … )2(−i𝑤′)2

∞

−∞

+
1

3!
𝑅(τ, … )3(−i𝑤′)3 … ] u(𝑤′, 𝑥, 𝑦)e−i𝑤′𝜏dw′

= [1 + 𝑅(τ, … )
∂

∂τ
+

1

2!
𝑅(τ, … )2

∂

∂τ

2

+
1

3!
𝑅(τ, … )3

∂

∂τ

3

… ] 𝑢(𝜏, 𝑥, 𝑦)

= eα2(𝜏,𝑥,𝑦)𝑢(𝜏, 𝑥, 𝑦) 
 

(23) 

Therefore,  

eα2(𝜏,… )𝑢(𝜏, … ) = ∫ [1 + 𝑅(𝜏, … )(−i𝑤′) +
1

2!
𝑅(𝜏, … )2(−i𝑤′)2

∞

−∞

+
1

3!
𝑅(𝜏, … )3(−i𝑤′)3 … ] 𝑢(𝑤′, … )𝑒−𝑖𝑤′𝜏𝑑𝑤′ 

 

(24) 

Where, 𝑅 is unaffected by the Fourier integral since the integral is only over the independent variable 

𝑤′. As well, since 𝑢 is L2-normed each term in the Fourier integral is bound with the over-arching 

assumption discussed in section 2.1 that there is an integrable bound solution in L2 to Eq. (1) with the 

initial input 𝑢. The overall summation of Fourier integrals in the right hand side of Eq. (24) yields an 

integrable bound solution in L2. 

Eq. (23) can be simplified further by using the Maclaurin series identity to the series within the Fourier 

integral in Eq. (23), yielding:  

 

𝑒−𝑐2ℕ𝑖𝑤′ = [1 + 𝑅(𝜏, … )(−𝑖𝑤′) +
1

2!
𝑅(𝜏, … )2(−𝑖𝑤′)2 +

1

3!
𝑅(𝜏, … )3(−𝑖𝑤′)3 … ] (25) 

Where, the definition of 𝑅 on the left hand side of Eq.(25) is used. The argument of the exponential 

now consists of a function defined on 4 independent variables: 𝑤′, 𝜏, 𝑥, 𝑦. From the above, the 

following relation is obtained through substituting Eq.(25) into Eq. (24): 

𝑒𝛼2(𝜏,… )𝑢(𝜏, … ) = 𝑓𝑤′{𝑒−𝑐2ℕ𝑖𝑤′𝑢(𝑤′, … )}|𝜏 
(26) 

𝑓𝑤′ means the Fourier transform over 𝑤′ at 𝜏. This identity is used which gets past truncation errors 

and lets eα2 be applied to 𝑢 in terms of Fourier transform integrals.  

α2̅̅ ̅ is defined as the name of the operator −c2ℕ𝑖w′ when the above derived substitution identity is 

used. 

The semantics of the α2 operator will become clear once the general steps that are applied with all of 

these operators in their respective spaces are stated. Let Z be the series of numerical operations: 

𝑍 = 𝑖𝐹𝐹𝑇 𝑘𝑥,𝑘𝑦,𝑤→𝑥,𝑦,𝜏𝑒
1
4

℘(𝑘𝑥,𝑘𝑦,𝑤)∆𝜍 𝐹𝐹𝑇 𝑥,𝑦,𝜏→𝑘𝑥,𝑘𝑦,𝑤 (27) 



𝑖𝐹𝐹𝑇 𝑤′→𝜏𝑒
1
2

𝛼2(𝜒,𝜓,𝑤′,𝜏)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ∆𝜍 𝑖𝐹𝐹𝑇 𝑘𝑥,𝑘𝑦,𝑤→𝑥,𝑦,𝑤𝑒
1
4

℘(𝑘𝑥,𝑘𝑦,𝑤)∆𝜍  𝐹𝐹𝑇 𝑥,𝑦,𝜏→𝑘𝑥,𝑘𝑦,𝑤 

 

The term FFT 𝑤′→𝜏e
1

2
α2(𝑥,𝑦,𝑤′,𝜏)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅∆𝜍 

 shown in Eq. (27) applied to 𝑢 does the following: 

FFT 𝑤′→𝜏  {e
1

2
α2(𝑥,𝑦,𝑤′,𝜏)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅∆ς𝑢(𝑤′, 𝑥, 𝑦)}. This means: 

1. u is inputted in its spatial-frequency domain representation5 because its frequency 

representation is the same as its representation in the w′ domain, (i.e., 𝑢(𝑤′, 𝑥, 𝑦) =

 𝑢(𝑤, 𝑥, 𝑦)). 

2. The exponent is multiplied into 𝑢(𝑤′, 𝑐, 𝑦) across 𝑤′ at a value of 𝑥, 𝑦, 𝜏.  

3. The value of the inverse Fourier transform on the 𝑤′ domain of the new function (created in 

2.) only at the value of  𝜏 used in 2. is taken. This is the value of the updated 𝑢 at 𝑥, 𝑦, 𝜏 

coming out of the exponential α2 operator step.  

4. The process is repeated for all 𝑥, 𝑦, 𝜏. At the input of this step 𝑢(𝑥, 𝑦, 𝑤) is sent and after this 

step an updated 𝑢(𝑥, 𝑦, 𝜏) is found6. 

 Eq. (27) yields:  

𝑢(𝑥, 𝑦, 𝜏, 𝜍′) = 𝑍𝑒𝛼1∆𝜍 𝑍𝑢(𝑥, 𝑦, 𝜏, 𝜍′ − ∆𝜍 ) (28) 

                                                           
5 iFFT 𝑘𝑥,𝑘𝑦,𝑤→𝑥,𝑦,𝑤 refers to a two dimensional inverse Fourier transform only over the momentum 

coordinates. 
6 A 3-D function (representing 𝑢) is inputted into this exponential α2 operator step. The exponential α2 
operator is a 4-D function. During the application of the step, the new function found in 2. Is 4-D. After step 3 is 
applied over all 𝑥, 𝑦, 𝜏  the function is a 3-D function.  



This is done iteratively overall all steps in the propagation coordinate, ς. 

One can see from the above treatment the power of this exponential operator theory. At the heart of 

traditional FD methods or Runge-Kutta methods the differential operators are replaced, with a 

numerical difference scheme. However, this method yields a step size dependent error and is 

inherently a computational approximation to the derivative terms. However, by using the Fourier 

representation of derivative terms, there is no violation in the nature of the derivative term, the 

derivative operator term is simply being replaced by its equivalent algebraic integral representation. 

There is no step size dependent error in this sense and provided that the Fourier transform can be 

represented by the FFT algorithm accurately, i.e. if the Nyquist criterion is met, there is no other over 

all errors in computing these derivatives.  

Applying an FD or Runge-Kutta method to solve the differential equations in steps 1-7 also bears 

more error in the integration than the preceding method. For example, taking step 1, a FD method 

would look like: 

u℘(ς
k+

1
4

) = u℘(ςk) +
∂u℘(ς)

∂ς
|ςk(

1

4
∆ς)  = u℘(ςk) + ℘u℘(ςk)(

1

4
∆ς)  

 

(29) 

Where, the operators can be carried out in the Fourier treatment or with Taylor series expansions 

(specifically those with differential operators). The more pronounced error in the integration arises 

because the mean value theorem would still have to be applied for these methods as well, and these 

methods turn out to be a computational approximation of the analytic solution under the mean value 

approximation. However, the exponential method outlined in this chapter is the true analytic solution 

of the integration under the mean value approximation. Runge-Kutta methods bare the same form 

albeit more developed as Eq. (29). Therefore, it will always out-compete applying Runge-Kutta 

methods for the longitudinal propagation. The exponential describes the step without making the extra 

assumption that the system is discretized, it still respects the continuous nature of the problem while 

other methods do not make this distinction. Adaptive recursive or implicit methods can overcome the 

mean-value approximation itself, but these are substantially more complex methods that lie out of the 

scope of this chapter. The computational costs increase and the stability of such methods may be an 

issue or hard to evaluate.  

In sum, the system acts in an exponential manner to the propagation coordinate, if there is only one 

operator composed of all coefficient terms in Eq. (1) the equation would integrate to the exponential 

form of that operator7. Consequently, the most accurate, stable and intuitive way to model the system 

would be in an exponential form.  

2.5 Approximation Used in Justifying the Series Expansion of the Exponential 𝛂𝟐 Operator 

and Higher Order Update to the Operator 

 

In section 2.4, the Maclaurin series expansion for the α2 operator was shown using the Mean-value 

approximation outlined in steps 1-7, for ℕ , as: 

eα2 = 1 + c2ℕ
∂

∂τ
+

1

2!
(c2ℕ)2

∂

∂τ

2

+
1

3!
(c2ℕ)3

∂

∂τ

3

… 
(30) 

                                                           
7 Application of the exponential form through the Maclaurin expansion would be extremely complicated as 
opposed to the 3rd order method shown here based on dividing the equation into a series of operators. 
However, arbitrary scaling to higher orders can be achieved by this one global operator and the full Maclaurin 
series represents the exact solution.  



 

Where the step size is factored into the constant c2. Strictly speaking however, the series expansion of 

α2 is: 

 

eα2 = 1 + c2ℕ
∂

∂τ
+

1

2!
(c2ℕ

∂

∂τ
) (c2ℕ

∂

∂τ
) +

1

3!
(c2ℕ

∂

∂τ
) (c2ℕ

∂

∂τ
) (c2ℕ

∂

∂τ
) … 

 

(31) 

Since ℕ is a function of τ the product of the derivatives and c2ℕ’s cannot be re-arranged. They do not 

commute. In addition, since the terms of the multiplications (the sub-terms of the power terms) in Eq. 

(31) are composed of a derivative operator with a distributional coefficient, the ordering of the 

multiplication must be defined. Terms in the multiplication cannot arbitrarily be re-arranged. 

Appendix 1.2 derives the multiplicative ordering needed to satisfy the differential equation for α2 

shown in steps 1-7 in section 2.3. The multiplication is defined from right to left: The right most term 

is applied first then the subsequent term on the left and so forth. Thus, multiplicative expansion of the 

terms is done in that order as well: the term to the left is multiplied into the right most term in the 

multiplication and then the next term to the left and so forth. This multiplicative expansion of the 

power terms is equivalent to the defined ordering of the application of sub-terms in the power terms of 

the Macluarin exponential operator shown in Eq. (31). This ordering was respected when deriving Eq. 

(32). 

However, if the approximation is used that ℕ is a slow-varying function w.r.t to 𝑢, its derivative w.r.t τ 

can be assumed to be negligible (i.e., zero). In that case both of the above equations are equivalent and 

Eq. (30) can be used. When this approximation cannot be used the need to derive error estimations for 

α2 and to update the application of the operator in such a way that the error truncation is at least at the 

same level as general split-step operator methods( ℴ(Δ𝑧3) or higher) is paramount. This is 

accomplished as follows:  

Eq. (31) can be expanded as follows (here to illustrate the step-size exponent, the step size is factored 

out of c2: Δ𝑧 =
1

2
∆ς): 

eα2 = [1 + Δ𝑧c2ℕ
∂

∂τ
+

1

2!
(Δ𝑧c2ℕ)2

∂

∂τ

2

+
1

3!
(Δ𝑧c2ℕ)3

∂

∂τ

3

… ] +
Δ𝑧2

2!
[(c2ℕ)

∂

∂τ
(c2ℕ)

∂

∂τ
]

+
Δ𝑧3

3!
[[(c2ℕ)2

∂

∂τ

2

(c2ℕ) + (c2ℕ) [
∂

∂τ
(c2ℕ)]

2

]
∂

∂τ
+ 3(c2ℕ)2

∂

∂τ
(c2ℕ)

∂

∂τ

2

] 

 

(32) 

The term is corrected up to ℴ(Δ𝑧4). If only ℴ(Δ𝑧3) is desired, then the Δ𝑧3 term on the RHS of Eq. 

(32) can be omitted. As described in section 2 since the first term of Eq. (32) is applied in (𝑥, 𝑦, 𝜏, 𝑤′) 

space, all corrections are applied in that space as well. Derivatives of  c2ℕ are numerically evaluated 

using the Fourier derivative identity. In the appropriate space this yields: 



eα2(𝜏,… )𝑢(𝜏, … ) =

= 𝑓𝑤′ {[e−c2ℕi𝑤′ +
Δ𝑧2

2!
[(c2ℕ)

∂

∂τ
(c2ℕ)(−i𝑤′)]

+
Δ𝑧3

3!
[[(c2ℕ)2

∂

∂τ

2

(c2ℕ) + (c2ℕ) [
∂

∂τ
(c2ℕ)]

2

] (−i𝑤′)

+ 3(c2ℕ)2
∂

∂τ
(c2ℕ)(−i𝑤′)2]] 𝑢(𝑤′, … )} |𝜏 

 

 

(33) 

The e−c2ℕi𝑤′ is the series convergence of the first term of Eq. (32) in the (𝑥, 𝑦, τ, w′)  space and was 

derived in detail in section 2. The identity from this derivation is used here. Application of the 

exponential α2 operator in this way can yield a ℴ(Δ𝑧4) error truncation. If additional error truncation 

is necessary, then additional terms of the expansion of Eq. (31) can be obtained and the summation in 

Eq. (33) updated accordingly.  

5 Nyquist Criterion and Pseudo-Spectral Criterion for Spatial Grid Sizes 
 

The Fourier nature of the above derived methodology allows the direct application of the Nyquist 

sampling criterion. This provides a quantitative approach to reduce step-size error and to adapt grid 

sizes to counter under-sampling. An adaptive grid size technique was developed for the computational 

implementation of this method and will be covered in the subsequent white light simulation follow up 

publication to this paper. 

7 Conclusions and Extensions  
 

A novel and fast 3+1D simulation technique based on the symmetric split-step exponential Fourier 

method has been developed in this paper. This paper serves to describe the mathematical techniques of 

the simulation in [1]. The novel numerical technique herein derived, can solve generalized NLSE type 

equations not accessible with traditional split-step approaches and does not intrinsically have the same 

numerical errors that are present in Runge-Kutta type methods for partial differential equations. These 

generalized NLSE equations are important in optics, notably white-light generation in bulk material. 

This numerical technique is still a third order or more error method in line with other Strang 

symmetrisation split-step methods. 

 In addition to the analyses presented in section 2, Appendix 1 covers the case where there are 

convolution terms present in the non-linear partial differential equation. These type of terms arise in 

physics, for example, when modelling Raman effects.  

Appendix 0: Essential Proofs of Section 2 

0.0 Fourier convention used 

 

The Fourier convention used is: 



𝐹(𝑤) = ∫ 𝑓(𝑡)𝑒𝑖𝑤𝑡d𝑡

∞

−∞

 

𝑓(𝑡) =
1

2π
∫ 𝐹(𝑤)𝑒−𝑖𝑤𝑡d𝑤

∞

−∞

 

Where w represents angular frequency and t represents the time domain. The coefficient 
1

2π
 is omitted 

in equations and derivations (for clarity) but assumed in this chapter. The convention to represent this 

integral in quick form is: 

𝑓(𝑡) = 𝑓𝑤(𝐹(𝑤))|𝑡 

 

0.1 Proof: Fourier Representation of series of derivative operators 

 

This is the proof that any series expansion of derivative operators multiplied into 𝑢 is equal to the 

inverse Fourier transform of substituting the derivatives with the representation of the derivatives in 

Fourier space into the series expansion and multiplying into the representation of 𝑢 in the Fourier 

space. 

In this section the following result will be proved: 

If   

Q = ∑ ∑ 𝑐𝑛𝑗∇𝑛 𝜕𝑗

𝜕𝑗𝜏

∞

𝑗=0

∞

𝑛=0

 

Q(𝑘𝑥, 𝑘𝑦, 𝑤) = ∑ ∑ 𝑐𝑛𝑗((−i𝑘𝑥)𝑛 + (−i𝑘𝑦)
𝑛

)

∞

𝑗=0

∞

𝑛=0

(−i𝑤)𝑗 

 

Then 

Q𝑢(𝜏, 𝑥, 𝑦) = 𝑓𝑘𝑥,𝑘𝑦,𝑤 ([∑ ∑ 𝑐𝑛𝑗((−i𝑘𝑥)𝑛 + (−i𝑘𝑦)
𝑛

)

∞

𝑗=0

∞

𝑛=0

(−i𝑤)𝑗] 𝑢(𝑤, 𝑘𝑥 , 𝑘𝑦)) |𝜏,𝑥,𝑦

= 𝑓𝑘𝑥,𝑘𝑦,𝑤 (Q(𝑘𝑥 , 𝑘𝑦, 𝑤)𝑢(𝑤, 𝑘𝑥 , 𝑘𝑦)) |𝜏,𝑥,𝑦 

 
 

 

If the operator can be represented in the form: 

 

Q = ∑ ∑ 𝑐𝑛𝑗∇𝑛 𝜕𝑗

𝜕𝑗𝜏

∞

𝑗=0

∞

𝑛=0

 

 

(34) 

 



 (𝑐𝑛𝑗 are constants, the del operator acts over 𝑥, 𝑦 spatial coordinates, or normalized spatial 

coordinates, τ is the time coordinate, or normalized time coordinate) which is true for the ℘ operator, 

then 

 

Q𝑢(𝜏, 𝑥, 𝑦) = ∑ ∑ 𝑐𝑛𝑗∇𝑛 [
𝜕𝑗𝑢(𝜏, 𝑥, 𝑦)

𝜕𝑗𝜏
]

∞

𝑗=0

∞

𝑛=0

 

 

(35) 

The operators ∇n , 
𝜕𝑗

𝜕𝑗𝜏
 commute and the order of how they are applied on 𝑢 does not matter. This 

follows from the commutation of partial derivatives over independent variables. 

Eq.(35)  is Fourier transformed in the w domain. Using the Fourier identity for derivative terms to any 

order, the following is obtained: 

𝑄𝑢(𝜏, 𝑥, 𝑦) = ∑ ∑ 𝑐𝑛𝑗𝛻𝑛[𝑓𝑤((−𝑖𝑤)𝑗𝑢(𝑤, 𝑥, 𝑦))|𝜏]

∞

𝑗=0

∞

𝑛=0

 

 

(36) 

Since the integral does not act over 𝑥, 𝑦, ∇n  can be factored out of the integral. The property of 

summation of integrals was used to place the Fourier integral within the summation.  

Now, to evaluate the del operators over 𝑥, 𝑦 the following 2D Fourier integral can be used: 

𝑄𝑢 = ∑ ∑ 𝑐𝑛𝑗𝑓𝑘𝑥,𝑘𝑦
 (((−𝑖𝑘𝑥)𝑛 + (−𝑖𝑘𝑦)

𝑛
)[𝑓𝑤((−𝑖𝑤)𝑗𝑢(𝑤, 𝑥, 𝑦))|𝜏])

∞

𝑗=0

|𝑥,𝑦

∞

𝑛=0

 
(37) 

  

Where the Fourier identity of the del operator is used. The summation property of integrals was used.   

The integrals commute because they are evaluated over independent variables. The ordering of how 

the integrals are evaluated does not matter.   

Also, due to the summation property of integrals, the integrals can be factored outside of the 

summation. This simplifies Eq. (37) to: 

𝑄𝑢(𝜏, 𝑥, 𝑦) = 𝑓𝑘𝑥,𝑘𝑦,𝑤 ([∑ ∑ 𝑐𝑛𝑗((−𝑖𝑘𝑥)𝑛 + (−𝑖𝑘𝑦)
𝑛

)

∞

𝑗=0

∞

𝑛=0

(−𝑖𝑤)𝑗] 𝑢(𝑤, 𝑘𝑥 , 𝑘𝑦)) |𝜏,𝑥,𝑦 
(38) 

Since the summation of Eq. (38) is simply the Fourier representation of Q,  

𝑄𝑢(𝜏, 𝑥, 𝑦) = 𝑓𝑘𝑥,𝑘𝑦,𝑤 (𝑄(𝑘𝑥, 𝑘𝑦, 𝑤)𝑢(𝑤, 𝑘𝑥, 𝑘𝑦)) |𝜏,𝑥,𝑦 
(39) 



Concluding the proof. ∎ 

℘ is of the same form as Q above, and these proofs apply to ℘. 

0.2 Corollary  

 

A series expandable function of derivative operators multiplied into 𝑢, in the original space, equals to 

the inverse Fourier transform of the same function where the derivative arguments are replaced by the 

representation of the derivatives in the Fourier space multiplied by the representation of 𝑢 in the 

Fourier space. 

The double summation in Eq. (38) mathematically matches the same expansion as Eq. (34) with 

variable labels replaced. Therefore, the function described is simply the function of the Q operator 

over derivative arguments replaced by (−i𝑤)ℎ for the time derivatives and (−i𝑘𝑥)𝑣 + (−i𝑘𝑦)𝑣 for the 

spatial del operator, ∇𝑣 used in the functional arguments.  An important caveat to the above is that this 

is true if the series in Eq. (38)  converges to a function within the inverse domains and that the 

imaginary variable substitution (e.g., i𝑤) does not affect the series convergence into the same 

function. If values in the domain are outside the region of convergence of the series, the full series 

form of Eq. (38)  will have to be employed.  

A note: If the operator is defined as a series over derivatives that does not have a functional 

representation (i.e., the series does not converge to a function) or if the operator is defined as an 

infinite series of functions, then the above method derived in section 2 is still valid but with a slight 

difference. The Maclaurin expansion of the exponential operator will be over this series. This means 

that the full series will be substituted for the variable in the exponential Maclaurin expansion.   By the 

proof in 0.1 and 0.3 (below) the application of the operator to 𝑢 is equivalent to taking the inverse 

Fourier transform of the exponential Maclaurin expansion with the Fourier variables substituted in the 

series multiplied into the Fourier representation of 𝑢.  While this avoids having to do numerical 

derivatives, the series terms of the Macluarin expansion will need to be truncated, and the general 

Maclaurin expansion will need to be truncated, generating numerical error.  

0.3 Proof of the Exponential Fourier Representation of ℘ 

 

In this section the following result will be proved: 

𝑒℘(𝜏,𝑥,𝑦)𝑢(𝜏, 𝑥, 𝑦) = 𝑓𝑘𝑥,𝑘𝑦,𝑤 (𝑒℘(𝑘𝑥,𝑘𝑦,𝑤)𝑢(𝑤, 𝑘𝑥, 𝑘𝑦)) |𝜏,𝑥,𝑦)
 

  

Expanding the exponential ℘ operator w.r.t to the propagation coordinate in a Maclaurin series yields: 

 

e℘ = 1 + ℘ +
1

2!
(℘)2 +

1

3!
(℘)3 … 

 

(40) 

The step size is factored into ℘, for ease of writing. In the above multiplicative ordering (or additive 

ordering) does not have to be defined since derivative operators commute like numeric variables.  

From the above, an equivalent application of the exponential operator goes as: 



 

e℘(𝜏,… )𝑢(𝜏, … ) = [1 + ℘ +
1

2!
(℘)2 +

1

3!
(℘)3 … ]𝑢(𝜏, … ) 

 

(41) 

℘ is equivalent to a global summation of derivative terms with constant coefficients as indicated in 

Eq. (2). 

(℘(𝜏, … ))
n
 in expanded form is equivalent to a summation of products of powers of spatial derivative 

and temporal derivative terms with constant coefficients. Thus, as shown in 0.1, the Fourier identity 

for derivative terms can be used. Since the now complex numbered variables also commute the 

expanded form is then factorized in this Fourier space, in such a way that the following is obtained8: 

(℘(𝜏, … ))
𝑛

𝑢(𝜏, … ) = 𝑓𝑘𝑥,𝑘𝑦,𝑤 [(℘(𝑘𝑥, 𝑘𝑦 , 𝑤))
𝑛

𝑢(𝑘𝑥 , 𝑘𝑦, 𝑤)]|𝜏,𝑥,𝑦) (42) 

                                                           
8 The replacement of the derivative operators with the numerical variables does not change the expression. 
Nor does how multiplication work change (due to the same commutation between derivative operators and 
numerical variables). For this point it can be viewed as just replacing symbols and thus, a factorization back into 
the form  ℘𝑛 where ℘ is now over the symbol set 𝑘𝑥 , 𝑘𝑦, 𝑤 is trivially possible. 



From the identity of Eq. (42) , for each term of the RHS of Eq. (41) (which is of the same form as Eq. 

(42) with different 𝑛 power values between them), the following is true: 

term(℘(𝜏, 𝑥, 𝑦))𝑢(𝜏, 𝑥, 𝑦) = 𝑓𝑘𝑥,𝑘𝑦,𝑤 [term(℘(𝑘𝑥, 𝑘𝑦, 𝑤))𝑢(𝑘𝑥 , 𝑘𝑦, 𝑤)]|𝑥,𝑦,𝜏)
 

Therefore, Eq. (41) is equivalent to: 

𝑒℘(𝜏,𝑥,𝑦)𝑢(𝜏, 𝑥, 𝑦)

= 𝑓𝑘𝑥,𝑘𝑦,𝑤 [[1 +  ℘(𝑘𝑥, 𝑘𝑦 , 𝑤) +
1

2!
(℘(𝑘𝑥, 𝑘𝑦, 𝑤))

2

+
1

3!
(℘(𝑘𝑥, 𝑘𝑦, 𝑤))

3
… ]𝑢(𝑘𝑥 , 𝑘𝑦, 𝑤)]||𝑥,𝑦,𝜏))) (43) 

Using the fact that a summation of integrals over the same domains is equivalent to the integral of the 

summation over the domain. 

The summation on the RHS is the Macluarin series of e℘(𝑘𝑥,𝑘𝑦,𝑤). This yields: 

 

𝑒℘(𝜏,… )𝑢(𝜏, … ) = 𝑓𝑘𝑥,𝑘𝑦,𝑤  [𝑒℘(𝑘𝑥,𝑘𝑦,𝑤)𝑢(𝑘𝑥 , 𝑘𝑦, 𝑤)]|𝑥,𝑦,𝜏)
 

 

(44) 

Following the discussion in 0.2 ℘(𝑘𝑥, 𝑘𝑦, 𝑤) can be described as a function in this momenta frequency 

space. 

This concludes the proof of the identity. ∎ 

Also, if the functional representation of ℘ in the Fourier space cannot be obtained due to the series not 

converging to a function, then the full expansion of Eq. (43) will have to be considered, where the 

series representation of ℘(𝑘𝑥, 𝑘𝑦, 𝑤)  is used. Truncating terms both in the series representation of 

each term based on ℘(𝑘𝑥, 𝑘𝑦, 𝑤) in the Maclaurin series and in the Maclaurin series on the RHS of 

Eq. (43) will need to be done.   

 

0.4 Proof of solution of differential equations in steps 1-7 

 

It can be seen directly by differentiating the Maclaurin series of the exponential operator multiplied 

into 𝑢. Since the operator itself does not rely on the propagation coordinate (for example, a mean field 

approximation is used), the analytic integration of steps 1-7 with an arbitrary operator including 

convolution operators always yields the exponential operator form as a solution. See appendix 1 for 

more rigorous details and proofs. 

 



Appendix 1: Extension of the Model: Raman Terms (Convolution Terms) 

and Proof of Steps 1-7 
 

1.1 Operator for Raman Convolution Terms  

 

In this section, the exponential operator representation in the domain and inverse domains of 

convolution terms which can arise in optics such as Raman terms will be derived. Also, since the 

derivation mirrors the proof of the solutions to the differential equations in steps 1-7, while deriving 

the convolution exponential operator, the proof that can be applied for all differential equations in 

steps 1-7 of section 2.3 will be showed. 

Convolution terms such as: 

∫ 𝑓(𝑡′)𝑢(𝑡′ − 𝑡)d𝑡′ ≡

∞

−∞

𝑓(𝑡) ∘ 𝑢(𝑡) 

 

(45) 

Can still be analytically integrated like in steps 1-7. If 𝑓 depends on the propagation coordinate (in this 

appendix denoted as 𝑧) then the mean field approximation can be used in the same manner as 

demonstrated in the description of the steps. The rest of the arguments of both functions above (𝑥, 𝑦) 

are not shown for the purposes of clarity. The Maclaurin series expansion of the exponential operator 

w.r.t the propagation coordinate of Eq. (45) is: 

𝑒𝛥𝑧𝑓(𝑡)∘ = 1 + 𝛥𝑧𝑓(𝑡) ∘ +
1

2!
(𝛥𝑧𝑓(𝑡) ∘)2 +

1

3!
(𝛥𝑧𝑓(𝑡) ∘)3 … 

 

(46) 

It can be verified that this is a solution to the differential equation shown in steps 1-7, as follows: 

If 𝑢 = e𝑧𝑓(t)∘𝑔(𝑡), and using the identity of Eq. (46) in the differentiation (now with the free variable 

z), the following is obtained: 

𝜕e𝑧𝑓(𝑡)∘𝑔(𝑡)

𝜕𝑧
= [𝑓(𝑡) ∘ +

1

1!
(𝑧𝑓(𝑡) ∘)𝑓(𝑡) ∘ +

1

2!
(𝑧𝑓(𝑡) ∘)2𝑓(𝑡) ∘ …

1

3!
(𝑧𝑓(𝑡) ∘)3𝑓(𝑡) ∘]𝑔(𝑡) 

 

(47) 

The above was obtained by differentiating Eq. (46) w.r.t to the propagation coordinate variable. Since 

𝑓(𝑡) is assumed to be only a function of 𝑡, it can be treated as a constant in the differentiation. Eq. (47) 

uses the fact that differentiating a term w.r.t the propagation coordinate yields: 

𝜕
1
𝑛!

(𝑧𝑓(𝑡) ∘)𝑛

𝜕𝑧
=

1

(𝑛 − 1)!
(𝑧)𝑛−1(𝑓(𝑡) ∘)𝑛 =

1

(𝑛 − 1)!
(𝑧𝑓(𝑡) ∘)𝑛−1𝑓(𝑡) ∘ 

 

(48) 

Using the normal chain rule of differentiation. Since, convolutions of functions multiplicatively 

commute by property of convolution [21], the 𝑓(𝑡) ∘ power terms above can be factored in any way. 

  



1

(𝑛 − 1)!
(𝑧𝑓(𝑡) ∘)𝑛−1𝑓(𝑡) ∘= 𝑓(𝑡) ∘

1

(𝑛 − 1)!
(𝑧𝑓(𝑡) ∘)𝑛−1 

(49) 

Using the factorization in Eq. (49) , Eq. (47) becomes: 

𝜕e𝑧𝑓(𝑡)∘𝑔(𝑡)

𝜕𝑧
= 𝑓(𝑡) ∘ [1 +

1

1!
(𝑧𝑓(𝑡) ∘) +

1

2!
(𝑧𝑓(𝑡) ∘)2 …

1

3!
(𝑧𝑓(𝑡) ∘)3] 𝑔(𝑡)

= 𝑓(𝑡) ∘ (𝑒𝑧𝑓(𝑡)∘𝑔(𝑡)) = 𝑓(𝑡) ∘ 𝑢(𝑡, 𝑧) (50) 

Where, the last equality follows from the definition of u.  If 𝑢 = e𝑧𝑓(𝑡)∘𝑔(𝑡), 
𝜕𝑢

𝜕𝑧
= 𝑓(𝑡) ∘ 𝑢(𝑡, 𝑧) 

which is the differential equation that needs to be satisfied for the convolution term. 

At 𝑧 = 0, 𝑢 = 𝑢(𝑡, 0), substituting 𝑧 = 0 above yields: 

𝑔(𝑡) = 𝑢(𝑡, 0) 
(51) 

Giving, for a general coordinate step the integrated solution at 𝑧 = 𝑧𝑜 +  𝛥𝑧 (step-size, Δ𝑧, is weighted 

by a symmetrisation constant from the global step-size as shown in steps 1-7): 

𝑢(𝑡, (𝑛 + 1)𝛥𝑧) = 𝑒𝛥𝑧𝑓(𝑡)∘𝑢(𝑡, 𝑛𝛥𝑧) 
(52) 

Where 𝑛 is some integer number relating to the slice number. 

Therefore, the exponential operator for the convolution term is verified to be eΔ𝑧𝑓(t)∘. If 𝑓(t) is truly 

independent from z, then the above is an exact solution. If 𝑓(t) is not independent of 𝑧 then the above 

proof is valid with the use of the mean-value approximation. 𝑢 = e𝑧𝑓(t,zo)∘𝑔(𝑡) would have to be 

used, where 𝑓(t, zo) is treated as independent from 𝑧. Using the expansion of the exponential operator 

w.r.t z about zo, the following is obtained: 

𝑒𝑧𝑓(𝑡,𝑧𝑜)∘ = 1 + (𝑧 − 𝑧𝑜)𝑓(𝑡, 𝑧𝑜) +
1

2!
(𝑧 − 𝑧𝑜)2𝑓(𝑡, 𝑧𝑜)2 +

1

3!
(𝑧 − 𝑧𝑜)3𝑓(𝑡, 𝑧𝑜)3 … 

(53) 

The rest follows the same as the proof above since 𝑓(t, zo) is treated as independent from 𝑧. 

1.2 Proof of Steps 1-7 For Operators of Section 2 

 

The above derivation is the same for the ℘ operator (given the discussion in appendix 0.3 that ordering 

of operations in ℘ do not need to be considered and ℘ is independent of the the propagation 

coordinate i.e., ℘ does not act on z or is a function of z). This Means that ℘ can be symbolically 

substituted for 𝑓(t) ∘ symbol in the proof above and the ℘ differential equation is proved.  



The proof above can also be used for α1 operator if the mean-value approximation is used for α1. 

Because, the power terms of this operator in the Maclaurin exponential series can be multiplicatively 

factored in any way and are not functions of 𝑧.  

However, if the exponential α2 operator is to satisfy the corresponding α2 differential equation shown 

in the steps of section 2 an additional constraint must be imposed. 

Just as for the α1 operator, the mean-value approximation is used for the α2 validating the above proof 

as applied to α2. However, an additional consideration must be discussed for this operator: The power 

terms of the exponential Maclaurin series of this operator cannot be multiplicatively factored in any 

arbitrary way. The ordering of the multiplication must be defined, due to the hanging derivative with a 

distributional coefficient nature of the terms. For example (using a term in the operator’s exponential 

Maclaurin series, taken from Eq. (31)): 

 

1

3!
(c2ℕ

∂

∂τ
) (c2ℕ

∂

∂τ
) (c2ℕ

∂

∂τ
) 𝑔(𝜏) ≠

1

3!
[(c2ℕ

∂

∂τ
) (c2ℕ

∂

∂τ
)] (c2ℕ

∂

∂τ
) 𝑔(𝜏) (54) 

 

𝑔(𝜏) is the initial condition function used in the proof of Appendix 1.1 (i.e., it is 𝑢 coming from the 

previous step in steps 1-7). The LHS of Eq. (54) means that the term closest to 𝑔 is applied on 𝑔 then 

the middle term is applied and finally the outer term (next to the fraction). The RHS means that the 

two terms in the bracket are multiplicatively expanded first, the term closest to 𝑔 is applied on 𝑔 then 

the expanded term is applied. The example shown in Eq. (54) is meant to indicate that the 

multiplicative ordering of terms in the Macluarin series expansion of the exponential α2 must be 

defined. However, if the multiplicative ordering is defined as what is shown on the LHS of Eq. (54) 

for each power term of the series then the factorization shown in the proof of Appendix 1.1 in Eq. (50)  

can still be done (with the closest c2ℕ
∂

∂τ
 term to the fraction coefficient of each power term being 

factored out to the left) since it will still be equivalent to the application of the power terms with no 

factorization. Of course, the multiplicative ordering of the series term after the factorization retains the 

defined multiplicative ordering and care is taken that the series term is applied on 𝑔 first as shown in 

Eq. (50). Using this ansatz of the exponential α2 operator satisfies the above proof and therefore, 

solves the α2 differential equation shown in the steps of section 2. Thus, the multiplicative ordering 

defined here is used for every property and identity of the α2 operator discussed in this paper. If, for 

example, a different multiplicative ordering is used, say the opposite one: from outer term to inner 

term, the factorization shown in Eq. (50) cannot be carried out without disrupting the defined 

multiplicative ordering. The factorization would not be equivalent to the power term and the 

exponential α2 operator defined with this multiplicative ordering would not satisfy the corresponding 

differential equation.  

1.3 Convolution Term Frequency Representation 

 

Since,  

𝑒𝑓(𝑡)∘𝑢 = [1 − 𝑓(𝑡) ∘ +
1

2!
(𝑓(𝑡) ∘)2 −

1

3!
(𝑓(𝑡) ∘)3 … ]𝑢 (55) 



For clarity, the symmetrisation specific step-size increment is factored into f. The convolution raised to 

a power is defined as iterative convolutions of function f. As well, the ordering of these convolutions 

does not matter. Convolution in the time domain is equivalent to the Fourier transform of the product 

of the Fourier frequency representation of functions in the convolution. For iterative convolutions, it 

can be shown as a Fourier identity that this is equivalent, in the time domain, to the Fourier transform 

of the product of the Fourier frequency representation of all functions in the convolution [21]. 

Therefore, the following is true: 

𝑒𝑓(𝑡)∘𝑢 = 𝑓𝑤 [1 − 𝑓(𝑤) +
1

2!
(𝑓(𝑤))

2
−

1

3!
(𝑓(𝑤))

3
… ] 𝑢(𝑤)|𝑡 (56) 

Which is equivalent to: 

𝑒𝑓(𝑡)∘𝑢 = 𝑓𝑤[𝑒𝑓(𝑤)]𝑢(𝑤)|𝑡 (57) 

The operator in the frequency space is simply: e𝑓(w) and can be applied in the manner shown in 

section 2. 

1.4 Relevant Note on Terminology 

 

In the above analysis the Maclaurin series is used when the coordinate value zo can be regarded as 

zero (the origin) for the local coordinate system of the operator without any loss of generality. When 

using the mean-value approximation, the Maclaurin series can be used with zo  being regarded as the 

origin without any loss of generality but the reader must keep in mind that the functions of z in the 

operators are at zo in the calculation and for that step can be regarded as constant over the propagation 

coordinate. 
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