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Abstract 

The synthesis of a highly active and yet stable electrocatalyst for the anodic oxygen evolution 

reaction (OER) remains a major challenge in making proton exchange membrane (PEM)-based water 

splitting an industrially relevant solution for chemical energy storage. Under the highly acidic and 

corrosive conditions of PEM-based water splitting, Ir-electrocatalysts have so far yielded the most 

promising results but lead to high material costs. In order to improve Ir-utilization, we loaded iridium 

on conductive antimony-doped tin oxide (ATO)-nanoparticles via a microwave-supported 

hydrothermal route. The resulting Ir-nanoparticles on ATO were identified as highly hydrated IrIII/IV-

oxohydroxides, which showed superior OER-performance in comparison with benchmarks reported 

in the literature. Gradual alterations to the Ir-phase via thermal treatment showed that the 

unprecedented OER-performance was prominently linked to the superior intrinsic activity of the 

produced IrIII/IV-oxohydroxide. 

In order to gain a deeper understanding of the OER-relevant features of such amorphous Ir-

oxohydroxides without the influence of a support, we prepared a series of pure Ir-oxohydroxides via 

a microwave-supported hydrothermal route. Systematic synthesis parameter variations led to the 

preparation of a series of Ir-oxohydroxides within a wide range of oxidation states, chemisorbed 

water fractions and related OER-performance. For electrode loadings as low as 20 μgIr.cm-2, excellent 

OER-performance was achieved for the best compounds. Therefore such amorphous IrIII/IV-

oxohydroxides bridge the gap between electrodeposited amorphous IrOx-films prone to corrosion 

and less active crystalline IrO2-electrocatalysts prepared via calcination routes. 

Structural differences within a vast portfolio of Ir-oxohydroxides were compared to trends in OER-

performance in order to identify performance-relevant species. An ab-initio calculated model 

allowed us to identify reactive, formally OI--species stabilized in an IrIII-rich environment. These O 2p 

hole states were studied using synchrotron-based XPS and XAS and were quantified via reactive CO-

titration. Concomitant trends in OI--amounts and OER-performance allowed us to relate the 

outstanding electrocatalytic OER-performance of IrIII/IV-oxohydroxides to their ability to 

accommodate stable OI--rich precursor sites. The CO-titration also highlighted the ability of sub-

surface OI- to migrate to the surface, suggesting the involvement of the 3D-structure of Ir-

oxohydroxides during OER-catalysis. The identification of these key features controlled by synthetic 

parameters of our microwave-supported hydrothermal synthesis allows for a new targeted approach 

to Ir-based OER-catalyst design. 
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Zusammenfassung 

Die Herstellung eines hoch aktiven und stabilen Elektrokatalystors für die anodische 

Wasseroxidation stellt eine mächtige Hürde für die kommerzielle Anwendung von Proton-Austausch-

Membranen (PEM)-basierender Wasserspaltung für chemische Energiespeicherung dar. Unter den 

stark korrodierenden sauren Bedingungen in einer PEM-Zelle zeigen Ir-basierende anodische 

Elektrokatalysatoren bisher die beste Kombination von hoher Aktivität und Stabilität. Ihre 

Anwendung führt aber zu hohen Materialkosten. Um die Verwendung des teuren Ir-Materials zu 

optimieren wurde leitfähiges Antimon-gedoptes Zinnoxid (ATO) über eine Mikrowellen-gestützte 

hydrothermale Syntheseroute mit Ir- beladen. Die resultierenden Ir-Nanopartikel auf ATO wurden 

als stark hydratisierte IrIII/IV-Oxohydroxide identifiziert, die im Vergleich mit Literaturwerten 

überlegene Leistung in der sauren anodische Sauerstoffentwicklungsreaktion vorweisen. 

Stufenweise thermische Behandlung  des Ir/ATO-Elektrokatalysator zeigte dass die überragende 

elektrokatalytische Leistungsfähigkeit größtenteils aus der hohen intrinsischen Aktivität der IrIII/IV-

Oxohydroxide resultiert. 

 

Um ein tieferes Verständnis der elektrokatalystisch relevanten Merkmale der amorphen IrIII/IV-

Oxohydroxide ohne den Einfluss des Trägermaterials zu gewinnen, wurde eine Reihe von reinen 

IrIII/IV-Oxohydroxiden über eine Mikrowellen-gestützte Hydrothermalsynthese hergestellt. Die 

systematische Variation relevanter Syntheseparameter führte zur Herstellung einer Reihe von IrIII/IV- 

Oxohydroxiden in einem breiten Bereich von Oxidationszuständen, chemisorbierter Wasseranteile 

und damit verbundener OER-Leistungen. Für Elektrodenbeladungen von 20 μgIr.cm-2, konnte 

ausgezeichnete OER-Leistung für die besten Materialien erreicht werden. Somit bilden amorphe 

IrIII/IV-Oxohydroxide ein Bindeglied zwischen galvanisch abgeschiedenen leicht korrodierenden 

amorphen IrOx-Filmen und kristallinen wenig aktiven IrO2-Elektrokatalysatoren, die meistens über 

Kalzinierungsschritte hergestellt werden. 

 

Strukturelle Unterschiede innerhalb eines umfangreichen Portfolios von IrIII/IV-Oxohydroxiden 

wurden mit Trends in der OER-Leistungsfähigkeit verglichen um Aktivitäts-relevante Spezies und 

strukturelle Eigenschaften zu identifizieren. Ein ab-initio gerechnetes Modell erlaubte uns reaktive, 

formale OI--Sauerstoffspezies zu identifizieren, die von einem IrIII-reichen Umfeld stabilisiert werden. 

Diese O 2p Loch-Zustände wurden unter Verwendung von Synchrotron-XPS und XAS untersucht und 

wurden über reaktive CO-Titration quantifiziert. Übereinstimmende Trends in OI--Gehalt und 

elektrokatalytischer Leistung erlaubten es uns, die hervorragende Leistungsfähigkeit von IrIII/IV-

Oxohydroxiden mit ihrer Fähigkeit stabile OI--Sauerstoffspezies aufzunehmen, in Verbindung zu 

bringen. Die CO-Titration zeigt auch die Fähigkeit der tiefer gelegenen OI--Sauerstoffspezies an die 

Oberfläche zu wandern, was auf die Beteiligung der 3D-Struktur von IrIII/IV-Oxohydroxiden während 

der Wasseroxidation hinweist. Die Identifizierung dieser wichtigen Merkmale amorpher Ir-

Oxohydroxide ermöglicht eine neue zielgerichtete Herangehensweise an die Synthese Ir-basierender 

Elektrokatalysatoren für die saure Wasseroxidation, mittels Mikowellen-gestützter 

Hydrothermalsynthese. 
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1. Introduction 

1.1. The energy transition: A systemic challenge 

At the beginning of the 20th century, the development of the Haber-Bosch process enabled the 

industrial production of inexpensive nitrogen-based fertilizers, thus securing the food supply of the 

world’s growing population. This invention allowed us to overpass the symbolic four billion people 

barrier.1 One century later humanity is facing yet another major challenge:  demographic pools are 

booming in rapidly developing countries and this time the supply of energy is becoming a risk factor : 

The growing demand for Western living standards will ultimately lead to a need for energy unseen 

on this scale. Authors estimate that if the world population of 9.4 billion projected for 2050 was to 

adopt the current standard of living of a U.S. resident, this would lead to an astronomical energy 

consumption rate of 106 TW in 2050, compared to 16.2 TW in 2007. 2,3 Even the most conservative 

predictions foresee twice our current energy demand for 2050 and three times as much for 2100. 

Established industrial nations have a role model to play but it’s the path that developing countries 

will take, that will tip the balance. 

The temptation is great to meet this demand with traditional energy sources. Since the Second 

Industrial Revolution, great industrial nations have built up an extensive centralized power 

distribution system where energy is produced in sizable power plants from elite natural resources by 

few big energy companies. As an example,  China’s energy needs rely by 70% on coal and 

considering the current evolution and future trend, the easiest way to meet the demand would be 

the expansion of the extensive network of coal mines, distribution facilities and coal-powered power 

plants.3 This is a general scheme in fast developing countries. However if the energy demand of such 

nations is met with fossil energy carriers like coal, oil and gas, the atmospheric CO2-concentration is 

likely to have tripled by the end of the century.4 Regardless of the potentially disastrous 

consequences of such greenhouse gas emissions, our current energy sources cannot support such an 

evolution in a sustainable way. In the case of oil, the IAE sent a deep shock wave through the 

international community when they pointed out in their 2010 World Energy Outlook report that the 

world’s oil production had reached its global peak in 2006 at around seventy million barrels per day.5 

From now on, oil production will start to decrease as production costs rise. Coal and natural gas 

should follow much similar patterns once they reach their respective production peaks in the early 

21st century. Hence, the shift away from fossil energy carriers is not only an imperative in order to 

limit our soaring greenhouse gas emissions. Above all, it’s a simple economic imperative. 

Nuclear power is often advocated as the ripest alternative to fossil energy sources. Nuclear fission-

based energy production is a CO2-emission free process. However accidents like Three Mile Island 

(1979), Chernobyl (1986) and the latest Fukushima incident (2011) have considerably altered public 

acceptance due to the potential risk it poses to human health. Also waste management and 

disassembly of retired power plants is a considerable and costly challenge that requires technical 

know-how and extensive management facilities. Those issues combined with the sizeable 

investment a single nuclear power plant represents, make it difficult to implement such energy 

sources in fast developing countries that lack available financial resources and qualified personnel, 

not to mention the geopolitical threat the proliferation of radioactive material can represent in 

politically unstable countries. Another long established alternative, hydro-electrically generated 
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power is also limited in its scope as its implementation at a given geographic location strongly 

depends on topography and hydrography of the region. 

As a result, great hopes rely on renewable energy sources (RES) like wind turbines and solar 

photovoltaics. Sunlight is by far the biggest energy reserve available to mankind. The sun dispenses 

more free energy onto the earth in one hour than humanity consumes over a whole year.3 However, 

the intermittent nature of renewable energy sources (RES) considerably inhibits their widespread 

use for the time being. As an example, in Spain, on November 9th 2009 wind generated power 

reached a record high of 54% of instant demand, whereas on June 26th 2010, power harvested from 

wind represented only 1% of the demand.6 This illustrates why the implementation of RES into the 

power grid doesn’t come down to the simple one-to-one replacement of one energy source by 

another. The energy grid from the production source to the final consumer is a complex 

interconnected network. A central issue for the reliable implementation of RES into the power grid is 

the integration of efficient energy storage technologies into the energy supply chain in order to 

maintain constant electricity flow over different periods of low and high demand and/or production. 

Such systems will regulate the amount of electricity fed to the grid, enabling a stable and reliable 

contribution from RES. Thus an efficient storage system is a bottleneck condition for the gradual 

replacement of traditional energy sources by RES.  

1.2. Hydrogen-based chemical energy storage 

Some technologies, like pumped hydro-electric storage have already been in use on a daily basis for 

decades. The pumped energy storage plant of “Lac Blanc-Lac Noir” in the French Vosges for instance 

was built in 1933.7 However such storage facilities can only be implemented in a limited number of 

locations. Rechargeable batteries have come under intense focus as they allow for the storage of 

electrical energy in mobile devices ranging from mobile phones to cars.8 Due to low storage 

capacities, their scope of implementation remains however adapted mostly to small-scale 

applications. In this regard, chemical energy storage has been identified as the most promising 

technology for large-scale energy storage:9 In such a scenario, when the supply of energy harvested 

from RES exceeds the demand, the excess is used to produce stable molecules, which store chemical 

energy reversibly in their bonds. Such energy carriers should then be able to release the stored 

energy upon demand.  

Hydrogen has been identified as a key carrier molecule.3,9-13 Indeed hydrogen can be produced from 

water electrolysis driven by an external voltage. In the case of such an electrochemical process, the 

respective anodic and cathodic half reactions are catalyzed at the surface of the electrodes following 

the overall reaction (1.1).  

       
 
              (1.1) 

 

If the required voltage is obtained from RES, this reaction is a carbon-free process as the other by-

product is oxygen.14 Hydrogen is the carrier with the highest energy content per mass unit, up to 

three times more than methane or gasoline. The stored energy can be recovered by reaction of H2 

with O2, which produces clean water. This is either done by combustion in turbines or by using fuel 

cell technologies.15 H2 is also a key reactant used by the chemical industry, for instance in the 
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production of ammonia via the Haber-Bosch process mentioned in the introduction. 96% of the 

world’s hydrogen is currently being produced from steam reforming of fossil fuels, which consists of 

stripping hydrocarbons of their hydrogen atoms and releases green-house active gases like CO and 

CO2. Only the remaining 4% are produced from water electrolysis.11 As a result, the development of 

efficient hydrogen production through water electrolysis would not only be a key advance for the 

energy transition but would at the same time provide the chemical industry with one of its most 

important chemicals in a sustainable way. 

For on-site storage, mobile applications and transport, there is however a need to improve the 

volumetric energy density of H2. For this purpose chemical and physical storage solutions are under 

investigation. Especially physical storage solutions in the form of cryogenic and high pressure H2-

tanks developed by major car constructors have attained a high state of technological maturity and 

cost efficiency.16 It remains that in a scenario where H2 is produced in large quantities on local 

production sites and needs to be redistributed in large volumes, transport of molecular H2 in large 

volumes represents a security issue.  

As a result, it is desirable to be able to convert hydrogen into safe carrier molecules. It has been 

proposed to take advantage of carbon capture technologies implemented at large CO2-emitting 

facilities like steel mills. These systems could provide CO2 as a raw material for the H2-driven 

production of methanol and other useful hydrocarbons. Such molecules have the advantage that 

their transport is already being dealt with on a daily basis. Although the theoretical basis of the 

mechanisms involved in the synthesis of such synthetic fuels is well understood, catalytic systems 

allowing for large-scale commercial applications remain to be optimized.9 An alternative industrial 

process that is already being used on a very large scale is the previously mentioned synthesis of 

ammonia from nitrogen and hydrogen.17 This efficient process has been in place for decades, which 

implies that large-scale production, storage and transport facilities already exist. Moreover the 

reverse reaction, the ammonia decomposition reaction, which liberates the stored H2 is also well-

understood, rendering this process one of the most potent candidates for safe H2-storage and -

transport. 

Overall it appears that hydrogen will be a fundamental pillar of the energy transition, irrespective of 

the fact which scenario will predominate. Hydrogen produced from water electrolysis is the only 

truly renewable scheme for storing energy from RES. It is already an all-important feedstock for the 

chemical industry and thus some of the infrastructure needed for the new “hydrogen-economy” 

envisioned by the likes of J. Rifkin18 is already in place. One can think of large-scale ammonia 

production and distribution that could be used for chemical H2-storage. We will now focus on the 

actual water electrolysis and the technical challenges that constitute a major bottleneck in rendering 

this technology economically viable. 

1.3. H2-production from water splitting 

There are two low-temperature approaches to performing water splitting: In the direct approach, 

electrocatalysts are coupled to a light-absorbing semi-conductor. The electron-hole pairs induced by 

solar irradiation of the semi-conductor are captured by the electrocatalysts who perform the half-

reactions. Integrated photocatalytic systems inspired by nature’s light-harvesting PSII complex have 

lately received a lot of attention, partly due to D. Nocera’s highly advertised Co-based systems.19-21 
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However, photocatalytic water splitting relies on a single type of renewable energy source : solar 

energy.  

 

In this study we will focus on the indirect approach, which is more suitable for energy storage from 

multiple sources differing in nature. In this approach, current produced through light-induced charge 

separation in photovoltaics, induction in wind turbines or any other (renewable) energy source is 

redirected through wires to two electrodes covered in electrocatalytic material in an electrolyzing 

setup. There, the resulting difference of potential between the electrodes is used as a driving force 

for the splitting of water. At the anode, in order to produce one molecule of O2, two water 

molecules are oxidized at highly oxidizing potentials and 4 protons as well as 4 electrons are 

released. At the cathode, the desired hydrogen is produced as a result of the reduction of protons. 

Hence, water splitting is a proton-coupled four-electron transfer process.   

1.3.1. Thermodynamic aspects  

The fundamental thermodynamic quantities governing the reaction yield the lower limits to how 

much electric and thermal energy is needed to drive the water electrolysis.11,22 Considering an 

electrolytic cell operating at constant temperature and pressure, the energy that has to be put into 

the system in order to drive the water splitting reaction corresponds to the change in enthalpy of 

the system described by Scheme 1.2. In order to calculate the standard change of enthalpy (standard 

enthalpy of reaction,    ), one can use the Hess relation : 

             
(1.2) 

 

Knowing that the enthalpy of formation H°f of an element in its standard state at standard 

conditions of temperature and pressure is 0:  

 

               
 

 
                                          

(1.3) 

 

Knowing that the standard entropies are tabulated as well as the standard enthalpies of formation, 

one can calculate the standard free Gibbs energy of reaction:23 

 

                                                         (1.4) 

 

As a result, the water splitting is an endothermic (ΔH°>0) and nonspontaneous (ΔG°>0) process. 

Furthermore two electric quantities can be defined: The reversible electrolysis cell voltage Vrev, that 

is the lowest voltage that has to be applied to the cell in order to drive the reaction : 

 

     
  

  
 

(1.5) 

 

Where F is the Faraday constant (F = 96485.3365(21) C.mol-1), n is the number of transferred 

electrons per mol of split water. However this doesn’t take into account the change in standard 

enthalpy    , which corresponds to additional energy in the form of heat or electricity that has to be 
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added to the system. Thus, a second minimum standard electrolysis cell potential VHHV known as the 

higher-heating value potential VHHV can be defined. This potential corresponds to the cell voltage 

required to drive the electrolysis without additional heating. In an ideal setup, the total energy 

required corresponds to the enthalpy change ΔH and  if the energy corresponding to the term TΔS is 

provided in the form of electricity instead of heating, then one can express VHHV as follows : 

 

     
  

  
 

(1.6) 

 

According to the calculated values, for an ideal electrolysis cell performing water splitting at 

standard conditions: V°rev =1,23 V and V°tn=1,48 V. However in a real setup, thermodynamic 

irreversibilities arise, calling for additional energy input. These are mostly due to water steam in the 

gas flows, heating the water up to the setup conditions and thermal losses. As a result, the 

electrolysis cell voltage Vcell where water splitting actually occurs is usually superior to VHHV: 

Vcell>ΔH/(nF).11 

 

                          (1.7) 

 

 

 Vohm corresponds to diverse ohmic losses inside the real electrolysis setup. Vohm is usually 

proportional to the electric current flowing through the cell. 

 Vcon is due to mass transport limitations in the reactant flow towards- and the product flow 

from the electrode. Is is known as the “concentration overvoltage”. It is usually small 

compared to other overpotentias. 

 Vact is known as the “activation overvoltage”. This overvoltage corresponds to the energy 

activation barrier that electrons have to overcome to go from the reactants to the electrode 

(oxidation at the anode) or from the electrode to the reactant (reduction at the cathode). In 

the case of water splitting, the overpotentials mostly arise at the anode : Only two electrons 

are required to produce one hydrogen molecule, however the concerted release of four 

electrons is necessary at the anode in order to produce one molecule of oxygen. This 

process is called a proton coupled multi electron transfer (PCmET).  

 

                (1.8) 

            (1.9) 

            (1.10) 

 

The water splitting reaction (see Scheme 1.10) produces hydrogen from water, while releasing only 

oxygen as a side product. The anodic reaction is the oxygen evolution reaction (OER), while the 

cathodic reaction produces hydrogen through the hydrogen evolution reaction (HER) 
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In order to minimize energy losses, the overpotentials in the real setup have to be reduced. 

Minimization of Vohm is mostly achieved through optimization of the conductivity of the cell 

elements. The activation overvoltage Vact at the anode can be reduced by carefully choosing the 

electrocatalytic material covering the anode. 

 

In order to determine overpotentials at the anode, it is important to know the theoretical 

equilibrium potential at the electrode under the temperature, pressure and pH-conditions of the 

setup. This potential is given by the Nernst equation for equation 1.11: 

 

               
  

  

  
   

    
 

      
   

(1.11) 

 

Under standard conditions of temperature and pressure, and knowing        
 =1.23 vs. SHE, the 

equilibrium potential vs. SHE can be expressed as: 

 

                      (1.12) 

 

As a result, the overpotential η at the anodic working electrode (WE) driven to a potential     (vs. 

SHE) can be expressed as: 

  

                    ) (1.13) 

 

1.3.2. Mechanistic aspects of the OER 

As previously mentioned, most of the overpotentials arise at the anodic OER due to the complexity 

of the PCmET, which involves several types of adsorbed reaction intermediates. In order to allow for 

a rational and targeted search for a catalytic material most adapted to minimizing these 

overpotentials, a lot of effort has gone into understanding the mechanistic aspects of the OER. 

Indeed, resolving which sequence of elementary steps occurs on what type of material will allow to 

identify the rate-limiting step, which is responsible for the minimal overpotential required to drive 

the OER. Depending on the type of catalytic material, three types of reaction on the catalyst surface 

have been proposed:22,24 

 

Associative OER-mechanism 

 

                 (1.14) 

             (1.15) 

                  (1.16) 

           
     (1.17) 
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Dissociative OER-mechanism 

 

                 

 

(1.18) 

             

 

(1.19) 

                      

 

(1.20) 

                       (1.21) 

 

Peroxo mechanism 

                      (1.22) 

           (1.23) 

                 (1.24) 

           
     (1.25) 

 

The experimental attribution of one mechanism to a certain catalyst proves to be difficult. Indeed 

the interpretation of kinetic data and the observation of adsorbed reaction intermediates faces 

many challenges due in part to the complex three-phase reaction medium at the anode interface. 

 

1.3.3. Predicted activity trends of OER-electrocatalysts 

In order to allow for a targeted approach to finding the right catalytic material for OER, theoretical 

studies have focused on trying to find universal descriptors able to predict the OER-activity on any 

type of electrocatalytic compound. Studies based on density functional theory (DFT) have been used 

to show how the binding strength of reaction intermediates to the anode surface during the OER 

determines the overpotential required to drive the overall reaction.25,26 For instance, calculations of 

the free energies of intermediates on noble metal surfaces (Pt and Au) showed that the difficult step 

in the reaction consists of the addition of an *OH-group to an adsorbed oxygen atom in order to 

form adsorbed *OOH.26 

 

Latest attempts by the groups around J. Rossmeisl and J. Nørskov even go a step further and aim at a 

systematic understanding of electrocatalytic activity of different materials.22,25,26 Their calculations 

show that there is a correlation between the binding energies of the OER-reaction intermediates 

bound to the same surface. These binding energies, independent of the exact reaction mechanism, 

scale proportionally to each other. As a result, the study claims that the reaction free energy 

diagrams decomposing the OER into its elementary steps according to each catalyst can be analyzed 

using one universal descriptor for a large class of materials ranging from noble metals to transition 

metal oxides.25 The authors propose the difference between the adsorption energy of bound O* and 

HO*,     
       

 , as such a descriptor. Thus, volcano-shaped curves can be constructed, where 
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the OER overpotential, directly related to the activity of a catalyst, is plotted against the standard 

free energy of the     
       

  (see Figure 1.1). 

 

 

Figure 1.1 OER-activity trends for oxides. The negative theoretical overpotential is plotted against the 
standard free energy of           -step. Taken from ref.

25
 

 

 
 

The predictions are in good agreement with experimental studies throughout the literature as far as 

activity trends on well-defined surfaces go.25  However, one should keep in mind that the model 2D-

surfaces used for DFT-calculations may fail to capture the complexity of a polycrystalline surface. For 

instance, contrary to what is observed experimentally, Co3O4 should require a slightly lower 

overpotential then RuO2.
24 Strongly localized defects can lead to a breach of the scaling relationships 

usually observed between the binding strengths of the different reaction intermediates. Halck et al. 

recently proposed the targeted modification of surface sites in RuO2 via the incorporation of Co or Ni 

as a possibility to go beyond the limitations of the scaling relationships on a homogenous 2D-

surface.27 

 

Another important result of the DFT-calculations is that the OER always proceeds on oxidized 

surfaces. Diaz-Morales et al. recently proposed a theoretical study of the potential-dependent OER 

on Au. The results were backed by isotopic labelling of oxygen detected via MS. The study showed 

the involvement of Au-lattice oxygen in the OER-mechanism via several potential-dependent 

mechanisms. This links up to another important characteristic of a suitable OER-catalyst: It must be 

stable under the operation conditions chosen, mostly pH and temperature. The fact that lattice-O 

might be involved such as in the case of Au means that during the complex PCmET of OER, reactive 

oxygen species have a chance to react with the catalyst itself through side-reactions, which might 

well lead to irreversible damage to the catalytic material through corrosion or important changes to 

the phase or morphology. 
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1.4. Practical OER-electrocatalysis 

1.4.1. Electrolysis in basic vs. acidic media 

The general setup used for water splitting consists of two electrodes in contact with water and 

separated by an electrolyte showing ionic conductivity necessary for the exchange of anions and 

cations in order to retain charge neutrality in the compartments. A direct current is used as the 

driving force for the water splitting reaction. An ion-conducting diaphragm separates the oxygen 

produced at the anode from the hydrogen produced at the cathode in order to avoid their 

recombination. In the case where the focus is on the anodic OER, the anode will be designated as 

the working electrode (WE) and the cathode as the counter-electrode (CE). The overpotentials 

needed to drive the OER and ORR are minimized by covering the electrodes in catalytically active 

material. Potentials are measured against a reference electrode. A commonly used system is the 

saturated calomel electrode (SCE). Under standard conditions, the redox potential of the SCE is 

independent of pH and equal to 0,244 V vs. SHE.  

Figure 1.2 depicts a standard electrochemical cell used for laboratory electrolysis experiments. The 

electrode are placed in three electrolyte-filled compartments separated by fine-porosity glass frits 

that act as gas separators but allow for ionic exchange. The cathodic counter-electrode (CE) often 

consists of a Pt-wire, while the working electrode (WE) depicted here is a rotating disk electrode 

(RDE). The RDE rotates along its own axis at adjustable speeds, which allows for removal of oxygen 

gas bubbles formed during the OER. Also experiments conducted at different rotation speeds can 

yield kinetic data such as the reaction order and apparent activation energies. Such studies have 

been commonly reported for the oxygen reduction reaction (ORR).28-30  

 

Figure 1.2 Standard electrochemical cell consisting of three compartments separated by fine-porosity glass 
frits. 

Electrolysis modules for commercial applications have to answer a series of technical and financial 

requirements such as safety, economic feasibility in terms of manufacturing, distribution and 
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installation costs, compact designs (especially for mobile applications) and stability under 

operational conditions over periods of years, while maintaining efficiencies close to the 

experimental systems. These aspects are crucial if the water electrolysis technology is to contribute 

to a RES-based commercial electric grid operation.  

These constraints especially impact the catalytic material covering the electrodes: Electrocatalysts 

should be highly conductive and operate at high current densities, low overpotential, wide range of 

pHs and electrolyte compositions. Ideally, such a catalyst should be composed of earth-abundant 

materials and involve a low-cost method of manufacturing and preparation. Another important 

factor is corrosion resistance, allowing electrode operation periods on a time-scale of several years 

without maintenance or replacement. All other parts of the setup should of course exhibit similar 

physical and chemical stability. 

Additionally, an ideal catalyst would work for OER as well as for oxygen reduction reaction (ORR), 

which is the ubiquitous cathode reaction in fuel cells. That way the same device could store and 

release energy through subsequent water splitting and reforming. Alloys of Pt, Ir, and Ru have been 

developed as the most efficient bifunctional oxygen electrode catalysts.31 However for reasons of 

cost, those precious metal alloys cannot be implemented in commercial systems on a large scale. 

Alkaline water electrolysis 

Alkaline electrolyzers are currently the most advanced designs for commercial large-scale production 

of hydrogen. A schematic representation of their operating principle is shown by Figure 1.3 and 

equations 1.26 to 1.28. These systems rely on a highly purified liquid KOH electrolyte (25-30 wt.%). 

The caustic electrolyte may cause corrosion of metallic parts and represents a safety issue in case of 

leakage. Moreover, diaphragms used to separate the anodic (reaction 1.26) and cathodic (reaction 

1.27) compartments have so far failed at completely preventing gas diffusion from one 

compartment to another, which lowers efficiency through reduction of oxygen at the cathode (ORR) 

and presents a risk if hydrogen concentration at the anode reaches the lower explosion limit.32 The 

electrolyte and diaphragm are also responsible for high ohmic losses between the electrodes. Last 

but not least, due to the liquid state of the electrolyte, operation conditions are limited to low 

operating pressure, inhibiting more compact designs. However the investigation of more compact 

electrode assemblies (zero-gap configuration), advanced diaphragm design and the development of 

high temperature alkaline water electrolyzers operating at higher pressures have greatly enhanced 

the potential applications of these systems.11 An additional advantage of the alkaline conditions is 

that they allow for the use of earth-abundant catalysts for the OER, such as Ni-, Co- or Mn-base 

systems.33,34 Indeed such catalysts are stable at basic pH and reach activities comparable to those of 

precious metal systems. Some systems have even been reported to act as catalysts for both the OER 

and ORR, which would be of great advantage in a combined electrolyzer/fuel cell system.35 
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Figure 1.3 Schematic representation of an alkaline water electrolysis cell 

     
 

 
           

 

Anode (1.26) 

 

                 

 

Cathode (1.27) 

 

       
 

 
   

Overall reaction (1.28) 

Solide Oxide Electrolyzers (SOE) 

Solide Oxide Electrolyzers (SOE) setups perform water splitting at high temperatures (600-900°C) 

directly from water steam. Water is reduced at the cathode to hydrogen and the resulting O2- anions 

travel though a solid oxide membrane towards the anode where they are oxidized to gaseous 

oxygen. This option becomes interesting when a high temperature heat source is available, such as 

in a nuclear power plant or even using geothermal sources. However the commercial applications of 

these setups are still inhibited by the low stability of the material constituting the electrolysis cells at 

these temperatures.32  

 

PEM-based water electrolysis 

The development of proton exchange membranes (PEM) constitutes a promising advance to 

overcome the drawbacks of alkaline electrolyzers. PEM are thin cross-linked polymeric membranes 

conducting protons tanks to acidic functional groups such as sulfonic acid groups (-SO3H) (see Figure 

1.4). The most commonly used membrane polymer is Nafion®, a sulfonated fluoropolymer 

commercialized by DuPont®. In electrolyzer setups operated at neutral or acidic pH, a PEM can be 

used as the diaphragm separating the two electrode chambers. At the anode, water is oxidized to 

oxygen and protons (reaction 1.29). These protons, circulating across the exchange membrane are 

then reduced at the cathode to hydrogen (reaction 1.30). The low thickness of the PEM allows for 

compact systems, while providing fast proton exchange and little gas crossovers. No liquid 

electrolyte is present and as PEM are sufficiently stable, high operation pressures of up to 30 bar are 
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possible.32 Thanks to the proton-based ionic conductivity, PEM-electrolzers allow for a better 

response to power fluctuations (OH-ions in alkaline electrolyzers have greater inertia). These setups 

can reach current densities of up to 2 A.cm-2.11,32 Also the purity of the produced gases is usually 

higher than in alkaline electrolyzers thanks to the extremely low gas-crossover.  

 

 

Figure 1.4 Schematic representation of a PEM water electrolysis cell 

 

    
 

 
           

 

Anode (1.29) 

 

           Cathode (1.30) 

 

       
 

 
   

Overall reaction (1.31) 

 

So far PEM-electrolyzers however suffer from several drawbacks that have limited their use to small-

scale applications. Thin membranes don’t tolerate pressures above 100 bar and increasing thickness 

leads to lower conductivity. Optimization of production costs of the membranes is a central R&D 

target. The highest potential for cost optimization is however linked to the resilience of the materials 

used in the setup. The high currents and harsh corrosive conditions (pH<3) lead to corrosive 

degradation of the current collectors and separator plates used in the setups. The highly oxidizing 

potentials used may even lead to corrosion of Ti-parts and significant research efforts are devoted to 

finding passivating coatings.36 Even more critical is the corrosion of the catalytic material used for 

the OER. Recent benchmarking efforts by McCrory et al. have shown that catalyst systems based on 

abundant earth metals degraded much too fast under acidic OER-conditions to be of any relevance 

for PEM-electrolyzers, even though some mixed metal oxides including Mn-Mo-Sn-systems have 
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been shown to exhibit improved corrosion stability.37,38 Even Pt-based anodes exhibit mediocre OER-

activities and high corrosion rates in acidic media.39 The only realistic candidates showing 

appreciable OER-performance in terms of stability and activity were Ru- and Ir-based systems. 

However, even though Ru-based anodes are more active than Ir-systems, they corrode very fast 

under acidic OER-conditions.32,40 Recent research efforts have therefore been directed towards 

understanding the good OER-performance of Ir in order to allow for a targeted design of affordable 

Ir-based OER-catalysts. The reduction of precious metal loadings on the anode is the ultimate goal in 

order to make PEM-electrolyzers an economically viable option. In the following paragraphs we will 

focus on the economic feasibility of Ir-based OER-catalysts for PEM-electrolysis and advances 

reported so far in the literature. 

1.4.2. Iridium for OER: the challenge of rare metals 

Iridium is part of the group of the nine least abundant elements present in the earth’s crust with an 

estimated average of 0.001 ppm.32,41 Early on in our planet’s history, while the crust was still molten, 

iridium is suspected to have migrated towards the earth’s core due to its high density and affinity to 

Fe.42 Much higher Ir-concentrations are found in extraterrestrial objects such as meteorites, which 

explains high Ir-concentration anomalies in soil layers linked to meteorite crash events.43 The recent 

“Report of the Ad-hoc Working Group on defining critical raw materials” of the European 

Commission has listed iridium as one of the twelve most critical raw materials, within the Pt-metal 

group.44 Indeed, mining sites are scarce and geographically very localized, which poses a high risk in 

terms of securing a constant supply. Iridium mostly occurs naturally in the form of sulfide inclusions 

or alloys with osmium, nickel or copper at sites where magmatic intrusions from below the earth’s 

crust have occurred.45 Few Ir-rich mining sites be found in South Africa, Russia and Canada.46 

Recently, with the development of Ir-based high-temperature crucibles for the growth of oxide 

single crystals for electronic applications, the demand for Ir has started to grow.  

The Ir-price remains below the Au-price so far, nonetheless the development of Ir-based electrodes 

for OER or fuel cells could rapidly test the existing production capacities and lead to soaring prices.32 

As a result, the minimization of Ir-loadings required to drive OER under commercially relevant 

conditions is of prime importance if Ir-based OER-catalysts are to be employed on a large scale. So 

far, inefficient utilization of Ir-coatings leads to anodic loadings around 2 mgIr.cm-2 in most projects 

oriented on PEM-electrolysis under industrially relevant conditions.32 The projected shortage and 

cost of iridium lead to the conclusion that a reduction in anodic Ir-loadings of at least one order of 

magnitude is necessary for industrial applications. 

1.4.3. Synthesis strategies of Ir-based OER-catalysts 

Various synthesis strategies have been used in order to prepare Ir-based anodic coatings for OER. 

Due to the previously mentioned material cost issue, the target of most recent studies has shifted 

towards strategies allowing for the reduction of Ir-loadings, while maintaining a stable catalyst. As 

mentioned in paragraph 1.3.3, OER takes place on oxidized surfaces. As a result, preparation 

strategies of an OER-active Ir-catalyst usually include an oxidizing step in order to maximize the 

amount of OER-active material.  
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Unfortunately, comparing reports on catalysts for acidic OER results in an apples-and-oranges kind 

of situation which cannot be avoided, unless a standardization of measurements and pre-treatment 

procedures has been adopted. Parameters having a critical influence on reported results include: the 

nature of the electrolyte, the deposition procedure, catalyst loading, pre-treatment of the catalyst 

(typically CV), potential range and faradaic efficiency. We will compare our samples to the most 

extensive benchmarking effort recently published by McCroy et al.47 Nonetheless, a review of 

published studies on Ir-based OER-catalysts yields important clues towards the design of a synthesis 

scheme towards highly active and stable Ir-based OER-electrocatalysts 

Dimensionally stable anodes (DSA) 

An important step towards the precise assessment of Ir-specific activity, was the controlled loading 

of electrodes with the active material. A straight-forward approach is the preparation of 

dimensionally stable anodes (DSA) consisting of thick porous oxide layers commonly deposited on Ti-

substrates by impregnation with a solution containing soluble Ir-salts. Various dissolved Ir-precursors 

can be used such as H2IrCl6
48,49, Ir(III)-acetate50,51 or IrCl3

52. Small volumes of the solutions are 

deposited on the substrate and fired at temperatures over 250°C in air.  High loadings between 100 

μgIr.cm-2 and 1 mgIr.cm-2 are usually employed and yield meager results in terms of OER-activity.  

 

In order to improve the Ir-utilization in DSA, mixed metal oxides such as Ir/Sn-oxides have been 

reported early on. 52-54 Cheaper elements such as Sn were used as diluents. However such coatings 

often suffered from poor conductivity. Promising results have recently been reported for Ir/Ni-mixed 

oxide-DSA produced at 450°C, which showed a 20-fold improvement in Ir- specific OER activity 

compared to pure Ir oxides.55 However, stability tests are needed in order to assess the long-term 

stability of such systems. An interesting alternative that showed high OER-activity combined with 

significant lifetimes is the famous crystalline IrO2/Ta2O5-system, which received a lot of attention in 

the 90s.56-59 The corresponding DSA is usually prepared via decomposition of dissolved Ir- and Ta- 

chlorides at 450°C. Xu et al. have shown in several papers that for a molar ratio of Ir:Ta = 7:3, 

lifetimes of 500 to 700 hours can be achieved at 2 A.cm-2.57-59 Drastic conditions are applied in these 

accelerated lifetime tests, such as 9 V vs. SCE in the steady state region, raising the question what 

amount of current corresponds to faradaic processes and how much comes from corrosion. Ir-

loadings exceeded 500 μg.cm-2, not to mention the expensive Ta-additive. Mraz and Krysa predicted 

a service life of more than five years under industrial conditions for these anodes, using similar 

accelerated lifetime tests and similarly high loadings.56 It is however doubtful whether these systems 

will ever find commercial application in water splitting, due to high loadings (over 500 μg.cm-2) of 

iridium and tantalum, both listed as critically rare raw materials by the European Commission.44  

 

Other strategies for the preparation of dry Ir-oxides 

Other strategies allowing for a better control of synthesis parameters during the formation of mixed 

oxides have been proposed. Rasten et al. used the Adams fusion method60, where metal chloride 

precursors are mixed with molten NaNO3, which acts as the oxidizing agent during calcination over 

340°C. However anodic loadings over 2 mgIrO2.cm-2 were required. Hutchings et al. reported on a 

(Sn,Ru,Ir)O2-based OER-catalyst prepapred under similar conditions. Their catalyst achieved superior 

stability in an accelerated lifetime test but required loadnigs of 5mg.cm-2. In general, high stability 

and low Ir-mass specific activity have been reported for crystalline Ir-based OER-catalysts produced 
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via a high-temperature calcination route. Resulting high electode loadnigs have inhibited their 

widespread use so far. 

 

Preparation of hydrated, amorphous Ir-oxide films 

Early electrochemical studies have focused on amorphous Ir-based films like anodically grown 

iridium oxide films (AIROFs)61,62 and sputtered iridium oxide films (SIROFs)63. Commercially, 

especially AIROFs are of little interest since they rely on the electrochemical oxidation of metallic 

iridium foils or wires, leading to high material costs. Nonetheless, the study of the produced 

amorphous, hydrated and oxidized iridium species was a first important step in developing synthesis 

strategies targeting the production of intrinsically more active Ir-phases.  

Frazer and Woods studied AIROFs anodically grown by potentiodynamic cycling of metallic iridium 

anodes in concentrated sulfuric acid. The result was a linear increase of OER-activity and -stability 

with increasing cycling time and thickness of the grown amorphous oxide film.61 However, at 

constant potentials, the high currents obtained from AIROFs decrease rapidly in a matter of minutes, 

indicating the destruction of the grown active film. Better results were achieved by Beni et al. who 

studied SIROFs sputtered in a humidified oxygen discharge procedure.63 They compared the stability 

of bare metallic iridium, AIROFs and SIROFs when holding at 1.85V vs. RHE. As in Frazer and Wood’s 

case, after 20min at 1,85V vs. RHE, the activity of AIROFs went down to that of bare metallic iridium 

(30 mA.cm-2). However, in the case of SIROFs, currents seemed to stabilize at 45 mA.cm-2 after for 

over 17 hours. Some years later, Vukovic et al. reported a drastic improvement in the stability of 

AIROFs: When calcined at 200°C, the films exhibited lower but stable currents over a period of 5 

hours.62 Higher calcination temperatures led to the formation of crystalline IrO2, resulting in an 

almost complete loss in activity. These three papers were already all pointing towards the idea of an 

Ir-oxide/hydroxide phase, intrinsically more active than crystalline Ir-oxides.  

These findings were recently confirmed by the group of P. Strasser, who studied the influence of 

calcination temperature on the stability and activity of Ir-oxide-anodes prepared by thermal 

decomposition of Ir-acetate precursors on Ti-substrates.50,51 They suggested that at the lowest 

possible decomposition temperature of 250°C, an active and comparatively stable Ir-

oxide/hydroxide species was formed. Increase of the calcination temperature led to the formation of 

crystalline rutile-IrO2 and a high decline in OER-activity. These findings already strongly suggested 

that a careful tuning of preparation conditions could lead to the formation of an amorphous Ir-

oxide/hydroxide-species combining high activity and stability under acidic OER-conditions. 

Wet chemical synthesis 

Wet chemical synthesis approaches have been used to produce a variety of powdered homogenous 

mixed oxides including Ir. For electrochemical testing, the resulting products are usually dispersed in 

a mixture of water, isopropanol or ethanol and Nafion® acting as a binder (“catalyst inks”) for 

deposition. A popular wet chemical method for the synthesis of nanostrucutured Ir-particles is the 

polyol method, where polyol solvents also act as a reduction agent upon hydrothermal treatment.64-

66 This methods however requires subsequent calcination over 450°C as OER-inactive metallic 

iridium is obtained. The OER-properties of resulting crystalline IrO2-particles are disappointing.65,66  
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In order to obtain a solid Ir-product, soluble iridium salts can also be hydrolyzed in aqueous solution 

using a strong base: Hydrolysis of iridium chlorides like K2IrCl6 or IrCl3 with NaOH has been reported 

in several papers.67-72 At high pH>12, stable colloids of Ir-oxyhydroxo-nanoparticles are obtained. 

These can be directly electrofloculated onto an electrode for further testing.69,70 Despite the 

nanostructuring of the catalyst, low activities were reported. Thermal treatment of the hydrolysis 

products above 400°C was reported in several studies.68,73 The result was again crystalline Ir-oxides 

with low OER-activities requiring high loadings. Despite the nanostructuring of Ir-based OER-

catalysts prepared via hydrolysis, no satisfying balance could be found in the literature between low-

temperature oxohydroxy-species and dehydrated crystalline oxide-species obtained via calcination. 

Both exhibit mediocre OER-performance. 

 

An alternative approach to calcination of dried hydrolysis products is hydrothermal treatment of the 

basic suspension of hydrolyzed metal precursors.  Sardar et al. report the preparation of a basic 

suspension of hydrolyzed Ir- and Bi-precursor salts. They added N2O2 as an oxidant before treating 

the suspension for 120h at 240°C in an autoclave. This synthesis yields polycrystalline Bi2Ir2O7 with 

an average particle size of 10 nm. This pyrochlore-material has a long history with fuel cells. Typically 

the Bi leaches out very easily leaving disordered IrOx. For electrochemical testing, the equivalent of 

150 μg.cm-2 of iridium were deposited on a gold-disk-RDE and tested via LSV to 1.6V vs. RHE. At 1.6V 

vs. RHE, current densities of 40 mA.cm-2 were achieved, which is in line with the activity of the most 

active iridium-compounds reported. This activity didn’t change after voltammetric cycling hinting at 

good stability of the catalyst. However cycling without actually holding at high potentials, doesn’t 

yield much information about the stability to be expected under real industrial conditions.  

We concluded from the above-mentioned reports on active and stable Ir-oxohydroxide species50,51,61-

63 that a promising synthesis strategy for the preparation of amorphous OER-relevant Ir-compounds 

would be the exploration of the direct hydrothermal treatment of hydrolyzed Ir-precursors in 

aqueous solution. Such a strategy aims at producing intrinsically more active Ir-compounds instead 

of setting the primary target on the morphological optimization of the catalyst. Microwave-

supported hydrothermal synthesis has only recently become a powerful tool as new setups 

developed by companies such as Anton Paar allow for fast heating ramps, short synthesis times, 

precise parameter control and homogenous temperature fields inside the vessels. 

1.4.4. OER-catalyst supports 

Several authors have stressed the positive effect of dispersing small nanoparticles of precious OER-

catalysts on a conductive support acting as a current collector.24,67 The observed improvement of 

mass activity over bulk catalysts is often attributed to increase in the available electrochemically 

active surface area (ECSA).67 Jirkovsky et al. reported on small supported RuO2-nanopoarticles and 

stressed the positive effect of a high fraction of Ru-particle-edges on OER-activity.74 This finding 

indicates that nanostructuring through dispersion of the OER-active material on a conductive 

support can also increase the surface concentration of intrinsically more active sites for the OER. 

Once a right approach has been found for the synthesis of an active and stable Ir-based material, 

one should find a conductive support that could accommodate the active Ir-species in a highly 

dispersed manner in order to increase catalytic efficiency. Besides the work of Marshall et al. on 

Ir/Ru-catalysts on ATO reported earlier75, only few papers have dealt so far with Ir-based OER-
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electrocatcalysts dispersed on conductive inexpensive supports.  T. Reier et al. have studied Ru-, Ir- 

and Pt- nanoparticles supported on carbon black.67 They obtained small metallic iridium 

nanoparticles of 2 ±1.1 nm by impregnation of carbon black with iridium acetate and calcination at 

250°C in reductive atmosphere. In their work, they emphasized the great potential of 

nanostructured noble metal catalysts: The number of active sites for OER, determined by CO 

stripping experiments, increased seven times between bulk iridium and nanostructured carbon-

black-supported iridium. CV-measurements show a characteristic oxidation peak at 0,2V vs. RHE, 

indicating that the NP-surface consists mostly of metallic iridium. For a 20wgt.%-Ir/C catalyst with a 

loading of metal Ir of only 2μg.cm-2 they report during LSV (6 mV.s-1) a current of 49 mA.cm-2 at 1.63 

V vs. RHE. This compares to 46 mA.cm-2 during LSV (5 mV.s-1) at the same potential for an iridium 

loading of 20μg.cm-2 in our study. However they also report that after LSV to 1.65V vs. RHE, at least 

half the electrode’s Ir-content was found in the electrolyte. This indicates very low corrosion stability 

of the produced nanostructured catalysts and correlates with the previous literature indicating low 

stability of metallic iridium species.63 Another issue is the stability of carbon-based supports. The 

oxidative degradation of carbon materials under anodic potentials was extensively examined by Yi et 

al.76 Fast oxidative degradation of all carbon materials is observed at anodic potentials, although 

passivation of CNTs remains a possibility. 

 

Alternatively, antimony-doped tin oxide (ATO) is known to be a stable material at highly anodic 

potentials in chlorine-free acidic electrolytes.77 ATO has the advantage of being much cheaper than 

indium-doped tin oxide (ITO) and can be synthesized via wet chemical routes involving no dangerous 

precursors, unlike F-doped tin oxide (FTO). It has already been used in the past as a corrosion-stable 

conductive support for noble metal OER-catalysts as reported earlier from the work of Marshall et al. 

who reported effective reduction of the iridium loading but no stability data.75 Tseung and Dhara 

studied pristine Pt and Pt supported on ATO and carbon balck under harsh conditions in H3PO4 at 

150°C under reflux.78 They showed that the highest stability under potentiostatic conditions was 

achieved for ATO-supported Pt electrocatalysts. This indicates that there might also be a synergetic 

stabilizing effect between the ATO support and certain noble metal electrocatalysts. 

 

Tin oxide by itself is an insulator with a wide band gap of about 3.8 eV.79 However, high n-type 

conductivity is achieved in Sb-doped SnO2. SbIII- and SbV- precursors can be used, it is however the 

substitution of SnIV by SbV that leads to the increase in conductivity.80,81 There has been mainly two 

synthesis pathways used in the literature in order to obtain powdered ATO : Dissolved Sb- and Sn-

precursors can either be fired at temperature over 900°C82-84 or treated hydrothermally in acidic 

solutions in an autoclave at temperatures between 200 and 300°C.79,81,85-87 Hydrothermal synthesis 

can lead to particle sizes as low as 7 nm, as reported by Nütz et al.79 

1.4.5. Stability-influencing factors 

A wide array of phenomena can lead to the deactivation of the OER-electrocatalyst. Such 

mechanisms are hard to deconvolute in the complex three-phase heterogenous catalytic OER-

system. Moreover, mechanisms are strongly dependent on the constituents of the catalyst. We will 

nonetheless give a brief overview of phenomena that might play a role in deactivating OER-

electrocatalysts with emphasis on acidic media. 
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In certain cases, spectator species like electrolyte anions may play an important role. The poisoning 

effect of sulfates strongly adsorbing on Pt-electrodes has been repeatedly described as a nuisance in 

the oxygen reduction reaction (ORR).88,89 In the case of Pb-oxide-based electrodes for the OER, 

Amadelli et al. reported on the negative effect of certain anions.90 SO4
2- and CF3SO3

− tend to strongly 

adsorbe. As a result the water discharge and desorption of reaction intermediates become are 

hindered. Especially fluorides in the electrolyte modify the hydrous Pb-surface layer and thus hinder 

the efficient water discharge and intermediate desorption. On the other hand, Lodi et al. reported 

no effect of perchlorate and sulfate anions on the performance of RuO2-based electrodes in OER.91 It 

seems that anion effects are strongly dependent on the type of material and the electrochemical 

reaction in play. In line with this, we didn’t observe any effect of switching between a perchlorate- 

and a sulfate-based electrolyte during the electrochemical testing of Ir-based electrocatalysts for the 

OER. 

 

As mentioned in § 1.3.3, the OER is predicted to proceed on oxidized surfaces. Buckley et al. 

observed the concomitant oxidation of a metallic Pt-surface and rapid decrease in activity during 

OER in both acidic and basic medium.39 They attributed the decreasing currents to the progressive 

build-up of an oxidized passivating Pt-layer, which inhibits electron transfer, despite being 

intrinsically more OER-active than metallic Pt. Thus, the formation of the active layer can in this 

particular case lead to the deactivation of the overall system via inhibition of efficient current 

collection. In the case of Ru and Ir however, their respective oxides RuO2 and IrO2 exhibit metallic 

conductivities of approx. 104 S.cm-1 for single crystals.92 As a result, the formation of oxidized Ru- or 

Ir-films on the anode, has no detrimental effect on the OER-activity. On the contrary, the oxidation 

of metallic Ru- or Ir-anodes is commonly used as an activation procedure before OER, as in the 

AIROF-technique mentioned in § 1.4.3. 

 

One of the most prominent phenomena responsible for catalyst deactivation is corrosion. In the case 

of Ru, even though Ru-based anodes exhibit the highest OER-activities in acidic media,47 their 

utilization has been limited by their fast degradation during OER. Kötz et al. described the corrosive 

processes involved in the loss of OER-active material during OER.40 They propose the formation of a 

RuO4-species acting as reactive intermediate both in the catalytic OER-cycle as well as in the 

irreversible corrosion process. Ir is not impervious to corrosion either, however the onset of Ir-

corrosion seems to be located at higher potentials, allowing for a tight window where stable 

catalytic OER is possible without loss of the catalytically active material. Early on Buckley et al. 

described the potential-dependant competition of OER and Ir-corrosion.39,93 They reported that loss 

of Ir-material to the electrolyte starts above 1.6 V vs. SHE. More recently Fierro et al. suggested the 

involvement of lattice-O in the catalytic OER on IrO2. This suggests that various  oxidized Ir-species 

might be involved in the catalytic OER-cycle.39 These species might in turn be involved in a potential-

dependent irreversible corrosion in competition with the OER as in the case of Ru. 

 

Early electrochemical studies had raised the suspicion that the OER-performance of amorphous Ir-

oxide/hydroxides might differ from IrO2. For instance Vuković et al. showed that an AIROF annealed 

at mild temperatures showed higher activity and stability than the crystalline IrO2-couterpart 

produced at higher temperatures.62 The groups around P. Strasser and K. Mayrhofer recently studied 

the influence of the chemical nature of the Ir-phase on OER-performance in highly acidic electrolyte. 

They showed that an Ir-oxide/hydroxide phase characterized by sharp H2-TPR-reduction features 
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below 100°C combined both high OER-activity and stability.51 In contrast crystalline IrO2 produced at 

higher temperatures showed a sharp decrease in OER-activity. Cherveko et al. confirmed the 

superior OER-performance of the amorphous Ir-oxide/hydroxide produced by Reier et al. using MS-

based analysis of Ir-dissolution during a potential-dependent OER-assessment of the Ir-catalysts.50  

They could show that high activity could be combined with relative stability for the Ir-

oxide/hydroxide. This is an important indication on the importance of the chemical and structural 

nature of the catalyst precursors used for the OER. These reports suggest that some forms of 

amorphous Ir-oxide/hydroxides shows higher specific OER-activity and at the same time inhibit 

corrosion in the moderate potential-region. This could indicate alternative OER-mechanisms for such 

species, where no common intermediate for OER and corrosion exists, or kinetic inhibition of the 

corrosion reaction. 

 

Formation of oxygen gas bubbles on the anode surface has also been described as a relevant 

parameter for the stability of the anodic coating.24 Gas bubbles formed rapidly in micropores can 

cause local overpressures and lead to mechanical disruption of the coating. Additionnaly, if bubbles 

are allowed to grow on the anode and only slowly removed, part of the electrocatalyst film is not in 

contact with water anymore, leading to increased localized performance-demand on the accessible 

catalyst regions. High local current densities can lead to corrosion phenomena. This stresses the 

importance of efficient bubble removal in the electrolyzer setup, once a high-performance OER-

electrocatalyst has been found. Morphological features of catalyst films such as cracks, channels and 

pores have been shown to play an important role for efficient bubble removal.94 

 

The rather empirical combination of elements has often been used as strategy to combine OER-

activity and -stabilitly of certain compounds. Such combinatorial approaches have been used to 

produce Ir/Ru/Sn-systems showing enhanced stability if compared to pure Ru-oxides.95 We also cited 

the case of the much advertised Ir/Ta-system in §1.4.3.56-59 However, the involved synergetic 

phenomena remain little understood, inhibiting a targeted synthesis strategy. Also high precious 

metal loadings are still required.32 A strategy directed at isolating the chemical and structural 

features leading to superior OER-performance seems to be a more promising solution. Such an 

approach has long been inhibited by the notion that the most OER-active catalysts will 

simultaneously suffer from the highest corrosion rates.96 However recent reports on amorphous 

oxide/hydroxide Ir-phases50,51 seem to indicate a possible combination of high OER-activity and -

stability for specific electrocatalyst materials. Uncovering the structural and chemical features 

leading to such enhanced OER-performance would pave the way towards a more rational design of 

high-performance electrocatalysts for the acidic OER. 
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1.5. Aims and outline of the present work 

In the context of the foreseen energy transition towards RES, finding an active, stable and cost-

effective OER-electrocatalyst constitutes a central bottleneck in making H2-based energy storage a 

commercially viable solution. This issue is especially challenging in the case of the promising 

technology of PEM-based electrolyzer setups. In acidic media most OER-catalysts rapidly deteriorate 

under operational conditions.  

Based on the numerous reports stressing the superior intrinsic properties of Ir-based electrocatalysts 

in terms of activity and stability in acidic OER, we decided to examine the potential for optimization 

of an Ir-based system. Our initial approach was to maximize the available Ir-surface area in order to 

enhance Ir-utilization and thus permit cost reduction. A stable Ir-based OER-catalyst operating under 

industrially relevant conditions at Ir-loadings below 100μgIr.cm-2 would constitute a major step in 

making the PEM-technology an affordable solution for energy storage.32  

We used the strategy of dispersing Ir-nanoparticles on a conductive and corrosion stable ATO-

support. Chapter 2 of the present work describes the novel microwave (MW)-supported 

hydrothermal synthesis procedure used for the synthesis of the ATO-support and the dispersion of Ir 

on ATO. We report on the successful production of this highly nanostructured Ir/ATO-compound. 

The produced Ir/ATO showed extremely promising OER-performance compared to available 

reference materials and literature reports. Thorough characterization allowed us to identify the Ir-

particles as an amorphous highly hydrated IrIII/IV-oxohydroxide. Recent literature reports on the 

possible OER-relevance of such compounds51 raised the question whether the exceptional catalytic 

efficiency was due to the structural design or rather to a higher intrinsic activity of the IrIII/IV-

oxohydroxide.  In order to identify OER-relevant features of the Ir-phase, we carefully altered the 

Ir/ATO-compound via calcination at moderate temperatures and studied the effect on OER-

performance. The dramatic depletion of OER-performance that was observed with increasing 

treatment temperatures could not be attributed solely to morphological changes such as sintering of 

Ir-particles leading to a decrease in available OER-active surface area. The calcined compounds were 

thoroughly characterized via vibrational spectroscopy and TPR in order to uncover key structural 

features of the Ir-phase that were affected by the thermal treatment. Our ultimate goal was to link 

the identified features to the OER-performance of the MW-produced IrIII/IV-oxohydroxide.  

In order to gain a deeper understanding of the role played by the IrIII/IV-oxohydroxide phase in OER, 

we prepared a series of pure Ir-oxohydroxides via a systematic variation of relevant synthesis 

parameters in the MW-supported preparation procedure. Such an approach allows to exclude the 

influence of the catalyst support. The MW-supported hydrothermal synthesis of pure Ir-

oxohydroxides is described in Chapter 3. We identified the initial ratio of base to Ir-chloride 

precursor KOH:Ir as a key synthesis parameter in controlling the Ir-particle morphology and 

composition. Physico-chemical characterization methods relying on the temperature-dependent 

behavior of the compounds in different gas phases (TGMS, TPR) were used in order to gain a better 

understanding of the sample composition. This first assessment allowed for a comparison between 

trends in sample composition and OER-performance determined via electrochemical tests.  

Based on the prepared portfolio of Ir-oxohydroxides, Chapter 4 describes the analytical approach 

used to obtain deeper insight into OER-relevant features. Careful TEM-investigation and Raman-
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spectroscopy supported by DFT-calculated model structures allowed for a better structural 

understanding of the XRD-amorphous Ir-oxohydroxide phase. Particular attention was given to the 

electronic structure of the compounds as well as to the identification of species involved in the 

structure of active site precursors. In order to obtain more surface-sensitive information on the 

samples, synchrotron-based X-ray photoemission and absorption spectra of the samples were 

analyzed using the ab-initio calculated model developed by Pfeifer et al.97,98 The aim of this 

characterization was to confirm the mixed IrIII/IV-oxidation state of the samples via XPS. NEXAFS was 

used to identify reactive oxygen species predicted by Pfeifer et al. in the IrIII-rich environment of 

OER-active amorphous Ir-oxohydroxides.97,98 In order to obtain a quantitative estimate of available 

reactive oxygen species, a CO-titration procedure was employed. Possible correlations between the 

amount of reactive oxygen species and the OER-performance were studied. We emitted the 

hypothesis that such O-species stabilized in the particular IrIII-rich environment of Ir-oxohydroxides 

play a central role for the compound’s OER-performance as precursor sites for the OER. The 

reactivity during CO-titration was also analyzed in order to gain insight into the OER-relevant 

mobility of reactive oxygen species within the Ir-oxohydroxide matrix. 

Chapter 5 constitutes a summary of the results obtained throughout the present work.  

Appendix I provides a listing of the relevant samples described in the present work with their 

associated FHI-database ID for future reference. Appendix II describes the results of a UV-Vis-study 

aiming at a better understanding of the processes involved in the basic hydrolysis of Ir-chlorides in 

the precursor solution. Appendix III is dedicated to the study of potential-dependent corrosion 

processes of the Ir-oxohydroxide electrocatalysts under acidic OER-conditions. The potential 

dependent catalyst corrosion was probed in a flow-through electrolyzer setup coupled to ICP-OES 

for analysis of species dissolved in the electrolyte. 
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2. Identification of key features in a high-performance Ir/ATO-

electrocatalyst for the Oxygen Evolution Reaction 

2.1. Abstract 

The synthesis of a highly active and yet stable electrocatalyst for the anodic oxygen evolution 

reaction (OER) remains a major challenge for electrocatalytic water splitting on an industrial scale. 

We report the synthesis of a high-performance OER-catalyst obtained by loading iridium on 

conductive antimony-doped tin oxide (ATO)-nanoparticles via a microwave-supported hydrothermal 

route. The effect of thermal treatment in various dry atmospheres indicates that the observed 

unprecedented OER-performance is prominently linked to the nature of the produced Ir-phase, 

which consists of an amorphous, highly hydrated IrIII/IV-oxohydroxide. This finding is in contrast with 

the stable but poor OER-activity of crystalline IrO2-based compounds produced via more classical 

calcination routes. Our investigations demonstrates the immense potential of amorphous Ir-

oxohydroxides, which constitute promising candidates for stable high-current water electrolysis. 

2.2. Introduction 

Chemical energy storage through hydrogen production from water splitting has come under focus as 

one of the most promising answers to the transient nature of renewable energy sources.1,2 The 

electrocatalytic splitting of water can be driven by any type of power supply and its combination 

with intermittent renewable sources could ensure the storage of excess energy in the chemical bond 

of hydrogen. Electrolyzer setups are being seen as a particularly versatile solution as they could be 

implemented into smart grids running on a variety of power sources on a de-centralized level.3 In 

particular, proton exchange membrane (PEM)-based electrolyzers allow for the production of high-

purity H2 at elevated pressure in compact designs.4 The separation of O2 and H2 produced 

respectively in the anodic and cathodic compartments is ensured via polymeric membranes by 

proton exchange capabilities, e.g., Nafion®. However, these sulfonic-acid-functionalized membranes 

require a highly acidic environment, which poses a major challenge to the employed 

electrocatalysts, especially in the anodic oxygen evolution reaction (OER).  

The optimization of an active, stable, and yet cost-effective OER-electrocatalyst material has 

emerged as one of the toughest hurdles in the design of a commercially relevant PEM-electrolyzer 

system. In general, earth-abundant transition metal oxides such as Co3O4, Fe2O3 and MnOx show 

minimal stability under acidic OER-conditions4 and even Ru-based anodes have been shown to 

corrode at fast rates.5,6 The only promising candidates so far, are Ir-based compounds, which seem 

to be able to combine high activity with relative stability in the acidic OER.6 Due to the scarcity of 

iridium and resulting high material costs, the minimization of the anodic Ir-loading is of prime 

importance in making it a financially viable solution. Strategies include the synthesis of highly active 

precursor phases of iridium, as well as the maximization of electrocatalytically active surface area, by 

means of dispersing iridium on a conductive support.  

In regards to the catalyst support, Reier et al. have recently highlighted the potential of supported 

noble metal OER-catalysts, by showing that homogenously dispersed nanoparticles presented a 

higher density of active sites compared to bulk materials.7 They obtained nanosized metallic Ru-, Ir- 
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and Pt- nanoparticles supported on carbon black via impregnation with iridium acetate and 

calcination at 250°C in reductive atmosphere. In the case of supported iridium, a sevenfold increase 

in the number of OER-active sites over bulk iridium was observed. However, low stability under OER-

conditions was reported and indicates that an important part of the observed current might 

originate from the corrosion of the carbon-support. The oxidative degradation of carbon materials 

under anodic potentials was extensively examined by Yi.8 Fast oxidative degradation of all carbon 

materials was observed at anodic potentials in acidic electrolytes.  

As an alternative to carbonaceous support suspected to corrode while OER is proceeding, antimony-

doped tin oxide (ATO) is a suitable alternative as conductive support for electrocatalytic applications, 

such as OER. Tin oxide by itself is an insulator with a wide band gap of about 3.8 eV.9 However, 

significant n-type conductivity is achieved by doping SnO2 by Sb.10,11 At elevated Sb doping (approx. 

5%) of SnO2, ATO exhibits quasi-metallic conductivity and is known for its stability under anodic 

potentials in chlorine-free acidic electrolytes.12 ATO has also the advantage of being cheaper than 

indium-doped tin oxide (ITO) and can be synthesized via wet chemical routes involving safe 

precursors, unlike fluorine-doped tin oxide (FTO).13 A method of choice for ATO-synthesis is 

hydrothermal synthesis as smaller particles are usually obtained than via calcination routes.9,11 ATO 

has been successfully employed as a support for precious metal OER-catalyst under acidic 

conditions. Tseung and Dhara studied Pt supported on ATO versus carbon black under harsh 

conditions in H3PO4 at 150°C.14 They showed that the highest stability under potentiostatic 

conditions was achieved for ATO-supported Pt electrocatalysts and suggested a synergetic effect 

between the ATO support and the noble metal electrocatalysts. Similarly, Liu et al. reported 

significant OER-activity enhancement of ATO-supported IrO2-nanoparticles over bulk IrO2 due to 

higher Ir-dispersion and a resulting higher electrochemically active surface area.15  

Besides the catalysts support, producing the “right” chemical state of iridium is critical in achieving 

stable OER. Early electrochemical studies have shown that metallic iridium films are inefficient in 

OER and needed to be activated under oxidative conditions.16 Active Ir-oxide-films were formed as 

anodically grown iridium oxide films (AIROF)17,18 or sputtered iridium oxide films (SIROF)16. The 

authors repeatedly emphasized the important role played by amorphous Ir-oxohydroxides in high-

current, stable OER-electrocatalysis. Such compounds compare favorably to crystalline IrO2 often 

resulting from the production of powdered catalysts via calcination steps above 400°C.19-26  Such 

crystalline IrO2-compounds exhibit high stability but limited Ir-mass specific OER-activity, which 

results in high electrode loadings in the order of 2 mgIr.cm-2.27 

Some recent studies have focused on the OER-relevance of amorphous hydrous Ir-phases. For 

instance, Ir-acetate calcined at 250°C yielded amorphous and hydrated Ir-species combining both 

activity and relative stability in acidic OER.28 Higher thermal treatment had a detrimental effect on 

OER-performance, as crystalline IrO2 was forming. Bernicke et al. also confirmed the competition 

between the classically evoked electrochemically accessible surface area (ECSA) and the chemical 

nature of OER-active Ir-sites.29 However, in order to remove carbohydrate ligands, such synthesis 

pathways are limited to temperatures above 250°C. The hydrothermal treatment of hydrolyzed Ir-

precursors in aqueous media would constitute a unique tool for exploring intermediate temperature 

ranges of 150-300°C. We suspected that such an approach would give access to the promising 

amorphous Ir-oxide/hydroxides. 
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In the present study, we report the MW-assisted hydrothermal synthesis of Ir-oxohydroxide particles 

dispersed on a conductive ATO-support. Unprecedented OER-activities and stabilities were achieved 

under relevant experimental conditions for a 30 mol.%-Ir/ATO-catalyst. In order to establish links 

between structural properties and OER-performance, we studied the effects of thermal treatment 

on the MW-prepared compound under inert and oxidative atmospheres. We determined that the 

exceptional OER-performance of the synthetized electrocatalyst is strongly related to the chemical 

nature of the deposited Ir-oxohydroxide.  

In the following text, MW-ATO refers to the selected ATO-support material, while MW-Ir/ATO is the 

loaded 30 mol.%-Ir/ATO prepared in the MW. Ir_T_Ar/O2 refers to MW-Ir/ATO thermally treated at a 

temperature T (°C) respectively under 100% Ar or 21% O2/Ar-streams. 

Table 2.1 Summary of sample designations used throughout the text. 

Label Comment 
MW-ATO Selected ATO-support prepared via MW-supported 

hydrothermal synthesis at 270°C   

MW-

Ir/ATO 
30mol.% Ir loaded on MW-ATO via MW-supported 

synthesis 
Ir_250C_O2 MW-Ir/ATO, calcined 250°C, 21%O2/Ar 
Ir_250C_Ar MW-Ir/ATO, calcined 250°C, Ar 

Ir_350C_O2 MW-Ir/ATO, calcined 350°C, 21%O2/Ar 
Ir_350C_Ar MW-Ir/ATO, calcined  350°C, Ar 
SA-IrO2 Crystalline IrO2-benchmark (Sigma-Aldrich) 
AA-IrOx Amorphous IrOx-benchmark (Alfa Aesar) 

 

2.3. Experimental 

2.3.1. ATO synthesis 

Antimony-doped tin oxide (ATO) was obtained from SnCl4∙5H2O (Sigma Aldrich) and SbCl3 (Sigma 

Aldrich) dissolved in a 95:5 molar ratio in a 0.5%-HCl/H2O solution. The metal chloride solution was 

added to 200mL H2O under constant stirring at a speed of 5g.min-1 using an automated laboratory 

reactor system (Mettler-Toledo, Labmax). During addition, reactor-pH was automatically maintained 

at pH=4 using 1%-NH3/H2O. During addition, the solution was maintained at 50°C and further aged 

for 1h at 50°C. The resulting colloidal suspension was subjected to hydrothermal treatment in a 

microwave synthesis reactor (Multiwave PRO, Anton Paar). 50mL of solution are poured into an 

80mL-quartz vessel and four such vessels at a time are heated at 290°C for 1h in the microwave 

(ramp : 10 K.min-1). The product changed color from cream white to blue, typical for ATO. The vessel 

content was centrifuged at 5000rpm for 10 min, redissolved in micropore-filtered water and re-

centrifuged until the conductivity of the supernatant was below 0.05 mS.cm-1. The solid product was 

then dried at 80°C for 12h and ground in a mortar. 

For the purpose of measuring resistivities, ATO-powders were pressed as 13mm-pellets of thickness 

below 1μm using a pressing dye at 7 tons for 5 min. The four-point-probe-measurement head 
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consisted of four 2mm-spaced gold tips mounted in a row. The two outer tips were coupled to a DC 

precision current source Keithley 6220, whereas potential differences between the two inner tips 

were measured using a Keithley 6514 electrometer. The resulting apparent resistance was converted 

to sheet resistance taking into account the finite pellet dimensions using the geometry correction 

factors provided by Smits.30  

2.3.2. Ir-loading of ATO 

The ATO-support was then loaded with OER-active Ir. For this purpose, 310 mg of MW-ATO was 

added to a 100 mL-PTFE-vessel. The vessel was then filled with 62mL H2O containing 425.5 mg 

dissolved K2IrCl6 (Alfa Aesar, kept under Ar) under constant stirring. The pH of the resulting 

suspension was slowly adjusted to pH=13 using a 1M NaOH-solution. The pH was maintained for 30 

min at pH=13 under constant stirring. The mixture was then allowed to age for an hour under gentle 

shaking. Four such vessels were then placed in the microwave synthesis reactor and heated up to 

250°C using a 10 K.min-1 ramp under constant agitation provided by magnetic PTFE-stirrers. The 

temperature was maintained at 250°C for 1h. The resulting black product was centrifuged at 

8000rpm for 10 min, redissolved in micropore-filtered water and re-centrifuged until the 

conductivity of the supernatant was below 0.05 mS.cm-1. The solid product was then dried at 80°C 

for 12h and ground in a mortar.  

2.3.3. Sample characterization 

X-ray powder diffraction (XRD) measurements were performed on a STOE STADI-P transmission 

diffractometer equipped with a primary focusing germanium monochromator (Cu Kα1 radiation) and 

a linear position sensitive detector. The samples were mounted in the form of small amounts of 

powder sandwiched between two layers of polyacetate film and fixed with a small amount of X-ray 

amorphous grease. The surface area determination was carried out in a volumetric N2-physisorption 

setup (Autosorb-6-B, Quantachrome) at the temperature of liquid nitrogen. The sample was 

degassed in dynamic vacuum at a temperature of 80°C for 2 h prior to adsorption. Full adsorption 

and desorption isotherms were measured. The linear range of the adsorption isotherm (P/P0 = 0.05–

0.3) was considered to calculate the specific surface area according to the BET-method. Diffuse 

reflectance UV-Vis spectra of ATO-powders were measured using a Agilent Technologies Cary 5000 

UV-Vis_NIR spectrometer equipped with a Harrick diffuse reflectance attachment. Spectra were 

recorded at room temperature. The Kubelka–Munk function F(R) was used to convert diffuse 

reflectance data into absorption spectra using BaSO4 as white standard. Sample powders were 

diluted 1:10 with BaSO4 due to strong absorption features. 

Thermogravimetric anaylsis (TGA), differential scanning calorimetry (DSC) and evolved gas analysis 

of the decomposition reaction of the samples under a 21% O2/Ar- or 100% Ar-stream (100 mL.min-1, 

10 K.min-1, 800°C) were performed on a Netzsch STA 449 thermobalance connected to a quadrupole 

mass spectrometer (QMS200 Omnistar, Balzers). The measurements were performed with 

approximately 25 mg sample in a temperature range of 30-800°C (10Kpm). For the specific question 

of determining the remaining water (chemisorbed and physisorbed) in the sample after thermal 

treatment in various gas atmospheres, the hydrothermally prepared 30%IrOx/ATO was heated up in 

a 21% O2/Ar- or 100% Ar-stream (100mL.min-1, 10 K.min-1) using subsequent 1h-steps of 250°C and 

350°C.  
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Temperature-programmed reduction (TPR) of the samples was performed in a fixed bed reactor in a 

5 vol.% H2/Ar-stream (80 mL.min-1) at a heating rate of 6 K.min−1. Due to the high heat release during 

the low-temperature reduction feature of Ir, the measurements were performed in a temperature 

range of 30-800°C with approximately 25 mg sample in order to avoid temperature spikes due to 

massive heat releases. The H2-consumption was monitored with a thermal conductivity detector 

(TCD). The TCD detector was calibrated by reducing a known amount of CuO. The samples were 

initially kept under Ar-flow for 1h (80mL.min-1) in order to remove physisiorbed water. The 

comparison of H2-signals during the initial switch from 100% Ar to 4.92% H2/Ar streams before and 

after TPR (see Figure S2.8) allows to quantify the amount of H2 initially absorbed by the sample. The 

hydrogen consumption rate profiles were normalized by the mass of dry sample, using the mass 

fraction of chemisorbed and physisorbed water determined via TGMS. 

For the morphological study of ATO, a Philips CM200FEG microscope operated at 200 kV and 

equipped with a field emission gun, the Gatan imaging filter, and energy-dispersive X-ray (EDX) 

analyzer was used for TEM investigations. The coefficient of spherical aberration was Cs = 1.35 mm, 

and the information limit was better than 0.18 nm. High-resolution images with a pixel size of 0.016 

nm were taken at the magnification of 1083000X with a CCD camera. The Ir/ATO-samples were 

prepared by drop-casting two small drops of sample solution (powder+water) on carbon coated Cu 

grids. (S)TEM images and EDX elemental mapping were taken on an aberration-corrected JEOL JEM-

ARM200 operated at 200 kV. The microscope is equipped with a high angle Silicon Drift EDX detector 

with the solid angle of up to 0.98 steradians from a detection area of 100mm2. 

Diffuse reflectance infra-red Fourier Transform Spectroscopy (DRIFTS) was recorded with an MCT 

detector at a resolution of 4 cm-1 by accumulating 1024 scans, using a Praying MantisTM high 

temperature reaction chamber (ZnSe window) placed in a Bruker IFS 66 spectrometer controlled by 

OPUS software. Measurements were performed in an in-situ cell capable of heat treatment under 

gas flow conditions (Bronkhorst mass flow controllers). The samples were degassed under 10 

mL.min-1 flow over night. A background spectrum of pure KBr was performed at the room 

temperature. The used gases were supplied by Westfalen (99.99% purity at least). Ar was further 

purified by passing through Hydrosorb and Oxysorb cartridges. The Ir_XXX_Ar and Ir_XXX_O2 

samples (XXX=250 or 350°C) were heated under Ar and 21%O2/Ar flows respectively. 

Raman spectroscopic investigation was performed at 532 nm excitation wavelength using a confocal 

microscope setup (S&I GmbH, Warstein Germany) equipped with a PyLoN:2kBUV CCD camera and 

750 mm focal length of the monochromator (Princeton Instruments, ). The laser intensity density on 

the samples was chosen low enough to exclude decomposition of the amporphous IrOx structure. At 

higher laser intensities, sharp peaks corresponding to the IrO2-rutile modes appeared, indicating 

transformation of the amorphous Ir-oxohydroxide into IrO2 due to local heating. Spectra resemble 

an average of multiple measurements at different spots of the sample.  

XPS-analysis of the a.s. 30 mol.%-Ir/ATO was performed at room temperature using non-

monochromatized Al-Kα-radiation (1486.7 eV) and a hemispherical analyzer (Phoibos 150, SPECS). 

The binding energy was calibrated with respect to the Fermi edge. 
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2.3.4. Electrochemical characterization 

For electrochemical measurements, the samples were deposited on the anode using catalyst inks. 

Catalyst inks were prepared by suspending 4mg of sample in 6 mL Millipore-filtered H2O, 3.96 mL 

isopropanol (Sigma Aldrich) and 40 μL of a Nafion® suspension (5%-Nafion® perfluorinated resin 

solution, Sigma Aldrich). The suspension was sonicated in an ultrasonic bath for 30min. A rotating 

ring disk electrode (RRDE, Pine Research Instrumentation, 0.2475 cm2 glassy carbon disk, 0.1866 cm2 

Pt ring) was used as a working electrode support. Prior to use, the RRDE was repeatedly cleaned 

with Millipore-filtered water and isopropanol, mirror-polished with alumina bead slurries (Buehler, 1 

μm and 0.05 μm) on a polishing cloth, rinsed, sonicated for 15min in isopropanol in an ultrasonic 

bath and finally rinsed with Millipore water and isopropanol. Defined volumes of catalyst ink were 

then cast onto the RRDE using a micropipette in order to insure constant iridium-loadings. The 

loaded anode was dried for 30min at 60°C. All activity and stability measurements were conducted 

in a standard electrochemical cell containing approx. 100mL of H2SO4 (0.5mol.L-1) distributed 

between three compartments separated by fine-porosity glass frits. The central and biggest 

compartment contained the loaded working electrode (anode) mounted on a rotator (MSRX, Pine 

Research Instrumentation) ensuring a constant rotation of 1600 rpm. The reference electrode was a 

saturated calomel electrode (SCE) at +0.241V vs SHE, the counter-electrode was a platinized wire. 

The electrolyte was constantly purged with nitrogen at least 20 min before measurements started. 

Measurements were carried out with a VSP-multichannel potentiostat (Biologic Instruments). All 

measurements were corrected at 85% for ohmic drop using high-frequency impedance 

determination of the ohmic resistance (4 measurements, 100kHz, 20mV amplitude, open circuit 

potential (Eoc)). Anode potentials E are reported in V vs. Reversible Hydrogen Electrode (RHE). 

Contributions from the glassy carbon (GC)-support as well as the dried ink can be neglected as 

shown by the corresponding LSV in Figure S2.10. 

MW-Ir/ATO and Ir_250/350_Ar/O2 were subjected to a thorough screening procedure designed to 

yield a series of key performance indicators representative of OER-performance. The 

uncompensated ohmic resistance is then determined via electronic impedance spectroscopy (EIS) 

using a high-frequency impedance measurement (4 measurements, 100kHz, 20mV amplitude) and 

used by the EC-Lab software to automatically compensate for the ohmic drop in all following 

measurements. The electrode potential is then ramped to 1V vs. RHE (5 mV.s-1). Subsequent step 1 

assesses the intial OER-activity and consists of a LSV from 1 to 1.8 V vs. RHE and back to 1 V vs. RHE 

(5 mV.s-1). In order to account for possible changes in the electrolyte, the uncompensated ohmic 

resistance is then measured again via EIS at Eoc. Step 2 is designed to test catalyst stability under 

relevant OER-conditions using a chronopotentiommetric measurement of the anode potential at 

constant current densities of 10 mA.cm-2. The target current density is reached via a galvanodynamic 

ramp of 10 μA.cm-2. After the CP-measurement, a third step comprises another LSV-measurement 

performed as in step 2 in order to assess loss in activity over the 2h-CP-scan. This procedure is 

repeated three times for each compound with three different loadings (20, 50 and 100 μgIr.cm-2) in 

order to ensure some statistical certainty on the results with the additional advantage of providing 

information if the catalyst operates in kinetic control or whether mass-transfer/utilization effects 

come into play. 
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2.4. Results and discussion 

2.4.1. Catalyst support (ATO) synthesis and characterization 

The first synthesis-step involves the peptization of an acidic SbIII/SnIV-chloride solution at pH=4. We 

have selected a 5%-Sb-doping level based on literature reports indicating that above 7-9%, Sb tends 

to segregate from the ATO-phase.9,31,32 In order to synthesize a high surface-area ATO-compound, 

we adapted the hydrothermal synthesis of Nütz et al.9,11 to our MW-supported hydrothermal reactor 

setup. The hydrolyzed Sn/Sb-suspension was treated at various temperatures (180-290°C) for 1h. 

Nütz et al. used a similar pathway with a classical autoclave, which required higher treatment times 

(up to 16h).9,11 The resulting dried products were analyzed via XRD determine the successful 

incorporation of Sb into the SnO2-lattice. XRD patterns show coherent crystalline domains associated 

with the rutile structure of SnO2 cassiterite (Figure S2.1). No segregated Sb-oxide phase could be 

detected.  It has been reported that ATO-compounds are characterized by increasingly intense 

absorption in the IR-region above 1500nm with rising Sb-doping levels.10 Mishra et al. attribute this 

broad absorption feature to the incorporation of SbV into the SnO2 lattice upon hydrothermal 

treatment. At high SbV-doping levels, an impurity band that behaves in principle like a half-filled 

metallic band is created, which results in high n-type conductivity. The broad absorption in the IR-

region, corresponds to the easy thermal excitation of electrons from the impurity band to the tin-like 

conduction band (approx. 1.5 eV). This results in a blue coloration.10 The intensity of this band is thus 

a relative measure of the successful SbV-doping. 

 

Figure 2.1 Diffuse reflectance UV-Vis spectra of commercial reference samples (dotted lines) as well as ATO 
obtained from the MW-treatment of a colloidal Sb/Sn-suspension at various temperatures (full lines). 

Figure 2.1shows the diffuse reflectance DR-UV-Vis spectra obtained for the ATO-samples prepared at 

various MW-treatment temperatures. We compare the spectra to two commercial reference 

samples, one crystalline SnO2 (Aldrich, 99.9%) and one conductive ATO (Aldrich, 99.5%). All samples 

show adsorption in the UV-range below 320nm, which corresponds to the valence-to-conduction 
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band transition.11 As expected, the undoped commercial SnO2 shows no absorption in the IR region, 

whereas the commercial ATO is characterized by a broad absorption feature above 1500 nm 

corresponding to the successful SbV-incorporation. At high SbV-doping levels, an impurity band is 

created approx. 35 meV below the conduction band.33 This impurity band has a nearly free-electron-

like structure and behaves in principle like a half-filled metallic band. The resulting high n-type 

conductivity is also explained by the easy thermal excitation of electrons to the tin-like conduction 

band. As a result, ATO-compounds with high Sb-doping levels are characterized by a broad 

absorption peak in the IR-region, corresponding to excitations around 1.5 eV, resulting in a blue 

coloration.10 For the MW-produced ATO, the IR-absorption features grows in intensity with 

increasing treatment temperature and reaches a maximum for treatment temperatures of 270 and 

290°C. The highest level of SbV-incorporation was thus expected for the ATO prepared above 270°C. 

Absolute comparison of spectral intensities with the commercial samples is difficult as the sample 

morphology plays an important role in the scattering process.  

As expected from the DR-UV-Vis results, sample conductivities measured via the classical four-point-

probe contact measurement technique on pressed powder pellets showed that the MW-samples 

with the highest absorption in the IR-range showed the best conductivities, i.e. the most efficient 

SbV-doping. For hydrothermal treatment temperatures of 270°C and 290°C, resistivities of 

respectively 17 and 11 Ω.cm  were measured (see Table S2.1). Such results compare favourably to 

values reported in the literature9,34 as well as to the commercial ATO-benchmark (20 Ω.cm). In order 

to select the most suitable ATO-support, we compared the specific surface area (SBET) of the most 

conductive samples. The ATO synthesized at 270°C exhibited by far the highest SBET with 207 m2.g-1, 

which compares to 184 m2.g-1 for the sample prepared at 290°C and 41 m2.g-1 for the commercial 

ATO. Hence the ATO-compound synthesized at 270°C was selected as the catalyst support and will 

be referred further on as MW-ATO. The energy-dispersive X-ray spectroscopy of MW-ATO, recorded 

on random agglomerates in Scanning Electron Microscopy (SEM-EDX) confirmed a homogenous Sb-

distribution inside the SnO2-matrix at 5.0% (see Figure S2.2). TEM-images show a homogenous 

material consisting of small, approx. 5 nm-particles (see Figure S2.3), which is well in-line with the 

broad XRD-peaks and the high specific surface area measured (see Table S2.1). 

2.4.2. MW-assisted hydrothermal synthesis of MW-Ir/ATO 

Several reports on mixed Ir/Sn-oxide OER-catalysts.19,20,35 highlighted that for Ir-loadings below 20 

mol.%, mediocre OER-performance is achieved. This poor performance has been attributed to a sub-

critical surface concentration of OER-active Ir-sites for low loadings.23 Above 40%, De Pauli et al. also 

reported a sizeable decrease in mass normalized OER-performance of their Ir/Sn-materials, which 

they related to Ir-particle agglomeration.20 As a result, we decided to aim for a nominal Ir-loading of 

30 mol.% on ATO. This compound in its as synthesized state after MW-supported hydrothermal 

synthesis will be referred to as MW-Ir/ATO. The 30 mol.% Ir-loading of MW-ATO was achieved using 

K2IrCl6 dissolved in a highly basic suspension of MW-ATO. At basic pH, cations are readily adsorbed 

on ATO due the low isoelectric point of Sn-based compounds.36 Another important goal in preparing 

these solutions is to hydrolyze Ir-chloride precursors. Indeed chloroiridate(IV)-complexes are stable 

in solution at high temperature and pressure and do not yield a solid product after hydrothermal 

treatment.37 In presence of base, IrCl6
2-, which is a well-known outer-sphere oxidant, first reduces to 

IrCl6
3- via water oxidation.38 Evolution of oxygen bubbles can clearly be observed in the case of highly 

basic solutions. This phenomenon is also evidenced by the discoloration of the solution from red-
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brown to pale yellowish, due to the loss of the IrIVCl6
2- ligand-to-metal-charge-transfer-bands 

(LMCT).39 The subsequent hydrolysis of IrCl6
3- is a slow process occurring over days at room 

temperature and is still incompletely understood with respect to the suspected formation of mixed-

valence iridium oligomers.37,39,40 In our case, the Ir-hydrolysis was performed under controlled 

synthesis conditions using the microwave-supported hydrothermal treatment of the solution (250°C, 

1h). The product was centrifuged, repeatedly washed and dried.  

2.4.3. Physico-chemical characterization of MW-Ir/ATO 

The XRD-pattern of the prepared MW-Ir/ATO showed only the broad rutile-type pattern of MW-ATO 

(Figure S2.4). No crystalline Ir-oxide phase could be detected. X-ray fluorescence spectroscopy (XRF)) 

confirmed the successful loading of Ir on MW-ATO with a determined loading of 33 mol.%, close to 

the nominal 30 mol.%.  

STEM 

The sample morphology of MW-Ir/ATO was studied using Scanning Transmission Electron 

Microscopy (STEM). Figure 2.2.a) shows an annular dark-field STEM (ADF-STEM) image of MW-

Ir/ATO. In ADF-STEM mode, heavy elements such as Ir appear much brighter than the Sn/Sb-

containing ATO support. Elemental mapping using EDX shows (Figure 2.2.b) that the Ir has been 

homogenously loaded onto the ATO-support in the form of 2-4 nm particles (see also Figure S2.5). 

Some bigger spherical Ir/ATO-agglomerates could also be observed as shown in Figure S2.6. 

 

Figure 2.2 ADF-STEM imaging of MW-Ir/ATO with corresponding EDX-based elemental mapping 

 

Since no crystalline Ir-phase could be detected in XRD, it was surprising to find that crystalline Ir-

particles. Structural analysis (Figure S2.5) revealed that the observed crystal lattice corresponds to 

cubic metallic Ir. No oxidic iridium phase could be detected, even though the oxidic nature of the Ir-

phase was confirmed via TPR and XPS (see corresponding paragraphs). We conclude that for MW-
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Ir/ATO, the amorphous Ir-phase is immediately reduced under the electron beam to metallic Ir. 

(S)TEM-imaging can therefore only yield qualitative information on the sample morphology, i.e. the 

homogenous Ir-distribution. No reliable information on the chemical nature or crystal structure of Ir 

could be obtained. 

TGMS 

A powerful tool for the study of the sample composition is thermogravimetric-analysis coupled with 

mass-spectrometry (TG-MS). Mass changes and evolved gas products can be used to identify 

temperature-dependent decomposition mechanisms and phase transformations. MW-ATO and MW-

Ir/ATO were calcined in 21% O2/Ar (100 mL.min-1) using a 10K.min-1 heating ramp from room 

temperature to 800°C. Figure 2.3 shows the resulting mass loss profiles and the water evolution 

signals (m/z=18).  

 

Figure 2.3 TG-MS curves for the decomposition of MW-ATO and MW-Ir/ATO in oxidative (21%O2/Ar) and inert 
(Ar) gas streams. 

 

A first mass loss event observed for both samples below 150°C can be attributed to the removal of 

weakly bonded physisorbed water, which occurs at 87°C for MW-ATO and 120°C for MW-Ir/ATO. 

This indicates that physisorbed water has a higher affinity for the Ir-loaded compound, which might 
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be expected for a good water oxidation catalyst. Subsequent mass loss between 150 and 500°C can 

be assigned to hydroxyl group decomposition as no other intense signals are detected in MS besides 

traces of carbon (CO2 evolution, 180-220°C) and NH3 (NO removal, 420-450°C). The bare MW-ATO-

support features a late hydroxyl-decomposition-event in 21% O2/Ar with a first shoulder at 270°C 

and a major peak centered around 425°C accounting for evolved water (m/z=18). The loss of 

chemisorbed water accounts for 3.3 wt.%, which results in a formal ATO formula of 

Sn0.95Sb0.05O1.71(OH)0.58∙0.13H2O. This speaks for a highly hydroxylated surface in line with the high 

SBET. The chemisorbed water fraction in ATO compares to a chemisorbed water mass fraction of 5 

wt.% in MW-Ir/ATO. This indicates that MW-Ir/ATO contains a significantly higher fraction of 

hydroxyl groups, which can be attributed to the iridium phase. The Ir-phase can therefore be seen as 

an Ir-oxide/hydroxide phase. 

TPR 

Figure 2.4 shows the temperature-programmed reduction (TPR) profiles obtained for MW-ATO, 

MW-Ir/ATO and the reference IrO2-compound (SA-IrO2). During TPR to 800°C, the samples were 

entirely reduced to metallic Ir, Sn and Ir/Sn-alloys. XRD showed no sign of remaining oxide phases. 

Before the start of the TPR, samples were purged for at least one hour in Ar. We also compared the 

transient H2-signals obtained at room temperature during the switch from Ar to a 5%H2/Ar-stream 

before and after TPR. Discrepancies between the two signals would indicate adsorption and/or 

consumption of H2 by the sample at RT before the start of the TPR-program.  

 

Figure 2.4 TPR-profiles of MW-ATO, MW-Ir/ATO and SA-IrO2 

 

The H2-TPR profile of SnO2 has been previously studied in the literature.41 Sasikala et al. observed a 

first small reduction peak at 295°C and a major event at 620°C using a 15K.min-1 ramp. They assigned 

the first event to the reduction of distorted SnO2-crystal domains on the surface of small 

nanoparticles. Our nanostructured MW-ATO reduces in a similar fashion (blue line, Figure 2.4: A first 

small reduction feature is observed at around 240°C, which probably corresponds to surface 
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reduction of distorted or defective Sb-doped SnO2. The major reduction event presents as a broad 

H2-consumption feature centered around 593°C. In order to identify the TPR-profile of crystalline 

IrO2, we reduced a commercial IrO2-reference (SA-IrO2), which showed a main reduction peak at 

239°C (purple line). Neither SA-IrO2 nor MW-ATO showed H2-consumption at room temperature 

when comparing the transient H2-signals before and after TPR. 

In contrast, significant amounts of hydrogen were adsorbed on MW-Ir/ATO (Figure S2.8). Such an 

observation is in line with the observation of Reier et al. that their amorphous Ir-oxide/hydroxide 

already started reducing at room temperature, in contrast to the more crystalline IrO2-structures. 

Thus, H2-adsorption at RT seems to be a specific feature of the amorphous Ir-oxohydroxide phase 

formed under hydrothermal treatment conditions. Since no hydrogen release is detected during the 

measurement, the amount of RT-adsorbed H2 has to be taken into account when determining the 

amount of hydrogen consumed during sample reduction. 

During TPR, a sharp reduction feature at 77°C was observed for MW-Ir/ATO (inset in Figure 2.4). This 

compares well with the signal attributed by Reier et al. to their amorphous Ir-oxide/hydroxide phase 

and allows us to identify this sharp peak with the reduction of the Ir-oxohydroxide phase. An 

additional feature at 123°C should also be attributed to the reduction of Ir and might account for a 

second reduction step or morphological effects, such as the reduction of the more compact spherical 

structures observed in TEM (Figure S2.6). The broad feature above 250°C with peaks at 296 and 

346°C is assigned to the ATO-support. It seems that the Ir-loading has a dramatic effect on the 

reduction sensitivity of the ATO-matrix and poses the question whether the already reduced Ir-

particles at the surface act as H2-activation catalysts and/or preferential adsorption sites during TPR, 

thus modifying the ATO-reduction mechansim.  

We determined the average oxidation state of Ir in MW-Ir/ATO via the quantification of the 

consumed hydrogen and by taking into account the content of physisorbed and chemisorbed water. 

As a result, Ir was determined to be in a +3.28 oxidation state. Even by taking into account 

experimental error due to the small masses used, it is clear that the Ir-oxohydroxide is a mixed oxide 

phase, involving Ir-oxidation states of less than IV.  

2.4.4. XPS-analysis of Ir-species 

In order to determine the oxidation state of Ir-species present in MW-Ir/ATO, the sample was 

studied using X-ray photoelectron spectroscopy (XPS). Due to the small 2-4 nm size of the Ir-particles 

observed in STEM (Figure 2.2), bulk as well as Ir-surface species contribute to the XPS-signals, which 

are thus an average over all Ir-species present in the sample. When studying OER-relevant Ir-based 

catalysts by XPS a major challenge is that even well-defined rutile IrO2 presents an atypical Ir 4f-

lineshape. The Ir 4f lines cannot be fitted with the Doniach-Šunjic function often applicable for 

asymmetric core level spectra of conductors. For this purpose, we recently developed an accurate 

Ir 4f fit model for rutile IrO2 by combining theoretical calculations with experiments.42,43 Within a 

one-electron picture we found that Gaussian “shake-up” satellites add intensity to the Ir 4f spectrum 

1 and 3 eV above the main lines. This model gives more solid ground for the identification of the 

contributions of IrIV-species to Ir 4f spectra and allows for a precise Ir 4f deconvolution in order to 

identify contributions from other Ir-oxidation states.  
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Figure 2.5 XPS of MW-Ir/ATO in the Ir4f-region fitted using the models developed by Pfeifer et al.
42,43

 

It was already noted in several studies on Ir-based OER-catalysts performed ex-situ44 as well as in-

situ45 that OER-active compounds presented additional contributions in their Ir4f-spectra at higher 

binding energies than expected for IrIV (61.8 eV (Ir4f7/2) and 64.8 eV (Ir4f5/2). Based on the higher 

binding energies of the Ir4f-electrons of the additional species, Casalongue et al. attributed these 

contributions to IrV-species formed in-situ during the OER and involved in the catalysis of water 

oxidation.45 However, caution should be used when assigning oxidation states based only on binding 

energy shifts. In our aforementioned investigation of the electronic structure of an amorphous Ir-

oxohydroxide compound, we showed that Ir 4f intensity at higher binding energies can be attributed 

to IrIII-species comprising satellite features. This model was used to fit the XPS data recorded for 

MW-Ir/ATO in the Ir4f-region (Figure 2.5). The obtained fit describes the experimental data 

accurately and confirms that the near-surface region of the Ir-particles probed at kinetic energies of 

1425 eV consists of a mixed valence state IrIII/IV-compound. IrIII-species accounted for more than 50% 

of the observed intensity, which is well in line with the average Ir3.28-oxidation state calculated from 

the TPR-results. 

2.4.5. OER-performance of MW-Ir/ATO 

In order to assess the OER-performance of MW-Ir/ATO, used a chronopotentiommetric (CP)-test at 

10 mA.cm-2 (see Figure S2.9). This procedure has been used in recent benchmarking efforts in order 

to reference the most promising OER-catalysts6,46 and allows to compare our catalyst to the best 

reported benchmarks. We also tested AA-IrOx, which is close in nature to MW-Ir/ATO and was used 

as a reference compound by Pfeifer et al.42,43  
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The overpotentials η needed to maintain the current density of 10 mA.cm-2 after various amounts of 

time were used as indicators of activity and stability (see Table 2.2). At Ir-loadings of 50 and 100 

μgIr.cm-2, our MW-Ir/ATO proved to be the only OER-catalyst able to matain rather constant 

overpotentials after 24h, which indicates excellent stability. It appears that in terms of stability-

related OER-performance, MW-Ir/ATO used at loadings equal to or above 50 μgIr.cm-2 surpasses all 

Ir-based benchmarks reported in peer reviewed literature under similar conditions.6,46 

Table 2.2 Benchmarking parameters for the most performant samples compared to previously reported 
reference compounds during a galvanostatic measurement at 10 mA.cm

-2
. 

Catalyst η
t=0 

(V) η
t=2h 

(V) η
t=24h 

(V) Ir-loading (μg.cm
-2

) 
MW-Ir/ATO 0.35 0.37 --b 20 

MW-Ir/ATO 0.31 0.33 0.35 50 
MW-Ir/ATO 0.31 0.32 0.34 100 
AA-IrOx 0.37 --b --b 20 

SIROF
4 0.34 0.36 0.44 n.r.

a 
Sputtered Ru

4 0.28 0.34 0.82 n.r.
a 

20wt.% Ir/C
22 0.38 -- -- 28 

AIROF
21 0.28 0.30 -- -- 

[a] Reactive sputtering resulted in a >100nm thick Ir-film (see ref. 6,47) 
[b] Not reached as potentials overshot the 1.8 V vs. RHE-mark earlier 

 

2.4.6. Effect of thermal treatment on MW-Ir/ATO 

The characterization of MW-Ir/ATO revealed an ATO-supported IrIII/IV-oxohydroxide with exceptional 

OER-performance. In order to determine to what extent the nature of the Ir-phase is responsible for 

the OER-performance, we decided to study the effect of thermal treatment at moderate 

temperatures. TGMS revealed that important removal of chemisorbed water from MW-Ir/ATO starts 

early on in the 150-200°C temperature range. We decided to submit the sample to thermal 

treatment at 250°C and 350°C under both inert (Ar) and oxidative (21% O2/Ar)-streams.  

Major changes to the Ir-phase are expected in this temperature region due to the dihydroxylation, 

changes in oxidation state and possible crystallization. Thus changes in the OER-performance of the 

resulting compounds could be related to structural changes and eventually lead to the identification 

of OER-relevant fingerprints. 

2.4.7. Thermally-induced structural changes 

The XRD-patterns of the calcined samples only revealed the rutile-type pattern of the ATO support 

(see Figure S2.11). No Ir-oxide phase could be identified, which indicates that no large aggregates of 

crystalline Ir-oxides were formed. The thermal treatment had little effect on SBET at 250°C, whereas 

for 350°C, a clear diminution in SBET is observed (see Table 2.3). 
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Table 2.3 Specific surface areas of MW-Ir/ATO and thermally treated products 

Electrocatalyst SBET (m
2.g-1) 

MW-Ir/ATO 154 

Ir_250_O2 140 

Ir_350_O2 105 

Ir_250_Ar 144 

Ir_350_Ar 109 

 

TG-analysis 

The thermal treatment of MW-Ir/ATO was simulated in a stepwise TG-experiment were the sample 

was annealed stepwise at 250°C and 350°C for 1h in 21% O2/Ar or Ar (100 mL.min-1). The resulting 

mass loss profiles are shown in Figure S2.11. It can be observed that after 1h at 250°C in Ar-stream, 

MW-Ir/ATO loses 0.33% more mass than in oxidative stream. If one neglects other stream-

dependent mass changes at 250°C, this indicates that a significantly higher amount of the hydroxyl-

fraction attributed to the Ir-phase is lost after annealing MW-Ir/ATO at 250°C in Ar. 

STEM 

In order to gain insight into morphological changes upon thermal treatment, the samples upon 

calcination under oxidative atmosphere were analyzed using (S)TEM. The ADF-STEM image of 

Ir_250_O2 is shown in Figure 2.6.a). Similar to the case of MW-Ir/ATO, only bright metallic Ir-particles 

of approx. 2-4nm could be detected, indicating that the Ir-phase was also immediately reduced by 

the electron beam. The observed strucuture confirms that no major changes in sample morphology 

occur upon thermal treatment at 250°C, as shown by the little change in SBET. We extrapolate this 

observation to Ir_250_Ar due to the even more stable SBET. 

 

Figure 2.6 ADF-STEM imaging of Ir_250_O2 (a) and Ir_350_O2 (b). 
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For Ir_350_O2, however, the morphology was found to differ from MW-Ir/ATO and Ir_250_O2. Ir-

particles seemed larger and showed a higher wetting on the ATO-support (Figure 2.6.b)). This is in 

line with the sharp 25%-decrease observed in SBET between Ir_250_O2 and Ir_350_O2. 

In some regions, we detected large portions of bare rutile-type ATO-support, which initially showed 

no presence of metallic Ir-particles (Figure 2.7.a). However brighter contrast on the outer shell of the 

central particle shown in Figure 2.7.a for instance, suggests that the ATO support is covered with a 

thin Ir-film in the same rutile-type structure. This would correspond to IrO2-rutile. The time-

dependent in-situ STEM observation of the same spot clearly showed that under beam irradiation, 

metallic Ir-particles blossomed in a matter of minutes where such brighter contrast could initially be 

observed (Figure 2.7.b and Figure 2.7.c). This indicates that the thin IrO2-film is being reduced to Ir0. 

IrO2 has usually been described as stable under the electron beam. At 350°C, we probably are in 

presence of a still highly defective, partially hydroxylated IrO2-type phase. The transition towards 

IrO2 at 350°C however explains our ability to observe the reduction to Ir0 under electron irradiation 

as the Ir-phase in Ir_350_ O2 is closer to IrO2. Due to the difficulty of assigning phases formed or 

modified by the electron beam, the Ar-treated samples were not studied using STEM. 

 

Figure 2.7 In-situ STEM observation of Ir_350_O2 over 210 s showing the evolution of sample morphology 
under the electron beam. The ADF-STEM imaging allows to relate contrast changes to heavier (brighter) or 

lighter (darker) atoms. 
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Temperature-dependent DRIFTS  

In order to obtain fingerprints of chemical bonds present in the samples, vibrational spectroscopy 

was required. The use of diffuse reflectance infrared Fourier transformed spectroscopy (DRIFTS) 

allows for the study of compounds in a loose, powdered state under gas streams and conditions 

close to the real thermal treatment. Structural changes during the calcination of MW-ATO and MW-

Ir/ATO in 21%O2/Ar were studied in-situ using DRIFTS during a stepwise heating experiment to 

350°C. 

The DRIFTS spectra recorded for the MW-ATO support during the stepwise heating experiment are 

discussed in further detail in the S.I. (Figure S2.12). The most prominent structural features are 

located below 1500 cm-1. A strong signal is located at 760 cm-1 and shifts to 778 cm-1 above 250, 

while its intensity gradually increases. According to the TGMS-profile (see Figure 2.3), above 250°C, 

MW-ATO is being strongly dehydroxylated and thus forms more oxide-like structures. One would 

thus assign the strong contribution between 760 and 778 cm-1 to O-(Sn/Sb)-O, (Sn/Sb)-O-(Sn/Sb) and 

other lattice vibrations. In the literature these features are usually being observed at lower 

wavenumbers in the 600-660 cm-1-range.48,49 The important difference could be explained by varying 

tin doping levels as well as important differences in particle-sizes and -shapes, which have significant 

influence on peak positions.50 Most FTIR-studies are being performed on ATO-films, in contrast to 

our 5 nm-particles. In general, the observed increasing intensity of lattice features in the DRIFTS-

spectra of MW-ATO is in line with an increasing crystallinity of the ATO upon calcination. 

 

Figure 2.8 DRIFTS measurements (5500-2000 cm
-1

) of MW-Ir/ATO during stepwise treatment at various 
temperatures in 21%O2/Ar, 100 mL.min

-1
. Kubelka-Munck transformation of the reflectance spectra (a) and 

corresponding difference spectra between said temperature and 100°C (b). 
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Important differences are observed for the Ir-loaded MW-Ir/ATO. Figure 2.8 shows the Kubelka-

Munk-corrected DRIFTS-spectra obtained after treatment to or above 100°C in 21%O2/Ar. According 

to TGMS-results, loosely physisorbed water has been removed after heating at 125°C and shouldn’t 

contribute to the observed signal. Broad but pronounced features are observed in the 3000-3700 

cm-1-region, which indicates a high hydroxyl-fraction in the added Ir-phase (Figure 2.8.a). Such 

features indicating a highly hydroxylated nature were recently reported by Ito et al. for Ir-oxide films 

sputtered in a reactive wet atmosphere as opposed to dry oxygen.51 Hydroxyl groups showing up at 

3700-3450 cm-1 usually correspond to isolated OH-groups on the oxide surface, while the broad 

features in the 3400-3100 cm-1-region should be assigned to more or less strongly H-bound hydroxyl 

groups and water molecules present in the bulk or strongly physisorbed on the surface. A broad 

feature around 2950 cm-1 is assigned to C-H-stretching frequencies and might originate from C-

contaminations from the atmosphere. Such features were also observed by Ito et al. but assigned to 

hydrogen-bonded OH-groups.  

The effect of thermal treatment on the chemisorbed water fingerprint is evidenced when observing 

the difference spectra between the spectra recorded at a given temperature and the 100°C-spectra 

(Figure 2.8.b). Temperature-induced changes in the background scattering might account for overall 

baseline shifts, however two pronounced events can be isolated. At 250 and 350°C the spectra lose 

important contributions centered at 3545 cm-1 and 3010 cm-1. If we assign the contribution at 3545 

cm-1 to isolated surface hydroxyls, the Ir-surface seems to be strongly dehydroxylated above 250°C, 

while H-bonded hydroxyl groups probably located deeper in the bulk remain stable and will be 

removed at higher temperatures. The signal loss at 3010 cm-1 would in turn be assigned to the 

removal of surface carbonaceous species. Unfortunately, signals were too broad to be used in a 

comparison of the dehydroxylation of MW-Ir/ATO in oxidative and inert atmosphere. Hence, we 

don’t discuss DRIFTS-results for Ar-calcination here. 

 

Figure 2.9 DRIFTS measurement of MW-Ir/ATO (Kubelka-Munck transformation, 1000-500 cm-1) 

during stepwise treatment at various temperatures in 21%O2/Ar, 100 mL.min-1.  
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Additional information on the effect of thermal treatment can be found at lower wave numbers. 

Figure 2.9 shows the only feature that could be clearly assigned to the ATO-support in the spectra of 

MW-Ir/ATO. It corresponds to the strongest feature detected for MW-ATO at 760 cm-1 at room 

temperature. This feature is slightly shifted to 734 cm-1 in MW-Ir/ATO and instead of increasing in 

intensity with rising temperatures, it gradually shrinks. We suggest that the higher wetting of Ir-

particles observed in STEM (Figure 2.6.b) and the suspected formation of an Ir-oxide film (Figure 

2.7.a) are responsible for deduced for the diminution of the only clearly visible ATO-feature. IrO2 is 

known for its reflective properties in the IR-region, which result from the characteristic plasma 

frequency and is dependent on the electronic density.52 If the Ir-oxohydroxide particles are being 

transformed into a film of more IR-reflective IrO2, this creates increased shielding of the ATO-

support from the incident IR-radiation, thus a decreased contribution of the support to the overall 

spectrum. The formation of an IrO2-type phase is confirmed by an additional shoulder visible at 

approx. 557 cm-1 (Figure 2.9). Indeed absorption at around 550 cm-1 has been repeatedly attributed 

in the literature to lattice Ir-O-bonds in IrO2.
51,53 This indicates that small crystalline IrO2-domains 

even start forming at 250°C. 

Raman spectroscopy 

Complementary vibrational fingerprints resulting from chemical bonds and lattice structures in the 

samples can be extracted from the Raman spectra of the samples. The Raman-active modes of 

crystalline rutile-type structures such as IrO2 and SnO2 have been calculated and experimentally 

assigned early on.54,55 In the case of crystalline SnO2, the three expected observable Raman modes Eg 

(476 cm-1), A1g (629 cm-1), and B2g (772 cm-1) can be detected in the spectrum of MW-ATO (black line 

in Figure 2.10). Additional broad features, for instance at 570 cm-1 are usually assigned to surface 

Raman modes that cannot be neglected for small nanoparticles exhibiting distorted crystal 

structures towards the surface56, as in the case of MW-ATO.  

In MW-Ir/ATO (green line), the most prominent feature shows up at 493 cm-1, which is clearly 

distinct from the Raman modes assigned to rutile-IrO2 at 561 cm-1 (Eg), 752 cm-1 (A1g) and 728 cm-1 

(B2g).
54 The Raman signature of the ATO-support is identified by two broad shoulders above 600 cm-

1. Deconvolution of the spectra is ambiguous because of the strongly overlapping broad features. 

XPS and TGMS have shown the IrIII/IV-oxohydroxide nature of MW-Ir/ATO. However, no theoretical 

data concerning the Raman modes of amorphous Ir-oxohydroxides is available.  

Recently some studies described planar bis-μ-oxo di-Ir(IV) structures involved in the structure of 

active Ir-based catalysts formed from organometallic precursors under OER-relevant conditions.57,58 

Hintermair et al. calculated the corresponding Raman-active vibrations and observed the Raman 

features of the bis-μ-oxo di-Ir(IV)-unit in-situ between 559 and 666 cm-1.57 Our main peak at 493 cm-1 

is shifted compared to these values and smaller contributions cannot be distinguished from the 

complex ATO-signal. However, Huang et al. pointed out the relevance of such iridium-oxo-domains 

for the understanding of OER-relevant amorphous iridium-oxohydroxide-based catalysts. The 

characteristic peak observed at 493 cm-1 for MW-Ir/ATO might be assigned precisely to such an 

amorphous iridium oxo-domain. 
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Figure 2.10 Raman spectra of the support (MW-ATO), of the as prepared MW-Ir/ATO as well as after thermal 
treatment at 250 or 350°C in 21%O2/Ar (a) or 100% Ar (b). 

 

The effect of thermal treatment on MW-Ir/ATO is clearly reflected in the Raman spectra recorded 

for the samples calcined at 350°C in 21% O2/Ar and 100% Ar. Distinct strong peaks appears for 

Ir_350_O2 and Ir_350_Ar at 550 cm-1 as well as around 730 cm-1. These features can be attributed to 

the Eg-, A1g- and B2g-modes of IrO2-rutile and confirm the indications from STEM and DRIFTS that an 

IrO2-phase is being formed. It seems that thermal treatment at 350°C in both atmospheres leads to 

the formation of IrO2-rutile domains. However it is also evident that the ratio between the IrO2-Eg-

peak mode at 550 cm-1 and the Ir-oxohydroxide-peak at 493 cm-1 shift in opposite directions 

depending on the gas used for the thermal treatment. For Ir_350_O2, the 493 cm-1-feature seems 

more intense than the IrO2-Eg-peak (Figure 2.10.a)), while the opposite trend is observed for 

Ir_350_Ar (Figure 2.10.b)). This could indicate that the amorphous Ir-oxohydroxide featuring Ir-oxo 

domains linked to the 493 cm-1-feature are decomposed faster in 100% Ar than in 21% O2/Ar. For the 

samples prepared at 250°C, no IrO2-features could be distinguished, indicating that IrO2-domains 

detected in DRIFTS are still a minority phase comparing to the samples produced at 350°C. 
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TPR 

TPR of the calcined samples yields indications on thermally-induced changes in Ir-phase and 

oxidation state. Figure 2.11 shows the TPR-profiles of the samples produced at 250°C (Figure 2.11.a) 

and 350°C (Figure 2.11.b) compared to MW-Ir/ATO (green profile). During TPR to 800°C, the samples 

were entirely reduced to metallic Ir, Sn and Ir/Sn-alloys. XRD showed no sign of remaining oxide 

phases. 

In section 2.2., TPR of MW-Ir/ATO allowed us to identify the sharp reduction peak at 77°C as a 

characteristic reduction feature of the Ir-oxohydroxide phase deposited on ATO (Figure 2.4). Another 

distinctive feature of this phase was the important uptake of hydrogen at room temperature. The 

morphological observations and spectroscopic fingerprints reported above for the calcined samples, 

seem to indicate a gradual decomposition of the Ir-oxohydroxide, mostly to crystalline IrO2. 

Diminution of the characteristic fingerprints linked to the Ir-oxohydroxide is thus expected for the 

calcined samples. 

 

Figure 2.11 TPR-profiles of MW-Ir/ATO (green line), and the samples obtained after treating MW-Ir/ATO in 
21%O2/Ar (full lines) and Ar (dotted lines) at 250°C (a, orange) and 350°C (b, red). 
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We first assessed the H2-uptake of the calcined samples at room temperature. Ir_250_Ar and 

Ir_250_O2 both absorbed high amounts of H2, comparable to the case of MW-Ir/ATO (see Table 2.4). 

For Ir_350_Ar and Ir_350_O2, the amount of RT-adsorbed hydrogen clearly diminished. As Raman 

and IR-spectroscopy both confirm the partial transformation of the Ir-phase into crystalline IrO2-

domains at 350°C, the observed decrease of RT-adsorbed hydrogen is well in line with the behavior 

of the SA-IrO2 reference (see Table 2.4 and Figure 2.4). On the opposite, the important H2-uptake at 

RT indicates that the samples calcined at 250°C are still in a state close to the Ir-oxohydroxide 

present in MW-Ir/ATO. 

The changes in TPR-profiles yield additional information on the thermally-induced changes in the Ir-

phase. The features assigned to ATO-reduction above 250°C remain relatively stable independently 

of the thermal treatment, indicating that the bulk electronic structure of the ATO-support was little 

affected. On the other hand, important differences in the reduction profiles of the Ir-particles were 

observed. At 250°C (Figure 2.11.a)), changes are subtle: The sharp feature at 77°C only slightly 

diminishes for both Ir_250_O2 and Ir_250_Ar, indicating a minor depletion in the Ir-oxohydroxide 

phase.  For Ir_250_Ar, the characteristic peak also shifted from 77 to 75°C hinting at a higher 

reducibility of the Ir-oxohydroxide phase. In both atmospheres, a slightly higher amount of the 

species at 123°C seems to be formed, which might be attributed to morphological changes. The 

calcultion of the average oxidation state showed no significant difference between Ir_250_O2 and 

Ir_250_Ar (see Table 2.4). This confirms that the higher mass loss observed in stepwise TG-analysis 

of MW-Ir/ATO was indeed linked to faster dehydroxylation in Ar than in 21%O2/Ar and not to oxygen 

uptake/release. 

Table 2.4 Characteristic values extracted from TPR-profiles including the H2-uptake at RT (nH2,RT), the H2-
consumption during TPR (nH2,TPR) and the resulting calculated average oxidation state of Ir. 

Compound nH2,RT 
(mmol.g
-1) 

nH2,TPR 
(mmol.g
-1) 

Avg. Ir-oxidation 
state 

MW-Ir/ATO 1.07 9.80 3.28 ±0.07 

Ir_250_O2 1.25 9.25 2.9 ±0.06 

Ir_350_O2 0.38 11.21 4.06 ±0.08 

Ir_250_Ar 1.17 9.49 3 ±0.06 

Ir_350_Ar 0.64 9.61 2.52 ±0.05 

SA-IrO2 0 9.07 4.09 ±0.08 

 

The most notable changes in TPR-profiles are seen for the samples treated at 350°C (Figure 2.11.b)). 

Both compounds exhibit two additional reduction peaks centered at 185 and 253°C, which is in close 

range of the IrO2-reduction feature obtained for SA-IrO2 at 239°C (Figure 2.4). This is well in line with 

the identification of characteristic IrO2-modes via DRIFTS and Raman spectroscopy. Features below 

100°C, assigned to the Ir-oxohxydroxide phase have been significantly reduced in both samples. The 

inset in Figure 2.11.b shows that a small residual reduction takes place for Ir_350_Ar at 71°C, while a 

broader and more important feature is detected for Ir_350_O2 at 95°C. The observed differerences 

in H2-comsumption are reflected in the calculated average oxidation state: Ir_350_Ar was found to  

be in an average Ir2,52+-state. Since no additional features in the TPR-profile of Ir_350_Ar indicate an 
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additional Ir-oxide phase, we conclude that part of the Ir is reduced to metallic Ir0 upon thermal 

treatment at 350°C in Ar. The rest of the oxidic Ir transforms into an IrO2-type phase detected via 

Raman and showing the same TPR-profile as Ir_350_Ar. Ir_350_O2 was found to be in a Ir4.06-

oxidation state. This indicates that the oxidic Ir is completely transformed into an IrO2-type phase in 

Ir_350_Ar. 

We conclude that both in inert and oxidative atmosphere the Ir-oxohydroxide phase was 

transformed into small domains of an IrO2-type phase at 350°C. Under Ar at 350°C however, part of 

the Ir is reduced, probably to metallic iridium. Vibrational spectroscopy confirms the presence of 

such IrO2-domains. At 250°C, the oxidation state is less affected and the dominating event seems to 

be the faster dehydroxylation observed in Ar-atmosphere via TG-analysis. 

2.4.8. Effect of thermal treatment on OER-performance  

A systematic electrochemical testing protocol was designed for the testing of MW-Ir/ATO and 

Ir_(250/350)_(O2/Ar). In order to compare the OER-performance of the catalysts under industrially 

relevant conditions, the OER-activity was assessed via LSV before and after a CP-based stability test 

at 10 mA.cm-2. In order to improve the statistical relevance of the results, the test protocol was 

repeated three times for each compound with three different loadings (20, 50 and 100 μgIr.cm-2). For 

easy comparison, we report the loading-dependent mass activity of the iridium-catalysts at a typical 

overpotential of η=0.35 V.46 Figure 2.6 shows a summary of the values obtained before and after the 

stability test.  

If the catalyst operated under kinetic control, mass-normalized currents at a given overpotential 

would be independent of catalyst loading. It appears that for all compounds, the mass activity 

gradually decreases with increasing Ir-loading, which suggests that utilization effects come into play. 

A build-up of Ir-layers and decreasing Ir-utilization is to be expected from a drop-coating procedure. 

The comparison of initial activities (plain bars in Figure 2.12) shows that the untreated MW-Ir/ATO is 

the most active compound, with mass activities reaching 1.1 A.mgIr
-1 for the lowest loading. Thermal 

treatment led to a substantial decrease in initial mass activity independently of the atmosphere 

used. Interestingly, Ir_250_Ar was significantly more affected than Ir_250_O2. The small differences 

in specific surface area between MW-Ir/ATO (154 m2.g-1), Ir_250_O2 (140 m2.g-1) and Ir_250_Ar (144 

m2.g-1) suggest that the notable decrease in OER-activity cannot be explained only by changes in 

sample morphology. As a result, we suspected that changes in the chemical nature of the Ir-phase 

might play a major role.  

Ir_350_Ar and Ir_350_O2 exhibited very similar initial mass activities about 65% lower than for MW-

Ir/ATO. This is in line with the described transformation of the Ir-oxohydroxide into crystalline IrO2. 

This is in line with the results presented by Reier in terms of OER-activitiy of Ir-catalysts calcined at 

higher temperatures where IrO2 was formed.44 
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Figure 2.12 Loading-dependent mass activity at η=0,35V before (plain bars) and after CP at 10 mA.cm
-2

 
(patterned bars) for (a) MW-Ir/ATO (a) and its thermally treated products (b) Ir_250_O2, (c) Ir_350_O2, (d) 

Ir_250_Ar and (e) Ir_350_Ar. 

 

The study of the CP-curves (see Figure S2.14) showed that the samples seem to be deactivated 

following different regimes, depending on the overpotential region. Below 1.65V vs. RHE, potential 

curves are constant or slowly increasing. On the opposite, once potentials above 1.65V vs. RHE are 

reached, a much faster deactivation seems to occur as overpotentials needed to maintain the 

desired current density increase quickly. Cherevko et al. already reported on the potential-

dependent dissolution rates of their calcined Ir-electrocatalysts, which is one possible deactivation 

mechanism.28 Since loadings of 20 μgIr.cm-2 require initial anode potentials near 1.6 V vs. RHE to 

obtain 10 mA.cm-2, they reach the critical potential region faster and are subjected earlier to 

oxidative degradation. This explains the higher decrease of OER-activity observed at 20 μgIr.cm-2 

after CP for all samples (patterned bars in Figure 2.12). MW-Ir/ATO was the only compound showing 

appreciable stability:  During CP, overpotentials stabilized at approx. 1.56 V vs. RHE (η=0.35 V) for 

loadings above 50 μgIr.cm-2 and loss of OER-activity is limited. 

In the assessment of OER-mass activities after the stability test (Figure 2.3.b) the compounds seem 

to rank following the same order as initially: MW-Ir/ATO is still the most active compound, followed 

by Ir_250_O2. Ir_250_Ar and the 350°C-calcined samples exhibit the lowest activities and have thus 

been deactivated the most. It becomes clear that thermal treatment at temperatures of 250/350°C 

in inert and oxidative atmospheres has an adverse effect on both catalyst activity and stability. The 

best OER-performance is obtained for the as synthesized MW-Ir/ATO.  
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The poor general OER-performance of the samples produced at 350°C is linked to the formation of 

small crystalline IrO2-domains in both atmospheres, which is in line with the results of Reier et al.44 

The striking difference in OER-performance observed between Ir_250_O2 and Ir_250_Ar might yield 

another important clue on OER-relevant features of the IrIII/IV-oxohydroxide phase. Since oxidation 

states and morphologies were relatively similar, we isolated the observed faster dehydroxylation in 

Ar as a possible explanation for the great loss in OER-activity and -stability observed for Ir_250_Ar. 

This implies that the hydroxylated structure of the IrIII/IV-oxohydroxide phase might play an 

important role in stabilizing precursor sites for the OER-catalysis. The thermally induced loss of the 

chemisorbed water fingerprint seems to be accelerated in Ar at 250°C and leads to the bad 

performance registered for Ir_250_Ar. This suggestion is in line with OER-relevant surface hydroxyls 

groups described recently by Reier et al. in a series of Ir/Ni-mixed oxides.59 

2.5. Conclusion 

The reported study of hydrothermally prepared Ir-particles dispersed on ATO confirms the 

prominent role of the little investigated class of Ir-oxohydroxide compounds. The 30 mol.%-Ir/ATO 

obtained from MW-supported hydrothermal treatment of hydrolyzed Ir-precursors at 250°C showed 

exceptional OER-performance under commercially relevant conditions in comparison with reported 

benchmarks. Careful analysis revealed the IrIII/IV-oxohydroxide nature of the Ir-phase. The 

detrimental effect of thermal treatment highlighted that the particular chemical nature of the Ir 

accounts for the high activity and stability. Activity-relevant hydroxyl groups were removed at 250°C, 

faster in inert than in oxidative atmosphere. This led to a sharp decrease in OER-performance. At 

350°C, a further decrease in OER-performance was linked to the appearance of small crystalline IrO2-

domains observed via vibrational spectroscopy and TEM-imaging. As a result, we could confirm the 

major role played by amorphous Ir-structures for OER-electrocatalysis. Our proposed MW-supported 

pathway gives access to a synthesis parameter range that bridges the gap between low-temperature 

hydrolysis of iridium precursors and high-temperature calcination routes. The resulting IrIII/IV-

oxohydroxide compounds bypass the conundrum of having to sacrifice activity for stability by 

producing crystalline IrO2-phases. We highlight the potential of such compounds for industrially 

relevant applications. In order to obtain a more thorough understanding of the Ir-oxohydroxide class 

without the influence of support-effects, follow-up work will focus on unsupported Ir-oxohydroxides 

in order to gain a better understanding of OER-relevant species hosted by the IrIII/IV-oxohydroxide 

structure. 
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2.7. Supporting information 
 

XRD-patterns of ATO-compounds 

 

 

Figure S2.1 XRD of commercial SnO2 and ATO samples was well as MW-Ir/ATO 

 

Due to the very similar ionic radii of SnIV, SbIII and SbV and the broad peaks resulting from small 

crystalline domains, the obtained XRD-patterns cannot be distinguished from the pure SnO2-

cassiterite. 

 

ATO-conductivities 

 

Table S2.1 Specific surface area and resistivities of commercial powders and samples prepared in the MW at 
various temperatures. 

Compound ρ [Ω.cm] SBET [m
2.g-1] 

Com. SnO2 1,28.104 7 

MW-ATO 180°C 1,92.105 -- 

MW-ATO 210°C 1,55.104 -- 

MW-ATO 240°C 5,10.104 -- 

MW-ATO 270°C  1,71.101 207 

MW-ATO 290°C 1,17.101 184 

Com. ATO 2,02.101 41 
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Electron microscopy of MW-ATO 

 

  

Figure S2.2 SEM-EDX of MW-ATO. The image represents a typical location for EDX.EDX-spectra were taken at a 
primary energy of 20kV in areas with a window size of 5µmx5µm on different agglomerates (interaction depth: 

2µm). 

  

 

Figure S2.3 TEM-image of MW-ATO. 
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XRD of the Ir-loaded compounds 

 

Figure S2.4 XRD of as synthesized MW-Ir/ATO (green line) and of thermal treatment products at 250°C 
(orange) and 350°C (red) under 100 mL.min

-1
 of 21% O2/Ar (full lines) or 100% Ar (dotted lines) 

TEM of MW-Ir/ATO 

 

 

Figure S2.5 ADF-STEM imaging of MW-Ir/ATO including Fast-Fourier-transformation of selected areas 
corresponding to cubic metallic Ir-lattices 
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Figure S2.6 ADF-STEM imaging of MW-Ir/ATO including EDX-based elemental mapping of one of the Ir/ATO-
clusters found in MW-Ir/ATO 

 

TGMS of MW-Ir/ATO 

 

Figure S2.7 XRD the calcination products of the MW-ATO-support and the loaded MW-Ir/ATO after 
thermogravimetric analysis in oxidative (21% O2/Ar) and inert (Ar) gas streams. 
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Temperature-programmed reduction (TPR) 

  

Figure S2.8 Time-dependent hydrogen signals detected via the Thermal Conductivity Detector (TCD) during the 
switch from a 100% Ar to a 5% H2/Ar gas stream (80 mL.min-1) before (dark line) and after the TPR (red dashed 

line) for (a) MW-ATO (a) and (b) MW-Ir/ATO. 

 

OER-performance of MW-Ir/ATO 

 

Figure S2.9 CP-based activity test at 10 mA.cm
-2

 for MW-Ir/ATO for three loadings at 20, 50 and 100 μgIr.cm
-2

 
as well for the two commercial references AA-IrOx and SA-IrO2 
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Figure S2.10 LSV of SA-IrO2, the pristine GC-RDE and the GC-RDE loaded with blank ink (no catalyst, only H2O, 
iPrOH and Nafion). 

 

TG-analysis of the stepwise calcination of MW-Ir/ATO 

 

Figure S2.11 Thermogravimatric analysis of the stepwise annealing of MW-Ir/ATO in Ar and 21%O2/Ar (100 
mL.min

-1
) at 250°C and 350°C for 1h. 
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DRIFTS 

 

 

Figure S2.12 DRIFTS study of MW-ATO during stepwise treatment at various temperatures in 21%O2/Ar, 100 
mL.min

-1
. Kubelka-Munck transformation of the reflectance spectra (left) and corresponding difference spectra 

between said temperature and 100°C (right). 

In Figure S2.11, the feature located at approx. 1450cm-1 and disappearing at 125°C might be 

attributed to a unidentate carbonate species adsorbed on MW-ATO during the synthesis and 

originating from atmospheric CO2 dissolved during the synthesis. Features at 1250 and 974 cm-1 can 

in turn be assigned to the vibration of hydroxyl-tin bonds according to the literature49. The 

diminution of these features at 250 and 350°C is in agreement with the hydroxyl decomposition 

profile observed in TGMS. Weak peaks in the 3650-32500 cm-1-region can be assigned to more or 

less H-bonded hydroxyl groups. Additional broad feature around 2958 cm-1 can be assigned to C-H 

stretching frequencies from carbon impurities adsorbed on the surface of the sample. 
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Figure S 2.13 DRIFTS study of MW-Ir/ATO (Kubelka-Munck transformation of the reflectance spectra) during 
stepwise treatment at various temperatures in 21%O2/Ar, 100 mL.min

-1
. 

 

OER-performance after thermal treatment 

 

Figure S2.14 LSV-based activity test for MW-Ir/ATO for three loadings at 20, 50 and 100 μgIr.cm
-2

. 
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Figure S2.15 Stability-investigation of MW-Ir/ATO (a)) and its thermally treated products (b) Ir_250_O2, c) 
Ir_350_O2, d) Ir_250_Ar and e) Ir_350_Ar) in a chronopotentiommetric study for 2h at 10mA.cm

-2
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3. Synthesis of stable and highly active Ir-oxohydroxides for 

electrochemical oxidation of water  

3.1. Abstract 

The commercial relevance of water splitting for hydrogen production in acidic media has so far been 

limited by the poor stability of the anodic electrocatalyst devoted to the oxygen evolution reaction 

(OER). We report the synthesis of a new class of amorphous Ir-oxohydroxides produced via rapid 

microwave-supported hydrothermal synthesis. These compounds bridge the gap between 

electrodeposited amorphous IrOx-films and crystalline IrO2-electrocatalysts prepared via calcination 

routes. For electrode loadings as low as 20 μgIr.cm-2, the synthesized compounds present a unique 

combination of high activity and stability under relevant OER-conditions in comparison to 

commercial samples and reported benchmarks, without any need of pre-treatment. Physical and 

chemical characterization reveal an amorphous, nanostructured Ir-oxohydroxide whose 

electrocatalytic properties are strongly linked to the chemisorbed water fingerprint revealed by 

thermogravimetry and the presence of Ir-species reducible below 100°C.  

3.2. Introduction 

Hydrogen formation via water splitting remains the only long term solution for a stable and versatile 

storage of renewable electricity in chemical form.1 Proton exchange membrane (PEM) based 

electrolyzers offer the most efficient operating conditions with the option of producing high-purity 

H2 at high pressure.2 Such a design is based on polymeric membranes with proton exchange 

capabilities, e.g. Nafion®, which act as a gas separator between the anodic and the cathodic 

compartments. These sulfonic-acid-functionalized membranes require a highly acidic environment, 

which poses a major challenge to the electrocatalysts needed to minimize electrode overpotentials, 

especially for the anodic oxygen evolution reaction (OER).3 Most earth-abundant transition metal 

oxides such as Co3O4, Fe2O3 and MnOx show minimal stability under these conditions.4 Expensive Ir- 

and Ru-based compounds on the other hand are the most active OER-catalysts in acidic media, but 

even Ru-based anodes corrode very fast under these conditions.5,6 So far, only Ir-based catalysts are 

reported to combine high activity with relative stability in acidic OER.6  

Early on, it was shown that metallic iridium films are inefficient in OER and need to be activated by 

an oxidative electrochemical treatment. Accordingly, synthesis strategies were developed for the 

direct formation of OER-active Ir-films such as anodically grown iridium oxide films7,8 (AIROF) or 

sputtered iridium oxide films9 (SIROF). Most recent studies focus on the high-temperature synthesis 

of crystalline IrO2 and mixed Ir-oxides, e.g. IrO2/Ta2O5.
10-13 This focus is due to the popular notion 

that crystalline IrO2-rutile is the most promising candidate in terms of long-term OER-stability.3,14 

However, early electrochemical studies7-9 emphasized the key role of amorphous Ir-oxohydroxides in 

high-current, stable OER-electrocatalysis in contrast to the less active crystalline IrO2. Lately, the 

relevance of amorphous, hydrated Ir-species was further established by the electrochemical 

investigation of Ir-catalysts produced at low calcination temperatures by the teams around P. 

Strasser and K. Mayrhofer.15,16 Their work showed that Ir-acetates calcined at the lowest possible 
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decomposition temperature of 250°C formed amorphous Ir-oxide/hydroxide-species, combining 

both activity and relative stability in acidic OER.  

Taking into account the many clues about the relevance of amorphous highly hydrated Ir-

oxide/hydroxide species obtained under mild thermal treatment conditions, we decided to build our 

synthesis strategy on the use of a microwave-assisted hydrothermal setup, allowing for the thermal 

treatment of aqueous precursor solutions at temperatures ≤250°C. We report the successful 

synthesis of a novel class of Ir-oxohydroxides that were thoroughly characterized and evaluated in 

terms of OER-activity and -stability in order to gain insight into structural features critical to the OER-

performance.  Comparisons include literature references and two commercially available Ir-

benchmarks: crystalline IrO2 (Sigma-Aldrich), denoted SA-IrO2 and an ultra-pure amorphous Ir-

oxide/hydroxide (Alfa Aesar) denoted AA-IrOx. 

3.3. Experimental 

3.3.1. MW-assisted hydrothermal synthesis of Ir-oxohydroxides 

Eight aqueous KOH-solutions with [KOH] spread between 10-3 mol.L-1 and 1 mol.L-1 were prepared 

from milli-Q filtered water and KOH (AppliChem, p.a.). The solutions were kept under inert 

atmosphere via constant Ar bubbling. K2IrCl6 (Alfa Aesar, Ir 39% min.) was then added to each of the 

eight solutions in order to obtain a final Ir-concentration of 10-2 mol.L-1 and left stirring at room 

temperature for 1h. Based on the above protocol, the precursor solutions have KOH:Ir ratios spread 

between 1:10 to 100:1. After one hour of ageing, 4x62mL of a precursor solution were added to four 

100mL-PTFE-lined vessels. The four vessels were then placed inside the microwave reactor (Anton 

Paar, Multiwave PRO). The solutions were heated up using a 10K.min-1 ramp from room temperature 

(RT) to a selected temperature range between 150°C and 250°C, under constant stirring using a 

magnetic PTFE-stirrer and maintained at the selected temperature Tsyn for 1h. Figure S3.1 shows the 

monitoring of the solution temperature in one vessel (black), pressure (green) and microwave power 

(orange) during a typical MW-assisted hydrothermal synthesis of Ir-oxohydroxides. The homogeneity 

of temperatures in the four vessels was verified via IR-measurements of the outer-wall temperature 

of the four vessels (dotted lines). After the treatment, the vessels were left to cool down to RT. The 

resulting black product was centrifuged at 8000 rpm for 10 min further dissolved in Millipore-filtered 

water, sonicated for 5 minutes and re-centrifuged until the conductivity of the supernatant was 

measured below 0.05 mS.cm-1. The solid product was subsequently dried at 80°C for 12h and ground 

in a mortar.  

3.3.2. Sample characterization 

XRD patterns were collected on a STOE STADI P transmission diffractometer equipped with a primary 

focusing germanium monochromator  with Cu Kα1 radiation and a linear position sensitive detector. 

The samples were mounted in the form of small amounts of powder sandwiched between two layers 

of polyacetate film and fixed with a small amount of X-ray amorphous grease. The elemental ratios 

of K:Ir and Cl:Ir were obtained via X-ray fluorescence analysis (XRF) using a Sequential Pioneer S4 

spectrometer (Bruker) under inert He-atmosphere for non-destructive analysis. Static nitrogen 

physisorption experiments were performed in an Autosorb-1C setup (Quantachrome). Prior to the 

measurements samples were degassed for 2 hours under dynamic vacuum conditions at 80°C. Using 
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the multipoint method, we derived from the obtained complete isotherm the value of the specific 

surface area (SBET) of the analyzed samples given in Table S1. TGA/DSC and evolved gas analysis of 

the decomposition reaction of the samples under a 21% O2/Ar-stream (100 mL.min-1, 10 K.min-1, 

800°C) were performed on a Netzsch STA 449 thermobalance connected to a quadrupole mass 

spectrometer (QMS200 Omnistar, Balzers). The total oxidation of the samples to rutile-IrO2 and 

hollandite-K0,25IrO2 in case of K-containing samples was verified via XRD of the obtained material (not 

shown). 

SEM-images were captured on a Hitachi S-4800 Field Emission Scanning Electron Microscope, 

working in the kV-range of 0.1 to 30 and equipped with a secondary electron detector (YAGBSE). The 

Energy Dispersive X-ray Analysis Data, including the linescan was detected with a Bruker EDX System 

applying a silicon drift detector (SDD). For high resolution transmission electron microscopy (HRTEM) 

and scanning transmission electron microscopy (STEM), samples were prepared by drop-casting two 

drops of aqueous sample solution on carbon coated Cu grids. (S)TEM images and EDX elemental 

mapping were taken on an aberration-corrected JEOL JEM-ARM200 operated at 200 kV. The 

microscope is equipped with a high angle Silicon Drift EDX detector with the solid angle of up to 0.98 

steradians from a detection area of 100 mm2. 

3.3.3. Electrochemical characterization 

Commercial benchmarks 

Two commercially available Ir-based catalysts were selected as benchmark samples. The first 

compound consists of amorphous ultrapure iridium oxohydroxide compound, labeled “AA-IrOx“ 

(Ir(IV) oxide, Premion®, 99.99% trace metals basis, Ir 84.5% min, Alfa Aesar). The second compound 

consists of crystalline IrO2 and is labeled “SA-IrO2“ (99.9% trace metals basis, Sigma Aldrich). AA-IrOx 

was selected among a vast portfolio of commercially available catalysts as it was found to have the 

highest purity in terms of chloride and alkali metals and simultaneously to have a superior OER 

activity in comparison with crystalline IrO2-materials.17,18 Note that numerous studies also use 

commercial carbon-supported precious metal catalysts as references (Etek, Premetek, etc.).19,20 

However carbon material rapidly degrades under acidic OER-conditions, leading to high corrosion 

currents and low stability. Such reference materials were therefore avoided in the present study.21  

Setup and measurements 

Electrochemical measurements were carried out on a VSP-multichannel potentiostat (Biologic 

Instruments) with a glassy carbon rotating ring disk electrode (RRDE, Pine Research Instrumentation, 

glassy carbon disk (0.2475 cm2), Pt ring (0.1866 cm2) as a working electrode. The reference electrode 

was a saturated calomel electrode (SCE, +0.241V vs. SHE) and the counter-electrode was a Platine 

wire. Prior to use the RRDE electrode surface was repeatedly cleaned with Millipore-filtered water 

and isopropanol, mirror-polished with alumina bead slurries (Buehler, 1 μm and 0.05 μm) on a 

polishing cloth, rinsed, sonicated for 15 min in isopropanol in an ultrasonic bath and finally rinsed 

with Millipore water and isopropanol.  

Electrochemical measurements were conducted in a standard electrochemical cell containing ca. 100 

mL of H2SO4 (0.5 mol.L-1) or HClO4 (0.5 mol.L-1) distributed in three compartments separated by fine-

porosity glass frits. The electrolyte was constantly purged with nitrogen starting at least 20 min 
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before the measurements. The central compartment contained the loaded working electrode 

(anode) mounted on a rotator (MSRX, Pine Research Instrumentation) ensuring a constant rotation 

of 1600 rpm. Catalyst inks were prepared by suspending 4 mg of catalysts in 6 mL Millipore-filtered 

H2O, 3,96 mL isopropanol (Sigma Aldrich) and 40 μL of a Nafion® suspension (5%-Nafion® 

perfluorinated resin solution, Sigma Aldrich). The Ir-concentration of the ink was quantified via the 

molar mass calculated for each compound. The ink was then drop-casted onto the RRDE using a 

micropipette in order to reach an iridium-loading of 20, 50 or 100 μg.cm-2 and dried for 30 min at 

60°C. 

The catalyst activity was assessed using linear sweep voltammetry (LSV) performed at a sweep rate 

of 5 mV.s-1 from Eoc to 2V vs. SHE. The overpotential needed to reach a current of j=10 mA.cm-2 was 

used as a measure of the activity and corresponds to a commonly used value in literature.6,22 The 

overpotential has been determined by Equation (3.2) where η is the overpotential and EWE the 

working electrode potential.  

                       (3.2) 

The electrochemical measurements were corrected at 85% for ohmic drop using high-frequency 

impedance spectroscopy (4 measurements, 100 kHz, 20 mV amplitude, open circuit potential, Eoc). In 

order to select the best catalyst, CP-stability testing was performed under severe experimental 

conditions at 15 mA.cm-2 for Ir-loadings of 20 μgIr.cm-2. The stability of the best catalyst was further 

assessed at currents of 10 mA.cm-2 for three Ir-loadings (20, 50 and 100 μgIr.cm-2) in order to allow 

for comparison with benchmarks reported in the literature.6,22 A current density of 10 mA.cm-2 is 

based on the typical currents expected for a 10%-efficiency solar-to-fuel device.6,19 The catalyst were 

considered deactivated when the working electrode potential (EWE) reached 1.8 V vs. SHE in order to 

avoid oxidative damage to the GC-electrode support. The electrochemical measurements were 

corrected at 85% for ohmic drop using high-frequency impedance determination of the electrolyte 

resistance (4 measurements, 100 kHz, 20 mV amplitude, open circuit potential, Eoc). 

3.4. Results and discussion 

3.4.1. Importance of the initial KOH:Ir-ratio 

The aqueous precursor solution contained dissolved potassium hexachloroiridate(IV) and KOH for 

hydrolysis of the Ir-chlorides. The solutions were treated in the microwave reactor at 250°C, 55 bars 

for 60 minutes. The resulting black powder was isolated via centrifugation, washed with milli-Q 

water and dried. At an early phase of the synthesis, it was recognized that the KOH:Ir-ratio was a key 

synthesis parameter as dissolved Ir-salts undergo a complex set of reactions under basic 

conditions.23 Accordingly, we prepared a series of Ir-based catalysts at diverse initial KOH:Ir, from 1:1 

to 100:1.  

A key mechanism in obtaining a solid product during the hydrothermal treatment is the reduction of 

IrCl6
2- to IrCl6

3- in high pH media.24 IrCl6
3- is prone to hydrolysis, whereas IrCl6

2-is stable in solution 

upon heating and results in lower yields of solid product. The pH has also been suspected to 

influence oligomerization and condensation processes of Ir-compounds.25 Following the above 

observations, three synthesis scenarii were investigated: low, intermediate and high KOH:Ir ratios. In 

the case of low [KOH], i.e., KOH:Ir≤4:1, the reduction to IrCl6
3-  and subsequent hydrolysis were 
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incomplete, resulting in significantly low synthesis yields (see Table S1). We confirmed that Ir-

chlorides remained in solution after MW-treatment via UV-Vis spectroscopy (see Figure S3.2). On 

the opposite, with a large excess of KOH, i.e., KOH:Ir≥7:1, stable hexahydroxoiridate-(III) remains in 

solution after hydrothermal treatment, due to fast hydroxyl-ligand exchange kinetics hindering 

condensation of Ir-hydroxides via oligomerization.23,25 The intermediate KOH:Ir ratios, i.e., 

4:1≤KOH:Ir≤7:1 produced the highest synthesis yields (≥97%) (see Table S1). 

The x-ray diffraction pattern (Figure S3.3) of samples produced at high pH (KOH:Ir≥7:1) show the 

undesired formation of metallic Ir0 with a characteristic peak at 2θ=40.5°, which gains in intensity 

with rising KOH:Ir. All samples are characterized by two broad XRD-peaks at 2θ=34° and 56° similar 

to those reported for electrochemically grown Ir-oxohydroxides.26,27  

 

Figure 3.1 SEM of the catalyst synthetized with KOH:Ir = 5:1 (a) shows a highly nanostructured material, 
whereas for KOH:Ir = 50:1 (b) big clusters are formed. Secondary electron contrasted-imaging of such a split 

cluster (c) reveals a core-shell structure, where the metallic iridium (bright twin-cores, A) is coated with a 
thick layer of oxidic iridium (B). (d) Linescan (green arrow) confirms lower O/Ir-ratio in the cores. 

 

SEM imaging and specific surface area (SBET) analysis of the compounds produced at low KOH:Ir≤4:1 

exhibit a highly nanostructured morphology in line with SBET over 150 m2.g-1. XRF and EDX analysis 

also showed that these samples still contain chlorides, which is consistent with incomplete 

hydrolysisof Ir-chlorides (see Table S1). For intermediate 4:1≤KOH:Ir≤7:1, a dominantly nanosized 

rod-structure is obtained (see Figure 3.1.a and Figure S3.5). Rod thickness increases with KOH:Ir, 

while SBET decreases from 104 to 56 m2.g-1.  At elevated KOH:Ir≥10:1, the nano-rod structure 

disappears, yielding an amorphous material. For KOH:Ir of 50 and 100 the material is composed of 

200 nm-large spheres, leading to a dramatic decrease in surface area to 7 and 16 m2.g-1 respectively, 

(see Figure 3.1.b). Interestingly, some of the spheres were cracked open and EDX analysis revealed a 

core-shell structure comprising a metallic Ir-core coated with a thick oxidic Ir-layer (Figure 3.1.c and 
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Figure 3.1.d). We conclude that the Ir0 detected in XRD is located under such an oxidic Ir-layer. (see 

Figure S3.5 for further SEM images).  

3.4.2. Sample composition 

The decomposition of the samples to crystalline IrO2 and the concomitant evolved water fingerprint 

were analyzed in a MS-coupled thermogravimetric experiment using a 10K.min-1 heating ramp to 

800°C in 21% O2/Ar 100 mL.min-1 (see Figure S3.8 and Figure S3.9). The results confirm the highly 

hydrated and hydroxylated nature of the oxidic Ir-phase. The samples first loose up to 2.5 wt.% of 

physisorbed water (first water evolution signal centered around 135°C in Figure S3.9). Then, water 

evolution through decomposition of hydroxyl groups proceeds till 500°C and accounts for up to 7 

wt.%. Based on this high chemisorbed water fraction, we argue that the oxidic phase of our samples 

is an Ir-oxohydroxide of the form IrOx(OH)y. Interestingly, samples with KOH:Ir≤5:1 exhibit a strong 

component in their water evolution signal above 300°C corresponding to the decomposition of 

hydroxyl groups. The amount of metallic Ir0 was estimated from the sharp mass gain detected above 

500°C for KOH:Ir≥7:1, which corresponds to the oxidation of Ir0 to IrIV. It appears that the fraction of 

undesired metallic iridium increases gradually with increasing KOH:Ir, reaching 24 wt.% for 

KOH:Ir=50:1, which is in agreement with the trend observed in XRD. 

 

Figure 3.2 Temperature programmed reduction in 4.92% H2/Ar exhibits sharp reduction features below 100°C 
that are significantly distinct from the characteristic reduction feature of IrO2 to Ir

0
 above 200°C as observed 

with the benchmark catalyst SA-IrO2. 

The reduction behavior of the samples was studied in a temperature-programmed reduction 

experiment using a 4.92% H2/Ar stream at a flow rate of 80 mL.min-1 (see Figure 3.2). Upon heating 

the samples to 450°C with a heating ramp of 6 K.min-1, sharp reduction peaks were observed 

between 65°C and 85°C for the catalysts synthetized with KOH:Ir≤7:1 as well as the AA-IrOx 

benchmark. This reduction behavior is very distinct from the reduction feature above 200°C usually 

observed for crystalline IrIVO2 (SA-IrO2 in Figure 3.2).16 For KOH:Ir≥10:1, the TPR-profile broadened 

dramatically and shifted towards higher temperatures. 
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Interestingly, before the start of the temperature-program, significant amounts of H2 are taken up 

by the sample at room temperature (see Figure S3.10). Since no concomitant water evolution is 

observed, this indicates that hydrogen enters the Ir-oxohydroxide structure without complete 

reaction. Such an early uptake of H2 was also reported by Reier et al. for their best amorphous Ir-

catalysts.16 Hydrogen uptake at room temperatures decreases with higher metallic iridium content 

(KOH:Ir≥7:1). No such adsorption is observed on SA-IrO2. This finding supports the idea that 

significant hydrogen uptake is characteristic of amorphous Ir-oxohydroxide as opposed to crystalline 

IrO2. Remarkably, HRTEM-study of the samples revealed a high sensitivity of the surface to the 

electron beam: the surface rapidly transforms into metallic iridium, which confirms the high 

reducibility of the Ir-oxohydroxide material in contrast with IrO2 (Figure S3.7). 

3.4.3. OER-performance 

The electrochemical measurements were carried out by drop casting a suspension of the catalyst on 

a thoroughly cleaned glassy carbon rotating disk electrode and tested in a standard three-

compartment cell containing H2SO4 (0.5 mol.L-1) as electrolyte. A catalyst loading of 20 gIr.cm-2 is 

used and the measurements were corrected for ohmic drop (see S.I. for further details). The OER-

activities of the catalysts synthetized at diverse KOH:Ir ratios were determined using linear sweep 

voltammetry (LSV, 1600 rpm, 5 mV.s-1) (see Figure S3.11). The OER-stability of the catalysts was 

characterized in an accelerated chronopotentiometric (CP) experiment with a current density of 15 

mA.cm-2 (see Figure S3.13).  

 

 

Figure 3.3 OER-activity and -stability of samples prepared at 250°C, 1h correlate and show that the most active 
and stable sample has been produced with a ratio KOH:Ir of 5:1 at 250°C during 60 minutes. 

For comparison of the compounds’ OER-performance, the data was conveniently summarized in 

Figure 3.3. For the OER-activity, the overpotential needed to reach a current density of 10 mA.cm-2 

was used as a widely accepted figure of merit and is reported as red bars.6,22 For OER-stability, we 

defined as catalyst lifetime the time-lapse required by the working electrode to reach a threshold 

potential of 1.8 V vs. SHE during the CP at 15 mA.cm-2 (green bars on Figure 3.3). This threshold 

corresponds to the onset of carbon-oxidation.28 It is readily observed that among the samples 

synthetized with various KOH:Ir ratios, the sample with KOH:Ir=5:1 shows a significant lifetime of 
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16,7h, thus ca. 33 times longer than the benchmark catalyst, AA-IrOx and requires the lowest 

overpotential of 0.31 V. 

In general, the samples for KOH:Ir≤5:1 show comparable OER-performance while the performance 

gradually worsens for KOH:Ir beyond 7:1. The catalyst synthesized at KOH:Ir=5:1 was selected as the 

target material due to the optimal synthesis yield and further tested in CP at 10 mA.cm-2 for 

comparison with recent benchmarking efforts.6,22 As a result, even for Ir-loadings of 20 μgIr.cm-2, our 

best catalyst surpassed the best literature benchmarks in terms of evolution of the overpotential 

needed to maintain current levels of 10 mA.cm-2.  

Table 3.1 Benchmarking parameters for the best MW-compound (KOH:Ir=5:1) compared to previously 
reported compounds and reference samples 

Catalyst ηt=0 (V)  ηt=2h (V)  ηt=24h (V)  Metal loading (μg.cm-2) electrolyte 

KOH:Ir=5:1 0.31 0.33 0.35 20 H2SO4 0.5 mol.L-1 

KOH:Ir=5:1 0.31 0.33 0.35 50 H2SO4 0.5 mol.L-1 

KOH:Ir=5:1 0.30 0.32 0.33 100 H2SO4 0.5 mol.L-1 

AA-IrOx 0.37 -b - 20 H2SO4 0.5 mol.L-1 

SIROF6 0.34 0.36 0.44 n.r.a H2SO4 1 mol.L-1 

Sputtered Ru6 0.28 0.34 0.82 n.r.a H2SO4 1 mol.L-1 

20wt.% Ir/C19 0.38 n.r n.r 28 KOH 0.1 mol.L-1 

AIROF22 0.28 0.30 n.r. n.r. NaOH 1 mol.L-1 

a Reactive sputtering resulted in a >100nm thick film (see ref. 6,29) ; b AA-IrOx was active for only 

1.02h 

Our MW-assisted hydrothermal synthesis of Ir-compounds confirms the possible combination of 

activity and stability in OER-electrocatalysis in acidic media at commercially relevant current 

densities for the Ir-oxohydroxide class of materials.15,16  

In order to uncover OER-relevant structural features of the Ir-oxohydroxides we compared trends in 

structural features and OER-performance within the batches. Interestingly, the most active samples 

for KOH:Ir≤5:1  exhibit a strong tailing in their water evolution signal above 300°C corresponding to 

the decomposition of hydroxyl groups (see Figure S3.9).  The corresponding mass loss indicates that 

these samples contain up to 7 wt.% chemisorbed water (see Figure 3.4). In contrast the chemisorbed 

water fraction rapidly diminishes with decreasing OER-performance (KOH:Ir≥7:1). The observed 

water evolution fingerprint thus indicates a link between a high fraction of hydroxyl groups stable at 

higher temperatures and the OER-performance of the samples. Hydroxyl groups are thus linked to a 

higher concentration of OER-active sites, i.e. lower overpotentials and might contribute to their 

stabilization under water splitting conditions, i.e. higher lifetimes.  
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Figure 3.4 MS-coupled (m/z=18) thermogravimetric analysis shows that the most active samples exhibit a 
strong fraction of hydroxyl groups (          ) removed in TGMS at temperatures above approx. 140°C (blue 

bars). The quantification of hydrogen uptake by the sample at room temperature and during TPR allows for 
the determination of an average oxidation state for the oxidic phase. The best sample (KOH:Ir=5:1) is 

highlighted in the red dashed box. 

 

The average Ir-oxidation state related to the oxidic phase was estimated from the total H2-

consumption and composition assessment of the samples (see calculations in S.I.). The black squares 

in Figure 3.4 show that the oxidation state of Ir increases almost linearly from +3.2 to 3.8 with 

increasing KOH:Ir  from 1:1 to 50:1. This findings support the recent study by Pfeifer et al. that 

reported the coexistence of IrIII and IrIV in AA-IrOx.
18,30 Due to the similarity of the characteristic TPR-

profiles (sharp reduction peak below 100°C), we conjecture that the oxidic part of our samples also 

consists of such an IrIII/IV-oxohydroxide.  Remarkably, recent XAS-in-situ studies have stressed the 

relevance of the coexistence of IrIII and IrIV during OER-catalysis.31 Thus, such a mixed III/IV-oxidation 

state might be key to understanding the remarkable OER-properties of Ir-oxohydroxides. The 

chemisorbed water fingerprint might in turn be linked to the stabilization of such a mixed oxidation 

phase, as the most hydroxylated samples also seem to possess the lowest oxidation state, i.e., the 

highest amount of IrIII-species. 

Open questions include the possible presence of Ir-peroxo-species that  have been evidenced by 

Pankratov et al. for hydrolyzed Ir-species in highly basic solutions close in nature to our precursors.32 

Recent studies have taken advantage of synchrotron-based X-ray photoelectron emission 

spectroscopy to investigate surface species linked to the OER-performance of Ir-based compounds.33 

Ongoing XPS- and NEXAFS-studies will give closer insight into the electronic structure and species 

located in the surface region of our samples.  
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3.5. Conclusion 

Ultimately, the observed contrast between crystalline IrO2 and the MW-assisted hydrothermally 

synthetized amorphous IrOx(OH)y confirms that producing the right chemical state and structure of 

iridium-based catalyst precursors is critical in achieving stable OER-electrocatalysis at low Ir-loadings. 

Ir-oxohydroxides are suspected to accommodate IrIII/IV-precursor sites to OER-catalysis, stabilized in a 

highly hydroxylated environment and constitute a class of extremely promising candidates for 

affordable and stable OER-catalysis. 
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3.7. Supporting information 

Parameter control in the MW-reactor 

 

Figure S3.1 Representative process monitoring of the MW-assisted hydrothermal synthesis of Ir-

oxohydroxides (KOH:Ir=5:1, 250°C, 1h). 

UV-Vis of the supernatant after synthesis  

The UV-Vis absorption of the supernatant after the first centrifugation allows for the detection of Ir-

species still in solution after hydrothermal treatment (see Figure S3.2). For low KOH:Ir ratios, the UV-

Vis spectra shows two weak absorption bands at 322 nm and 380 nm, attributed to partially 

hydrolyzed Ir-chloride complexes.34,35 These chloride-species exhibit strong stability against 

hydrolysis upon heating, which explains the low yield for KOH:Ir=1:1 ratio (see Table S1). On the 

other hand, for 4:1≤KOH:Ir≤10:1 ratios, only a very weak absorption band in the far-UV-range 

attributed to KOH is observed.  
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Figure S3.2 UV-Vis absorption spectra of the supernatant after the first centrifugation of the precursor 
solutions MW-treated at 250°C for 1h 

For KOH:Ir=50:1 and 100:1 however, yields decrease sharply (see Table S1). A relatively strong 

absorption peak at 313 nm can be attributed to hexahydroxoiridate.36,37 Gamsjäger et al. studied the 

OH- exchange kinetics of hexahydroxoiridate-(III) by 18O-labeling exchange experiments.25 It was 

shown that at high [OH-], monomeric Ir(III)-species are strongly favored due to fast hydroxyl ligand 

exchange. This explain why at high [OH-], hexahydroxoiridate-(III) remains relatively stable towards 

condensation even under hydrothermal treatment conditions, resulting in low synthesis yields for 

KOH:Ir≥50:1 ratios. On the other hand, at lower [OH-], Gamsjäger et al. report the formation of 

polymeric Ir-species, which explains the efficient condensation and good synthesis yield in the 

optimal synthesis range of 4:1≤KOH:Ir≤10:1. Synthesis at 150°C and 200°C for KOH:Ir=5:1 shows that 

the yield does not vary much for decreasing synthesis temperature. 

Characterization of the Ir-oxohydroxides 

Table S3.1 Summary of the main synthesis parameters such as KOH:Ir and Tsyn as well as synthesis yield, K- and 
Cl-contents and specific surface area (SBET) of the produced compounds. 

KOH:Ir Tsyn 
(°C) 

Synthesis 
yield (%) 

K:Ir 
(10-3) 

Cl:Ir 
(10-3) 

SBET 

(m2.g-1) 

1:1 250 51 2.5 433 217 

4:1 250 97 3.9 299 165 

5:1 250 99 18.4 0 104 

5:1 200 - -  99 

5:1 150 92 93.1 0 103 

7:1 250 100 91.0 0 56 

10:1 250 99 112.6 0 175 

50:1 250 72 92 0 7 

100:1 250 35 36.4 0 16 
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The synthesis yield results from the ratio of the obtained sample mass and the theoretical mass 

based on the sample composition obtained for each KOH:Ir ratio according to XRF, TGMS and TPR. 

X-Ray diffraction (XRD)  

 

Figure S3.3 XRD patterns of samples synthetized with different KOH:IR ratios, at a synthesis temperature (Ts)  
of 250°C and a hold time of (thold) 60 min show two broad peaks at about 34° and 56° attributed to iridium 

oxohydroxide
26,27

 and the characteristic pattern of cubic metallic iridium for KOH:Ir≥7:1. 

 

 

Figure S3.4 XRD pattern of the sample synthetized at (Ts) 250°C with a hold time of (thold) 60 min and a KOH:Ir 
ratio of 5:1 show possible weak Ir

0
 peak at 40.5° highlighted by an arrow. 
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Scanning Electron Microscopy (SEM)  

 

Figure S3.5 SEM-pictures (1.5KV) of the synthetized Ir-oxohydroxide at a temperature (Ts) of 250°C with a hold 
time (thold) of 60 min with a ratio KOH:Ir  of 1:1 (a), 4:1 (b), 5:1 (c), 7:1 (d), 10:1 (e), 50:1 (f), 100:1 (g) 
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Transmission electron microscopy (TEM) 

 

Figure S3.6 STEM pictures of the synthetized Ir-oxohydroxide at a temperature (Ts) of 250°C with a hold time 
(thold) of 60 min and a KOH:Ir  ratio of 5:1 and the corresponding EDX-mapping of Ir, O, K and Cl. 

 

The STEM-EDX study of the sample prepared from KOH:Ir=5:1 ratio at 250°C homogenous Ir- and O-

contents as well as K- and Cl-traces. However, no reliable structural information about the 

crystallographic nature of the amorphous iridium-oxohydroxide phase could be extracted from 

HRTEM/STEM-investigations. Indeed, at higher magnification, under the electron beam the sample 

rapidly transformed into crystalline cubic iridium. Figure S3.7 shows the beam damage for a 15 μA-

STEM electron beam over 213 s. Even the initial picture already shows bright spots corresponding to 

metallic iridium. These spots serve as nucleation sites for rapidly expanding Ir0-nanoparticles.  

 

Figure S3.7 Beam effect of a 15 μA-electron beam of a sample having a KOH:Ir=5:1 ratio in STEM-mode initially, 
after 33 s and 213 s. 
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MS-coupled thermogravimetry (TGMS) and differential scanning calorimetry (DSC)  

 

Figure S3.8 Thermogravimetric analysis (top) and corresponding DSC signals (bottom) of samples synthetized 
with various KOH:Ir ratios (see figure caption) at a temperature (Ts) of 250°C with a hold time (thold) of 60 min. 

 

 

 

Figure S3.9 MS-coupled (m/z=18) thermogravimetric analysis shows that the most active samples, i.e., with a 
KOH:Ir=5:1 ratio, exhibit a strong fraction of hydroxyl groups stable at high temperatures. 
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Temperature programmed reduction (TPR)  

TPR of the calcined sample was performed in a fixed-bed reactor in 5 vol.% H2/Ar (80mL.min-1) at a 

heating rate of 6 K min−1 (80 mL min−1, 450°C). The H2 consumption was monitored with a thermal 

conductivity detector (TCD). The TCD detector was calibrated by reducing a known amount of CuO. 

The samples were initially kept under Ar-flow for 1h (80 mL.min-1). The comparison of H2-signals 

during the initial switch from Ar to 4.92% H2/Ar before (dark line in Figure S3.10) and after TPR (red 

line in Figure S3.10) allows to quantify the amount of H2 initially absorbed by the sample. No 

concomitant evolution of water is detected at room temperature, indicating that hydrogen is merely 

adsorbed on the sample. Once heating starts, H2-consumption features correlate with evolved water 

detected in the gas outlet via mass spectrometry (MS), indicating reduction of oxidic Ir to Ir0 via Eq. 

(S3.1): 

                   
 

 
     (S.3.1) 

 

 

Figure S3.10 Temperature programmed reduction of the sample synthetized with a KOH:Ir ratio of 5:1  at a 
temperature (Ts) of 250°C with a hold time (thold) of 60 min. 

 

Sample composition and average Ir-oxidation state 

In order to determine the average oxidation state of iridium in the compounds from hydrogen 

consumption during TPR, the nominal composition and molar mass of the compounds are required. 

Taking into account all possible contaminants from initial reactants, the formula is:  
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The average oxidation state of iridium is       . The formula of each sample must thus be 

elucidated in order to assess its average oxidation state. 

The molar mass of the compound is given by : 

                                   

K/Ir-, and Cl/Ir-ratios (h,k) were determined easily from XRF (see Table S1) 

TGMS gives access to the amount of physisorbed (    
 

) and chemisorbed (    
 

) water (two 

equations linking y and z) via the subsequent mass loss corresponding to the removal of first 

physisorbed water (mass fraction       
 

) and later chemisorbed water through hydroxyl 

decomposition (mass fraction       
 

). 

Physisorbed water: 

           
 

    
    

 
 

    
 

  
 

        
 

     

Chemisorbed water: 

           
 

 
    

 

 
          

 
  

 

 
            

 
 

        
 

    

 

 

TPR yields a third equation linking x and y : 

            
 

 
   

 

 
                  

     
 

 
   

 

 
          

 

 
   

 

 
 
       

 
 

       
 

 
   

 

 
    

 

The result is a system of three linear equations in x,y and z, that was solved numerically using 

Wolfram Mathematica software, after inserting known coefficients h,k,l,       
 

,       
 

,     and 

  : 
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(S3.2) 

        
 

    

 

(S3.3) 

       
 

 
   

 

 
    

 

(S3.4) 

 

Remarks concerning coefficients        
 

,       
 

,     and   : 

 The mass fraction of physisorbed water       
 

 corresponds to the mass loss detected via 

TGMS between room temperature and approx. 135°C (see Figure S3.8 and Figure S3.9). 

 The mass fraction of hydroxyl groups       
 

 corresponds to the mass loss between approx. 

135°C and 500°C. We neglect mass gain due to oxidation of Ir3+ to Ir4+ and mass loss due to 

the decomposition of surface carbonate and formate species. 

 For the determination of    , the amount of hydrogen adsorbed at room temperature is 

taken into account. Indeed no release of the adsorbed hydrogen is detected before or during 

heating, meaning that during TPR the adsorbed hydrogen participates in the reduction. The 

complete reduction of the sample to Ir0 is verified via XRD. 

 In order to relate the average oxidation state solely to the oxidic phase, the amount of 

metallic Ir0 is estimated from the sharp mass gain detected above 500°C in samples MW_7 

to MW_50. This mass gain is associated to the oxidation of Ir0 to IrO2 and the initial molar Ir0-

content (         ) can be estimated following:  

                      
 
            

    
 

(S.3.5) 
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Table S3.2 H2-uptake at room temperature (RT) and consumption during TPR as well as the resulting average 
oxidation state of iridium in the samples related to the non-metallic phase. 

KOH:Ir Tsyn 

(°C) 
      
 

       
 

 nH2.nIr
-1@ RT nH2.nIr

-1 TPR Ir0-content 
(mol.%) 

Ir-redox 
state 

1:1 250 2.7 6.0 0.05 1.39 0 3.22 

4:1 250 2.6 7.0 0.36 1.33 0 3.32 

5:1 250 1.9 6.7 0.53 1.22 0 3.51 

7:1 250 1.9 3.6 0.65 0.98 13.2 3.75 

10:1 250 2.6 2.5 0.63 0.91 14.6 3.60 

50:1 250 1.7 2.3 0.24 1.20 23.6 3.77 

100:1 250 1.2 1.05 n.d. n.d. n.d. n.d. 

5:1 150 2.7 5.8 0.70 1.07 0 3.59 

SA-IrO2 - 0.1 0 0 2.04 0 4.08 

AA-IrO2 - 0.9 5.1 0.59 1.21 2.4 3.62 

 

Electrochemical characterization 

 

 

Figure S3.11 Linear sweep voltammograms of the samples produced with diverse KOH:Ir ratios at a 
temperature of 250°C allow for comparison of OER-activities and indicates superior activity compared to 

commercial benchmarks. 
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Figure S3.12 Linear sweep voltammograms of samples synthetized at KOH:Ir=5:1 and Ts= 150°C, 200°C and 
250°C show that the sample synthetized at the highest temperature, i.e. 250°C, is the most active catalyst. 

 

Figure S3.13 CP at 15 mA.cm
-2

 of samples synthetized with various KOH:Ir at Tsyn=250° shows that our best 
sample (KOH:Ir=5:1) lasted ca. 33 times longer than the AA-IrOx benchmark catalyst. The catalyst loading in 

terms of Ir mass for all samples was 20 μgIr.cm
-2 

. 
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Figure S3.14 CP at 15 mA.cm
-2

 of the samples synthetized at KOH:Ir=5:1 for Tsyn= 150°C, 200°C and 250°C 
shows that the sample synthetized at 250°C yields  the most stable catalyst. 

 

 

Figure S3.15 CP at 15 mA.cm
-2

 of the sample synthetized at KOH:Ir=5:1 for Tsyn= 250°C in H2SO4 (0.5 mol.L
-1

) 
and HClO4 (0.5 mol.L

-1
) as electrolyte. No significant influence of the electrolyte could be observed. 
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Figure S3.16 CP at 10 mA.cm
-2

 for three loadings of 20, 50 and 100 gIrcm
-2

 for the best OER-catalyst 
(KOH:Ir=5:1, Tsyn=250°C) allows for the comparison with reported literature benchmarks under commercially 

relevant OER-conditions.
6,22
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4. OER-relevant fingerprints of Ir-oxohydroxide electrocatalysts 

4.1. Abstract 

Although oxidic Ir-structures have been identified as the most promising OER-electrocatalysts under 

acidic conditions, an exact description of the performance-relevant species has remained a 

challenge. We report on the characterization of hydrothermally prepared Ir-oxohydroxides 

exhibiting unprecedented OER-performance. These amorphous structures could be characterized via 

careful TEM-analysis and Raman-spectroscopy. A DFT-based model further allowed us to identify 

reactive, formally OI--species stabilized in an IrIII-rich environment. These O 2p hole states were 

studied using synchrotron-based XPS and XAS and were quantified via reactive CO-titration. 

Concomitant trends in OI--concentration and OER-performance allowed us to relate the outstanding 

electrocatalytic OER-performance of Ir-oxohydroxides to their ability to accommodate stable OI--rich 

precursor sites. The CO-titration also highlighted the ability of sub-surface OI- to migrate to the 

surface, suggesting the involvement of the 3D-structure of Ir-oxohydroxides during OER-catalysis. 

The identification of these key features controlled by synthetic parameters of our microwave-

supported hydrothermal synthesis allows for a new targeted approach to OER-catalyst design in 

view of commercial applications. 

 

4.2. Introduction 

There is a growing consensus in the literature that under acidic conditions, Ir-based OER-catalysts 

are the most suitable candidates in terms of activity and stability.1-3 The current debate is focused on 

the understanding of the structure and chemical nature of such Ir-structures. So far, rutile-type IrO2 

has often been suggested as the target material.2,4 However, there is growing evidence in the 

literature that amorphous Ir-phases more elusive to characterization play a key role in OER-catalysis: 

Early electrochemical studies have shown that metallic iridium anodes need to be oxidatively 

activated via electrochemical cycling5-7 or reactive sputtering8 in order to show appreciable OER-

performance. It was suggested that an amorphous hydrous Ir-oxide/hydroxide layer was formed 

during the activation procedure. Vuković et al. further reported on the thermal treatment of such an 

anodically grown iridium oxide film (AIROF).6 They noted that mild calcination in air at 200°C prior to 

OER-catalysis improved the catalyst stability. For higher calcination temperatures, at which the 

formation of crystalline IrO2 was suggested, OER-performance drastically worsened. A similar 

evolution of OER-performance was recently reported by Reier et al. who studied pure Ir-based 

anodes prepared from Ir-acetate calcined at various temperatures.9,10 These studies suggest that an 

OER-active amorphous hydrous Ir-oxide/hydroxide can be stabilized at low calcination temperatures 

of 200-250°C. 

The highlighted results show how crucial the preparation of the right Ir-precursor phase is to OER-

performance. The exact identification of Ir-species with superior intrinsic activity in amorphous 

hydrous Ir-structures and the comparison to fingerprints observed in-situ during OER would allow for 

the rational design of an optimized catalyst precursor. 
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Amorphous iridium oxides have recently been investigated in several papers in order to bridge the 

gap between molecular and crystalline structures.11-13 The blue-colored amorphous Ir-phase often 

formed electrochemically was modelled based on μ-oxo-bridged IrIV-oligomers, which allowed for a 

good agreement with the experimentally observed UV-Vis and Raman spectra. However, based on 

EPR measurements on similar systems, Zhao et al. suggested that a significant part of the OER-active 

Ir-compound was in the IrIII-state.14 The involvement of mixed-valence states in the superior activity 

of amorphous hydrated IrOx-films was also reported by Minguzzi et al. who performed in-situ XAS on 

such films during OER.15,16  

In order to investigate the electronic structure of the surface region in OER-active Ir-compounds, 

some studies have used XPS and assigned Ir-oxidation states based on binding energy shifts.17 

However, it is crucial to point out that the analysis of the electronic structure of oxidic Ir-compounds 

is by no means trivial, as the structure of the electron-hole pair excitation spectra has to be taken 

into account when considering XPS core levels. We recently developed a reliable fit model for the 

Ir 4f peak of rutile-type IrO2, distinct from the standard Doniach-Šunjic line shape often applicable to 

metallic conductors.18,19 When employing this model to an amorphous Ir-oxohydroxide reference, 

the presence of an additional species, namely IrIII, was observed. In agreement with our calculations, 

the IrIII-component shows up at higher binding energies than IrIV, which shows that speciation of Ir-

species cannot be undertaken solely based on binding energy shifts. In the NEXAFS of the O K-edge, 

the amorphous Ir-oxohydroxide reference furthermore showed an additional pre-edge feature. The 

nature of this feature was revealed by theoretical calculations to be due to stable O 2p hole states, 

formally OI-, that emerge in conjunction with IrIII.  

We reported on the microwave-supported hydrothermal synthesis of pure Ir-oxohydroxides in § 3, 

where the initial base:Ir-ratio was identified as a key parameter in tuning structural properties and 

OER-performance. For a moderate excess of base, hydrolysis of Ir-chloride precursors under 

hydrothermal conditions leads to the formation of a highly nanostructured, amorphous IrIII-rich 

oxohydroxide with outstanding OER-performance. Higher amounts of base lead to the formation of 

metallic Ir deeply embedded into an oxidic Ir-shell which approaches the IrO2-stoichiometry and is 

much less effective in catalyzing the OER.  

The present study aims at relating the electronic structure and O-species present in the compounds 

to the electrocatalytic performance in OER. Sample structure was studied using careful TEM-

investigation and Raman spectroscopy interpreted via DFT-calculated model compounds. We used 

our theoretical model18,19 to analyze the synchrotron-based X-ray photoemission and absorption 

spectra of the Ir-oxohydroxides. XPS yielded information on the Ir-oxidation states. NEXAFS were 

used to identify reactive oxygen species (O*). Reactive CO-titration, as proposed by Wang et al.20, 

was used to quantify the O*-amount in the samples. Quantitative trends were compared to OER-

performance indicators in order to identify OER-relevant features such as stable precursor species 

for the active site in OER. The identification of these OER-relevant structural features controlled by 

the synthetic parameters of our microwave-supported hydrothermal synthesis paves the way 

towards the design of targeted synthesis pathways of efficient OER-catalyst precursors for 

industrially relevant applications. 
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4.3. Experimental 

4.3.1. TEM of beam sensitive samples 

We used an aberration corrected TITAN 80-300 operated at 80kV. The sample was prepared for 

investigation by dispersing the dry powder in water followed by ultrasonication for 5 min. The 

dispersion was drop-casted between two graphene/quantifoil grids, left to dry and inserted into the 

microscope.  

4.3.2. Synchrotron-base X-ray Photoemission and absorption spectroscopy 

XPS and NEXAFS measurements were performed at the ISISS beamline at BESSYII/HZB (Berlin, 

Germany).21 The powders were pressed into self-supporting wafers (40 mg, 3 t, Ø = 8 mm) and 

subsequently measured in UHV (~10-6 Pa). The binding energy calibration was carried out after an 

evaluation of each corresponding Fermi edge. In NEXAFS, the photon energy was continuously 

scaled between 525 eV and 560 eV by moving the monochromator. The total electron yield (TEY) of 

the O K-edge was collected via a Faraday cup that had an accelerating voltage applied. The XPS 

spectra were fitted after subtraction of a Shirley background with the commercially available 

CasaXPS software (www.casaxps.com). In all fits, the peak separation and the peak area ratios 

between the Ir 4f7/2 and the Ir 4f5/2 components were constrained to 3 eV and 4:3, respectively. 

Deviations in the peak area ratios of 5 % were allowed to account for the inaccuracies in background 

subtraction and peak area determination of asymmetric peaks. The employed fit parameters for 

rutile IrO2 and the amorphous IrOx are listed elsewhere.18,19  

4.3.3. Raman spectroscopy and DFT-calculations of Ir-structures 

Raman spectroscopy was performed at 532 nm excitation wavelength using a confocal microscope 

setup (S&I GmbH, Warstein Germany) equipped with a PyLoN:2kBUV CCD camera and 750 mm focal 

length of the monochromator (Princeton Instruments). The laser intensity density on the samples 

was chosen low enough to exclude decomposition of the amorphous Ir-structure. At higher laser 

intensities, sharp peaks corresponding to rutile-modes appeared, indicating transformation of the 

amorphous Ir-oxohydroxide into IrO2 due to local heating. Spectra were averaged over multiple 

measurements at different spots of the sample.  

All calculations were performed with the ORCA package.22 Structural models of monomeric Ir(OH)6
2, 

dimeric (OH)2(H2O)2Ir(-O2)2Ir(OH)2(H2O)2, up to pentameric units were constructed by hand and 

subsequently geometry optimized (B3LYP functional23, Def2-TZVP basis set24, relativistic corrections 

by ZORA25, dispersion corrections according to Grimme et al26. Calculation of Raman spectra were 

performed as implemented in ORCA. The cartesian coordinates of each model are provided as 

supporting information. 

4.3.4. Electrochemical characterization 

We compare our results to two Ir-benchmarks previously used in our study on the electronic 

structure of Ir-oxide18,19: an amorphous Ir-oxohydroxide (Premion, Alfa Aesar), noted AA-IrOx and a 

crystalline high-purity rutile-type IrO2 (Sigma Aldrich) noted SA-IrO2. 
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Electrode loadings were always 20 μgIr.cm-2. The activity was assessed using linear sweep 

voltammetry (LSV) at a sweep rate of 5 mV.s-1 from open circuit potential (Eoc) to 1.8 V vs. reversible 

hydrogen electrode (RHE). Stability was assessed in chronopotentiometric (CP) experiments at 15 

mA.cm-2 (accelerated testing conditions) or 10 mA.cm-2 as in recent benchmarking efforts1,27. The 

samples were considered deactivated when the working electrode potential (EWE) reached 1.8V vs. 

RHE in order to avoid oxidative damage to the glassy carbon (GC) electrode support. The 

corresponding graphs are reported in § 3.7. 

4.3.5. CO-titration of reactive oxygen species 

CO-oxidation at room temperature (RT) was used as a stoichiometric titration reaction of reactive 

oxygen species  by exposing the Ir-samples to a 1%CO/He flow (100 mL.min-1). 25 mg of the catalyst, 

diluted by 250 mg of inert SiC (particle diameter: 250–355 μm) were used. The samples were dried in 

He, at RT for 1h prior to experiment. The switch from inert He- to 1-%CO/He-stream (both 100 

mL.min-1) was performed with the help of 6-port switching valve (Valco, Vici) that excludes dead 

volumes. For the reactivation test of fresh MW_5 after the first CO-treatment, He was saturated 

with water using a gas-tight H2O-bubbler connected to the He-line via a bypass. 

4.3.6. DRIFTS of low-temperature CO-adsorption 

Diffuse reflectance infra-red Fourier Transform Spectroscopy (DRIFTS) was recorded with an MCT 

detector at a resolution of 4 cm-1 by accumulating 1024 scans, using a Praying MantisTM reaction 

chamber (ZnSe window) placed in a Bruker IFS 66 spectrometer controlled by OPUS software. The in-

situ cell was equipped with a liquid nitrogen cooling system and connected to a vacuum pump. A 

background spectrum of pure KBr was performed at room temperature. MW_5 was degassed in 

vacuum at 40°C overnight prior to measurements. After cool-down to 77 K, CO (Westfalen, >99.99% 

purity) was added stepwise until a pressure of 10 mbar was reached. The sample was then left to 

warm-up gradually to room temperature and left in CO overnight. After evacuation in vacuum, this 

cycle was repeated a second time. 

4.4. Results and discussion 

4.4.1. OER-performance  

Figure 1 summarizes indicators of OER-activity and stability used to compare the electrocatalytic 

performance of the MW-produced Ir-oxohydroxides. As reported in § 3, within the MW-batch, OER-

performance was best for low initial KOH:Ir. The sample prepared for KOH:Ir=5:1 constitutes an 

optimum with best OER-performance and high synthesis yield. On the other hand, with increasing 

KOH:Ir≥7:1, performance rapidly decreases. Concomitantly, we showed using H2-TPR (temperature-

programmed reduction), that the average oxidation state gradually increases from +3.2 for 

KOH:Ir=1:1 towards +3.8 for KOH:Ir=50:1. Despite similar structural features (average oxidation 

state, TPR-profile, chemisorbed water fingerprint), the Ir-oxohydroxide benchmark AA-IrOx showed 

the worst performance, which was an incentive to search for distinctive features in our MW-

produced Ir-oxohydroxides, responsible for their superior OER-performance. 
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Figure 4.1 OER-activity reflected by the overpotential η needed to reach j=10 mA.cm
-2

 (red bars) and OER-
stability indicated by stable operation at 15 mA.cm

-2
 (green bars) tend to worsen for the MW-samples with 

increasing average oxidation state of the oxidic Ir-phase (blue crosses). Black numbers indicate X in MW_X, 
the initial KOH:Ir ratio. 

 

In the following paragraphs, samples prepared via the MW-supported hydrothermal treatment are 

identified as “MW_X”, where X identifies the base to iridium ratio KOH:Ir=X:1 (see [ref.] and S.I. for 

synthesis details). 

 

4.4.2. TEM-investigation of Ir-oxohydroxides 

 In § 3 devoted to the MW-supported hydrothermal synthesis of Ir-oxohydroxides, we mentioned 

the great difficulty of studying such compounds with electron microscopy due to the rapid 

transformation of the amorphous Ir-phase into metallic iridium. As a strategy to avoid radiation 

damage, we chose to encapsulate a MW-produced Ir-oxohydroxide between graphene sheets28,29. 

We chose the best catalyst MW_5, which is also the purest compound produced in terms of Cl-

contaminations and metallic Ir-traces (see § 3.4.2 and § 3.7). However, no significant improvement 

against radiation damage was observed during HRTEM imaging with electron dose rates >105 e.nm-

2.s-1. Nevertheless, structural results on the intrinsic structure of MW_5 were obtained using 

electron diffraction (ED) technique.  By comparing an ED  pattern with an electron dose rate of 80 

e.nm-2.s-1 (Figure 4.2.a) and an ED pattern with high electron dose rate (Figure 4.2.b), i.e. 105 e.nm-

2.s-1, it was possible to observe the structural transformation caused to the sample by electron 

irradiation. The diffraction patterns were analysed using a profile analysis tool PASAD.30 
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Figure 4.2 The SAED patterns and radial profiles for MW_5 (a) under low electron dose and (b) with high 
electron dose shows the complete transformation of the initial amorphous Ir-oxohydroxide to metallic iridium 

after beam irradiation. 

The corresponding radial profiles and the diffraction patterns are shown in Figure 4.2. The 

contributions colored in green correspond to the d=2.13 Å and d=1.23 Å and d=1.07 Å graphene 

spacings. . The analysis of the recorded ED pattern  exposed to an intense  electron beam (Figure 

4.2.b) shows intensity rings (blue arcs) that are attributed to the d-spacings of the (111)-, (200)- 

(220)- and (113)-planes in cubic metallic iridium (see ICSD [87-715]), confirming that most of the 

iridium had been reduced under the influence of the high dose beam. On the other hand, the radial 

profile obtained from the low dose ED pattern (Figure 4.2.a) exhibits a very distinct shape with two 

broad contributions at spacings corresponding to d=2.69 Å and d=1.63 Å (red arcs). We already 

pointed out the discrepancy of the Ir/O-stoichiometry from the 1:2-ratio expected for IrO2. The d-

spacings observed initially for MW_5 confirm that the distribution of elements inside the amorphous 

Ir-oxohydroxide is very distinct from that in crystalline IrO2. Indeed reflections for IrO2 would be 

expected at d=3.18 Å, 2.58 Å, 1.70 Å and 1.59 Å, which correspond respectively to the (110)-, (101)-, 

(211)- and (220)-planes of IrO2.  

4.4.3. Raman-spectroscopy of Ir-oxohydroxides  

We reported in § 2.4.7 that amorphous IrIII/IV-oxohydroxides deposited on ATO were characterized by 

a large Raman- signal centered around 493 cm-1, that was distinct from the well-known contributions 

from IrO2-rutile, expected at 561 cm-1 (Eg), 752 cm-1 (A1g) and 728 cm-1 (B2g).
31 The present batch of 

pure Ir-oxohydroxides yields the opportunity to relate changes in the recorded Raman spectra to 

structural variations between the samples.  
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Figure 4.3 Raman-spectra of the MW-prepared Ir-oxohydroxides show distinctive features in the 300-750 cm
-

1
 area. Average oxidation states indicated on the right have been calculted from H2-TPR. 

Figure 4.3 shows the Raman spectra recorded for five MW-prepared samples. A qualitative five-

component Gaussian fit was performed (see Figure S2.2) and resulted in two weak contributions at 

320-340 cm-1 (I) and 675-720 cm-1 (V). Three major contributions were identified at 420-465 cm-1 (II), 

510-520 cm-1 (III) and 565-600 cm-1 (IV). The fitting parameters show that the modes identified by 

component III clearly gain in importance for increasing KOH:Ir ratios, representing 22% of the 

integrated signal for MW_4 as compared to 64% for MW_100.  

Considering that the average oxidation state determined via H2-TPR for the oxidic phase approaches 

IrIV with increasing KOH:Ir and bearing in mind the highly hydrated nature of the compounds, we 

chose amorphous hydrous IrIV-oligomers as a starting point to find a model structure for the 

synthesized compounds.  IrIV-based structures have already been calculated by Hintermair et al. 

using IrIV-dimers with pyridyl ligands. They attributed signals observed at 560 and 730 cm-1 to 

vibrational Raman-active modes of the planar bis-μ-oxo IrIV-dimer.11,12 In order to model the 

suspected oligomeric nature of our compounds, we decided to use structures involving at least three 

Ir-atoms. 
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Figure 4.4 DFT-calculated structure of a bis-μ-oxo Ir
IV

-trimer. Blue atoms are H, red atoms are O, purple atoms 
are Ir. 

Figure 4.4 shows the optimized structure obtained via DFT for a formally IrIV-trimer involving μ-oxo-

bridges, coordinated water molecules and hydroxyl terminations. The calculated Raman spectrum 

shows that contributions I and V correspond to vibrations mostly localized on the hydroxyl groups 

and surrounding water molecules, albeit with frequencies which are systematically calculated too 

high, as can be expected for a small trimeric unit. On the other hand, calculated Raman modes 

between 480 and 645 cm-1, involve the bridging μ-oxo groups, giving rise to a series of concerted 

asymmetrical stretching, rocking and bending modes. 

 

Figure 4.5 DFT-calculated structure of a reduced Ir
III/IV

-trimer. Blue atoms are H, red atoms are O, and purple 
atoms are Ir. 

In order to model the presence of IrIII-species in the Ir-oxohydroxides, the calculated trimeric IrIV-

structure was reduced to a formally IrIV-IrIII-IrIV trimer. DFT-based optimization of the structure 

results in a rearrangement of protons such that two of the μ-oxo-bridging oxygens become bridging 

hydroxyls (see Figure 4.5).  

The resulting calculated Raman-active modes do not include such concerted motions such as the 

rocking of all four bridging oxygens, as it is predicted at 553 cm-1 for the IrIV-trimer. In general, the 

incorporation of IrIII- species diminishes the number of concerted Raman-active vibrations of the 

bridging oxygen species, which could explain the lower intensity of the modes contributing to 

component III. The spectrum is dominated by -oxo vibrations. These vibrations are more localized 

than the ones of the oxidized trimer and therefore shifted to higher frequencies as compared to 

those of the oxidized trimer. The dominating Raman-active modes are shown in S.I. (Figure S4.3 and 

Figure S4.4). The spontaneous protonation of two oxo bridges upon reduction of the trimeric cluster 

in silico indicates that IrIII may disrupt the bis(-O2) bridging motif, which in turn may lead to an 

increased amorphicity and concomitant decrease of intensity of the oxo-related modes in the Raman 

spectrum (see Figure S4.5). 
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4.4.4. X-ray photoemission spectroscopy  

Our report on the synthesis of the present batch of pure Ir-oxohydroxides in § 3 highlighted the low-

temperature reduction features of the compounds and suggested a mixed IrIII/IV-oxidation state. 

Observed trends in average oxidation state seemed to indicate that OER-performance improved for 

lower IrIV:IrIII-ratios (see Figure 4.1).  

 

Figure 4.6 XPS-spectra of (a) MW_5 and (b) MW_100 in the Ir4f-region for 450 eV excitation energy show the 
contributions from Ir

III
- and Ir

IV
-species. The average oxidation state calculated from the fit is indicated in the 

top right corner. 

 

In order to confirm the IrIII/IV-nature of the compounds, XPS measurements were performed on 

MW_5, MW_10, MW_50 and MW_100. First of all, the high electronic density measured at the 

Fermi edge for all samples is in line with what has been observed by Reier et al.10 and confirms the 

metallic conductivity of the amorphous Ir-phase (see Figure S4.6). Furthermore, the analysis of the Ir 

4f-lineshape confirms that the samples are in a mixed IrIII/IV-state, with a general trend towards 

higher IrIV:IrIII-ratios for higher KOH:Ir (see Figure 4.6). The presence of metallic Ir in the surface 

region can be excluded as no contribution at 60.9 eV is detected (Figure 4.6 and Figure S4.7).18,32 This 

is in line with the core-shell structure observed in SEM-EDX for higher KOH:Ir, which showed a 

metallic Ir0-core embedded in a thick oxidic overlayer (see § 3.3.2). According to our fit model 

described in the introduction, IrIII-species contribute with an Ir 4f7/2-binding energy of 62.4 eV, while 

IrIV-species are found at a lower binding energy of 61.8 eV. Ir 4f-peaks recorded at 130 and 450 eV 

kinetic energy of the photoelectrons and fitted using our model, show a similar picture (see Figure 

S4.7), indicating that IrIII-species are not only present at the surface but also deeper inside the bulk. 

This finding in turn is in line with the large fraction of IrIII-species suggested by the average oxidation 
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state determined from H2-TPR (see Figure 4.1) and suggests a homogenous distribution of IrIII- and 

IrIV-species throughout the oxidic Ir-phase. The concomitant decrease in OER-performance and 

IrIII:IrIV-ratio observed with increasing KOH:Ir indicates the relevance of IrIII-species for the OER-

performance. This suggestion is in line with the noxious effect of thermally induced oxidation of 

ATO-supported IrIII/IV-oxohydroxide towards IrIV as it was observed for MW-Ir/ATO treated at 350°C 

(see § 2.4.7 and § 2.4.8). It is important to highlight our finding of a possible link between IrIII-species 

and OER-performance. The unambiguous description of the electronic structure of active Ir-based 

OER-catalysts has remained a challenge so far despite a few studies highlighting the possible role of 

mixed Ir-oxidation states.16 

4.4.5. X-ray absorption spectroscopy  

Recent studies, such as the one conducted by Fierro et al. have highlighted that part of the oxygen 

evolved during Ir-catalyzed OER originates from the Ir-oxide itself.33 This means that oxygen species 

from the Ir-lattice are involved in the catalytic process. Hence, in addition to investigating active 

metal centers, the description of O-species present in the surface region is of prime importance in 

understanding OER-reactivity. For this purpose Reier et al. have analyzed the O 1s spectra of their 

mixed Ni/Ir-electrocatalysts before and after reaction and found a possible link between OER-

reactivity and the coverage with reactive surface hydroxyl groups.34 We generally observed a higher 

XPS intensity at approx. 531.1 eV binding energy for the more active samples (see Figure S4.7), 

which compares to the contribution at 531.4 eV attributed by Reier et al. to reactive surface 

hydroxyls. However an unambiguous deconvolution of the O 1s peak is rendered difficult by the 

manifold contributions to the O 1s spectra from water, hydroxyl groups as well as lattice-oxygen and 

other possible O-involving functional groups to the O 1s spectra. For this reason we decided to probe 

the density of unoccupied O 2p states by NEXAFS at the O K-edge. Using this technique, we observed 

characteristic features in the O K-edge of Ir-oxohydroxides. Based on theoretical calculations, we 

could assign these features to electronic defects in the anionic framework.18,19  

 

Figure 4.7 NEXAFS-spectra observed for MW-prepared Ir
III/IV

-oxohydroxides as well as reference samples SA-
IrO2 and AA-IrOx. 

Figure 4.7 shows the NEXAFS-spectra of the MW-produced Ir-oxohydroxides, as well as the 

reference samples AA-IrOx and SA-IrO2. The main resonances of the rutile-type reference sample SA-
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IrO2 are found at excitation energies of 530 and 533 eV. The pre-edge feature observed in AA-IrOx at 

529 eV was attributed in our earlier study to O 2p hole states additionally present in the Ir-

oxohydroxide reference sample AA-IrOx.
18,19 The smoothening of the NEXAFS spectrum of the AA-

IrOx when compared to SA-IrO2 between 537 eV and 545 eV is attributed to the chemisorbed and 

physisorbed water present in the oxohydroxide. The OI- species present in the AA-IrOx, as 

electrophilic oxygen are likely to play a key role for the OER-reactivity, explaining the vast 

predominance of AA-IrOx when compared to SA-IrO2 in terms of OER-performance. Furthermore the 

model established a direct link between the presence of such OI--species and IrIII.19 A comparison of 

the O K-edge spectra of the MW-produced Ir-oxohydroxides from the present study shows that the 

ratio of the 529 eV and 530 eV features continuously changes with increasing KOH:Ir ratio, with 

MW_5 exhibiting the strongest 529 eV resonance and thus the highest amount of suspected 

formally OI- species. As a result, we suggest a direct link between a higher amount of IrIII-stabilized OI- 

species and improved OER-performance for our batch of MW-produced Ir-oxohydroxides. The 

suspected OER-reactivity of these peculiar O-species and the fact that their chemical environment 

seems to stabilize them in the ex-situ catalyst takes us a step closer in the understanding of why the 

produced IrIII/IV-oxohydroxides are such excellent precursors for OER-electrocatalysis. Nonetheless 

AA-IrOx also exhibits a strong feature at 529 eV excitation energy, despite having the worst OER-

performance. This proves that the trend observed within the MW-sample batch can’t be taken as an 

absolute indicator of OER-performance and that other factors must play a key role. 

 

4.4.6. CO-titration of reactive oxygen species.  

Low-temperature oxidation of CO is commonly used as a prototypical reaction for the study of 

heterogeneous catalyst systems.35 Typical systems consist of noble metal nanoparticles such as Pd35, 

Pt36 or Ir37 supported on partially reducible oxides. The noble metal is usually described as a 

preferential adsorption site for CO, while the oxide support is thought to gather activated O2 from 

the feed for the oxidation of CO to CO2. In absence of O2 in the feed, reactive oxygen pools in the 

catalyst can come into play. Recently, Lin et al. described the preferential oxidation of CO (PROX) on 

a Ir/Fe(OH)x-system.37 They showed that CO reacted with OH-species adsorbed on the Fe-support 

with much lower activation energies than with adsorbed O2, such that complete CO oxidation was 

observed at room temperature. In a similar approach, Wang et al. used such CO-titration at room 

temperature to quantify reactive oxygen species (designated by O*) in Co3O4 catalysts, identified as 

O2
- and O- using O2-TPD.20 Inspired by these results, we calculated the reactivity of our suspected OI--

species with CO and could show that such species could react with CO at RT.38 Hence, in order to 

obtain a quantitative insight into the O*-amount in our samples, including the suspected OI--species, 

we decided to investigate the reactivity of our batch of pure Ir-oxohydroxides under a 1%-CO/He-

flow at room temperature. Detected CO2 is assigned to the CO-titration of reactive On--species 

designated by O* present in the Ir-matrix designated by IrOx via the redox reaction (4.1).  

           
              
                   (4.1) 
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Figure 4.8 A CO-feed in inert gas was used to titrate O*. Numbers correspond to the KOH:Ir-ratio X identifying 
the samples MW_X.(a) Gas detected for MW_5 during two subsequent switches from pure He to 1%CO/He. (b) 
Total amount of evolved CO2 (blue bars) and CO2:Ir-ratio (black dots). (c) The Ir-specific OER mass activity at 
η=0,35V is shown as a function of the total amount of evolved CO2. (d) Initial CO2-evolution rates plotted 
against the specific surface area. 

Figure 4.8.a) shows the gas stream composition when testing our best OER-catalyst MW_5. During 

the initial switch from 100%-He to 1%-CO/He (100 mL.min-1), a clear transient CO2-signal was 

observed, indicating that CO was oxidized from a finite oxygen-source originating from the Ir-

oxohydroxide. Once no more CO2-evolution was detected, the reactor was purged with He and the 

sample was again subjected to a 1%-CO/He-stream. During this second titration, no CO2-evolution 

was detected (dotted lines in Figure 4.8.a). The procedure was repeated for every compound (see 

Figure S4.9). For each sample we confirmed the irreversible nature of the reaction observed as a 

transient CO2-evolution during the initial switch to 1%-CO/He. The AA-IrOx reference compound, 

which consists of a similar IrIII/IV-oxohydroxide material18,19 also produced CO2 under the same 

conditions. Only the crystalline SA-IrO2 showed no CO2-evolution during CO-titration (Figure S4.9). 

We conclude that CO-oxidation at room temperature in inert carrier gas is specific to IrIII/IV-

oxohydroxide compounds and allows for the titration of O* present in these compounds. 

In order to verify whether the O*-pool could be replenished, MW_5 was subjected in a separate 

experiment to a water-saturated He stream for 1h at room temperature after the first CO-titration. 

During a subsequent switch to 1%-CO/He no sign of a second CO2-evolution could be detected. This 

shows that the O*-source couldn’t be regenerated via H2O at RT, unlike the reactive hydroxyl groups 

evidenced by Li et al. for PROX on the Ir/Fe(OH)x-system.37 In a similar experiment we showed that 

O* could neither be replenished in a 1%-O2/He stream at room temperature.  
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The  quantification of the total amount of CO2 evolved for each sample (Figure 4.8.b) shows that up 

to 0.32 CO2 are evolved per Ir in the case of MW_5 (see Figure 4.8.b). This shows that the titration of 

O* is not limited to the surface and involves O* located deeper in the bulk. Over 0.2 CO2 are 

produced per Ir for the samples synthesized for 1:1≤KOH:Ir≤10:1. This high ratio indicates that for 

these samples O*-species probably migrate to the surface during the CO-titration. A sharp decrease 

in total evolved CO2 is observed for samples MW_50 and MW_100, as well as AA-IrOx, indicating that 

in these three samples less O* were accessible to CO. A decreasing O*-amount with increasing 

KOH:Ir would be in line with the same trend in the OI--amount evidenced via NEXAFS. However 

NEXAFS also showed that AA-IrOx contained amounts of OI- comparable to MW_5. Since the CO-

titration can involve bulk-O*, we conclude that the observed trends in evolved CO2 also reflect to an 

important extent the ability of sub-surface O* to migrate to the sample surface to react with CO. 

In order to study the OER-relevance of the evidenced O*-species, the Ir-specific OER mass activity of 

the samples was compared to the amount of titrated O*-species. Figure 4.8.c exhibits a loose linear 

trend for the MW-compounds, where the best OER-catalysts also contained the highest amount of 

O*-species, whereas the samples produced at higher KOH:Ir evolved only little CO2. This suggests 

that the titrated O*-species are involved in the good OER-performance of the MW-produced Ir-

oxohydroxides. As a result, the CO-titrated amount of O* could act as an indicator of the OER-

performance of our samples. The comparison of our samples to the AA-IrOx benchmark however 

suggests that the OER-performance involves a more complex set of parameters. The AA-IrOx has 

been described previously as an IrIII/IV-oxohydroxide close in nature to our compounds.18,19 Also the 

benchmark evolved a significantly higher amount of CO2 than MW_50 and MW_100, which suggests 

that it contains more accessible O*. Nonetheless it is by far the sample with the worst OER-

performance (see Figure 4.1 and Figure 4.8.c). This shows that isolated descriptors such as the 

amount of accessible O* present in the sample should only be used in relation to a batch of samples 

prepared under the same conditions, such as the MW-prepared Ir-oxohydroxides.  

A closer look at the CO2-evolution curves shown in Figure S4.9 shows that CO2-evolution for AA-IrOx 

was initially very fast but levelled off rapidly after one hour, whereas the MW-produced Ir-

oxohydroxides kept evolving CO2 for hours. This indicates different reactivities of the O*-species in 

the Ir-oxohydroxides and the AA-IrOx-benchmark. In this regard, the initial CO2-evolution rate can be 

a useful descriptor as it yields information on the reactivity of O*-species located on the surface. 

Figure 4.8.d) depicts the initial Ir-mass-specific CO2-evolution rate for the MW-compounds as a 

function of specific surface area (SBET). Assuming that the initial rate reflects only the titration of 

surface species, one would expect a linear increase with SBET. Instead, the result is a volcano type 

plot showing the prominent nature of MW_5 as it exhibits the highest CO2-evolution rate of the 

MW-compounds. On the other hand MW_4 exhibits a significantly lower initial rate, despite similar 

OER-performance. This speaks against a dependency of OER-performance solely on the reactivity of 

surface O*-species. 

The observed differences in initial evolution rates and total amount of evolved lead us to suggest the 

following scenario: Surface-O*-species present in AA-IrOx exhibit a higher reactivity towards CO than 

in the MW-compounds. However, the rapid arrival in the plateau region suggests that once surface 

O*-species have been consumed, O*-species located deeper in the bulk do not participate in the 

reaction to the same extent as in the MW-compounds. The compact morphology of AA-IrOx, 

highlighted elsewhere via SEM, 
18,19

 might play a major role in hindering the facil migration of O*-
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species to the surface during CO-titration. Similarly, MW_50 and MW_100 also exhibit such a 

compact spheric structure, which would explain the difficult O*-exchange.  

These observations clearly indicate that a complex set of parameters governs the O*-titration 

mechanism. The ability of O* located in the bulk to migrate to the surface seems to play a key role. 

The O*-environment is thus probably highly involved in this process, namely hydroxyl groups  such 

as those highlighted by Reier et al. as possible descriptors of OER-reactivity.34 The link observed 

between the O*-amount and OER-performance for the MW-compounds, indicates that this method 

allows for a quantitative estimation of OER-relevant O*-species. The comparison with AA-IrOx 

however highlights the need to use additional descriptors for predictions on OER-performance, such 

as the capacity of the samples for exchange between surface and sub-surface O*-species. In a 

scenario where lattice-O is involved in the Ir-catalyzed OER, as suggested by Fierro et al.33, such 

exchange mechanisms might play an essential role in OER-reactivity and explain the superior 

performance of the MW-produced compounds in comparison with AA-IrOx. This also suggests a 

three-dimensional aspect of OER-catalysis in Ir-oxohydroxides, where sub-surface O*-species take 

part in the catalytic OER. 

4.4.7. Low-temperature CO-adsorption  

In order to identify species and adsorbate structures involved in the oxidation of CO on Ir-

oxohydroxide, the low-temperature adsorption of CO and subsequent oxidation to CO2 at higher 

temperatures were studied in-situ via diffuse reflectance infrared spectroscopy (DRIFTS). A major 

challenge when using infrared spectroscopy on iridium oxide samples are the optical properties of 

such compounds. IrO2 exhibits quasi-metallic properties and acts as a reflector for frequencies below 

its plasma frequency located in the near-IR region.39 As a result the reflectance of Ir-oxide samples 

strongly increases for smaller wavenumbers, inhibiting the detection of diffusely scattered light. On 

the opposite, at higher frequencies the samples strongly absorb, which results in a non-linear 

background and noisy spectra. Only a small number of studies describing the IR-spectrum of IrO2 or 

amorphous Ir-oxide films can be found in the literature.40,41  

The study was performed on the best OER-catalyst MW_5. After degassing of physisorbed water, the 

sample is mostly characterized by broad IR-bands in the 3700-2800 cm-1-region (see Figure S4.10). 

The contribution at 3700-3450 cm-1 is attributed to isolated OH-groups, while the broad 

contribution at 3450-3000 cm-1 can be identified as the stretching frequencies of H-bonded hydroxyl 

groups. These might be located on the surface but also deeper in the structure. Indeed exclusive 

surface hydroxylation wouldn’t explain the high fraction of chemisorbed water detected in TGMS 

(see § 3.4.2). Also the calculated IrIII/IV-trimers showed that hydroxyl groups appear in place of the μ-

oxo-bridging species as a result of the reduction of IrIV to IrIII. Contributions at 3000-2800 cm-1 were 

attributed by other authors to H-bonded hydroxyls.40 This is however unlikely at such low 

wavenumbers and one should rather consider C-contamination from the atmosphere. Due to their 

highly hydrous and hydroxylated surface, the Ir-oxohydroxides are probably prone to adsorbing 

atmospheric contamination. No change in this contribution was however observed during the 

experiment and the effect of these C-contaminations was thus neglected.  

The stepwise CO-adsorption was performed at liquid nitrogen temperature in order to inhibit 

reactive mechanisms. During the stepwise addition to Peq,CO=10mbar, only minor changes could be 
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observed in the DRIFTS-spectra in the 2000-2150 cm-1 region where the CO-vibration is expected 

(see Figure S4.11). The absence of a strong signal indicates that no stable Ir-CO complex was formed 

at low temperature. Weak adsorption is to be expected as iridium is in an IrIII/IV-state. CO-adsorption 

studies have been performed mostly on metallic Ir-samples42-44 or isolated IrIII-sites45,46. On metallic 

Ir, it appears that atop-bonding of CO predominates and is characterized by a large frequency upshift 

of the adsorbed-CO-vibration from approx. 2010 cm-1 to 2093 cm-1 with increasing coverage due to 

intermolecular coupling.43 Adsorption of CO on Ir3+ is thought not to be stable and was only reported 

through a reactive process forming IrI-carbonyl complexes at higher temperatures.45 The CO-induced 

oxidation of Ir0 to IrI has also been evoked to explain the formation of Ir+(CO)2-complexes in 

supported Ir0-compounds.47 No IR-signals of CO-adsorbates on IrIV was reported so far to the best of 

our knowledge. At liquid nitrogen temperature no significant IR-evidence of CO-adsorption on Ir-

oxohydroxide is thus to be expected.  

 

Figure 4.9 DRIFTS spectra of MW_5 under 10 mbar CO during the warm-up procedure from liquid-nitrogen- 
to room-temperature (a) in the OH-region and (b) in the CO2-region. The inset in (b) shows the approx. area 

under the CO2-related peak as a function of temperature during the first experiment and during its repetition 
with the same sample. 
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After low-temperature CO-addition, the sample was allowed to warm-up gradually to room 

temperature. As expected, the pressure measured inside the in-situ cell increased with temperature 

but levelled off at -50°C and started dropping, (see Figure S4.12). This indicates that CO was being 

removed from the gas phase. Enlarged areas of the spectra recorded during the warm-up procedure 

show the appearance of a sharp feature at 2340cm-1 around -30°C (Figure 4.9.b)). Such a signal 

corresponds to adsorbed CO2 and explains why the pressure drops as CO is not directly replaced 

with CO2 in the gas phase. The asymmetric stretching of gas phase CO2 only shows up at higher 

temperatures as a broad feature centered around 2350cm-1. Additional sharper features in the 2380-

2320 cm-1 probably correspond to other CO2-adsorption configurations. The early onset at -30°C 

indicates low activation barriers for the CO-oxidation mechanism, which is in line with the 

calculations reported earlier for the reaction of OI- with CO.38 Concomitantly a general increase in 

the intensity of the broad OH-feature centered around 3250 cm-1 could be observed (see Figure 

4.9.a). We suggest that water present in the bulk is slowly migrating to the surface with increasing 

temperature and forming more H-bonds. 

After degassing overnight, the CO-adsorption at room temperature was repeated. The inset in Figure 

4.9.b) shows that the second CO-addition cycle also resulted in CO2-evolution at the same onset 

temperature of approx. -30°C, however with much lower intensity, indicating the irreversibility of 

the reaction.  

4.4.8. CO-titrated O-species and link with OER-performance 

In order to study the effect of the CO-treatment on the sample structure, MW_5 was placed inside 

an air-tight cell designed for in-situ Raman studies that could be connected to the CO-reactor setup 

described earlier. Raman-spectra of MW_5 taken before and after CO-treatment (see Figure S4.14) 

showed no significant change in the broad features attributed to the oxo-bridged IrIII/IV-oxohydroxide 

structure. This indicates that the majority of μ-oxo-bridging O-species giving rise to the Raman 

signals are not involved in the CO-oxidation. It remains that if the CO-titration is indeed limited to 

the surface, changes might not be visible as the measurements are not surface-sensitive. 

However, Figure 4.10 shows that the CO-treatment had a dramatic effect on OER-performance of 

MW_5. In terms of OER-activity (Figure 4.10.a)), the CO-treatment resulted in a loss of approx. 47% 

if one considers the indicator jη=0,35V. Stability during CP at 10 mA.cm-2 also significantly decreased 

after the CO-treatment as significantly higher potentials had to be reached in an earlier stage in 

order to maintain the anodic current. This clear effect of CO-treatment on OER-performance 

confirms that the O*-species titrated in the CO-experiment play an important role for the OER-

performance of the Ir-oxohydroxide.  
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Figure 4.10 CO-treated MW_5 was tested (a) for OER-activity using LSV and (b) for OER-stability using CP and 
compared to pristine MW_5 for electrode loadings of 20μgIr.cm

-2
. 

 

We report elsewhere on a synchrotron-based quasi in-situ study of CO-oxidation on AA-IrOx.
38 The Ir-

oxohydroxide reference compound was exposed to CO in a NAP-XPS reactor. As in the RT-

experiment discussed in the previous paragraph, CO2 evolution was detected upon dosing pure CO. 

No changes in the Ir 4f-XPS signal could be detected. However a diminution of the NEXAFS pre-edge 

signal of the OI--species at 529 eV indicates that these ROS are consumed when oxidizing CO to CO2. 

We conclude that the OI--species detected by NEXAFS are identical with the O*-species titrated in 

the RT-CO-experiment. The changes in OER-performance of MW_5 before and after CO-titration 

confirm that the OI--species stabilized in the particular hydrous IrIII/IV-environment of the Ir-

oxohydroxide is deeply involved in the structure of the precursor to the catalytically active OER-sites. 

We attribute the fact that the sample still exhibits OER-reactivity to the electrode preparation 

process, which involves sonication and thus exposes new sites that hadn’t been reached by CO 

before. Moreover at OER-potentials some of the active sites are probably regenerated, just as in the 

classical activation procedure for iridium films. The CO-titration however lead to irreversible damage 

of the active sites, suggesting that not only the OI--species was consumed. More surface-sensitive 

methods like surface enhanced Raman spectroscopy (SERS) might give access to additional changes 

caused by the CO-titration and help in the identification of other crucial structural features of the 

active site precursors. 
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4.5. Conclusion 

Our results confirm the prominent role of the so far little studied class of IrIII/IV-oxohydroxides in 

OER-catalysis. Better insight into the compound structure was given by careful TEM-analysis, which 

confirmed that the amorphous oxohydroxide phase is distinct from crystalline IrO2. Trends observed 

in the Raman spectra were linked to decreasing IrIII:IrIV determined by the increasing base:Ir. For this 

purpose, the amorphous compounds were modelled as trimeric Ir-structures calculated via DFT. We 

showed that for the IrIV-richer compounds, a μ-oxo-bridged IrIV-trimer explains the observed Raman 

spectra. Once IrIII-species are incorporated in such a structure, concerted vibrational modes involving 

the μ-oxo-bridges disappear, which explains the missing contributions in the spectra of the IrIII-richer 

samples. We used the previously developed DFT-based model18,19 to analyze the XPS- and NEXAFS-

spectra of several samples and could show that the IrIII-rich samples accommodate a higher amount 

of stable formally OI--species. These species were quantitatively estimated in a reactive CO-titration 

experiment. Correlating trends in OI--concentration and OER-performance lead us to the conclusion 

that the OI--species stabilized in a highly hydrated, IrIII-rich environment act as precursor sites for the 

OER-catalysis. The CO-titration experiment also showed the involvement of sub-surface OI--species. 

This highlights the OER-relevance of OI--mobility inside the catalyst structure. Our findings are in line 

with the results of Fierro et al. showing that oxygen species from Ir-oxide-catalysts participate in the 

oxidation of water and suggests that the particularly good OER-performance of our Ir-oxohydroxides 

might be linked to an OER mechanism involving lattice-OI--species instead of only surface-adsorbed 

intermediates. A similar potential-dependent mechanism involving oxygen from the catalyst has 

been suggested by Diaz-Morales et al. for OER on Au.48 The OER involves the stepwise oxidation of 

oxygen from OII-, to OI- and finally O. Theoretical studies have highlighted the scaling relationship 

between the different reaction steps and emphasized the need to find an optimum for the binding 

energies of the different reaction intermediates.49,50 We suggest that the OI--species present in the 

particular configuration of the amorphous, highly hydrated IrIII/IV-oxohydroxide give access to such an 

optimum. It remains to clarify how exactly the OI- participates in the OER-mechanism and most 

importantly how the immediate environment influences its reactivity. However, the differences 

observed between our compounds and the AA-IrOx benchmark, show the importance of OI--mobility 

and suggest that the three-dimensional structure of the Ir-oxohydroxide is an important aspect of 

OER-catalysis. As a conclusion the identification of the OER-relevant OI--species stabilized in IrIII/IV-

oxohydroxide is a significant advances in the design of a more targeted approach to finding an 

optimal OER-catalyst. The described fingerprints will help to identify mechanistic features in future 

in-situ NAP-XPS/XAS studies. The proposed hydrothermal synthesis of IrIII/IV-oxohydroxides is a 

powerful tool for the targeted design of outstanding OER-catalysts suitable for commercial 

applications.  
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4.7. Supporting information 

Electrochemical testing 

The tests were conducted in a standard three-compartment glass cell containing approx. 100mL of 

H2SO4 (0.5 mol.L-1). The reference electrode was a saturated calomel electrode (SCE) at +0,241V vs. 

standard hydrogen electrode (SHE), the counter-electrode was a platinized wire. The samples were 

deposited on the anode (rotating disk electrode, RDE, Pine Research Instrumentation) using catalyst 

inks dried for 30min at 60°C. The inks were prepared by suspending 4mg of sample in 6 mL Milli–Q 

H2O and 4 mL isopropanol (Sigma Aldrich), followed by sonication for 30min. Prior to use, the RDE 

was repeatedly cleaned with Milli–Q water and isopropanol, after mirror-polishing with alumina 

bead slurries (Buehler, 1 μm and 0,05 μm). Measurements were carried out with a VSP-multichannel 

potentiostat (Biologic Instruments) and were corrected at 85% for ohmic drop using high-frequency 

impedance determination of the electrolyte resistance (4 measurements, 100kHz, 20mV amplitude, 

open circuit potential). 

Transmission Electron Microscopy 

 

Figure S4.1 (a) Image of sample area obtained after SAED pattern (Figure 4.1.a) and (b) sample area before 
SAED pattern (Figure 4.1.b). 
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Raman spectroscopy 

 

 

Figure S4.2 shows the relative peak areas and positions of the five Gaussian peaks used to tentatively fit the 
Raman data recorded for MW_4, MW_5, MW_7, MW_50 and MW_100 (left). The resulting fit for MW_5 is 

shown on the right as an example. 

Table S4.1 List of parameters for peaks I-V after fitting. 

 Peak I Peak II Peak III Peak IV Peak V 

Sample Center 
(cm-1) 

Area 
(%) 

Center 
(cm-1) 

Area 
(%) 

Center 
(cm-1) 

Area 
(%) 

Center 
(cm-1) 

Area 
(%) 

Center 
(cm-1) 

Area 
(%) 

MW_4 337 13 458 29 518 22 590 23 710 9 

MW_5 344 8 446 20 517 44 596 18 694 10 

MW_7 339 5 423 17 505 43 585 24 675 10 

MW_50 327 3 432 12 513 63 593 15 682 6 

MW_100 326 2 439 10 515 64 597 16 696 8 
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Calculated dominant Raman modes 

 

484 cm1 

 

580 cm1 

 

602 cm1 

 

621 cm1 

 

Figure S4.3 Overview of the normal modes that dominate the calculated Raman spectrum of the Ir
IV

 Ir
IV

 Ir
IV

 

trimer. The lower frequency is dominated by a -oxo vibration, the larger 3 by hydroxo vibrations. 

 

637 cm1 

 

685 cm1 

 

Figure S4.4 Overview of the normal modes that dominate the calculated Raman spectrum of the singly 

reduced trimer Ir
IV

Ir
III

Ir
IV

. The spectrum is dominated by -oxo vibrations. These vibrations are more localized 
than the ones of the oxidized trimer and therefore shifted to higher frequencies as compared to those of the 

oxidized trimer. 
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Figure S4.5 Calculated Raman spectra of the IR-trimer in its oxidized and reduced form. The main Raman-
active modes shown in Figure S4.3 and Figure S4.4 are indicated. 

 

Cartesian coordinates [Å] of geometry-optimized clusters 

IrIV IrIV IrIV trimer model 

  O  -0.56662317939086     -0.42446133106470     -1.18044659219642 

  O   0.53933184468527     -0.32091685050492      1.00858281161036 

  O   2.30366298946447     -1.20586656560217     -0.69779842648356 

  O  -1.90599078260942      1.07598119453924      0.91166810754166 

  H  -1.53097301277179     -3.25489224375562     -0.09012289084337 

  H   1.92511596734510     -1.58878237440869      0.12575551261695 

  H   0.37717843934692      2.85311584618865      0.00133458101118 

  O  -0.77787927880585     -2.89689546543435      0.41371405575550 

  O  -0.10271796498406      2.18041950238608     -0.49755875677927 

  Ir  1.07778653529812      0.48152273141922     -0.70634419072276 

  Ir -1.32127378436932     -0.83808429047232      0.59907985395111 

  H   2.63012423392848      1.69933910598993     -2.21599403866367 

  H   1.95725186419958      0.77363596894144     -3.29793736388329 

  O   1.77576990687063      1.40962685705603     -2.59574474175234 
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  O  -2.05098852209210     -1.47756452825712      2.37449890043553 

  H   3.10628003363515     -0.71041313637929     -0.41743820628628 

  H  -1.68010750492233      1.22072671391972      1.84161607193362 

  O   2.90942460831755      1.30254759112380     -0.29322932051304 

  H   3.01488454542175      1.63303307988711      0.60375751674304 

  O  -3.10383513476772     -1.45566127115077      0.13237576638231 

  Ir -3.90938410216041     -1.75075274082773      1.86917582325691 

  O  -5.74333056890572     -1.93462786806336      1.18503042016313 

  H  -6.23570125876549     -2.65244138509053      1.59938424858513 

  H  -0.89970338288247      1.85920949526814      0.07627493280330 

  O  -4.66600467710594     -2.12644053775424      3.90803398088771 

  H  -4.02888817976186     -1.74686239818963      4.52869086722102 

  H  -4.41244509268387     -3.07379634445428      3.78456549040318 

  O  -3.59967244747833     -3.69695772713004      2.19939728334663 

  H  -2.69871378717513     -3.75073478612836      2.54795966643378 

  O  -4.40261804852076      0.34016785140485      1.62806747334439 

  H  -3.64041585653329      0.74837083160021      1.14531758131545 

  H  -5.15812735157836      0.26970772556010      1.02313659966838 

  H  -0.95813193924798     -3.14481352761636      1.34034080971374 

Reduced IrIVIrIIIIrIV  trimer model 

  O     -0.570358   -0.422373   -1.026096 

  O      0.553681   -0.162797    1.214576 

  O      2.213967   -1.126480   -1.059332 

  O     -2.040979    1.005309    0.872191 

  H     -2.910224   -2.616053   -0.273926 

  H      1.131855   -0.908140    1.424803 

  H      0.405780    2.727704    0.405782 

  O     -0.586269   -2.823721    0.441029 

  O     -0.087555    2.237194   -0.263131 

  Ir     1.120110    0.510986   -0.646806 

  Ir    -1.263207   -0.979007    0.638369 

  H      2.594117    1.521561   -2.117675 

  H      2.180908    0.156926   -2.744553 

  O      1.836814    1.056620   -2.566728 
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  O     -2.077383   -1.308238    2.336025 

  H      3.092470   -0.976206   -0.688142 

  H     -1.900655    1.139817    1.818600 

  O      2.808653    1.688333   -0.347020 

  H      3.426859    1.323224    0.292213 

  O     -3.095166   -1.716098    0.031979 

  Ir    -3.935651   -1.811137    1.886967 

  O     -5.809904   -2.167954    1.197620 

  H     -6.406221   -2.326899    1.937300 

  H     -0.930796    1.850058    0.179269 

  O     -4.501778   -2.058726    3.939077 

  H     -3.808682   -1.566933    4.402106 

  H     -4.116716   -2.987900    3.779730 

  O     -3.538665   -3.716037    2.407640 

  H     -2.580466   -3.818070    2.337273 

  O     -4.474593    0.204210    1.387744 

  H     -3.643314    0.618261    0.994561 

  H     -5.120415    0.007383    0.691141 

  H      0.257066   -2.758378   -0.027444 
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Photoemission spectroscopy 

 

 

Figure S4.6 XPS-spectra of MW-prepared Ir-oxohydroxides in the valence band-region at excitation energies 
of 450 eV for (a)MW_5, (b) MW_10, (c) MW_50 and (d) MW_100. 
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Figure S4.7 XPS-spectra of the MW-prepared Ir-oxohydroxides in the Ir 4f-region at kinetic energies of 130 and 
450 eV. 

 

 

Figure S4.8 XPS-spectra of MW-prepared Ir-oxohydroxides in the O 1s-region at excitation energies of 450 eV 
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RT- CO-oxidation 

The reactor setup was equipped with an on-line gas analyzer (X-Stream, Emerson/Rosemount) to 

quantify O2, CO and CO2. The temperature in the catalyst bed could be directly monitored by an 

analog connection to the gas analyzer. Every gas line was equipped with a mass-flow controller (E1-

flow, Bronkhorst). The CO-gas line was equipped with a carbonyl remover, consisting of a tube filled 

with inert SiC and heated to 300°C as well as a CO2-trap consisting of a crushed-KOH-filled cartridge. 

The carrier gas line was equipped with a water and oxygen filter. The reactor itself was a U-tube with 

an inner diameter of 5 mm, made of glass-lined steel. 

 

 

Figure S4.9 CO2 evolved during the first switch from 100%-He to 1%-CO/He for the MW-Ir-compounds as well 
as the reference samples 
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DRIFTS 

 

Figure S4.10 DRIFTS spectra recorded for MW_5 at RT after degassing overnight at 40°C in vacuum. 

 

Small contributions between 1670 and 1450 cm-1 are attributed to the vibrations modes of various 

carbonate species probably formed during the synthesis from atmospheric CO2 dissolved in the basic 

precursor solution.51 
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Low-temperature CO-adsorption 

 

 

 

Figure S4.11 shows the small changes in DRIFTS-spectra of MW_5 upon gradual CO-addition at 77K 

 

Figure S4.12 Integrated CO2-signals observed during the warm-up in the first and second cycle as well as the 
measured pressure in the in-situ cell (inset). 

CO-oxidation of MW_5 in the Raman cell 

Approx. 40 mg of sample MW_5  were placed in an air-tight cell designed for on-stream Raman-

spectroscopic investigation of powdered catalysts. The Raman spectra are recorded through a quartz 

window. 
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Figure S4.13 Gas stream signals during the CO-treatment of MW_5 in the Raman cell 

Raman spectra before/after CO-oxidation 

 

Figure S4.14 shows the background-substracted Raman spectra of MW_5 recorded before and after CO-
treatment at room temperature for 1h in the Raman-cell. 
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5. Summary and final conclusions  

A main bottleneck for PEM-based water electrolysis to become a cost-effective solution for chemical 

energy storage is the low stability of most available electrocatalysts under acidic OER-conditions. So 

far, only Ir-based compounds have proven to be able to combine high activity and stability in acidic 

OER.1 However, if an Ir-based system is to be implemented into a PEM-electrolyzer intended for 

wide-spread use, the Ir-utilization has to be optimized in order to minimize material costs.  

The primary aim of the present work was to explore new synthesis strategies for the preparation of 

Ir-based OER-catalysts with emphasis on an optimal utilization of the loaded Ir. For this purpose, our 

initial target was the morphological optimization of an Ir-based system via the design of small Ir-

nanoparticles supported on a conductive and corrosion-resistant current collector. ATO was chosen 

as support, due to its corrosion resistance in acidic media.2 Hydrothermal synthesis strategies 

involving safe precursors have been proposed in the literature for the preparation of highly 

nanostructured ATO.3,4 We adapted such a synthesis procedure by taking advantage of newly 

developed MW-supported hydrothermal synthesis reactors. Such setups allow for fast hydrothermal 

treatment of precursor solutions with precise control over synthetic parameters and give access to 

highly nanostructured materials.5 We achieved the preparation of 5 nm-ATO particles with 

conductivities comparable to those of commercially available compounds. 

Homogenously dispersed 2-4 nm Ir-particles were loaded onto the ATO-support via a second MW-

supported hydrothermal step. Excellent OER-performance was observed for the produced Ir/ATO for 

loadings below 100 μgIr.cm-2. The catalyst showed superior properties to the best benchmarks 

reported by Mc Crory et al. in their recent benchmarking effort of OER-catalysts tested under 

industrially relevant conditions.6,7 Combined TGMS, TPR and XPS-analysis showed that the loaded 

amorphous Ir-particles consisted of an IrIII/IV-oxohydroxide. The presence of mixed oxidation states 

has been argued by Minguzzi et al. to be essential for the good OER-performance of amorphous, 

hydrated Ir-compounds.8,9 As a result we suspected that the excellent OER-performance observed 

for our Ir/ATO might be due to a large extent to the chemical nature of the produced Ir-phase.  

Our next step was to test the OER-relevance of the IrIII/IV-oxohydroxide phase. For this purpose, we 

decided to probe for OER-relevant structural features by gradually altering the sample and testing 

the OER-performance of the resulting products. For this purpose, the Ir/ATO-compound was 

submitted to thermal treatment at 250-350°C under inert and oxidative atmospheres. Indeed TGMS 

showed that critical changes such as major dehydroxylation occur within this temperature range. 

The dramatic depletion of OER-performance observed for the samples calcined at 250°C in Ar was 

linked to fast dehydroxylation under inert atmosphere. This highlights the importance of the 

chemisorbed water fingerprint for the OER-performance of IrIII/IV-oxohydroxides. Following thermal 

treatment at 350°C, vibrational spectroscopy as well as careful TEM-investigation showed that small 

crystalline IrO2-domains formed. The result was a strong depletion in initial OER-activity, which 

resulted in mediocre stability under industrially relevant galvanostatic OER-conditions, in line with 

the results recently presented by Reier et al.10 

After showing that the excellent OER-performance of the MW-produced Ir/ATO was strongly linked 

to the high intrinsic activity of the IrIII/IV-oxohydroxide phase, we decided to investigate the pure 

IrIII/IV-oxohydroxide without the contribution of the ATO-support, in order to gain a deeper 
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understanding of the OER-relevant features. This led us to the design of a MW-supported 

hydrothermal synthesis of a series of pure amorphous Ir-oxohydroxides. Systematic variations of 

synthesis conditions were used to identify critical preparation parameters. UV-Vis analysis of 

precursor solutions revealed that the initial base:Ir ratio determines the synthesis yield as it controls 

the efficient hydrolysis and oligomerization of Ir-chloride precursors. For intermediate KOH:Ir around 

5:1, a pure amorphous Ir-compound was obtained at maximal yields. At higher KOH:Ir, XRD and 

SEM-EDX revealed the undesired formation of a metallic Ir-core embedded in a thick oxidic Ir-layer. 

TPR- and XPS-analysis confirmed a mixed IrIII/IV-oxidation state for the produced compounds and 

showed a gradual increase towards IrIV for increasing KOH:Ir. Concomitantly, TGMS showed that the  

chemisorbed water fraction gradually diminished for increasing KOH:Ir.  

The assessment of the OER-performance revealed that the pure IrIII/IV-oxohydroxide prepared from 

KOH:Ir=5:1 was also the best OER-catalyst. The performance was even better than for the MW-

produced Ir/ATO and clearly surpassed the benchmarks reported by McCrory et al.6,7 With increasing 

KOH:Ir, i.e. Ir-oxohydroxides closer to the IrIV-oxidation state and containing less chemisorbed  

water, the OER-performance clearly diminished. The OER-relevance of the chemisorbed water 

fingerprint is in line with the adverse effect of dehydroxylation at 250°C in Ar observed for the 

Ir/ATO. Additionally, the importance of the IrIII-species is consistent with the sharp depletion in OER-

performance observed for Ir/ATO calcined at 350°C. Several recent studies have highlighted the 

involvement of mixed-oxidation Ir-phases formed in-situ under OER-comditions.8,9,11-14 These 

observations suggested that our IrIII/IV-oxohydroxides might constitute a precursor phase 

accommodating a high number of sites for efficient OER-catalysis stabilized  in a highly hydrated 

IrIII/IV environment.  

Recent findings by Fierro et al. have shown that lattice oxygen species from Ir-oxide-catalysts 

participate in the OER in addition to surface-adsorbed intermediates.15 This study suggested the 

OER-relevance of certain lattice-O-species in Ir-oxides. In order to search for such OER-relevant 

reactive oxygen species accommodated by the IrIII/IV-oxohydroxide matrix, we analyzed the NEXAFS-

spectra of the O K-edge using the descriptive model of the electronic structure of Ir-oxides recently 

developed by Pfeifer et al16,17 We could show that our best IrIII-rich Ir-oxohydroxide catalyst 

contained high amounts of O 2p hole states, formally OI-, identified by a pre-edge feature at 529 eV. 

The detected OI--amount diminishes with increasing IrIV-content of the samples. Comparing the 

relative OI--amount with the trend in OER-performance within the batch of MW-produced Ir-

oxohydroxides led us to the conclusion that the OI--species were linked to the good OER-

performance of the Ir-oxohydroxides. In order to determine the OI--amount accessible in the 

different samples and compare quantitative trends to the evolution in OER-performance, we used a 

reactive CO-titration procedure. Indeed, recent results by Pfeifer et al.18 have shown that OI- 

accommodated by an IrIII/IV-oxohydroxide easily oxidizes CO at room temperature. We could 

establish a loose linear trend indicating a link between good OER-performance of our Ir-

oxohydroxides and a high content of OI--species. The high amount of titrated OI--species and slow 

reaction kinetics showed that the titration was not limited to the surface and that sub-surface-OI- 

migrated to the surface during the CO-titration experiment. The OER-relevance of the OI--species 

was confirmed by testing our best catalyst before and after CO-titration. We observed a strong 

depletion in OER-performance after CO-titration, which confirmed that the consumption of OI- via 

CO led to irreversible damage to the catalyst. 
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The comparison of these trends with the results obtained for an amorphous Ir-oxohydroxide 

benchmark extensively studied by Pfeifer et al.16,17 yielded another important piece of the puzzle. 

Indeed, the trends in OI--concentration detected via NEXAFS and CO-titration matched the evolution 

in OER-performance within our batch of MW-produced IrIII/IV-oxohydroxides. However, the 

benchmark compound exhibited a strong NEXAFS-feature attributed to OI-, comparable to our best 

MW-produced catalyst. This observation was in stark contrast to the small amount of CO-titrated OI--

species. We concluded that the OI--species present in the benchmark compound showed a strongly 

reduced ability to migrate towards the surface during CO-titration in comparison to our own 

compounds. Considering that the benchmark exhibited by far the worst OER-performance, this 

suggests that the mobility of sub-surface OI--species in IrIII/IV-oxohydroxides plays an important part 

in the superior OER-performance of these catalysts. It therefore seems that the mechanism 

suggested by Fierro et al. for the involvement of lattice-O-species should be extended in the case of 

Ir-oxohydroxides to include the three-dimensional matrix of the compounds as OER-relevant OI--

species probably migrate from the sub-surface to the surface.15 The  ex-situ characterization of our 

compounds strongly indicates such a scenario. However, in-situ identification of species involved in 

the OER on Ir-oxohydroxides will be crucial in order to confirm this hypothesis. The current 

optimization of electrocatalytic cells for synchrotron-based in-situ NAP-XPS/XAS will allow 

conducting such studies in the near future. The study of the migration of OI--species towards the 

catalyst surface might be of prime importance for a better mechanistic understanding of OER on 

IrIII/IV-oxohydroxides.  

I conclude that our innovative MW-supported hydrothermal synthesis strategy constitutes a 

powerful tool for the preparation of IrIII/IV-oxohydroxides with superior intrinsic OER-performance 

properties. Key structural features present in the highly hydrated IrIII-rich matrix, such as reactive OI--

species mobile within the amorphous matrix were identified. This constitutes an important step 

towards the targeted preparation of high-performance Ir-based OER-catalysts allowing for low 

electrode loadings. These findings thus pave the way towards the cost-effective implementation of 

PEM-based electrolyzers for large-scale chemical energy storage. 
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6. Appendix I: List of samples 

 

Table 6.1 List of relevant samples described in this work with corresponding nomenclature and their 
associated FHI-database ID 

Sample name Sample nature Synthesis conditions FHI-database 

MW-ATO ATO MW, 270°C, 1h 18966 

MW-Ir/ATO 30 mol.% Ir-oxohydroxide 
on ATO 

MW, 250°C, 1h 19527 

Ir_250_O2 MW-Ir/ATO calcined  21%O2/Ar, 250°C, 1h 22132 

Ir_350_O2 MW-Ir/ATO calcined 21%O2/Ar, 350°C, 1h 22133 

Ir_250_Ar MW-Ir/ATO calcined Ar, 250°C, 1h 22134 

Ir_350_Ar MW-Ir/ATO calcined Ar, 350°C, 1h 22135 

MW_1 Ir-oxohydroxide MW, KOH:Ir=1:1, 250°C, 1h 21009, 21010 

MW_4 Ir-oxohydroxide MW, KOH:Ir=4:1, 250°C, 1h 21404, 21405 

MW_5 Ir-oxohydroxide MW, KOH:Ir=5:1, 250°C, 1h 21011, 21012 

MW_7 Ir-oxohydroxide MW, KOH:Ir=7:1, 250°C, 1h 21130, 21131 

MW_10 Ir-oxohydroxide MW, KOH:Ir=10:1, 250°C, 1h 21013, 21014 

MW_50 Ir-oxohydroxide MW, KOH:Ir=50:1, 250°C, 1h 21015, 21016 

MW_100 Ir-oxohydroxide MW, KOH:Ir=100:1, 250°C, 1h 21017, 21018 

AA-IrOx Ir-oxohydroxide Commercial sample (Alfa 
Aesar, Premion, 99.99%) 

20233 

SA-IrO2 Crystalline IrO2 Commercial sample (Sigma 
Aldrich, 99.9%) 

21285 
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7. Appendix II: UV-Vis study of redox-processes and hydrolysis in 

K2IrCl6/KOH-solutions 

 

UV-Vis-absorption spectra have been used to study the reduction, hydrolysis and condensation 

phenomena occurring in the KOH/K2IrCl6 precursor solutions used in the MW-supported 

hydrothermal synthesis. An important goal in preparing these solutions is to hydrolyze Ir-chloride 

precursors. Indeed chloro-iridate complexes are stable in solution even at high temperature and 

pressure and do not yield a solid product after hydrothermal treatment.  

7.1. UV-Vis studies of solvated Ir-species in the literature 

The first thorough description of the electronic structure of hexachloroiridate-III and -IV has been 

published by C. Jørgensen in 1958.1 Jørgensen used ligand field theory and nonrelativistic symmetry 

considerations in order to describe the electronic structure of octahedral halogen iridate complexes. 

Hexachloroiridate IrCl6
2- is a 5d5 low spin complex, presenting strong absorption bands both in the 

visible and in the UV-range.  These bands are mostly due to ligand-to-metal charge transfer (LMCT) 

and give a deep red/brown color to the complex in water. 1 Jørgensen’s non-relativistic assignement 

of the absorption wavelengths accurately describes the strong LMCT-bands at 232, 410, 434 and 

487nm observed for K2IrCl6 0,01M dissolved in water. A more accurate description of the electronic 

structure, involving relativisitic effects such as spin-orbit coupling and the description of π-bonding 

was performed in 1983 by Goursot et al.2 and confirmed in 1984 by Lopey and Case3. By taking into 

account spin-orbit coupling phenomena, Goursot et al. could assign the weak bands observed 

between 578 and 590nm and at 306nm to a superposition of LMCT bands and d-d transitions 

resulting from spin-orbit-coupling. The band between 578 and 590nm is especially weak because the 

LMCT is Laporte-fobidden as it corresponds to the transition from a ligand π-orbital to a metal d-

orbital. . The dotted line present in Figure 7.1 is the absorption spectra of a 0,01mol.L-1 K2IrCl6 

solution and is well in line with the features expected for IrCl6
2-. 

In presence of base, strong changes in the UV-Vis spectrum of IrCl6
2- occur. These changes are 

sometimes mistaken for hydrolysis of the hexachloroiridate IrCl6
2- complex.4 In reality under basic 

conditions, IrCl6
2-, which is a well-known outer-sphere oxidant, first reduces to IrCl6

3- following 

reaction (5.1): 

       
                

    
 

 
       

(5.1) 

 

This first rapid step leads to the formation of the 5d6-complex IrCl6
3-. The metal-t2g-orbitals are now 

filled, which explains the disappearance of the strong LMCT-bands. In an early paper, C. Jørgensen 

described the resulting UV-Vis absorption spectra of IrCl6
3- using crystal field theory.5 Two weak 

bands corresponding to spin-allowed d-d transitions to the singlet state are experimentally observed 

at 356 and 415nm.  
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The field of certainties stops at this point, as the hydrolysis pathways and products are a little 

studied filed. Jørgensen already noted that unlike the very stable IrCl6
2-, IrCl6

3- exhibits a strong 

propensity towards slow hydrolysis. He also noted the uncertainty that remained over the state of 

aquation of IrCl6
3- over time. Poulsen et al. and Moggi et al. described the aquation rates of IrCl6

3- in 

acidic media and could observe the aquation of IrCl6
3- to Ir(H2O)Cl5

2- under heating following reaction 

(5.2).6,7 

     
                 

       (5.2) 

     
               

        (5.3) 

In 1976, Beutler and Gamsjäger were the first ones to report the preparation of hexa-aquairidium(III) 

from IrCl6
2- treated with base following reaction (5.3.) .8 Gamsjäger distinguishes between Ir(OH2)6

3+ 

under acidic/neutral conditions and Ir(OH)6
3- under basic conditions. In a later paper, the OH--

exchange kinetics of hexahydroxoiridate-(III) were studied by 18O-labeling exchange experiments.9 It 

was shown that the inner sphere hydroxyl ligands were quite labile and could be easily exchanged at 

higher [OH-]. Also at high [OH-], monomeric Ir(III)-species are strongly favored, whereas at lower [OH-

], polymeric Ir-species are suspected. It should also be noted at this point that in all studies, authors 

emphasize possible re-oxidation of Ir3+ to Ir4+ by dissolved oxygen following reaction (5.4) and (5.5). 

After reduction, there is thus a competition between the two slow hydrolysis and re-oxidation 

reactions described by (5.3), (5.4) and (5.5). 

      
   

 

 
             

        
(5.4) 

        
   

 

 
               

        
(5.5) 

After several hours of hydrolysis in basic conditions, broad bands in the 560-590nm-region are 

observed. Gamsjäger et al. already mentioned the probable formation of iridium-oligomers. Castillo-

Blum et al. were the first to report binuclear, hydroxo- and oxo-bridged aquairidium-complexes 

produced during hydrolysis.10 However literature remains very vague on the subject and little 

characterization is provided. More recently Pankratov et al. proposed a possible mechanism for the 

formation of binuclear mixed-valence peroxo-bridged iridium complexes.11 They used EPR to prove 

their findings, investigated however only highly concentrated basic solutions. In this case, as pointed 

out by Gamsjäger et al. in their 18O-labelling study, oligomeric Ir-species do not form due to the rapid 

exchange kinetics of hydroxo-ligands in the iridium-complexes. Thus, in the case of lower base:Ir 

ratios, the chemistry of hydrolysis products might be much more complex with probable formation 

of iridium-oligomers involving the whole variety of valence states and bonds aforementioned, 

including the peroxo-bridges evidenced by Pankratov et al. 
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Table 7.1 Absorption bands of iridium-complexes reported in the literature 

Species Wavelength 
λ (nm) 

Type Reference 

IrIVCl6
2- 232 LMCT 1,2 

 269 d-d transition 2,12 

 306 LMCT 
-weak contribution from d-d 
transition involving spin-orbit 
coupling 

2,3,12 

  LMCT 2,3 

 388 d-d transition 2,12 

 410 LMCT 1,2 

 434 LMCT 1,2 

 487 LMCT 1,2 

 578-590 -Laporte-forbidden LMCT 
-d-d transition involving spin-
orbit coupling 

2,3 

IrIIICl6
3- 356 d-d transition to singlet state 5,8,13 

 415 d-d transition to singlet state 5,8,13 

IrIII(H2O)6
3+ 265  8,13 

 310-317  5,8,13 

 

 

7.2. UV-Vis study of precursor solution for the MW-synthesis 

For the purpose of understanding processes occurring in the precursor solutions used for the 

synthesis of pure Ir-oxohydroxides described in chapter 3, solutions containing 0,01mol.L-1 K2IrCl6 

and KOH at various KOH:Ir-ratios were studied using a Lambda 650 UV-vis spectrometer (Perkin 

Elmer). Figure 7.1 shows the UV-Vis spectra of solutions of K2IrCl6 (0,01mol.L-1) mixed with KOH after 

one hour of ageing at room temperature for varying KOH:Ir ratios. After one hour, all solutions with 

KOH:Ir above 4:1 exhibited only  two weak bands at 346-356 nm and 413-415 nm attributed to the 

reduction product IrCl6
3-. Only for KOH:Ir=1:1 and 1:10, the LMCT-features of IrCl6

2- are still clearly 

recognizable, indicating only partial reduction of IrCl6
2- to of IrCl6

3-. 
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Figure 7.1 UV-Vis absorbtion spectra of different 
KOH/K2IrCl6 solutions at RT one hour after mixing 

(K2IrCl6 0,01 mol.L
-1

, varying KOH:Ir ratio). 

 

Figure 7.2 UV-Vis absorbtion spectra of a KOH/K2IrCl6 
(KOH:Ir=1:1) solution at RT after mixing over 15 days 

 

Figure 7.3 UV-Vis absorbtion spectra of a KOH/K2IrCl6 
(KOH:Ir=4:1) solution at RT after mixing over 15 days 

 

Figure 7.4 UV-Vis absorbtion spectra of a KOH/K2IrCl6 
(KOH:Ir=50:1) solution at RT after mixing over 15 days 

 

UV-Vis spectra could not be recorded during the MW-supported hydrothermal treatment of the 

precursor solutions. However, the study of the slow evolution of the sooutions over time at room 

temperature also yields information on processes occurring on a more rapid scale during the MW-

treatment. Figure 7.2, Figure 7.3 and Figure 7.4 illustrate these phenomena as they show the 

evolution at romm temperature over time of the absorption spectra of K2IrCl6/KOH-solutions with 

respective ratios of 1:1, 4:1 and 50:1. In the case of the 1:1 ratio, even after 15 days at room 

temperature, the characteristic IrCl6
2--LMCT bands are still present in addition to the weak IrCl6

3- 

bands, indicating unsuccessful hydrolysis. On the other extreme, Figure 7.4 illustrates the evolution 

of a KOH:Ir=50:1-solution. Reduction to IrCl6
3- was almost instantaneous, with almost complete 

disappearance of the LMCT-bands after one minute and observed gas bubble evolution. Up to 1h, 

mostly the IrCl6
3--bands are visible. Only then slow hydrolysis of IrCl6

3- at room temperature starts 

and explains the appearance of a strong and stable absorption band at 315 nm attributed to 

Gamsjäger’s hexahydroxoiridiate-(III) complex. Concomitantly, the rise of a weak band at 560 nm is 

observed (see Figure 7.5). This band could be explained by the presence of the binuclear superoxo-

bidged IrIV-complex proposed by Pankratov et al. that would result from re-oxidation via dissolved 
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oxygen. The exact nature of the species responsible for such bands remains however to be clarified. 

It is also to be noted that no precipitates formed. This is in line with the fast hydroxyl ligand 

exchanges described by Gamsjäger et al. Such processes hinder efficient oligomerization and 

condensation of a solid product. 

 

Figure 7.5 Enlargement of the UV-Vis spectra obtained for KOH:Ir=50:1 

 

Figure 7.3 illustrates the case of the  KOH:Ir=4:1 solution. In this case the stoichiometry allows for 

the reduction of IrCl6
2- to IrCl6

3- and for the replacement of the chloride ligands with hydroxyls. At 

first the spectra behave in a similar fashion as for KOH:Ir=50:1 with total reduction followed by the 

appearance of a strong absorption band at 315nm attributed to the hexahydroxoiridate-(III). 

However after reaching a stable maximum between 18 and 24h, after 2 days the band at 315nm 

diminishes in intensity and shifts towards higher values with a concomitant increase of a very broad 

band centered around 575nm. Experimentally, after 24h the formation of a precipitate is observed. 

Taking into account Gamsjäger’s observation of oligomeric species formed from hexahydroxoiridate-

(III) at lower [OH-] it can be suspected that after hydrolysis of IrCl6
3- to hexahydroxoiridate-(III), 

oligomeric species are formed, that show a strong propensity towards condensation. Thus the 

KOH:Ir-ratio proves to be critical not only in reducing and hydrolyzing IrIV-chloride precursors. The 

remaining [OH-] obviously influences the formation and condensation of Ir-oligomers. The fast 

exchange kinetics of hydroxyl groups in hexahydroxoiridate-(III) at high pH probably hinder oligomer 

formation and thus explain the preferred monomeric or dimeric species at higher KOH:Ir. A recet 

report by Zhao et al. also showed that part of the hexahydroxoiridate-(III) formed in such a reaction 

scheme can be reoxidized by oxygen dissolved from air, leading to the presence of IrIII/IV-hydrolsis 

products in the solution.14  
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As a result, it appears that a UV-Vis in-situ study of the during the MW-treatment could yield 

valuable information on the complex hydrolysis and oligomerization processes leading to the 

production of IrIII/IV-oxohydroxides. This however presupposes a better understanding of the species 

in presence, especially those responsible for the broad bands observed after hydrolysis at room 

temperature in the 560-575 nm region. 
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8. Appendix III: ICP-OES-study of Ir-dissolution during OER-

catalysis 

In order to assess the importance of Ir-dissolution via corrosive processes during OER, selected Ir-

compounds were tested in a custom-made electrochemical flow-through cell allowing for time-

resolved analysis of dissolved species in the flowing electrolyte via ICP-OES. 

8.1. Experimental setup 

The cell body and all channels (diameter 2 mm) were mechanically manufactured from Polyether 

ether ketone (PEEK), and the electrolyte inlet and outlet were connected via Tygon® tubing (2 mm 

inner diameter). Both channels ware connected in a straight line. The flow channels, the working- 

and counter-electrodes at the bottom of the cell were encircled with a silicone gasket to avoid 

electrolyte leaks and in order to protect the flow cell channels and working electrode from 

contaminations. A coil-shaped platinized platinum wire (125 μm diameter, 99.99%, Science Products 

GmbH), placed along the flow channel following the electrolyte flow, was used as the counter 

electrode, while the reference electrode (SCE, Gamry, reference potential +241 mV vs. SHE) was 

inserted in a separate compartment. A 1mm Luggin capillary-like channel allows connectivity 

between the working and the reference electrode compartment. All potentials are expressed vs the 

SHE potential scale. The potentiostat used for the electrochemical measurements is a Bio-Logic SP-

150, while the embedded EC-Lab software was used to electrochemically monitor the catalysts.   

The resulting electrolyte stream is continuously fed into the ICP-OES (Spectroblue EOP, Ametek) by 

means of a peristaltic pump at a flow rate of 0.33mL.min-1, through a quartz nebulizer operating at 

nebulizer gas flow rates of between 0.8 and 0.85 L.min−1 (Ar, purity 99,999%). Transient signals of Ir 

were recorded continuously with an integration interval of 100 ms and 2 sweeps per reading. 

Calibration was performed using 7 standard solutions (100, 50, 10, 5, 1, 0.5 ppm Ir and a blank 

solution prepared from Merck CertiPUR®). The RF power was set to 1400 W with a plasma gas flow 

rate of 15 L.min−1. 

Catalyst inks were prepared by suspending 4 mg of catalysts in 6 mL Millipore-filtered H2O and 4 mL 

of isopropanol (Sigma Aldrich). The suspension was subsequently sonicated for 30min. The resulting 

ink was then drop-casted onto the anode by using a micropipette in order to reach an iridium-

loading of 50 μgIr.cm-2 and dried for 30 min at 60°C. The electrolyte consisted of a 0.5 mol.L-1 H2SO4-

solution. 

The samples were examined using an electrochemical standard protocol. All electrochemical 

measurements were corrected at 85% for ohmic drop using high-frequency impedance spectroscopy 

(4 measurements, 100 kHz, 20 mV amplitude, open circuit potential, Eoc). A first LSV to 1,6 V vs. RHE 

at 5 mV.s-1 was used to assess the initial sample activity. After 1 min at open circuit potential, 

current densities were ramped up by 10 μA.s-1 to 10 mA.cm-2 and maintained at this value for two 

hours in a typical CP-based stability test. The concomitant corrosion-related dissolution of Ir in the 

solution was studied via ICP-OES-based screening of the flowing electrolyte. 
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8.2. Results  

Recorded CP-curves curves appeared very noisy in comparison to the results obtained using RDE-

electrodes, which is due to the more efficient bubble-removal under rotation. Otherwise, the anodic 

potential-curves were in line with the CP-curves obtained on RDE (see Figure S3.16). Dissolved Ir-

traces remained extremely low for all samples throughout the 2h-CP-measurement. Levels of 

approx. 15 ppb are too close to the detection limit of ICP-OES to distinguish Ir-signals from 

background noise. However during the initial current ramp to 10 mA.cm-2, stronger Ir-signals 

reaching 50 and 40 ppg were recorded for respectively MW_7 (Figure 8.1.c) and MW_50 (Figure 

8.1.d). Such signals might be linked to loosely attached Ir-particles removed mechanically by oxygen 

bubbles during the onset of OER at 10 mA.cm-2. Broader Ir-dissolution features were observed for 

the AA-IrOx benchmark (Figure 8.1.a) and the best OER-catalyst MW_5 (Figure 8.1.b). These more 

important Ir-dissolutiomn features were observed for up to 15 min in the case of MW_5 (Figure 

8.1.b) but remained at levels below 30 ppb. Mechanical removal of loosely attached Ir-particles 

might again account for such observations. 

  

  

Figure 8.1 Ir-species detected via ICP-OES (blue lines) in the electrolyte flowing through an electrochemical 
water splitting cell during a CP-measurement conducted at 10 mA.cm

-2
 (anode potentials in black vs. SHE) for 

anodes coated with (a) AA-IrOx, (b) MW_5, (c) MW_7, (d) MW_50. 

Strinkingly, despite similar behavior during the CP-test for all four samples, major changes in OER-

activity were observed when comparing the initial and final LSV-based activity assessment (Figure 

8.2). MW_5 was the only compound that didn’t show major changes in OER-activity, remaining the 
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most active compound (Figure 8.2.b). On the opposite, AA-IrOx, MW_7 and MW_50 showed all three 

a significant decrease in OER-activity, refelected by weaker LSV-slopes. This effect is less strong for 

MW_7. This indicates that all samples but MW_5 were significantly deactivated during CP at 10 

mA.cm-2.  

 

 

Figure 8.2 LSV-measurements (5 mV.s
-1

) before (black line) and after the 2h-CP-stability test (red line) for (a) 
AA-IrOx, (b) MW_5, (c) MW_7, (d) MW_50. 

 

Since MW_5 was the samples that showed the most significant, albeit small, Ir-dissolution and yet 

remained the most stable, we conclude that the deactivation of Ir-oxohydroxides under acidic OER-

conditions at potentials below 1,6 V vs. RHE cannot be explained solely based on corrosion-related 

Ir-dissolution. Otherwise, one would have expected strong Ir-dissolution signals, especially for AA-

IrOx, which was the most significantly deactivated. As a result, other phenomena must be 

responsible for the significant deactivation of AA-IrOx, MW_7 and MW_50. We suggest that 

potential-dependent alterations to the particular IrIII/IV-oxohydroxide structure might be responsible 

for the deactivation. A similar in-situ study relying on XPS and NEXAFS to study structural changes in 

the IrIII/IV-oxohydroxide might yield important clues on such potential-dependent modifications. 

Differences observed between MW_5 and other compounds should reveal features responsible for 

the superior resilience of MW_5. 
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