Poloidal asymmetric flow and current relaxation of ballooned transport during I-phase
in ASDEX Upgrade

P. Manz"?, G. Birkenmeier?, G. Fuchert?, M. Cavedon?, G.D. Conway?, M. Maraschek?, A.

Medvedeval? F. Mink?, B.D. Scott?, L.M. Shao?3, U. Stroth®! and the ASDEX Upgrade Team
L Physik-Department E28, Technische Universitit Miinchen,

James-Franck-Str.

1, 85748 Garching, Germany

2 Maa-Planck-Institut fiir Plasmaphysik, Boltzmannstr.2 ,85748 Garching, Germany
3 Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, People’s Republic of China
(Dated: May 12, 2016)

Turbulence driven poloidal asymmetric parallel flow and current perturbations are studied for
tokamak plasmas of circular geometry. Whereas zonal flows can lead to in-out asymmetry of parallel
flows and currents via the Pfirsch-Schliiter mechanism, ballooned transport can result in an up-
down asymmetry due to the Stringer spin-up mechanism. Measurements of up-down asymmetric
parallel current fluctuations occurring during the I-phase in ASDEX Upgrade are not responses to
the equilibrium by the Pfirsch-Schliiter current, but can be interpreted as a response to strongly
ballooned plasma transport coupled with the Stringer spin-up mechanism. A good agreement of the
experimental measured limit-cycle frequencies during I-phase with the Stringer spin-up relaxation

frequency is found.

PACS numbers:
I. LIMIT-CYCLES AT THE L-H TRANSITION

Limit-cycle oscillations (LCOs) preceding the transi-
tion from low (L-mode) to high confinement (H-mode)
are intensively studied [1-9]. The regime dominated
by LCOs is also called I-phase [1], dithering or tran-
sient mode. These limit-cycle oscillations have been pre-
dicted by a predator-prey model [10, 11], where turbu-
lent generated flow and equilibrium flow shear are two
competing predators interacting with drift-wave turbu-
lence (prey). The experimental results differ strongly
in detail. The turbulent generated flows appear as low-
frequency zonal flows [2-9, 12] or geodesic acoustic oscil-
lations [1]. Whereas the basic mechanism of turbulence
suppression by zonal flows [13-16], the existence of zonal
flows during the L-H transition [12] and the predator-
prey dynamics in general [17] have been experimentally
demonstrated, turbulence suppression by flow generation
appears strong enough to trigger a transition into the H-
mode [1, 2, 4, 5, 9, 18] but some experiments show only
weak or insufficient zonal flow activity at the L-H transi-
tion [6, 7, 19, 20]. Recently also magnetic fluctuations are
observed during these limit cycle oscillations [7, 8, 20-22]
even though the predator-prey model [10, 11] is electro-
static in nature.

Here magnetic fluctuations during the I-phase in
ASDEX Upgrade (AUG) are investigated. They show
up as a very robust feature and occur during low [1]
as well as medium densities [20, 22]. In order to inter-
pret the experiment, the evolution equations for these
magnetic fluctuations are derived in the present contri-
bution. Two turbulence driven mechanisms leading to
a poloidal asymmetric magnetic signature are discussed.
One is related to zonal flows, geodesic acoustic modes
(GAMs) and the Pfirsch-Schliiter current, the other is
related to ballooned transport and the Stringer spin-up.

Both mechanisms do not necessarily have to exclude each
other. It will be shown that the magnetic fluctuations in
AUG during I-phase can be caused by the relaxation cur-
rent due to ballooned transport resembling the Stringer
spin-up in principle. The experimental characteristics
of the magnetic fluctuations during the I-phase in AUG
is shown in the following chapter and subsequently in-
dications of ballooned transport during I-phase in AUG
are discussed. Afterward the governing equations are de-
rived. From those the Stringer spin-up relaxation fre-
quency is estimated and compared to the measured I-
phase frequency in AUG. A good agreement with the
experimental measurements is found.

II. UP-DOWN ASYMMETRIC PARALLEL
CURRENT FLUCTUATIONS DURING THE
I-PHASE IN ASDEX UPGRADE

Experiments have been carried out at the ASDEX Up-
grade tokamak. The discharge shown exhibit a typical
L- to H-transition with I-phase at line averaged density
fie = 3-10 m3, toroidal field B, = 2.3 T, plasma current
I, = 0.8 MA, lower single null configuration, modulating
electron cyclotron resonance heating power of 800 kW.
More details of this discharge can be found in Ref. [23].
Magnetic fluctuations measured by pick up coils sensitive
to the poloidal magnetic component By appear during I-
phase in ASDEX Upgrade [20, 22]. These fluctuations
are strongly correlated with the flow represented by the
Doppler shift from Doppler reflectometry [20, 22]. To ob-
tain a global picture of the poloidal mode structure the
cross-correlation between different poloidally displaced
Mirnov coils on a poloidal cross-section has been calcu-
lated. During the I-phase in ASDEX Upgrade the mag-
netic fluctuations exhibit a pronounced up-down asym-
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FIG. 1: Poloidal mode structure from cross-correlation of
poloidally displaced Mirnov coils (C09-09 is the reference coil)
at the same toroidal position.
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FIG. 2: Toroidal mode number at different frequencies during
I-phase in ASDEX Upgrade.

metry as shown in Fig. 1. This corresponds to a poloidal
mode number of m = 1. For the measurement of the
toroidal mode structure an array of poloidal field pick-
up coils, which is spread along the toroidal coordinate
at fixed poloidal angle, was used (C09-17, C10-21, C04-
17, C05-21, CO7-17). The poloidal position § = —2.9
rad is between inner midplane and inner divertor plate
and therefore suitable to measure coherent fluctuations
in the divertor region. The mode number is determined
by the slope of a linear fit through the coil phases plotted
over the coil positions, where the coil phase is given by

o(f) = arctan (W), with the Fourier transformed
R(Bo (f))

2

coil signal By. As seen in Fig. 2 the low frequency oscilla-
tions exhibit a dominant n = 0 structure, where n is the
toroidal mode number. Therefore the magnetic structure
is toroidally symmetric (n = 0) and up-down asymmetric
(m=1).

Similar magnetic oscillations have been recently ob-
served in the I-phase of EAST [8] and HL-2A plasmas [7].
It has been proposed that these magnetic fluctuations are
induced by the fluctuations of the equilibrium pressure
gradient due to the equilibrium condition Vp = J x B
[7, 8]. However, such fluctuations would exhibit an in-out
asymmetry as they are carried by the Pfirsch-Schliiter
current ({J) coss) with parallel current Jj, ballooning
angle s and zonal average (-) as described below). We ex-
plicitly do not exclude additional Pfirsch-Schliiter current
perturbations. However, on AUG the up-down asymme-
try (J) sin s) is much more pronounced in amplitude than
the in-out asymmetry [22]. Therefore, The focus of the
present contribution is on the up-down asymmetric com-
ponent. While the poloidal symmetry of the fluctuations
has not been studied in HL-2A, the magnetic fluctuations
in EAST show an up-down asymmetry instead of the ex-
pected in-out asymmetry of the Pfirsch-Schliiter current.
This is consistent with the presented AUG results. As
shown later these fluctuations can result as a response to
the transport events during the I-phase and are not re-
lated to the Pfirsch-Schliiter balance of the equilibrium.
The fluctuations are essentially the same as those in the
M-mode observed in JET with 'unknown origin’ [21].

III. INDICATION OF ENHANCED
BALLOONED TRANSPORT DURING I-PHASE
IN ASDEX UPGRADE
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FIG. 3: a) Density measured with LiBES in the very edge of
the confined region and b) poloidal magnetic field perturba-
tions By below the inner divertor.

The analytic investigation in the next chapter will re-
veal a coupling between up-down asymmetric current



&

e

-750 -500-250 0 250 500 750
At [ps]

=
o
T

fa [kHz]
"

FIG. 4: Blob detection rate conditional averaged to the mag-
netic signal.

perturbations with in-out asymmetric (ballooned) trans-
port in the confined region. Direct transport measure-
ments are not available in the confined region. Hence, the
survey of present experimental observations presented in
the following is not sufficient to make a firm claim that
ballooned transport is responsible for the observed mag-
netic signature explained above. However, a consistent
behavior with this possibility is indicative.

First, the temporal correlation of density and mag-
netic fluctuations is discussed. In the confined region the
density can be measured at the outboard midplane via
lithium beam emission spectroscopy (LiBES) [24]. The
magnetic signal By measured below the inner divertor
target (C09-23) is correlated with the density perturba-
tion measured in the very edge of the confined region
(Ppor = 0.99) as shown in comparison in Fig. 3. There-
fore, rises in the density induce an increase in the poloidal
magnetic field. The parallel current associated with the
poloidal magnetic field is directly proportional to mag-
netic field not to its temporal derivative. As the trans-
port in the SOL increases as result of increasing trans-
port in the confined region as shown in a previous study
[22] this observation can be further supported by SOL
measurements done with gas puff imaging (GPI). Blobs
are associated with the interchange or resistive balloon-
ing instability. Using a fast camera in AUG [25], the
average blob detection rate was found to be a function of
the phase of the magnetic fluctuations (measured below
the inner divertor target (C09-23)). The blob detection
rate is clearly correlated with the frequency of the mag-
netic fluctuations (Fig. 4). Furthermore, it seems that
the detection rate of intermittent events peaks slightly
prior to the magnetic fluctuations reach their maximum
(Fig. 4). The appearance of blobs before the rise in the
magnetic signal indicates that also the transport within
the confined region increases before the magnetic signal.
As both, LIBES and GPI diagnostics, measure at one
poloidal position only, no conclusions can be made re-
garding the poloidal asymmetry.

Next, we want to discuss a possible general enhance-
ment of ballooning. As prior to a burst in the poloidal

magnetic field the transport from the confined region at
the low-field side is not significantly reduced (it is actu-
ally enhanced as shown above), a reduction of density at
the high-field side in the SOL would be a result of reduced
transport from the confined region into the SOL at the
high-field side directly. This would be an indication of
increased ballooning at the separatrix. Indeed, previous
measurements with the X-point reciprocating probe in
ASDEX Upgrade have shown that the onset of the puls-
ing in the I-phase is preceded by a fast 50% density drop
at the high-field side X-point region [23] which lets sug-
gest an increase of ballooning (cos s contribution) of the
transport prior to the L-I transition. Therefore, also the
ballooning of the transport in the confined region should
be enhanced in I-phase compared to L-mode.

In summary, poloidal magnetic perturbations as an in-
dicator of the parallel current rise after an increase of
density perturbations in the very edge of the confined re-
gion. Previous experimental results indicate an increase
of ballooning of the transport in I-phase compared to
L-mode [23].

IV. DYNAMICS OF UP-DOWN ASYMMETRIC
PARALLEL CURRENTS AND FLOWS

In this chapter the equations for the observed up-down
asymmetric current perturbations will be derived based
on the the Drift-ALFvén model DALF [26-28]. The ba-
sic equations are introduced in the next subsection. The
experimentally observed poloidal asymmetric magnetic
signature can be described by an m = 1, n = 0 mode
which can be obtained by multiplying the observed phys-
ical quantity with the desired asymmetry (sins or coss,
respectively) in the ballooning angle and subsequently
taking the flux surface average. This is called a side-
band. The dynamics of zonal flows, geodesic acoustic
modes and Pfirsch-Schliiter currents as done in Ref. [28]
and the treatment of sidebands will be recapitulated in
the subsection after that. The reader familiar with the
DALF model may skip the first subsection and who is
also familiar with Ref. [28] may skip the first two sub-
sections. New aspects beyond the discussion in Ref. [28]
start in the third subsection, where the general evolution
equation for up-down asymmetric parallel current per-
turbations is given. Those perturbations are intrinsically
related to up-down asymmetric parallel flows as well as
in-out asymmetric pressure and vorticity (or perpendicu-
lar flow) perturbations. As the evolution equations of in-
out asymmetric pressure perturbations includes the bal-
looned transport the complete sideband balance recover
the Stringer spin-up. Therefore, the third subsection is
called the "Stringer spin-up sideband balance’. In the last
subsection the relaxation frequencies within the Stringer
spin-up sideband balance are calculated and compared to
the I-phase frequencies as measured in ASDEX Upgrade.



A. The drift-Alfvén model DALF

The DALF model describes drift-Alfvén turbulence in
toroidal geometry and therefore also includes interchange
and MHD instabilities. It has been used mostly for nu-
merical investigations of turbulence, however here only
an analytical treatment is intended. It consists of evolu-
tion equations for the the vorticity €2

LUg Bv”ﬂ — (L4 KR, (1)

the electron pressure p,
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the parallel current J, Il
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and the ion velocity
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The equations are completed by Ampere’s law
~Vid = (5)

and polarization
1 o5 ~

The normalization is done by the ion sound speed given
by ¢s = \/T./m; and does not include the contribution of
the ions, ps = v/Tem;/eB with electron temperature T,
ion mass m;, magnetic field strength B and elementary
charge e. d/dt = 0/0t+vg -V is the advective derivative
with E x B velocity vg. The main fluctuating quantities
are the electrostatic potential ¢ = e¢/T.o normalized to
the background mean electron temperature 7T,y and the
electron pressure fluctuations p. = Pe1/pep normalized
to a characteristic mean background pressure value pcg.
The total ion flow stream function W = ¢ + 7;p. de-
termines the vorticity Q2 = (1/B?)V2 W. The difference
between parallel ion flow %) and current j” defines the

parallel electron flow ¥ = 4 —J);. Times are normalized
to L /cs, perpendicular spatial scales to ps and parallel
to ¢ R with safety factor ¢ and major radius R. Here L is
the relevant gradient scale length, which is in most cases
L, = —T./VT.. For the pressure we consider the back-
ground together with the disturbance and drop the tilde
symbol. In some cases we will investigate the total pres-
sure p = p. + p;. Relative amplitudes of the fluctuations
are given in ps/L, which is the smallness parameter.
The coordinates used here are (z,y, s), where s is in di-
rection of the unperturbed magnetic field line and xz and

y are radial and binormal, respectively, locally perpen-
dicular to the unperturbed magnetic field line. A shifted
metric coordinate system is used with a different y coor-
dinate at each location in s. It is important to note that
in a tokamak the direction parallel to the magnetic field
is not toroidal and perpendicular is not poloidal. In a flux
tube coordinate system the parallel coordinate s is rep-
resented by the poloidal angle 6 defined in [—m, 7] with
its origin at the outer midplane. The parallel wavenum-
ber is given by kj = "2 with poloidal mode number
m and toroidal mode number n, respectively. The local
perpendicular or binormal wavenumber in drift direction
is given by the toroidal wavenumber k, = % with the
radius of the flux tube r. The local shift, which is dif-
ferent at each radial position, allows to take the effect of
magnetic shear into account. The curvature operator is
given by K = wp(sinsd, + cossdy) with wp = 2L /R
with the curvature radius R, which is set to the ma-
jor radius. The first contribution to the curvature is the
geodesic curvature the second the normal curvature. The
flux surface (zonal) average is given by (f) = § ¢ dsdyf.
The normalized magnetic field strength is B = 1 with the
component parallel to the field line by = 1. The paral-
lel derivative 1ncludes magnetlc ﬂuctuatlons of the flux-

surface V|| = by 2 5a + b2 5z 1t by5.. They are calculated
as bm = %4 and b ‘g’;‘.

Different regimes are set by the square of the paral-
lel/perpendicular scale ratio ¢ = (¢R/L)?, the normal-
ized § given by 3 = (4nnT,/B?)(qR/L,)? and the nor-
malized mass ratio g = (m./m;)(qR/L1)? which de-
termine the relative transit Alfvén and electron ther-
mal frequencies, respectively. Amplitudes are normal-
ized to ps/L, with gradient scale length L. The par-
allel current is dissipated by collisions represented by
C = [(0.51v./es L) with collision frequency v.. The
ratio between ion and electron temperature is given by
7; = T;/T.. Flow damping is controlled by the neoclassi-
cal viscosity f.

B. Dynamics of zonal flows, geodesic acoustic
modes and Pfirsch-Schliiter currents

A detailed analysis of the energy transfer system be-
tween turbulence, zonal modes and further sidebands
in an axis-symmetrical configuration is presented in
Ref. [28]. Sidebands are modes with finite parallel
wavevector k| # 0 but vanishing binormal wavevector
ky, = 0 (corresponding to n = 0, m # 0). The sidebands
are obtained by multiplying the evolution equations for
current, flow, pressure and vorticity by the asymmetry
function sin s or cos s first and take the zonal average sub-
sequently. In this way the resulting modes exhibit a par-
allel wavenumber of k|| = :I:qiR with poloidal and toroidal
mode numbers of one and zero, respectively. Here (-) de-
notes the flux surface average and s is the ballooning an-
gle [28]. As s is defined to be zero at the outer midplane



(sin s) gives the up-down asymmetric components to the
flux surface average and (coss) the in-out asymmetric
component. The principal energetic flow is summarized
in the following.

The zonal pressure evolution is

%@0 = *(.%(ﬁmpe + ba0))) — wp((p— W)sins). (7)
Through the gradient drive, energy is transferred from
the background pressure pg to the turbulence p. This is
done by the coupling between the second term on the left
hand side of Eq. (2) with the first term on the right hand
side of Eq. (7). Due to adiabatic coupling (first terms
on the right hand side of Egs. (1) and (2)) fluctuating
energy is transferred to vorticity fluctuations Q. The
zonal vorticity is obtained by taking the zonal average of

Eq. (1)
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giving the zonal flow (@,) = (

1]
0, 0 ,. 10 ;- .
&<uy> = _%@Ewuw = - (bsby) — wp(psins). (9)

Note the zonal flow includes the ion diamagnetic con-
tribution and (a;zy> = (Q). The turbulent © drives
the zonal vorticity (Q) = (Q) via the Reynolds stress
%(ﬁExﬁy) (Eq. (9)). The zonal vorticity determines the
zonal flow. The second term is the Maxwell stress. The
zonal flow is saturated by driving to an up-down asym-
metric pressure sideband (psins). This results from the
geodesic curvature wp sins. The evolution of this pres-
sure sideband is

0 -
Zi(pesins) = —%«@Ewe + by ) sin s) + (v} cos s)

e <<gi _ uy) (1- cos2s)> - (10)

The coupling to the zonal flow is within the last term.
The oscillation between the zonal flow (a,) and this pres-
sure sideband (p.sins) is the geodesic acoustic mode.
Neglecting all other contributions that %(pe sins) =
%WB (@y) and also just considering the coupling to
this pressure sideband for the zonal flow equation (9)
8%<€‘y> = —(1 + 7)wp(pesins) a natural frequency of
wp+/(1 +7;)/2 or in physical units fgan = V2csi/27R
with ¢Z, = (147;)T. /m; can be derived which is the GAM
frequency. This pressure sideband can also be driven by
an up-down asymmetric transport as seen at the first
term on the right hand side of Eq. (10). Most damping
occurs due to (¥ cos s) which is connected to the flow and
current by (9 coss) = (i coss) — <j\| cos s). Via adia-
batic coupling the energy is transferred from the pressure
sideband to perturbations in the Pfirsch-Schliiter current

5

(j | cos s) where the energy is dissipated by the collision-
ality
0
,%<
- Op 06
—|—<bm(% - %) oS $)
+((p— W)sins)
—C’(j” COS S). (11)

%((BAH + [LjH) cos s) = @Ezﬂju oS 8)

As shown in a previous numerical investigation [28]
the most important sidebands related to zonal flow
physics are the up-down asymmetric pressure sideband
(psin s) taking part in the geodesic acoustic oscillation
(GAM), the vorticity sideband (Qsins) (directly linked
to the sidebands of the ion stream function (W sin s)
and flow (@, sin s)) as well as the Pfirsch-Schliiter current
(jH cos s5). The Pfirsch-Schliiter sound sideband (| cos s)
plays a minor role.

C. Stringer-Spin up sideband balance

The experimentally observed up-down asymmetry
(sins) in the parallel current J as described in the sec-

ond section can be written as <j\| sins). The evolution
can be obtained from Eq. (3) multiplied with sin s for the
up-down asymmetry and zonally averaged afterward

. - o -
(B + pdy)sins) = — = (filp Jy sins)
+(bs (8[) — 8(;5) sin s)

dr Ox
—{(p - W) cos s)
—C(J) sins). (12)

Here, (sinsVp) = (V|(psins)) — (pVsins) =
—(pcoss) is used since the zonal average of parallel
derivatives vanishes. Up-down asymmetric current per-
turbations are coupled to the in-out asymmetric pres-
sure and vorticity sidebands via ((p — W) coss) which
will be investigated later. Due to (@) sins) = (7 sin s) +

<j | sin s) up-down asymmetric current perturbations are
coupled to up-down asymmetric flow perturbations which
are investigated next. The up-down asymmetry in par-
allel momentum evolves according to ((Eq. (4) sin s))
AD i~ _ 0 .. . .
€57 (U sins) = *%@’UExU” sin s)
- Op
—(b,—sins
+<pcoss> — K <ﬂ|| sins). (13)

Up-down asymmetric flows are driven by the up-down
asymmetric radial-parallel Reynolds stress (€0, u) sin s)
and are saturated by the parallel ion viscosity g . The
up-down asymmetric radial-parallel Reynolds stress is



the up-down asymmetric parallel momentum transport
and is large as the symmetry of the gyrokinetic dis-
tribution function f(s,v)) = f(—s,—v|) gives an up-
down asymmetric statistical moment of parallel momen-
tum and due to ballooning of the potential the parallel
momentum transport is up-down asymmetric [29]. This
asymmetry is also the reason for the need of parallel sym-
metry breaking for intrinsic rotation, which is not needed
to generate an up-down asymmetric flow. Additionally
we find a coupling with the in-out asymmetry in the pres-
sure, whose evolution is given by ((Eq. (2) coss))

o .
%(pecos@ = ———(VpgPe COS S)

ox

——(?)wﬁu coss) + <j\| sins) — (4 sin s)

Ox
wp, Op .
—7<(% — 1) sin 2s). (14)

The in-out asymmetry in the pressure can be understood
as an in-out movement of the plasma column or by a
local flattening of the pressure profile on the low field
side for example. It can result from ballooned transport
(Dpzpe cos s), an up-down asymmetric parallel electron
flow (9 sin s), which is connected to the parallel ion flow
and current by (9 sins) = (i sins) — (J sins). In par-
ticular the ballooned transport (Ug,pe coss) can be ex-
pected to be quite large and could provide the most im-
portant turbulent drive for the here described sideband
balance. Elongation of the magnetic equilibrium intro-
duces m = 2 modes [30, 31], which appear to drive in-
out asymmetric pressure disturbance by ((% —1, ) sin 2s)
which contains coupling to the pressure gradient dp/0x
as well as to the perpendicular flow 4, = 8W/ Oz with
ion stream function W. The term arises from the curva-
ture (cos sKC(¢ — p)) = (cos ssin sta%(gb —p)) with the
geodesic contribution to the curvature K = wp sin s%.
Now cos ssins = % sin 2s induces the coupling to the sec-
ond harmonic. In general, a disturbance of the axis-
symmetry of the magnetic equilibrium can drive in-
out asymmetric pressure perturbations as well as in-out
asymmetric flow perturbations.

The evolution of this sideband system is closed by the
in-out asymmetric vorticity ({2coss) = (V3 W cos s)

2

%(Qcoss) = —@@Exﬁy cos §)
021~ -
+w E (bgby cos s)
+(J sins) — %ﬂ% sin2s). (15)

Besides the disturbance of the axis-symmetry of the equi-
librium, it is coupled to the ballooned perpendicular
Reynolds stress and again the up-down asymmetry in
the parallel current. Therefore also in an up-down sym-
metric equilibrium a ballooned perpendicular Reynolds

stress leads to up-down asymmetric parallel current per-
turbations = (j” sins) = 5)722@5’33% coss). Due to the
coupling of the in-out asymmetry in the pressure and
flow, up-down asymmetric parallel current perturbations
can be expected.

In conclusion, the observed up-down asymmetric mag-
netic fluctuations (.J) sin s) are coupled to up-down asym-
metric flow perturbations (u)sins) via (@)sins) =
(O) sins) + (j” sins) and in-out symmetric pressure
(pcos s) via Egs. (12) and (14). Furthermore it is coupled
to vorticity (as well as binormal shear flow) (Qsin s) per-
turbations via Egs. (12) and (15). Ballooned transport
and Reynolds stress as well as the up-down asymmetric
parallel-radial Reynolds stress are involved in the side-
band balance. All these quantities cannot be expected
to be small a priori. The induction of an up-down asym-
metric parallel flow (@) sins) by the ballooned transport
(Dpzpe cos s) is known since a long time. This is the
Stringer spin-up [32, 33].

D. Relaxation frequencies of poloidal asymmetric
transport

The presented set of equations (12)-(15) allows for mul-
tiple limit-cycles scenarios. The aim is to study the ba-
sic relaxation processes similar to the relaxation process
in the Pfirsch-Schliiter sideband balance resulting in the
geodesic acoustic mode. The first and second terms on
the r.h.s. of Egs. (12)-(15) are the electrostatic and elec-
tromagnetic transport terms. These are nonlinear and
vanish with linearization. The last terms in Egs. (14) and
(15) are geometric corrections which can be expected to
be small in circular geometry. Of course the inclusion of
all terms gives a more precise result. Two examples of
relaxation processes leading to limit cycles are presented.
As a first example the set is reduced to the here observed
phenomena in ASDEX Upgrade: the enhanced ballooned
transport included in the in-out asymmetry in the pres-
sure Eq. (14) and up-down asymmetric poloidal magnetic
field fluctuations corresponding to up-down asymmetric
parallel current fluctuations Eq. (12). All other terms
are neglected. Linearizing Egs. (14) and (12) in the
electrostatic limit yields iwjp(p. coss) = (j” sin s) and
iﬂwjp(jﬂ sins) = —(1 + 7;){(pe coss). This exhibits an
eigenfrequency of wyp = /(14 7;)/ft (renormalization
gives frp = \/m;/me(csi/(2mqR))) in the few hundred
kHz range for ASDEX Upgrade parameters. These fre-
quencies are too high compared to the common limit-
cycle oscillation in the I-phase of about a few kHz. How-
ever, they might be related to the high frequency limit
cycles observed in H-mode plasmas in EAST accompa-
nied by strong intermittent transport [34].

As a second example the ion relaxation of the bal-
looned transport is investigated. Replacing the parallel
electron Eq. (12) by that of the ions (13) gives a coupling
of the ballooned transport with the up-down asymmetric
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FIG. 5: Stringer spin-up relaxation frequency fssy =
¢s/(2mqR) against Limit-cycle frequencies of several AUG dis-
charges.

flow, which is the Stringer spin-up [32, 33]. Linearizing
both equations gives iwgsy (4 sins) = @(pe Cos )

and iwgsy (pe coss) = —(isins) corresponding to an

eigenfrequency of wgsy = /(1 + 7;)/€é (renormalization
gives fesu = ¢si/(2mqR)). Note that this scaling is by
a factor 1/(1/2¢) smaller than the GAM frequency. This
scaling exhibits a scaling fssy ~ 1/¢ ~ I, similar to that
observed in the M-mode in JET [21]. It cannot explain
the result of the multivariate linear regression for AUG
limit cycles which gives fr_pnase ~ l/ﬂt,pedqg’é2 with the
toroidal plasma beta f3; peq measured in the pedestal [22].
Still, a comparison with the recent data base of I-phase
discharges [22] shows an overall good qualitative agree-
ment (Fig. 5). The experimental frequencies are below
the frequency predicted by the Stringer spin-up relax-
ation frequencies. It seems this relaxation gives an upper
boundary for the I-phase frequency. The inclusion of any
kind of damping in the equation system would reduce
fssu. However, considering the derivation of fsgy is
done for a simple large aspect ratio circular plasma. The
corresponding GAM frequency of faan = V2¢si/27R
also predicts smaller frequencies as actually measured in
the edge in AUG [35]. Taken divertor shaped equilibria
may substantially improve the agreement between exper-
iment and theory.

Limit cycle oscillations can arise from every energy
transfer term within the system. Also for the Stringer
spin up a Lotka-Volterra-type set of equations can be
obtained

01 2
23 (pe cos 8)° = (pe cos s) %(
(16)

UpaP cos) —(pe cos s) (i sin s),

(@) sin )2 = 4+(14-7;) (pe cos 5) (1 sin s)— (i sin 5)?

(17)
which is driven by ballooned transport, damped by neo-
classical flow damping and coupled by the energy ex-
change term (pcoss)(@) sins) which can lead to limit
cycle oscillations. Here, the in-out asymmetry in the
pressure takes the role of the prey and the up-down asym-
metric flow perturbation (the Stringer spin up) takes
the role of the predator. Compared to Volterra’s origi-
nal model, here the predator-prey interaction constitutes
a root term. Root terms in population dynamics can
for example result from herd behavior of the prey [36].
The dynamic properties are essentially alike, while the
modifications allow for explicit solutions [37]. The fre-
quency of the limit cycles is given by the prefactors of
the predator-prey interaction terms and not by the drive
and damping terms [37], it coincides with the eigenfre-

quency above wgsy = +/(1+ 7;)/é determined by the
parallel /perpendicular scale ratio ¢ = (¢R/L, )%

01
‘ot 2

V. DISCUSSION AND CONCLUSION

The magnetic signature of fluctuations in the I-phase
or limit-cycle regime of ASDEX Upgrade has been in-
vestigated. Up-down asymmetric parallel current fluctu-
ations are observed. These fluctuations can result as a
response to the plasma transport. A preceding fast den-
sity drop in the high-field side X-point region [23] points
to an increase of ballooning at the separatrix prior to the
transition to I-phase. During I-phase the poloidal mag-
netic field perturbations follow density perturbations in
the very edge of the confined region measured via lithium
beam emission spectroscopy [22].

The dynamics of up-down asymmetric currents and
flows have been derived based on the model of Scott [28]
describing also the interaction between electromagnetic
E x B turbulence, zonal flows, geodesic acoustic modes
and perturbations in the Pfirsch-Schliiter current. Up-
down asymmetric flows and parallel currents are intrin-
sically coupled to in-out asymmetric pressure and vor-
ticity perturbations which depicts an extended Stringer
spin-up sideband balance. They are not related to the
Pfirsch-Schliiter current and to the equilibrium pressure
evolution.

The observation of limit-cycles is not necessarily re-
lated to zonal flows or Reynolds stresses and it is not nec-
essarily related to critical gradient models. The Stringer
spin-up sideband balance provides several relaxation phe-
nomena, which all can be described by limit-cycle pro-
cesses likewise. The eigenfrequencies of two of them have
been calculated. A comparison with recent I-phase dis-
charges in ASEDX Upgrade [22] shows a good agree-
ment of the experimental measured limit-cycle frequen-
cies with the Stringer spin-up relaxation frequency. Even
though the Stringer spin-up relaxation frequency can in-
duce limit-cycles it should be noted that the Stringer



spin-up sideband balance does not include terms with
direct impact on the zonal dynamics as the transport,
the Reynolds stress or the pressure gradient themselves.
It describes their distribution on a flux surface. Even
though the Stringer spin-up relaxation frequency is there-
fore much likely not the cause of the limit-cycles in the
I-phase, as both frequencies are close together resonance
phenomena can be expected. Furthermore, the terms in
the Stringer spin-up sideband balance can be used for
diagnostics purpose. In strongly ballooned turbulence
it can be used to measure the transport or Reynolds
stress indirectly by magnetic fluctuations. The derived
Springer spin-up sideband balance is not restricted to
the I-phase and should be important in situations where

the transport is strongly ballooned as for example during
ELMs or for kinetic ballooning turbulence.
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