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Degeneracy and inversion of band structure for Wigner crystals on a closed helix
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Constraining long-range interacting particles to move on a curved manifold can drastically alter their effective
interactions. As a prototype we explore the structure and vibrational dynamics of crystalline configurations
formed on a closed helix. We show that the ground state undergoes a pitchfork bifurcation from a symmetric
polygonic to a zigzag-like configuration with increasing radius of the helix. Remarkably, we find that, for a
specific value of the helix radius, below the bifurcation point, the vibrational frequency spectrum collapses to a
single frequency. This allows for an essentially independent small-amplitude motion of the individual particles
and, consequently, localized excitations can propagate in time without significant spreading. Upon increasing
the radius beyond the degeneracy point, the band structure is inverted, with the out-of-phase oscillation mode
becoming lower in frequency than the mode corresponding to the center-of-mass motion.
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Introduction. A key ingredient for the formation of complex
systems out of fundamental building blocks such as atoms or
ions is the two-body interaction potential. Depending on its
short- or long-range character, the corresponding many-body
systems show very diverse properties and structural features
[1–4]. Generically, the strength of the two-body potential
decreases with increasing distance between the interacting
particles. This situation changes drastically if the particles
are not allowed to explore complete space but are forced to
move on a curved manifold while keeping their original inter-
actions. Hence the particles can interact via the dynamically
forbidden dimensions, while their motional degree of freedom
is constrained to the manifold.

A prototype system of this character is the helix, having
constant curvature and torsion. Indeed, several works [5–10]
have demonstrated unique novel features arising with respect
to the structural and dynamical properties of charged (or
dipolar) particles on a helix. First, one encounters that long-
range interacting particles effectively experience forces of
oscillatory character on the helix. Consequently, stable bound-
state configurations exist for equally charged, repulsively inter-
acting particles and can even be tuned in number and strength
[5,8]. The resulting potential landscape for more particles is
topologically very complex, leading to configurations with
increasingly distorted symmetries. In the same line it has
been shown that a zero-temperature second-order liquid-gas
transition occurs at a critical field for interacting dipoles [7],
and cluster formation as well as crystallization are possible
[10]. Rendering the helix locally inhomogeneous, the center
of mass (c.m.) of the particles couples to their relative motions,
allowing for dissociation of bound states or binding of particles
out of the scattering continuum [9].

In view of the structural complexity of helical long-range-
interacting many-particle systems the natural but intriguing
question emerges of what is the dynamical response and,
in particular, the vibrational structure of such systems. To
address this question we explore the properties and dynamics
of crystalline configurations formed by identical charged
particles, so-called Wigner crystals [11], confined on a closed
helix. We find that tuning the geometry induces a structural
transition reminiscent of the transverse zigzag buckling in

linear Wigner crystals [12]. Due to the one-dimensional (1D)
constraint that restricts the allowed excitations, this transition
is accompanied by an unconventional deformation of the
corresponding dispersion relation: For finite systems, there
is a regime of inverted dispersion, with the out-of-phase mode
being lowest in frequency. Even more, the transition passes
through a stage where the complete linearization spectrum is
essentially degenerate, such that any low-amplitude mode is
an eigenmode of the system. Notably, localized excitations do
not transfer energy into the rest of the chain.

Toroidal helix. We consider a system of N identical charged
particles of mass m0 interacting via the repulsive Coulomb
interaction and confined to move on a 1D toroidal helix [see
Fig. 1(a)] parametrized as

r(u) =
⎛
⎝

[R + r cos(u)] cos(au)
[R + r cos(u)] sin(au)

r sin(u)

⎞
⎠ , u ∈ [0,2Mπ ], (1)

with R being the major radius of the torus, r denoting the
radius of the helix (minor radius of the torus), and h referring to
the helix pitch. The parameter a = 1

M
is the inverse number of

windings M = 2πR
h

. The effective Coulomb potential resulting
from the confinement reads

V (u1,u2, . . . uN ) = 1

2

N∑
i,j=1,i �=j

λ

|r(ui) − r(uj )| ,

with λ being the coupling constant.
We perform a scaling transformation [9], measuring dis-

tances in units of 2h/π and time in units of
(

8m0h
3

λπ3

)1/2
. This

results in λ and m0 being set to 1 in the following, while
the dimensionless helix pitch is set to h = π/2. Note that the
c.m. degree of freedom is coupled to the relative coordinates
�i = ui+1 − ui for r �= 0 since the confining manifold is
not a homogeneous helix [9]. For r = 0 the toroidal helix
degenerates to a ring of radius R where c.m. separation holds.
In this ring limit, there is a single stationary state; namely,
the totally symmetric polygonic configuration. In contrast, the
potential landscape of charged particles confined on helical
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FIG. 1. (Color online) (a) Equidistant configuration of ions con-
fined on the toroidal helix for ν = 1

2 and N = 6. (b) Equilibrium
displacements of particles in stationary configurations as a function
of helix radius r for filling ν = 1

2 and different numbers of particles:

(A) N = 30, (B) N = 60, (C) N = 120. All values of �i − �
(0)
i are

plotted on top of each other: For the polygonic configuration, all
nearest-neighbor interparticle distances are identical, �i = �

(0)
i for

all i, while in the zigzag-like configuration precisely two different
distances are found; see the insets. The vertical lines indicate rcr

for N = 60 and the limiting value r∞ of rcr in the thermodynamic
limit. (c) Linearization spectrum as a function of r of the stable
solution (polygonic for r < rcr, zigzag-like for r > rcr) for N = 60.
Degeneracy of all vibrational modes is observed at rd. The inset
depicts how rcr and rd converge to a common value r∞ in the
thermodynamic limit.

manifolds is very complex allowing for a large number of
stationary states for given parameters [8,9].

Here, we focus on the low-energy crystalline configurations
and their equilibrium properties for an even number of particles
N which divides the number of windings M , i.e., M = nN

with n = 1,2, . . . and ν = 1/n � 1 being the filling factor.
Then, the polygonic configuration u

(0)
j = 2(j − 1)πn of the

ring persists as a (stable or unstable) equilibrium configuration
for all values of r with the charges being located equidistantly,
�

(0)
j = 2πn, at the outer circle of the toroidal helix [Fig. 1(a)].

However, for sufficiently large N (e.g., N > 4 for ν = 1
2 ) this

configuration loses its stability at a finite r = rcr, undergoing
a symmetry-breaking pitchfork bifurcation to a zigzag-like
configuration [Fig. 1(b)] in which successive particles have
alternatingly moved to positive and negative values of the z

coordinate of the vector r [Eq. (1)]. For a fixed filling, here
ν = 1

2 , the bifurcation point rcr shifts to lower values of r with
increasing N (thus also increasing M), tending to a finite value
r∞ [Fig. 1(c), inset] in this thermodynamic limit, with a rather

slow convergence rate. Surprisingly, it turns out that the value
of r∞ depends only on the helix pitch h; namely, r∞ = h√

2π

in physical units (or r∞ = 1
2
√

2
in our dimensionless units),

independently of ν.
Following the stable branch of solutions, we calculate the

spectrum of vibrational modes in the harmonic approximation
[Fig. 1(c)]. Intriguingly, in the regime r < rcr (where the
stable configuration is still symmetric) this spectrum exhibits a
crossing point rd where all modes are very close to degenerate.
The value rd also depends on the system size, decreasing
for large N and tending to r∞ in the thermodynamic limit
[Fig. 1(c), inset], but much faster than rcr does. Thus, for finite
systems an interval rd < r < rcr always exists. In this region
the spectrum is inverted, and finally the lowest eigenvalue
crosses zero at rcr, rendering the symmetric configuration
unstable and leading to the observed pitchfork bifurcation
[Fig. 1(b)]. For r > rcr two branches of frequencies separated
by a gap are created, as a result of the new emergent solutions
possessing a doubled unit cell.

Vibrational analysis. We now return to the frequency
spectrum of the symmetric, polygonic configuration for r <

rd . This being a Wigner crystal with a one-particle unit cell, the
corresponding dispersion relation consists of a single branch.
For its evaluation, we introduce the arc length parametrization
in which the kinetic energy and Euler–Lagrange equations as-
sume the standard form [9]. The dispersion relation then reads

ω2(k) = 1

a2(R + r)2 + r2

N∑
l=1

H1,l exp[−ik(l − 1)�s], (2)

with the Hessian at the equilibrium configuration Hi,j =
∂2V

∂ui∂uj
|{u(0)

j } (we can fix one index for symmetry reasons).

The prefactor in Eq. (2) results from transforming to the arc
length s, �s denotes the arc length interparticle distance of
the symmetric solution, and k = 2πm

N�s
, (m = 0, ±1, . . . ± N

2 )
is the wave number of the corresponding excitation.

Results for ω(k) at different values of r are shown in
Fig. 2. For r = 0 [Fig. 2(b)] the long-wavelength limit k → 0,
corresponding to identical displacements of all particles (c.m.
mode [Fig. 2(a)]) has a vanishing frequency ω → 0, resulting
from the c.m. decoupling in the ring geometry.

As the helix radius r increases, the spectrum at small k

becomes smoother and a gap opens at k = 0 [Fig. 2(c)] due
to the coupling of the c.m. to the relative motion for r > 0.
This gap increases with increasing r , while the overall width
of the spectrum decreases. At a critical point rd [Fig. 2(d)]
the spectrum is essentially flat as we have already seen in
Fig. 1(c). A zoom at this point [Fig. 2(d), inset] reveals
that the degeneracy is very close to, but not complete. To
locate the near-degeneracy point rd analytically, we go back to
Eq. (2). Complete degeneracy would imply that all off-
diagonal elements of the Hessian Hi,j ,i �= j , vanish (the
diagonal elements are always identical by symmetry). Fo-
cusing on the nearest-neighbor contributions, we thus find
an approximate analytical expression for rd by demanding
Hj,j+1|rd = 0, which yields

r
d
= aR

√
3 + cos(2anπ )√

2 − a
√

3 + cos(2anπ )
, (3)
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FIG. 2. (Color online) (a) Sketch of the center of mass (c.m.,
k = 0) and the out-of-phase (OP, k = ± π

�s
) modes. (b)–(f) Dispersion

relation curves ω(k) for N = 60 and increasing r corresponding to
the points (1,2,rd,3,rcr) marked in Fig. 1(c). For the same values
of r , panels (g)–(k) present the time evolution following an initial
displacement of the particle at j0 = 29 by 1% of �s. Colors encode
the displacement from equilibrium in units of �s.

in excellent agreement with the numerical findings. Indeed, in
the thermodynamic limit R → ∞, a → 0, aR = 1

4 , rd tends
to r∞ = 1

2
√

2
.

Beyond the crossing point, for r > rd, the curvature of
the band changes sign permanently [Fig. 2(e)], implying that
the OP mode [Fig. 2(a)] is now lower in frequency than the
c.m. mode. The width of the spectrum increases again with
increasing r until at r = rcr the frequency of the OP mode at
k = ±π/�s reaches zero [Fig. 2(f)] and crosses to the imag-
inary axis for r > rcr, indicating the symmetric configuration
becoming unstable due to the pitchfork bifurcation shown in
Fig. 1(b). The condition ω(k = ±π/�s)|rcr = 0 can also be
tackled analytically, giving an expression for rcr which shows
that it indeed tends to r∞ in the thermodynamic limit.

The almost full degeneracy of the linearization spectrum
at rd implies a remarkable localization property in the small-
amplitude dynamics, illustrated in Figs. 2(g)–2(k). Here we
explore the time evolution following a displacement of a single
particle at site j0 by 1% of �s. Generically, this initially
localized excitation spreads over the whole crystal; see, e.g.,
Fig. 2(g) for the case of a ring. More precisely, a cone structure
emerges indicating a finite velocity at which the excitation
proliferates into the crystal. This cone becomes narrower with
decreasing bandwidth of the spectrum, see Fig. 2(h), until at

FIG. 3. (Color online) Schematic illustration of the response of
a two-particle system A,B to a single-particle displacement AA′

for the cases: (a) r = 0, (b) r < rd, (c) r = rd, and (d) r > rd. The
total force F acting on particle B and its component FT tangential
to the toroidal helix are shown, whereas curved arrows indicate the
directions of displacements.

the point of near-degeneracy and thus near-zero bandwidth
[Fig. 2(i)] the cone closes and the excitation no longer
significantly spreads. This unique dynamical feature indicates
the presence of an effective screening of interactions at
r = rd, enabling essentially independent motion of the charged
particles. We emphasize that, for this geometric configuration,
any small initial excitation would maintain its shape for large
times. Moving to larger radii r > rd, the degeneracy is lifted
and the bandwidth of the spectrum increases again, thus
reopening the cone [Figs. 2(j) and 2(k)].

Within the linearized equations, the initial dynamics of the
spreading can be linked to ω(k) also on a formal level. The
proliferation of the localized excitation can be quantified by
the variance S(t) = ∑

j j 2ej (t) − j 2
0 , where we employ the

local energy ej (t) at site j as introduced in Ref. [13], with
the time-independent normalization

∑
j ej = 1. Then similar

arguments as in Ref. [14] apply, leading to S(t) ∝ t2
∫

dk| dω
dk

|2,
assuming the crystal is large enough to approximate a sum over
k with an integral over the first Brillouin zone. Consequently,
the spreading of an initially localized excitation is ballistic,
with a velocity determined by the square of the group velocity
integrated over all k. If dω

dk
is close to zero globally, i.e., the

dispersion is almost flat, S(t) will grow only slowly with time
and the excitation will spread only on very long timescales,
which is what happens at rd.

Degeneracy point. We now provide a geometrical inter-
pretation for the emergence of the degeneracy point rd in
the spectrum. Let us examine the response of the simple
N = 2 particle equilibrium configuration to a single-particle
displacement (Fig. 3). A slight counterclockwise displacement
of particle A towards the position A′ results in a force acting
on particle B. For the cases r = 0, r < rd [Figs. 3(a) and 3(b)],
this force possesses a component tangential to the confining
manifold, causing a counterclockwise acceleration of particle
B. At rd [Fig. 3(c)], the geometry is such that the displacement
AA′ results in a force that has no component tangential to
the toroidal helix curve at the equilibrium position of B and
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is therefore entirely compensated by the constraint. Thus, the
small-amplitude motion of particle B is effectively decoupled
from that of A. This simple geometric condition indeed leads to
the same value of rd as Eq. (3) for N = 2. For r > rd the force
acting on B again attains a nonvanishing projection onto the
tangential but is now oriented in the opposite direction, causing
a clockwise acceleration of particle B, in line with the observed
inversion of the dispersion relations in this regime [Figs. 2(e)
and 2(f)]. For N > 2, the geometry parameters can no longer
be chosen such that all forces acting on the other particles
after displacing a particular one are strictly compensated by
the constraint. Still, it can be seen that the tangential projection
of the force acting on particle j after particle i has been slightly
displaced is proportional to the Hessian matrix element Hi,j .
We have seen above that at rd all these Hi,j ≈ 0 for i �= j .
Thus, at the point of degeneracy, the geometry is such that if a
single particle is displaced, all resulting force projections onto
the local tangents where the other particles sit are very small
simultaneously, resulting in the effective decoupling.

Conclusions. We have shown that, for charged particles
confined on a 1D closed helix, a linear to zigzag-like
bifurcation occurs when increasing the radius of the helix at
commensurate fillings. Similar transitions are known for linear
Wigner crystals under harmonic [15–20] or octupole trapping
[21,22], where they are driven by the increment of dimen-
sionality from one dimension to three dimensions controlled
by the transverse trapping potential. In our case, however, the
single-particle configuration space remains always strictly 1D,
which manifests itself in the way in which the critical value
rcr is reached. In particular, for the transition to occur, the OP

mode (ultimately causing the symmetry-breaking deformation
of the crystal) has to cross zero at rcr, in contrast to the ring
limit r = 0 where the OP mode has the largest frequency. This
necessarily implies an inversion of the dispersion relation when
approaching rcr, since the reduced dimensionality precludes
a transverse branch which usually causes the bifurcation
[17,18]. Notably, the deformation of the dispersion curve when
increasing r towards rcr passes through a point where all
modes are essentially degenerate and the dispersion is flat.
For this particular geometry, the (small-amplitude) dynamics
of the particles is effectively decoupled, allowing for localized,
nonspreading excitations.

The present setup offers unprecedented control over the vi-
brational band structure, suggesting its potential usefulness for
applications in electronic nanodevices such as free-standing
helix tubules [23–25]. The possibility of geometrically local-
izing excitations may be of interest for the design of acoustic
meta-materials [26] and for applications in phononics such as
sound isolation and cloaking [27] or even information storage
[28]. Beyond this, helical structures are abundantly found in
organic or inorganic molecules [29,30], and recent advances in
optical trapping of ions [31] and helical trap design for neutral
atoms [32–34] may pave the way for future experimental
realizations with ultracold ions.
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