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Dual Pairs of Generalized Lyapunov Inequalities and
Balanced Truncation of Stochastic Linear Systems

1

2

Peter Benner, Tobias Damm, and Yolanda Rocio Rodriguez Cruz3

Abstract—We consider two approaches to balanced truncation4
of stochastic linear systems, which follow from different general-5
izations of the reachability Gramian of deterministic systems. Both6
preserve mean-square asymptotic stability, but only the second7
leads to a stochastic H∞-type bound for the approximation error8
of the truncated system.9

Index Terms—Asymptotic mean square stability, balanced trun-10
cation, generalized Lyapunov equation, model order reduction,11
stochastic linear system.12

I. INTRODUCTION13

14 O PTIMIZATION and (feedback) control of dynamical sys-15

tems is often computationally infeasible for high dimen-16

sional plant models. Therefore, one tries to reduce the order of17

the system, so that the input-output mapping is still computable18

with sufficient accuracy, but at considerably smaller cost than19

for the original system [1]–[5]. To guarantee the desired accu-20

racy, computable error bounds are required. Moreover, system21

properties which are relevant in the context of control system22

design like asymptotic stability need to be preserved. It has23

long been known that for linear time-invariant (LTI) systems the24

method of balanced truncation preserves asymptotic stability25

and provides an error bound for the L2-induced input-output26

norm, i.e., the H∞-norm of the associated transfer function;27

see [6], [7]. When considering model order reduction of more28

general system classes, it is natural to try to extend this ap-29

proach. This has been worked out for descriptor systems in30

[8], for time-varying systems in [9]–[11], for bilinear systems31

in [12]–[14] and general nonlinear systems, e.g., in [15]. Yet32

another generalization of LTI systems is obtained considering33

dynamics driven by noise processes. This leads to the class of34

stochastic systems, which have been considered in a system35

theoretic context, e.g., in [16]–[18]. Quite recently, balanced36

truncation has also been described for linear stochastic systems37

of Itô type in [14], [19], and [20]. Already the formulation of38

the method leads to two different variants that are equivalent39

in the deterministic case, but not so for stochastic systems. It40

is natural to ask which of the above-mentioned properties of41
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balanced truncation also hold for these variants. The aim of this 42

paper is to answer this question. 43

Let us recapitulate balanced truncation for linear control 44

systems of the form 45

ẋ = Ax+Bu y = Cx σ(A) ⊂ C−. (1)

Here A∈Rn×n, B ∈ Rn×m, C ∈ Rp×n, and x(t) ∈ Rn, y(t) ∈ 46

Rp and u(t) ∈ Rm are the state, output, and input of the system, 47

respectively. Moreover σ(A) denotes the spectrum of A and C− 48

the open left half complex plane. Let 49

LA : X �→ ATX +XA

denote the Lyapunov operator and 50

L∗
A : X �→ AX +XAT

its adjoint with respect to the Frobenius inner product 〈Z, Y 〉 = 51

trace(Y TZ). Then σ(A) ⊂ C− if and only if there exists a posi- 52

tive definite solution X of the Lyapunov inequality LA(X)<0, 53

by Lyapunov’s classical stability theorem, see, e.g., [21]. 54

Balanced truncation means truncating a balanced realization. 55

This realization is obtained by a state space transformation 56

computed from the Gramians P and Q, which solve the dual 57

pair of Lyapunov equations 58

LA(Q) =ATQ+QA = −CTC (2a)

L∗
A(P ) =AP + PAT = −BBT (2b)

or more generally the inequalities 59

LA(Q) ≤ −CTC L∗
A(P ) ≤ −BBT . (3)

These (in)equalities are essential in the characterization of 60

stability, controllability and observability of system (1). If 61

detP �= 0, the inequalities (3) can be written as 62

LA(Q) ≤ − CTC (4a)

LA(P
−1) =P−1A+ATP−1 ≤ −P−1BBTP−1. (4b)

In the present paper we discuss extensions of (3) and (4) for 63

stochastic linear systems. 64

As indicated above, the equivalent formulations (3) and (4) 65

lead to different generalizations, if we consider Itô-type sto- 66

chastic systems of the form 67

dx = Ax dt+Nx dw +Bu dt, y = Cx (5)

where A,B,C are as in (1) and N ∈ R
n×n. System (5) is 68

asymptotically mean-square stable (e.g., [18], [22], [23]), if and 69
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only if there exists a positive definite solution X of the gener-70

alized Lyapunov inequality71

(LA +ΠN )(X) = ATX +XA+NTXN < 0.

Here ΠN : X �→ NTXN and Π∗
N : X �→ NXNT . This sta-72

bility criterion indicates that in the stochastic context, the73

generalized Lyapunov operator LA +ΠN takes over the role74

of LA. Substituting LA by LA +ΠN in (3) and (4), we obtain75

two different dual pairs of generalized Lyapunov inequalities.76

We call them type I77

(LA +ΠN )(Q) =ATQ+QA+NTQN ≤ −CTC (6a)

(LA +ΠN )∗(P ) =AP + PAT +NPNT ≤ −BBT (6b)

and type II78

(LA +ΠN )(Q) =ATQ+QA+NTQN

≤ − CTC (7a)

(LA +ΠN )(P−1) =ATP−1 + P−1A+NTP−1N

≤ − P−1BBTP−1. (7b)

Note that (6) corresponds to (3) in the sense that L∗
A(P ) has79

been replaced by (LA +ΠN )∗(P ), while (7) corresponds to80

(4), where LA(P
−1) has been replaced by (LA +ΠN )(P−1).81

In general (if N and P do not commute), the inequalities (6b)82

and (7b) are not equivalent. At first glance it is not clear which83

generalization is more appropriate.84

If the system is asymptotically mean-square stable, then85

for both types there are solutions Q,P > 0. By a suitable86

state space-transformation, it is possible to balance the system87

such that Q = P = Σ > 0 is diagonal. Consequently, the usual88

procedure of balanced truncation can be applied to reduce the89

order of (5). For simplicity, let us refer to this as type I or type II90

balanced truncation.91

Under natural assumptions, this reduction preserves mean-92

square asymptotic stability. For type I, this nontrivial fact has93

been proven in [24]. Moreover, in [20], an H2-error bound94

has been provided. However, different from the deterministic95

case, there is no H∞-type error bound in terms of the truncated96

entries in Σ. This will be shown in Example I.3.97

In contrast, for type II, an H∞-type error bound has been98

obtained in [19]. In the present paper, as one of our main99

contributions, we show in Theorem II.2 that type II balanced100

truncation also preserves mean-square asymptotic stability. The101

proof differs significantly from the one given for type I. Using102

this result, we are able to give a more compact proof of the error103

bound, Theorem II.4, which exploits the stochastic bounded104

real lemma [17].105

We illustrate our results by analytical and numerical exam-106

ples in Section IV.107

II. TYPE I BALANCED TRUNCATION108

Consider a stochastic linear control system of Itô-type109

dx = Ax dt+
k∑

j=1

Njx dwj +Bu dt, y = Cx (8)

where wj = (wj(t))t∈R+
are uncorrelated zero-mean real 110

Wiener processes on a probability space (Ω,F , μ) with respect 111

to an increasing family (Ft)t∈R+
of σ-algebras Ft ⊂ F (e.g., 112

[25], [26]). 113

To simplify the notation, we only consider the case k = 1 114

and set w = w1, N = N1. But all results can immediately be 115

generalized for k > 1. 116

Let L2
w(R+,R

q) denote the corresponding space of nonan- 117

ticipating stochastic processes v with values in Rq and norm 118

‖v(·)‖2L2
w
:= E

⎛
⎝ ∞∫

0

‖v(t)‖2 dt

⎞
⎠ < ∞

where E denotes expectation. 119

Let the homogeneous equation dx = Axdt+Nxdw be 120

asymptotically mean-square-stable, i.e., E(‖x(t)‖2) t→∞−→ 0, for 121

all solutions x. 122

Then, by Theorem A.1, the equations 123

ATQ+QA+NTQN = −CTC

AP + PAT +NPNT = −BBT

have unique solutions Q ≥ 0 and P ≥ 0. If the system is 124

observable and reachable (see Theorem A.8), then Q and P are 125

nonsingular, and thus positive definite. 126

A similarity transformation 127

(A,N,B,C) �→ (S−1AS, S−1NS, S−1B,CS)

of the system implies the contragradient transformation as 128

(Q,P ) �→ (STQS, S−1PS−T ).

Choosing, e.g., S = LVΣ−1/2, with Cholesky factorizations 129

LLT = P , RTR = Q and a singular value decomposition 130

RL = UΣV T , we obtain S−1 = Σ−1/2UTR and 131

STQS = S−1PS−T = Σ = diag(σ1, . . . , σn).

After suitable partitioning 132

Σ =

[
Σ1 0
0 Σ2

]
S = [S1 S2] S−1 =

[
T1

T2

]
a truncated system is given in the form 133

(A11, N11, B1, C1) = (T1AS1, T1NS1, T1B,CS1).

The following result has been proven in [24]. 134

Theorem I.1: Let A,N ∈ R
n×n satisfy 135

σ(I ⊗A+A⊗ I +N ⊗N) ⊂ C−.

For a block-diagonal matrix Σ = diag(Σ1,Σ2) > 0 with 136

σ(Σ1) ∩ σ(Σ2) = ∅, assume that 137

ATΣ+ ΣA+NTΣN ≤ 0 and AΣ + ΣAT +NΣNT ≤ 0.

Then, with the usual partitioning of A and N , we have 138

σ(I ⊗A11 +A11 ⊗ I +N11 ⊗N11) ⊂ C−.
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Its implication for mean-square stability of the truncated system139

is immediate.140

Corollary I.2: Consider an asymptotically mean square sta-141

ble stochastic linear system142

dx = Ax dt+Nx dw.

Assume that a matrix Σ = diag(Σ1,Σ2) is given as in143

Theorem I.1 and A and N are partitioned accordingly. Then the144

truncated system145

dxr = A11xr dt+N11xr dw

is also asymptotically mean square stable.146

If the diagonal entries of Σ2 are small, it is expected that the147

truncation error is small. In fact this is supported by an H2-error148

bound obtained in [20]. Additionally, however, from the de-149

terministic situation (see [2], [6]), one would also hope for an150

H∞-type error bound of the form151

‖y − yr‖L2
w(R+,Rp)

?
≤ α(traceΣ2)‖u‖L2

w(R+,Rm) (9)

with some real number α > 0. The following example shows152

that no such general α exists.153

Example I.3: Let A = −
[
1 0
0 a2

]
with a > 1, N =154 [

0 0
1 0

]
, B =

[
1
0

]
, C = [0 1].155

Solving (6) with equality, we get P =

[
1
2 0
0 1

4a2

]
, Q =156 [

1
4a2 0
0 1

2a2

]
with σ(PQ) = {1/8a2, 1/8a4} so that Σ =157

diag(σ1, σ2), where σ1 = 1/
√
8a and σ2 = 1/

√
8a2. The sys-158

tem is balanced by the transformation S =

[
2a2 0
0 1/2

]1/4
.159

Then CS = (1/21/4)[ 0 1 ] so that Cr = 0 for the trun-160

cated system of order 1. Thus, the output of the reduced system161

is yr ≡ 0, and the truncation error ‖L− Lr‖ is equal to the162

stochastic H∞-norm (see [17]) of the original system163

‖L‖ = sup
x(0)=0,‖u‖L2

w
=1

‖y‖L2
w
.

We show now that this norm is equal to 1/
√
2a = 2aσ2.164

Thus, depending on a, the ratio of the truncation error and165

traceΣ2 = σ2 can be arbitrarily large.166

According to the stochastic bounded real lemma,167

Theorem A.5, ‖L‖ is the infimum over all γ so that the Riccati168

inequality169

0 <ATX +XA+NTXN − CTC − 1

γ2
XBBTX

=

[
−2x1 + x3 − 1

γ2x
2
1 −(a2 + 1)x2 − 1

γ2x1x2

−(a2 + 1)x2 − 1
γ2x1x2 −2a2x3 − 1

γ2x
2
2 − 1

]
(10)

possesses a solution X =

[
x1 x2

x2 x3

]
< 0.170

If a given matrix X satisfies this condition, then so does the 171

same matrix with x2 replaced by 0. Hence we can assume that 172

x2 = 0, and end up with the two conditions x3 < −(1/2a2) 173

and (after multiplying the upper left entry with −γ2) 174

0 >x2
1 + 2γ2x1 − γ2x3 = (x1 + γ2)

2 − γ2(γ2 + x3)

> (x1 + γ2)
2 − γ2

(
γ2 − 1

2a2

)
.

Thus necessarily γ2 > 1/2a2, i.e., γ > 1/
√
2a. This already 175

proves that ‖L‖ ≥ 1/
√
2a = 2aσ2, which suffices to disprove 176

the existence of a general bound α in (9). Taking infima, it is AQ1177

easy to show that indeed ‖L‖ = 1/
√
2a. 178

III. TYPE II BALANCED TRUNCATION 179

We now consider the inequalities (7). 180

Lemma II.1: Assume that dx = Axdt+Nxdw is asymptot- 181

ically mean-square-stable. Then inequality (7b) is solvable with 182

P > 0. 183

Proof: By Theorem A.1, for a given Y < 0, there exists a 184

P̃ > 0, so that AT P̃−1 + P̃−1A+NT P̃−1N = Y . Then P = 185

ε−1P̃ , for sufficiently small ε > 0, satisfies 186

ATP−1 + P−1A+NTP−1N = εY < −ε2P̃−1BBT P̃−1

so that (7b) holds even in the strict form. � 187

It is easy to see that like in the previous section a state space 188

transformation 189

(A,N,B,C) �→ (S−1AS, S−1NS, S−1B,CS)

leads to a contragradient transformation Q �→ STQS, P �→ 190

S−1PS−T of the solutions. That is, Q and P satisfy (7a) 191

and (7b), if and only if STQS and S−1PS−T do so for the 192

transformed data. As before, we can assume the system to be 193

balanced with 194

Q = P = Σ = diag(σ1I, . . . , σνI) =

[
Σ1

Σ2

]
(11)

where σ1 > · · · > σν > 0 and σ(Σ1)={σ1, . . . , σr}, σ(Σ2) = 195

{σr+1, . . . , σν}. Hence, we will now assume (after balancing) 196

that a diagonal matrix Σ as in (11) is given which satisfies 197

ATΣ+ ΣA+NTΣN ≤ −CTC (12a)

ATΣ−1 +Σ−1A+NTΣ−1N ≤ −Σ−1BBTΣ−1. (12b)

Partitioning A,N,B,C like Σ, we write the system as 198

dx1 =(A11x1 +A12x2 +B1u) dt+ (N11x1 +N12x2) dw

dx2 =(A21x1 +A22x2 +B2u) dt+ (N21x1 +N22x2) dw

y =C1x1 + C2x2.

The reduced system obtained by truncation is 199

dxr = (A11xr +B1u) dt+N11xr dw yr = C1xr.
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The index r is the number of different singular values σj that200

have been kept in the reduced system. In the following subsec-201

tions, we consider matrices:202

A =

[
A11 A12

A21 A22

]
N =

[
N11 N12

N21 N22

]

Σ = diag(Σ1,Σ2) as in (11), and equations of the form203

ATΣ + ΣA+NTΣN = −C̃T C̃ (13a)

ATΣ−1 +Σ−1A+NTΣ−1N = −B̃B̃T (13b)

with arbitrary right-hand sides −C̃T C̃ ≤ 0 and −B̃B̃T ≤ 0.204

A. Preservation of Asymptotic Stability205

The following theorem is the main new result of this paper.206

Theorem II.2: Let A and N be given such that207

σ(I ⊗A+A⊗ I +N ⊗N) ⊂ C−. (14)

Assume further that for a block-diagonal matrix Σ =208

diag(Σ1,Σ2) > 0 with σ(Σ1) ∩ σ(Σ2) = ∅, we have209

ATΣ+ ΣA+NTΣN ≤ 0 (15a)

ATΣ−1 +Σ−1A+NTΣ−1N ≤ 0. (15b)

Then, with the usual partitioning of A and N , we have210

σ(I ⊗A11 +A11 ⊗ I +N11 ⊗N11) ⊂ C−. (16)

Again we have an immediate interpretation in terms of mean-211

square stability of the truncated system.212

Corollary II.3: Consider an asymptotically mean square213

stable stochastic linear system214

dx = Ax dt+Nx dw.

Assume that a matrix Σ = diag(Σ1,Σ2) is given as in215

Theorem II.2 and A and N are partitioned accordingly. Then216

the truncated system217

dxr = A11xr dt+N11xr dw

is also asymptotically mean square stable.218

Proof of Theorem II.2: Note that the inequalities (15) are219

equivalent to the equations (13) with appropriate right-hand220

sides −C̃T C̃ and −B̃B̃T . In accordance with the partitioning221

of A, N , and Σ, each matrix equation (13a) and (13b) consists222

of three blocks.223

By way of contradiction, we assume that (16) does not hold.224

Then by Theorem A.3, there exist V ≥0, V �=0, α≥0 such that225

A11V + V AT
11 +N11V NT

11 = αV. (17)

Taking the scalar product of the left upper block of (13a) with226

V , we obtain 0 ≥ αtrace(Σ1V ) whence α = 0 and C̃1V = 0,227

N21V = 0 by Corollary A.4. Hence228 (
AT

11Σ1 +Σ1A11 +NT
11Σ1N11

)
V = 0. (18)

Analogously, we have B̃T
1 V = 0.229

In particular, from N21V = 0, we get 230

(L∗
A +Π∗

N )

([
V 0
0 0

])
=

[
0 V AT

21

A21V 0

]
.

We will show that A21V = 0, which implies 231

0 ∈ σ(I ⊗A+A⊗ I +N ⊗N) (19)

in contradiction to (14), and thus finishes the proof. 232

We first show that ImV is invariant under A11 and N11. To 233

this end, let V z = 0. Then by (17) 234

0 = zT
(
A11V + V AT

11 +N11V NT
11

)
z = zTN11V NT

11z

whence also V NT
11z=0, i.e., NT

11z ∈ KerV . From this, we have 235

0 =
(
A11V + V AT

11 +N11V NT
11

)
z = V AT

11z

implying AT
11z ∈ KerV . Thus, AT

11KerV ⊂ KerV and 236

NT
11KerV ⊂ KerV . 237

Since KerV = (ImV )�, it follows further that ImV is invari- 238

ant under A11 and N11. 239

Let V = V1V
T
1 , where V1 has full column rank, i.e., 240

detV T
1 V1 �= 0. Then by the invariance, there exist square 241

matrices X and Y , such that 242

A11V1 = V1X N11V1 = V1Y.

It follows that 243

0 =A11V1V
T
1 + V1V

T
1 AT

11 +N11V1V
T
1 NT

11

=V1(X +XT + Y Y T )V T
1

whence X +XT + Y Y T = 0. Moreover, from (18), we get 244

AT
11Σ1V1 = −Σ1A11V1 −NT

11Σ1N11V1

= −Σ1V1X −NT
11Σ1V1Y. (20)

Using this substitution in the following computation, we obtain 245

0 ≥V T
1 Σ2

1

(
AT

11Σ
−1
1 +Σ−1

1 A11 +NT
11Σ

−1
1 N11

)
Σ2

1V1

= −V T
1 Σ3

1V1X −XTV T
1 Σ3

1V1

− V T
1 Σ2

1N
T
11Σ1V1Y − Y TV T

1 Σ1N11Σ
2
1V1

+ V T
1 Σ2

1N
T
11Σ

−1
1 N11Σ

2
1V1. (21)

Taking the trace in (21), we have 246

0 = trace

[
V1Y
V1

]T
M

[
V1Y
V1

]

where 247

M =

[
Σ3

1 −Σ1N11Σ
2
1

−Σ2
1N

T
11Σ1 Σ2

1N
T
11Σ

−1
1 N11Σ

2
1

]

is positive semidefinite 248[
Σ3

1 −Σ1N11Σ
2
1

−Σ2
1N

T
11Σ1 Σ2

1N
T
11Σ

−1
1 N11Σ

2
1

] [
V1Y
V1

]
= 0.



IEE
E P

ro
of

BENNER et al.: DUAL PAIRS OF GENERALIZED LYAPUNOV INEQUALITIES AND BALANCED TRUNCATION OF STOCHASTIC LINEAR SYSTEMS 5

The first block row then implies N11Σ
2
1V1 = Σ2

1V1Y . From249

(21), using also (20) again, we thus have250

0 =
(
AT

11Σ
−1
1 +Σ−1

1 A11 +NT
11Σ

−1
1 N11

)
Σ2

1V1

= −Σ1V1X −NT
11Σ1V1Y +Σ−1

1 A11Σ
2
1V1 +NT

11Σ1V1Y

= −Σ1V1X +Σ−1
1 A11Σ

2
1V1

i.e.,A11Σ
2
1V1 = Σ2

1V1X . It follows that for arbitrary k ∈ N, the251

eigenvector V in (17) can be replaced by252

Σ2k
1 V Σ2k

1 = Σ2k
1 V1V

T
1 Σ2k

1

because253

0 =Σ2
1V1(X +XT + Y Y T )V T

1 Σ2
1

=A11

(
Σ2

1V1V
T
1 Σ2

1

)
+
(
Σ2

1V1V
T
1 Σ2

1

)
AT

11

+N11

(
Σ2

1V1V
T
1 Σ2

1

)
NT

11.

Induction leads to254

0 = A11

(
Σ2k

1 V1V
T
1 Σ2k

1

)
+
(
Σ2k

1 V1V
T
1 Σ2k

1

)
AT

11

+N11

(
Σ2k

1 V1V
T
1 Σ2k

1

)
NT

11.

As above, we conclude that N21Σ
2k
1 V1 = 0, C̃1Σ

2k
1 V1 = 0, and255

B̃T
1 Σ

2k
1 V1 = 0. Multiplying the lower left blocks of (13a) and256

(13b) with Σ
2(k−1)
1 V1 and Σ2k

1 V1, respectively, we get257

AT
12Σ

2k−1
1 V1 +Σ2A21Σ

2(k−1)
1 V1 +NT

12Σ
2k−1
1 V1Y =0

AT
12Σ

2k−1
1 V1 +Σ−1

2 A21Σ
2k
1 V1 +NT

12Σ
2k−1
1 V1Y =0.

Hence (after multiplication with Σ2), for all k ≥ 1, we have258

Σ2
2A21Σ

2(k−1)
1 V1 = −Σ2

(
AT

12Σ
2k−1
1 V1 +NT

12Σ
2k−1
1 V1Y

)
=A21Σ

2k
1 V1.

Applying this identity repeatedly, we get259

A21Σ
2k
1 V1 = Σ2k

2 A21V1 for all k ∈ N.

If μ is the minimal polynomial of Σ2
1, then σ(Σ1) ∩ σ(Σ2) = ∅260

implies detμ(Σ2
2) �= 0 and261

0 = A21μ
(
Σ2

1

)
V1 = μ

(
Σ2

2

)
A21V1

whence A21V1 = 0 and also A21V = 0. Hence we obtain the262

contradiction (19). �263

B. Error Estimate264

The following theorem has been proven in [19] using LMI-265

techniques. Exploiting the stability result in the previous sub-266

section, we can give a slightly more compact proof based on267

the stochastic bounded real lemma, Theorem A.6.268

Theorem II.4: Let A and N satisfy269

σ(I ⊗A+A⊗ I +N ⊗N) ⊂ C−.

Assume furthermore that for Σ = diag(Σ1,Σ2) > 0 with Σ2 = 270

diag(σr+1I, . . . , σνI) and σ(Σ1) ∩ σ(Σ2) = ∅, the following 271

Lyapunov inequalities hold: 272

ATΣ + ΣA+NTΣN ≤ −CTC

ATΣ−1 +Σ−1A+NTΣ−1N ≤ −Σ−1BBTΣ−1.

If x(0) = 0 and xr(0) = 0, then for all T > 0, it holds that 273

‖y − yr‖L2
w([0,T ]) ≤ 2(σr+1 + · · ·+ σν)‖u‖L2

w([0,T ]).

Proof: We adapt a proof for deterministic systems, e.g., 274

[2, Th. 7.9]. In the central argument we treat the case where 275

Σ2 = σνI and show that 276

‖y − yν−1‖L2
w[0,T ] ≤ 2σν‖u‖L2

w[0,T ]. (22)

From the left upper blocks of (13a) and (13b), we can see 277

that also 278

AT
11Σ1 +Σ1A11 +NT

11Σ1N11 ≤ −CT
1 C1

AT
11Σ

−1
1 +Σ−1

1 A11 +NT
11Σ

−1
1 N11 ≤ −Σ−1

1 B1B
T
1 Σ

−1
1 .

Hence we can repeat the above argument to remove σν−1, 279

. . . , σr+1 successively. By the triangle inequality we find that 280

‖y − yr‖L2
w[0,T ] ≤

ν−1∑
j=r

‖yj+1 − yj‖L2
w[0,T ]

≤ 2(σν + · · ·+ σr+1)‖u‖L2
w[0,T ].

which then concludes the proof. 281

To prove (22), we make use of the stochastic bounded real 282

lemma. In the following let r = ν − 1 and consider the error 283

system defined by: 284

dxe =Aexe dt+Nexe dw +Beu dt

ye =Cexe = y − yr

where 285

xe =

⎡
⎣x1

x2

xr

⎤
⎦ Ae =

⎡
⎣A11 A12 0
A21 A22 0
0 0 A11

⎤
⎦

Ne =

⎡
⎣N11 N12 0
N21 N22 0
0 0 N11

⎤
⎦ Be =

⎡
⎣B1

B2

B1

⎤
⎦

Ce = [C1 C2 −C1].

Applying the state space transformation 286⎡
⎣x̃1

x̃2

x̃r

⎤
⎦ =

⎡
⎣x1 − xr

x2

x1 + xr

⎤
⎦ =

⎡
⎣ Ir 0 −Ir
0 In−r 0
Ir 0 Ir

⎤
⎦

︸ ︷︷ ︸
=S−1

⎡
⎣x1

x2

xr

⎤
⎦
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we obtain the transformed system287

Ãe =S−1AeS =

⎡
⎣ A11 A12 0

1
2A21 A22

1
2A21

0 A12 A11

⎤
⎦

Ñe =S−1NeS =

⎡
⎣ N11 N12 0

1
2N21 N22

1
2N21

0 N12 N11

⎤
⎦

B̃e =S−1B

⎡
⎣ 0
B2

2B1

⎤
⎦

C̃e =CeS = [C1 C2 0].

By Theorem A.6, we have ‖Le‖ ≤ 2σν , if the Riccati inequality288

Rσν
(X) = ÃT

e X +XÃe + ÑT
e XÑe + C̃T

e C̃e

+
1

4σ2
ν

XB̃eB̃
T
e X ≤ 0 (23)

possesses a solution X ≥ 0. In fact, such a solution is given by289

the block-diagonal matrix290

X = diag
(
Σ1, 2Σ2, σ

2
νΣ

−1
1

)
= diag

(
Σ1, 2σνI, σ

2
νΣ

−1
1

)
> 0.

To verify this, we set J =

[
0 I
I 0

]
and291

M = J(ATΣ−1 +Σ−1A+NTΣ−1N +Σ−1BBTΣ−1)J

where M ≤ 0 by (13b). Considering all blocks of (13a) and292

(13b), a straight-forward computation yields293

Rσν
(X) =

[
ATΣ+ ΣA+NTΣN + CTC 0

0 0

]

− σν

2

⎡
⎣ NT

21

0
−NT

21

⎤
⎦
⎡
⎣ NT

21

0
−NT

21

⎤
⎦T

+ σ2
ν

[
0 0
0 M

]
≤ 0

which is inequality (23). �294

Example II.5: Let the system (A,N,B,C) and Q be as in295

Example I.3. The matrix296

P =

[
1 +

√
1− p 0
0 p

]−1

> 0, where 0 < p ≤ 1

satisfies inequality (7b). As in Example I.3, we have Lr = 0297

for the corresponding reduced system of order 1, so that the298

truncation error again is 1/
√
2a, independently of p ∈]0, 1].299

On the other hand we have300

σ2
2 = minσ(PQ) =

1

4a2(1 +
√
1− p)

≥ 1

8a2

with equality for p → 0. Theorem II.4 thus gives the sharp error301

bound 2σ2=1/
√
2a. Note, that there is no P >0 satisfying (7b).302

The previous example illustrates the problem of optimizing303

over all solutions of inequality (7b).304

IV. NUMERICAL EXAMPLES 305

To compare the reduction methods, we need to computeQ,P 306

from (6) or (7). Instead of the inequalities (6a), (6b), (7a) we can 307

consider the corresponding equations, for which quite efficient 308

algorithms have been developed recently, e.g., [27]–[30]. These 309

also allow for a low-rank approximation of the solutions. In 310

contrast we cannot replace (7b) by the corresponding equation, 311

because this may not be solvable (see Example II.5). Even 312

worse, we neither have any solvability or uniqueness criteria 313

nor reliable algorithms. 314

Therefore, in general, we have to work with the inequality 315

(7b), which is solvable according to Lemma II.1, but of course 316

not uniquely solvable. 317

In view of our application, we aim at a solution P of (7b), 318

so that (some of) the eigenvalues of PQ are particularly small, 319

since they provide the error bound. Choosing a matrix Y < 0 320

and a very small ε along the lines of the proof of Lemma II.1 321

can be contrary to this aim. Hence some optimization over all 322

solutions of (7b) is required. 323

Note also that a matrix P > 0 satisfies (7b), if and only if it 324

satisfies the linear matrix inequality (LMI) 325[
PAT +AP +BBT PNT

NP −P

]
≤ 0. (24)

Thus, LMI optimal solution techniques are applicable. How- 326

ever, their complexity will be prohibitive for large-scale prob- 327

lems. Therefore further research for alternative methods to 328

solve (7b) adequately is required. 329

By L and Lr , we always denote the original and the r-th 330

order approximated system. The stochastic H∞-type norm 331

‖L− Lr‖ is computed by a binary search of the infimum of all 332

γ such that the Riccati inequality (10) is solvable. The latter is 333

solved via a Newton iteration as in [18]. Finally, the Lyapunov 334

equations (2) are solved by preconditioned Krylov subspace 335

methods described in [27]. 336

Unfortunately, for small γ, i.e., for small approximation 337

errors, this method of computing the error runs into numerical 338

problems, because (10) contains the term γ−2. This apparently 339

leads to cancellation phenomena in the Newton iteration, if, 340

e.g., γ < 10−7. Therefore we mainly concentrate on cases 341

where the error is larger, i.e., we make r sufficiently small. 342

A. Type II Can be Better Than Type I 343

In many examples we observe that type II reduction gives a 344

valid error bound, but the approximation error still is better with 345

type I. This, however, is not always true, as the example 346

(A,N,B,CT ) =

([
−1 1
0 −1

]
,

[
0 0
1 0

]
,

[
0
3

]
,

[
3
0

])
shows. It can easily be verified that the type I Lyapunov 347

equations (6) are solved by 348

Q =

[
6 3
3 3

]
P =

[
3 3
3 6

]
.

The type II inequalities (7) are, e.g., solved by 349

Q =

[
6 3
3 3

]
P =

[
8 0
0 12

]
.
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TABLE I
ERROR BOUNDS AND APPROXIMATION ERRORS FOR BOTH TYPES

Fig. 1. Section of ladder network from [31].

If we reduce to order r = 1, the type I approximation error is350

larger than both the truncated singular value and the type II351

approximation error; see Table I.352

B. Electrical Ladder Network With Perturbed Inductance353

As our first example with a physical background, we take354

up the electrical ladder network described in [31], consisting of355

n/2 sections with a capacitor C̃, inductor L̃ and two resistors356

R and R̃ as depicted in Fig. 1.357

But following, e.g., [32], we assume that the inductance L̃ is358

subject to stochastic perturbations. For simplicity, wereplace the359

inverse L̃−1 formally by L−1 + ẇ in all sections. Here L = 0.1360

and ẇ is white noise of a certain intensity σ, where we set σ=1,361

e.g., for n = 6, we have the system matrices362

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
C̃R

−1
C̃

0 0 0 0
1
L

−RR̃
L(R+R̄)

−R̃
L(R+R̄) 0 0 0

0 R̃
C̃(R+R̃)

−1
C̃(R+R̃)

−1
C̄

0 0

0 0 1
L

−RR̃
L(R+R̃)

−R̃
L(R+R̃)

0

0 0 0 R̃
C̃(R+R̄)

−1
C̃(R+R̃)

−1
C̃

0 0 0 0 1
L

−R̃
L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

N =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0

1 −RR̃
R+R̃

−R̃
R+R̃

0 0 0

0 0 0 0 0 0

0 0 1 −RR̃
R+R̃

−R̃
R+R̃

0

0 0 0 0 0 0

0 0 0 0 1 −R̃

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

B =
[

1
C̃R

0 0 0 0 0 0
]T

C =
[
− 1

R 0 0 0 0 0 0
]
.

For larger n, the band structure of A and N is extended363

periodically. To see the behavior of our two methods, we reduce364

from order n = 20 to the orders r = 1, 3, 5, . . . , 19, and com-365

pute both the theoretical bounds and the actual approximation366

errors in the H∞-norm; see Fig. 2.367

Fig. 2. In this example, for both types the bounds hold, and for all reduced
orders, type I gives a smaller H∞-error than type II.

Fig. 3. Comparison of singular values and relative output error.

C. Heat Transfer Problem 368

As another example we consider a stochastic modification of 369

the heat transfer problem described in [14]. On the unit square 370

Ω = [0, 1]2, the heat equation xt = Δx is given with Dirichlet 371

condition x = uj , j = 1, 2, 3, on three of the boundary edges 372

and a stochastic Robin condition n · ∇x = (1/2 + ẇ)x on the 373

fourth edge (where ẇ stands for white noise). A standard five- 374

point finite-difference discretization on a 10 × 10 grid leads 375

to a modified Poisson matrix A ∈ R
100×100 and corresponding 376

matrices N ∈ R100×100 and B ∈ R100×3. We use the input 377

u ≡

⎡
⎣11
1

⎤
⎦

and choose the average temperature as the output, i.e., C = 378

(1/100)[1, . . . , 1]. We apply balanced truncation of type I 379

and type II. For type II, an LMI-solver (MATLAB function 380

mincx) is used to compute P as a solution of the LMI (24) 381

which minimizes traceP or tracePQ. 382

In the following figure (Fig. 3), we compare the reduced 383

systems of order r = 20 for both types. The left diagram shows 384

the decay of the singular values. Since the LMI-solver was 385

called with tolerance level 10 −9, only the first about 25 singular 386

values for type II have the correct order of magnitude. In this 387

region, the decay for both types is roughly linear. Some analysis 388

of this behavior for type I has been carried out in [28]. For 389

type II, so far no theoretical results are available. 390

The diagram on the right displays the approximation error 391

‖y(t)− yr(t)‖ over a given time interval. For both types it has 392

the same order of magnitude. In fact, for many examples we 393

have observed both methods to yield very similar results. 394

The estimated error norm
∑n

j=r+1 σj and the actual approx- 395

imation error ‖L− L10‖ are given in Table II. 396
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TABLE II
ERROR BOUNDS AND APPROXIMATION ERRORS FOR BOTH TYPES

TABLE III
COMPARISON OF BOTH REDUCTION METHODS

As we can see, the upper error bound fails for type I, but is397

correct for type II. Nevertheless, judging from the H∞ error,398

neither of the types seems to be preferable over the other.399

D. Summary400

Clearly, higher dimensional examples are required to get401

more insight. To this end, a more sophisticated method for the402

solution of (24) is needed. With general-purpose LMI-software403

on a standard Laptop, we hardly got higher than n = 100.404

V. COMPARISON405

Table III summarizes properties of our two methods.406

As long as efficient algorithms for the solution of (7b) are not407

available, practical evidence favors to use the type I method in408

applications. Although there is no strict H∞-type error bound409

for this case, in most examples the decay of singular values still410

roughly indicates the decay of the approximation error.411

VI. CONCLUSIONS AND FUTURE WORK412

We have discussed two ways of generalizing balanced trun-413

cation for stochastic linear systems. The main theoretical con-414

tributions of this paper are the preservation of asymptotic415

stability for type II balanced truncation proved in Theorem II.2416

and the new proof of the H∞ error bound in Theorem II.4.417

The efficient solution of the matrix inequality (7b) is an open418

issue and requires further research. The same is true for the419

computation of the stochastic H∞-norm. Moreover, we are still420

looking for adequate interpretations of our approaches, e.g., in421

terms of energy minimization or Hankel operators. We hope to422

trigger some research in this direction.423

APPENDIX A424

ASYMPTOTIC MEAN SQUARE STABILITY425

Consider the stochastic linear system of Itô-type426

dx = Ax dt+Nx dw (25)

where w = (w(t))t∈R+
is a zero-mean real Wiener process on a427

probability space (Ω,F , μ) with respect to an increasing family428

(Ft)t∈R+
of σ-algebras Ft ⊂ F (e.g., [25], [26]).429

Let L2
w(R+,R

q) denote the corresponding space of nonan- 430

ticipating stochastic processes v with values in R
q and norm 431

‖v(·)‖2L2
w
:= E

⎛
⎝ ∞∫

0

‖v(t)‖2 dt

⎞
⎠ < ∞

where E denotes expectation. For initial data x(0) = x0, the 432

solution can be written as x(t) = Φ(t)x0 with the fundamental 433

matrix solution Φ(t), satisfying Φ(0) = I 434

By definition, system (25) is asymptotically mean-square- 435

stable, if E(‖x(t)‖2) t→∞−→ 0, for all initial conditions x0. In this 436

case, for simplicity, we also call the pair (A,N) asymptotically 437

mean-square stable. 438

We have the following version of Lyapunov’s matrix 439

theorem; see [23]. Here ⊗ denotes the Kronecker product. 440

Theorem A.1: The following are equivalent. 441442

(i) System (25) is asymptotically mean-square stable. 443

(ii) max{�λ ‖ λ ∈ σ(A⊗ I + I ⊗A+N ⊗N)} < 0 444

(iii) ∃Y > 0 : ∃X > 0: ATX +XA+NTXN = −Y 445

(iv) ∀Y > 0 : ∃X > 0: ATX +XA+NTXN = −Y 446

(v) ∀Y ≥ 0 : ∃X ≥ 0: ATX +XA+NTXN = −Y 447

Remark A.2: The theorem (like all other results in this paper) 448

carries over to systems 449

dx = Ax dt+

k∑
j=1

Njx dwj

with more than one noise term, and many more equivalent 450

criteria can be provided; see, e.g., [34] or [18, Th. 3.6.1]. 451

The following theorem does not require any stability assump- 452

tions (see [18, Th. 3.2.3]). It is central in the analysis of mean- 453

square stability. 454

Theorem A.3: Let 455

α = max {�λ| λ ∈ σ(A⊗ I + I ⊗A+N ⊗N)} .

Then there exists a nonnegative definite matrix V �= 0, so that 456

(L∗
A +Π∗

N ) (V ) = AV + V AT +NVNT = αV.

We also note a simple consequence of this theorem [24, 457

Cor. 3.2]. Here 〈Y, V 〉 = trace(Y V ) is the Frobenius inner 458

product for symmetric matrices. 459

Corollary A.4: Let α, V as in the theorem. For given Y ≥ 0 460

assume that 461

∃X > 0 : LA(X) + ΠN (X) ≤ −Y. (26)

Then α ≤ 0. Moreover, if α = 0 then Y V = V Y = 0. 462

APPENDIX B 463

STOCHASTIC BOUNDED REAL LEMMA 464

Now let us consider system (5) with input u and output y. 465

If (A,N) is asymptotically mean-square stable, then (5) de- 466

fines an input output operator L : u �→ y from L2
w(R,R

m) to 467

L2
w(R,R

p), see [17]. By ‖L‖ we denote the induced operator 468

norm, which is an analogue of the deterministic H∞-norm. It 469

can be characterized by the stochastic bounded real lemma. 470
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Theorem A.5: [17] For γ > 0, the following are equivalent.471
472

(i) System (25) is asymptotically mean-square stable and473

‖L‖ < γ.474

(ii) There exists a negative definite solution X < 0 to the475

Riccati inequality476

ATX +XA+NTXN − CTC − γ−2XBBTX > 0.

(iii) There exists a positive definite solution X > 0 to the477

Riccati inequality478

ATX +XA+NTXN + CTC + γ−2XBBTX < 0.

We have stated the obviously equivalent formulations (ii) and479

(iii) to avoid confusion arising from different formulations480

in the literature. Under additional assumptions also nonstrict481

versions can be formulated. The following sufficient criterion482

is given in [18, Cor. 2.2.3] (where also the signs are changed).483

Unlike in the previous theorem, here asymptotic mean-square484

stability is assumed at the outset.485

Theorem A.6: Assume that (25) is asymptotically stable in486

mean-square. If there exists a nonnegative definite matrixX≥0,487

satisfying488

ATX +XA+NTXN + CTC + γ−2XBBTX ≤ 0

then ‖L‖ ≤ γ.489

APPENDIX C490

UNOBSERVABLE AND UNREACHABLE SUBSPACES491

Definition A.7: Consider system (5). A vector v ∈ Rn is492

called unobservable, if the initial condition x(0)=v with u≡0493

produces the output y ≡ 0. The vector v is called unreachable,494

if x(t) �= v for all t > 0 and any solution with initial value495

x(0) = 0 and arbitrary input u.496

If (A,N) is asymptotically mean-square stable, then (see [14,497

Th. 3.1]) the unobservable and the unreachable subspace can be498

characterized as the kernels of Q and P defined by499

ATQ+QA+NTQN = −CTC

AP + PAT +NPNT = −BBT .

Theorem A.8: A state v is500501

(a) unobservable, if and only if Qv = 0.502

(b) unreachable, if and only if Pv = 0.503

In particular, the system is observable and reachable, if and only504

if Q > 0 and P > 0.505
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Dual Pairs of Generalized Lyapunov Inequalities and
Balanced Truncation of Stochastic Linear Systems

1

2

Peter Benner, Tobias Damm, and Yolanda Rocio Rodriguez Cruz3

Abstract—We consider two approaches to balanced truncation4
of stochastic linear systems, which follow from different general-5
izations of the reachability Gramian of deterministic systems. Both6
preserve mean-square asymptotic stability, but only the second7
leads to a stochastic H∞-type bound for the approximation error8
of the truncated system.9

Index Terms—Asymptotic mean square stability, balanced trun-10
cation, generalized Lyapunov equation, model order reduction,11
stochastic linear system.12

I. INTRODUCTION13

14 O PTIMIZATION and (feedback) control of dynamical sys-15

tems is often computationally infeasible for high dimen-16

sional plant models. Therefore, one tries to reduce the order of17

the system, so that the input-output mapping is still computable18

with sufficient accuracy, but at considerably smaller cost than19

for the original system [1]–[5]. To guarantee the desired accu-20

racy, computable error bounds are required. Moreover, system21

properties which are relevant in the context of control system22

design like asymptotic stability need to be preserved. It has23

long been known that for linear time-invariant (LTI) systems the24

method of balanced truncation preserves asymptotic stability25

and provides an error bound for the L2-induced input-output26

norm, i.e., the H∞-norm of the associated transfer function;27

see [6], [7]. When considering model order reduction of more28

general system classes, it is natural to try to extend this ap-29

proach. This has been worked out for descriptor systems in30

[8], for time-varying systems in [9]–[11], for bilinear systems31

in [12]–[14] and general nonlinear systems, e.g., in [15]. Yet32

another generalization of LTI systems is obtained considering33

dynamics driven by noise processes. This leads to the class of34

stochastic systems, which have been considered in a system35

theoretic context, e.g., in [16]–[18]. Quite recently, balanced36

truncation has also been described for linear stochastic systems37

of Itô type in [14], [19], and [20]. Already the formulation of38

the method leads to two different variants that are equivalent39

in the deterministic case, but not so for stochastic systems. It40

is natural to ask which of the above-mentioned properties of41
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balanced truncation also hold for these variants. The aim of this 42

paper is to answer this question. 43

Let us recapitulate balanced truncation for linear control 44

systems of the form 45

ẋ = Ax+Bu y = Cx σ(A) ⊂ C−. (1)

Here A∈Rn×n, B ∈ Rn×m, C ∈ Rp×n, and x(t) ∈ Rn, y(t) ∈ 46

Rp and u(t) ∈ Rm are the state, output, and input of the system, 47

respectively. Moreover σ(A) denotes the spectrum of A and C− 48

the open left half complex plane. Let 49

LA : X �→ ATX +XA

denote the Lyapunov operator and 50

L∗
A : X �→ AX +XAT

its adjoint with respect to the Frobenius inner product 〈Z, Y 〉 = 51

trace(Y TZ). Then σ(A) ⊂ C− if and only if there exists a posi- 52

tive definite solution X of the Lyapunov inequality LA(X)<0, 53

by Lyapunov’s classical stability theorem, see, e.g., [21]. 54

Balanced truncation means truncating a balanced realization. 55

This realization is obtained by a state space transformation 56

computed from the Gramians P and Q, which solve the dual 57

pair of Lyapunov equations 58

LA(Q) =ATQ+QA = −CTC (2a)

L∗
A(P ) =AP + PAT = −BBT (2b)

or more generally the inequalities 59

LA(Q) ≤ −CTC L∗
A(P ) ≤ −BBT . (3)

These (in)equalities are essential in the characterization of 60

stability, controllability and observability of system (1). If 61

detP �= 0, the inequalities (3) can be written as 62

LA(Q) ≤ − CTC (4a)

LA(P
−1) =P−1A+ATP−1 ≤ −P−1BBTP−1. (4b)

In the present paper we discuss extensions of (3) and (4) for 63

stochastic linear systems. 64

As indicated above, the equivalent formulations (3) and (4) 65

lead to different generalizations, if we consider Itô-type sto- 66

chastic systems of the form 67

dx = Ax dt+Nx dw +Bu dt, y = Cx (5)

where A,B,C are as in (1) and N ∈ Rn×n. System (5) is 68

asymptotically mean-square stable (e.g., [18], [22], [23]), if and 69

0018-9286 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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only if there exists a positive definite solution X of the gener-70

alized Lyapunov inequality71

(LA +ΠN )(X) = ATX +XA+NTXN < 0.

Here ΠN : X �→ NTXN and Π∗
N : X �→ NXNT . This sta-72

bility criterion indicates that in the stochastic context, the73

generalized Lyapunov operator LA + ΠN takes over the role74

of LA. Substituting LA by LA +ΠN in (3) and (4), we obtain75

two different dual pairs of generalized Lyapunov inequalities.76

We call them type I77

(LA +ΠN )(Q) =ATQ+QA+NTQN ≤ −CTC (6a)

(LA +ΠN )∗(P ) =AP + PAT +NPNT ≤ −BBT (6b)

and type II78

(LA +ΠN )(Q) =ATQ+QA+NTQN

≤ − CTC (7a)

(LA +ΠN )(P−1) =ATP−1 + P−1A+NTP−1N

≤ − P−1BBTP−1. (7b)

Note that (6) corresponds to (3) in the sense that L∗
A(P ) has79

been replaced by (LA +ΠN )∗(P ), while (7) corresponds to80

(4), where LA(P
−1) has been replaced by (LA +ΠN )(P−1).81

In general (if N and P do not commute), the inequalities (6b)82

and (7b) are not equivalent. At first glance it is not clear which83

generalization is more appropriate.84

If the system is asymptotically mean-square stable, then85

for both types there are solutions Q,P > 0. By a suitable86

state space-transformation, it is possible to balance the system87

such that Q = P = Σ > 0 is diagonal. Consequently, the usual88

procedure of balanced truncation can be applied to reduce the89

order of (5). For simplicity, let us refer to this as type I or type II90

balanced truncation.91

Under natural assumptions, this reduction preserves mean-92

square asymptotic stability. For type I, this nontrivial fact has93

been proven in [24]. Moreover, in [20], an H2-error bound94

has been provided. However, different from the deterministic95

case, there is no H∞-type error bound in terms of the truncated96

entries in Σ. This will be shown in Example I.3.97

In contrast, for type II, an H∞-type error bound has been98

obtained in [19]. In the present paper, as one of our main99

contributions, we show in Theorem II.2 that type II balanced100

truncation also preserves mean-square asymptotic stability. The101

proof differs significantly from the one given for type I. Using102

this result, we are able to give a more compact proof of the error103

bound, Theorem II.4, which exploits the stochastic bounded104

real lemma [17].105

We illustrate our results by analytical and numerical exam-106

ples in Section IV.107

II. TYPE I BALANCED TRUNCATION108

Consider a stochastic linear control system of Itô-type109

dx = Ax dt+

k∑
j=1

Njx dwj +Bu dt, y = Cx (8)

where wj = (wj(t))t∈R+
are uncorrelated zero-mean real 110

Wiener processes on a probability space (Ω,F , μ) with respect 111

to an increasing family (Ft)t∈R+
of σ-algebras Ft ⊂ F (e.g., 112

[25], [26]). 113

To simplify the notation, we only consider the case k = 1 114

and set w = w1, N = N1. But all results can immediately be 115

generalized for k > 1. 116

Let L2
w(R+,R

q) denote the corresponding space of nonan- 117

ticipating stochastic processes v with values in Rq and norm 118

‖v(·)‖2L2
w
:= E

⎛
⎝ ∞∫

0

‖v(t)‖2 dt

⎞
⎠ < ∞

where E denotes expectation. 119

Let the homogeneous equation dx = Axdt +Nxdw be 120

asymptotically mean-square-stable, i.e., E(‖x(t)‖2) t→∞−→ 0, for 121

all solutions x. 122

Then, by Theorem A.1, the equations 123

ATQ+QA+NTQN = −CTC

AP + PAT +NPNT = −BBT

have unique solutions Q ≥ 0 and P ≥ 0. If the system is 124

observable and reachable (see Theorem A.8), then Q and P are 125

nonsingular, and thus positive definite. 126

A similarity transformation 127

(A,N,B,C) �→ (S−1AS, S−1NS, S−1B,CS)

of the system implies the contragradient transformation as 128

(Q,P ) �→ (STQS, S−1PS−T ).

Choosing, e.g., S = LV Σ−1/2, with Cholesky factorizations 129

LLT = P , RTR = Q and a singular value decomposition 130

RL = UΣV T , we obtain S−1 = Σ−1/2UTR and 131

STQS = S−1PS−T = Σ = diag(σ1, . . . , σn).

After suitable partitioning 132

Σ =

[
Σ1 0
0 Σ2

]
S = [S1 S2] S−1 =

[
T1

T2

]
a truncated system is given in the form 133

(A11, N11, B1, C1) = (T1AS1, T1NS1, T1B,CS1).

The following result has been proven in [24]. 134

Theorem I.1: Let A,N ∈ Rn×n satisfy 135

σ(I ⊗A+A⊗ I +N ⊗N) ⊂ C−.

For a block-diagonal matrix Σ = diag(Σ1,Σ2) > 0 with 136

σ(Σ1) ∩ σ(Σ2) = ∅, assume that 137

ATΣ + ΣA+NTΣN ≤ 0 and AΣ + ΣAT +NΣNT ≤ 0.

Then, with the usual partitioning of A and N , we have 138

σ(I ⊗A11 +A11 ⊗ I +N11 ⊗N11) ⊂ C−.
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Its implication for mean-square stability of the truncated system139

is immediate.140

Corollary I.2: Consider an asymptotically mean square sta-141

ble stochastic linear system142

dx = Ax dt+Nx dw.

Assume that a matrix Σ = diag(Σ1,Σ2) is given as in143

Theorem I.1 and A and N are partitioned accordingly. Then the144

truncated system145

dxr = A11xr dt+N11xr dw

is also asymptotically mean square stable.146

If the diagonal entries of Σ2 are small, it is expected that the147

truncation error is small. In fact this is supported by an H2-error148

bound obtained in [20]. Additionally, however, from the de-149

terministic situation (see [2], [6]), one would also hope for an150

H∞-type error bound of the form151

‖y − yr‖L2
w(R+,Rp)

?
≤ α(traceΣ2)‖u‖L2

w(R+,Rm) (9)

with some real number α > 0. The following example shows152

that no such general α exists.153

Example I.3: Let A = −
[
1 0
0 a2

]
with a > 1, N =154 [

0 0
1 0

]
, B =

[
1
0

]
, C = [0 1].155

Solving (6) with equality, we get P =

[
1
2 0
0 1

4a2

]
, Q =156 [

1
4a2 0
0 1

2a2

]
with σ(PQ) = {1/8a2, 1/8a4} so that Σ =157

diag(σ1, σ2), where σ1 = 1/
√
8a and σ2 = 1/

√
8a2. The sys-158

tem is balanced by the transformation S =

[
2a2 0
0 1/2

]1/4
.159

Then CS = (1/21/4)[ 0 1 ] so that Cr = 0 for the trun-160

cated system of order 1. Thus, the output of the reduced system161

is yr ≡ 0, and the truncation error ‖L− Lr‖ is equal to the162

stochastic H∞-norm (see [17]) of the original system163

‖L‖ = sup
x(0)=0,‖u‖L2

w
=1

‖y‖L2
w
.

We show now that this norm is equal to 1/
√
2a = 2aσ2.164

Thus, depending on a, the ratio of the truncation error and165

traceΣ2 = σ2 can be arbitrarily large.166

According to the stochastic bounded real lemma,167

Theorem A.5, ‖L‖ is the infimum over all γ so that the Riccati168

inequality169

0 <ATX +XA+NTXN − CTC − 1

γ2
XBBTX

=

[
−2x1 + x3 − 1

γ2x
2
1 −(a2 + 1)x2 − 1

γ2x1x2

−(a2 + 1)x2 − 1
γ2x1x2 −2a2x3 − 1

γ2x
2
2 − 1

]
(10)

possesses a solution X =

[
x1 x2

x2 x3

]
< 0.170

If a given matrix X satisfies this condition, then so does the 171

same matrix with x2 replaced by 0. Hence we can assume that 172

x2 = 0, and end up with the two conditions x3 < −(1/2a2) 173

and (after multiplying the upper left entry with −γ2) 174

0 >x2
1 + 2γ2x1 − γ2x3 = (x1 + γ2)

2 − γ2(γ2 + x3)

> (x1 + γ2)
2 − γ2

(
γ2 − 1

2a2

)
.

Thus necessarily γ2 > 1/2a2, i.e., γ > 1/
√
2a. This already 175

proves that ‖L‖ ≥ 1/
√
2a = 2aσ2, which suffices to disprove 176

the existence of a general bound α in (9). Taking infima, it is AQ1177

easy to show that indeed ‖L‖ = 1/
√
2a. 178

III. TYPE II BALANCED TRUNCATION 179

We now consider the inequalities (7). 180

Lemma II.1: Assume that dx = Axdt +Nxdw is asymptot- 181

ically mean-square-stable. Then inequality (7b) is solvable with 182

P > 0. 183

Proof: By Theorem A.1, for a given Y < 0, there exists a 184

P̃ > 0, so that AT P̃−1 + P̃−1A+NT P̃−1N = Y . Then P = 185

ε−1P̃ , for sufficiently small ε > 0, satisfies 186

ATP−1 + P−1A+NTP−1N = εY < −ε2P̃−1BBT P̃−1

so that (7b) holds even in the strict form. � 187

It is easy to see that like in the previous section a state space 188

transformation 189

(A,N,B,C) �→ (S−1AS, S−1NS, S−1B,CS)

leads to a contragradient transformation Q �→ STQS, P �→ 190

S−1PS−T of the solutions. That is, Q and P satisfy (7a) 191

and (7b), if and only if STQS and S−1PS−T do so for the 192

transformed data. As before, we can assume the system to be 193

balanced with 194

Q = P = Σ = diag(σ1I, . . . , σνI) =

[
Σ1

Σ2

]
(11)

where σ1 > · · · > σν > 0 and σ(Σ1)={σ1, . . . , σr}, σ(Σ2) = 195

{σr+1, . . . , σν}. Hence, we will now assume (after balancing) 196

that a diagonal matrix Σ as in (11) is given which satisfies 197

ATΣ + ΣA+NTΣN ≤ −CTC (12a)

ATΣ−1 +Σ−1A+NTΣ−1N ≤ −Σ−1BBTΣ−1. (12b)

Partitioning A,N,B,C like Σ, we write the system as 198

dx1 =(A11x1 +A12x2 +B1u) dt+ (N11x1 +N12x2) dw

dx2 =(A21x1 +A22x2 +B2u) dt+ (N21x1 +N22x2) dw

y =C1x1 + C2x2.

The reduced system obtained by truncation is 199

dxr = (A11xr +B1u) dt+N11xr dw yr = C1xr.
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The index r is the number of different singular values σj that200

have been kept in the reduced system. In the following subsec-201

tions, we consider matrices:202

A =

[
A11 A12

A21 A22

]
N =

[
N11 N12

N21 N22

]

Σ = diag(Σ1,Σ2) as in (11), and equations of the form203

ATΣ+ ΣA+NTΣN = −C̃T C̃ (13a)

ATΣ−1 +Σ−1A+NTΣ−1N = −B̃B̃T (13b)

with arbitrary right-hand sides −C̃T C̃ ≤ 0 and −B̃B̃T ≤ 0.204

A. Preservation of Asymptotic Stability205

The following theorem is the main new result of this paper.206

Theorem II.2: Let A and N be given such that207

σ(I ⊗A+A⊗ I +N ⊗N) ⊂ C−. (14)

Assume further that for a block-diagonal matrix Σ =208

diag(Σ1,Σ2) > 0 with σ(Σ1) ∩ σ(Σ2) = ∅, we have209

ATΣ + ΣA+NTΣN ≤ 0 (15a)

ATΣ−1 +Σ−1A+NTΣ−1N ≤ 0. (15b)

Then, with the usual partitioning of A and N , we have210

σ(I ⊗A11 +A11 ⊗ I +N11 ⊗N11) ⊂ C−. (16)

Again we have an immediate interpretation in terms of mean-211

square stability of the truncated system.212

Corollary II.3: Consider an asymptotically mean square213

stable stochastic linear system214

dx = Ax dt+Nx dw.

Assume that a matrix Σ = diag(Σ1,Σ2) is given as in215

Theorem II.2 and A and N are partitioned accordingly. Then216

the truncated system217

dxr = A11xr dt+N11xr dw

is also asymptotically mean square stable.218

Proof of Theorem II.2: Note that the inequalities (15) are219

equivalent to the equations (13) with appropriate right-hand220

sides −C̃T C̃ and −B̃B̃T . In accordance with the partitioning221

of A, N , and Σ, each matrix equation (13a) and (13b) consists222

of three blocks.223

By way of contradiction, we assume that (16) does not hold.224

Then by Theorem A.3, there exist V ≥0, V �=0, α≥0 such that225

A11V + V AT
11 +N11V NT

11 = αV. (17)

Taking the scalar product of the left upper block of (13a) with226

V , we obtain 0 ≥ αtrace(Σ1V ) whence α = 0 and C̃1V = 0,227

N21V = 0 by Corollary A.4. Hence228 (
AT

11Σ1 +Σ1A11 +NT
11Σ1N11

)
V = 0. (18)

Analogously, we have B̃T
1 V = 0.229

In particular, from N21V = 0, we get 230

(L∗
A +Π∗

N )

([
V 0
0 0

])
=

[
0 V AT

21

A21V 0

]
.

We will show that A21V = 0, which implies 231

0 ∈ σ(I ⊗A+A⊗ I +N ⊗N) (19)

in contradiction to (14), and thus finishes the proof. 232

We first show that ImV is invariant under A11 and N11. To 233

this end, let V z = 0. Then by (17) 234

0 = zT
(
A11V + V AT

11 +N11V NT
11

)
z = zTN11V NT

11z

whence also V NT
11z=0, i.e.,NT

11z ∈ KerV . From this, we have 235

0 =
(
A11V + V AT

11 +N11V NT
11

)
z = V AT

11z

implying AT
11z ∈ KerV . Thus, AT

11KerV ⊂ KerV and 236

NT
11KerV ⊂ KerV . 237

Since KerV = (ImV )�, it follows further that ImV is invari- 238

ant under A11 and N11. 239

Let V = V1V
T
1 , where V1 has full column rank, i.e., 240

detV T
1 V1 �= 0. Then by the invariance, there exist square 241

matrices X and Y , such that 242

A11V1 = V1X N11V1 = V1Y.

It follows that 243

0 =A11V1V
T
1 + V1V

T
1 AT

11 +N11V1V
T
1 NT

11

=V1(X +XT + Y Y T )V T
1

whence X +XT + Y Y T = 0. Moreover, from (18), we get 244

AT
11Σ1V1 = −Σ1A11V1 −NT

11Σ1N11V1

= −Σ1V1X −NT
11Σ1V1Y. (20)

Using this substitution in the following computation, we obtain 245

0 ≥V T
1 Σ2

1

(
AT

11Σ
−1
1 +Σ−1

1 A11 +NT
11Σ

−1
1 N11

)
Σ2

1V1

= −V T
1 Σ3

1V1X −XTV T
1 Σ3

1V1

− V T
1 Σ2

1N
T
11Σ1V1Y − Y TV T

1 Σ1N11Σ
2
1V1

+ V T
1 Σ2

1N
T
11Σ

−1
1 N11Σ

2
1V1. (21)

Taking the trace in (21), we have 246

0 = trace

[
V1Y
V1

]T
M

[
V1Y
V1

]

where 247

M =

[
Σ3

1 −Σ1N11Σ
2
1

−Σ2
1N

T
11Σ1 Σ2

1N
T
11Σ

−1
1 N11Σ

2
1

]

is positive semidefinite 248[
Σ3

1 −Σ1N11Σ
2
1

−Σ2
1N

T
11Σ1 Σ2

1N
T
11Σ

−1
1 N11Σ

2
1

] [
V1Y
V1

]
= 0.
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The first block row then implies N11Σ
2
1V1 = Σ2

1V1Y . From249

(21), using also (20) again, we thus have250

0 =
(
AT

11Σ
−1
1 +Σ−1

1 A11 +NT
11Σ

−1
1 N11

)
Σ2

1V1

= −Σ1V1X −NT
11Σ1V1Y +Σ−1

1 A11Σ
2
1V1 +NT

11Σ1V1Y

= −Σ1V1X +Σ−1
1 A11Σ

2
1V1

i.e., A11Σ
2
1V1 = Σ2

1V1X . It follows that for arbitrary k ∈ N, the251

eigenvector V in (17) can be replaced by252

Σ2k
1 V Σ2k

1 = Σ2k
1 V1V

T
1 Σ2k

1

because253

0 =Σ2
1V1(X +XT + Y Y T )V T

1 Σ2
1

=A11

(
Σ2

1V1V
T
1 Σ2

1

)
+
(
Σ2

1V1V
T
1 Σ2

1

)
AT

11

+N11

(
Σ2

1V1V
T
1 Σ2

1

)
NT

11.

Induction leads to254

0 = A11

(
Σ2k

1 V1V
T
1 Σ2k

1

)
+
(
Σ2k

1 V1V
T
1 Σ2k

1

)
AT

11

+N11

(
Σ2k

1 V1V
T
1 Σ2k

1

)
NT

11.

As above, we conclude that N21Σ
2k
1 V1 = 0, C̃1Σ

2k
1 V1 = 0, and255

B̃T
1 Σ

2k
1 V1 = 0. Multiplying the lower left blocks of (13a) and256

(13b) with Σ
2(k−1)
1 V1 and Σ2k

1 V1, respectively, we get257

AT
12Σ

2k−1
1 V1 +Σ2A21Σ

2(k−1)
1 V1 +NT

12Σ
2k−1
1 V1Y =0

AT
12Σ

2k−1
1 V1 +Σ−1

2 A21Σ
2k
1 V1 +NT

12Σ
2k−1
1 V1Y =0.

Hence (after multiplication with Σ2), for all k ≥ 1, we have258

Σ2
2A21Σ

2(k−1)
1 V1 = −Σ2

(
AT

12Σ
2k−1
1 V1 +NT

12Σ
2k−1
1 V1Y

)
=A21Σ

2k
1 V1.

Applying this identity repeatedly, we get259

A21Σ
2k
1 V1 = Σ2k

2 A21V1 for all k ∈ N.

If μ is the minimal polynomial of Σ2
1, then σ(Σ1) ∩ σ(Σ2) = ∅260

implies detμ(Σ2
2) �= 0 and261

0 = A21μ
(
Σ2

1

)
V1 = μ

(
Σ2

2

)
A21V1

whence A21V1 = 0 and also A21V = 0. Hence we obtain the262

contradiction (19). �263

B. Error Estimate264

The following theorem has been proven in [19] using LMI-265

techniques. Exploiting the stability result in the previous sub-266

section, we can give a slightly more compact proof based on267

the stochastic bounded real lemma, Theorem A.6.268

Theorem II.4: Let A and N satisfy269

σ(I ⊗A+A⊗ I +N ⊗N) ⊂ C−.

Assume furthermore that for Σ = diag(Σ1,Σ2) > 0 with Σ2 = 270

diag(σr+1I, . . . , σνI) and σ(Σ1) ∩ σ(Σ2) = ∅, the following 271

Lyapunov inequalities hold: 272

ATΣ+ ΣA+NTΣN ≤ −CTC

ATΣ−1 +Σ−1A+NTΣ−1N ≤ −Σ−1BBTΣ−1.

If x(0) = 0 and xr(0) = 0, then for all T > 0, it holds that 273

‖y − yr‖L2
w([0,T ]) ≤ 2(σr+1 + · · ·+ σν)‖u‖L2

w([0,T ]).

Proof: We adapt a proof for deterministic systems, e.g., 274

[2, Th. 7.9]. In the central argument we treat the case where 275

Σ2 = σνI and show that 276

‖y − yν−1‖L2
w[0,T ] ≤ 2σν‖u‖L2

w[0,T ]. (22)

From the left upper blocks of (13a) and (13b), we can see 277

that also 278

AT
11Σ1 +Σ1A11 +NT

11Σ1N11 ≤ −CT
1 C1

AT
11Σ

−1
1 +Σ−1

1 A11 +NT
11Σ

−1
1 N11 ≤ −Σ−1

1 B1B
T
1 Σ

−1
1 .

Hence we can repeat the above argument to remove σν−1, 279

. . . , σr+1 successively. By the triangle inequality we find that 280

‖y − yr‖L2
w[0,T ] ≤

ν−1∑
j=r

‖yj+1 − yj‖L2
w[0,T ]

≤ 2(σν + · · ·+ σr+1)‖u‖L2
w[0,T ].

which then concludes the proof. 281

To prove (22), we make use of the stochastic bounded real 282

lemma. In the following let r = ν − 1 and consider the error 283

system defined by: 284

dxe =Aexe dt+Nexe dw +Beu dt

ye =Cexe = y − yr

where 285

xe =

⎡
⎣x1

x2

xr

⎤
⎦ Ae =

⎡
⎣A11 A12 0
A21 A22 0
0 0 A11

⎤
⎦

Ne =

⎡
⎣N11 N12 0
N21 N22 0
0 0 N11

⎤
⎦ Be =

⎡
⎣B1

B2

B1

⎤
⎦

Ce = [C1 C2 −C1].

Applying the state space transformation 286⎡
⎣x̃1

x̃2

x̃r

⎤
⎦ =

⎡
⎣x1 − xr

x2

x1 + xr

⎤
⎦ =

⎡
⎣ Ir 0 −Ir
0 In−r 0
Ir 0 Ir

⎤
⎦

︸ ︷︷ ︸
=S−1

⎡
⎣x1

x2

xr

⎤
⎦



IEE
E P

ro
of

6 IEEE TRANSACTIONS ON AUTOMATIC CONTROL

we obtain the transformed system287

Ãe =S−1AeS =

⎡
⎣ A11 A12 0

1
2A21 A22

1
2A21

0 A12 A11

⎤
⎦

Ñe =S−1NeS =

⎡
⎣ N11 N12 0

1
2N21 N22

1
2N21

0 N12 N11

⎤
⎦

B̃e =S−1B

⎡
⎣ 0
B2

2B1

⎤
⎦

C̃e =CeS = [C1 C2 0].

By Theorem A.6, we have ‖Le‖ ≤ 2σν , if the Riccati inequality288

Rσν
(X) = ÃT

e X +XÃe + ÑT
e XÑe + C̃T

e C̃e

+
1

4σ2
ν

XB̃eB̃
T
e X ≤ 0 (23)

possesses a solution X ≥ 0. In fact, such a solution is given by289

the block-diagonal matrix290

X = diag
(
Σ1, 2Σ2, σ

2
νΣ

−1
1

)
= diag

(
Σ1, 2σνI, σ

2
νΣ

−1
1

)
> 0.

To verify this, we set J =

[
0 I
I 0

]
and291

M = J(ATΣ−1 +Σ−1A+NTΣ−1N +Σ−1BBTΣ−1)J

where M ≤ 0 by (13b). Considering all blocks of (13a) and292

(13b), a straight-forward computation yields293

Rσν
(X) =

[
ATΣ + ΣA+NTΣN + CTC 0

0 0

]

− σν

2

⎡
⎣ NT

21

0
−NT

21

⎤
⎦
⎡
⎣ NT

21

0
−NT

21

⎤
⎦T

+ σ2
ν

[
0 0
0 M

]
≤ 0

which is inequality (23). �294

Example II.5: Let the system (A,N,B,C) and Q be as in295

Example I.3. The matrix296

P =

[
1 +

√
1− p 0
0 p

]−1

> 0, where 0 < p ≤ 1

satisfies inequality (7b). As in Example I.3, we have Lr = 0297

for the corresponding reduced system of order 1, so that the298

truncation error again is 1/
√
2a, independently of p ∈]0, 1].299

On the other hand we have300

σ2
2 = min σ(PQ) =

1

4a2(1 +
√
1− p)

≥ 1

8a2

with equality for p → 0. Theorem II.4 thus gives the sharp error301

bound 2σ2=1/
√
2a. Note, that there is no P >0 satisfying (7b).302

The previous example illustrates the problem of optimizing303

over all solutions of inequality (7b).304

IV. NUMERICAL EXAMPLES 305

To compare the reduction methods, we need to computeQ,P 306

from (6) or (7). Instead of the inequalities (6a), (6b), (7a) we can 307

consider the corresponding equations, for which quite efficient 308

algorithms have been developed recently, e.g., [27]–[30]. These 309

also allow for a low-rank approximation of the solutions. In 310

contrast we cannot replace (7b) by the corresponding equation, 311

because this may not be solvable (see Example II.5). Even 312

worse, we neither have any solvability or uniqueness criteria 313

nor reliable algorithms. 314

Therefore, in general, we have to work with the inequality 315

(7b), which is solvable according to Lemma II.1, but of course 316

not uniquely solvable. 317

In view of our application, we aim at a solution P of (7b), 318

so that (some of) the eigenvalues of PQ are particularly small, 319

since they provide the error bound. Choosing a matrix Y < 0 320

and a very small ε along the lines of the proof of Lemma II.1 321

can be contrary to this aim. Hence some optimization over all 322

solutions of (7b) is required. 323

Note also that a matrix P > 0 satisfies (7b), if and only if it 324

satisfies the linear matrix inequality (LMI) 325[
PAT +AP +BBT PNT

NP −P

]
≤ 0. (24)

Thus, LMI optimal solution techniques are applicable. How- 326

ever, their complexity will be prohibitive for large-scale prob- 327

lems. Therefore further research for alternative methods to 328

solve (7b) adequately is required. 329

By L and Lr, we always denote the original and the r-th 330

order approximated system. The stochastic H∞-type norm 331

‖L− Lr‖ is computed by a binary search of the infimum of all 332

γ such that the Riccati inequality (10) is solvable. The latter is 333

solved via a Newton iteration as in [18]. Finally, the Lyapunov 334

equations (2) are solved by preconditioned Krylov subspace 335

methods described in [27]. 336

Unfortunately, for small γ, i.e., for small approximation 337

errors, this method of computing the error runs into numerical 338

problems, because (10) contains the term γ−2. This apparently 339

leads to cancellation phenomena in the Newton iteration, if, 340

e.g., γ < 10−7. Therefore we mainly concentrate on cases 341

where the error is larger, i.e., we make r sufficiently small. 342

A. Type II Can be Better Than Type I 343

In many examples we observe that type II reduction gives a 344

valid error bound, but the approximation error still is better with 345

type I. This, however, is not always true, as the example 346

(A,N,B,CT ) =

([
−1 1
0 −1

]
,

[
0 0
1 0

]
,

[
0
3

]
,

[
3
0

])
shows. It can easily be verified that the type I Lyapunov 347

equations (6) are solved by 348

Q =

[
6 3
3 3

]
P =

[
3 3
3 6

]
.

The type II inequalities (7) are, e.g., solved by 349

Q =

[
6 3
3 3

]
P =

[
8 0
0 12

]
.
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TABLE I
ERROR BOUNDS AND APPROXIMATION ERRORS FOR BOTH TYPES

Fig. 1. Section of ladder network from [31].

If we reduce to order r = 1, the type I approximation error is350

larger than both the truncated singular value and the type II351

approximation error; see Table I.352

B. Electrical Ladder Network With Perturbed Inductance353

As our first example with a physical background, we take354

up the electrical ladder network described in [31], consisting of355

n/2 sections with a capacitor C̃ , inductor L̃ and two resistors356

R and R̃ as depicted in Fig. 1.357

But following, e.g., [32], we assume that the inductance L̃ is358

subject to stochastic perturbations. For simplicity, we replace the359

inverse L̃−1 formally by L−1 + ẇ in all sections. Here L = 0.1360

and ẇ is white noise of a certain intensity σ, where we set σ=1,361

e.g., for n = 6, we have the system matrices362

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
C̃R

−1
C̃

0 0 0 0
1
L

−RR̃
L(R+R̄)

−R̃
L(R+R̄) 0 0 0

0 R̃
C̃(R+R̃)

−1
C̃(R+R̃)

−1
C̄

0 0

0 0 1
L

−RR̃
L(R+R̃)

−R̃
L(R+R̃)

0

0 0 0 R̃
C̃(R+R̄)

−1
C̃(R+R̃)

−1
C̃

0 0 0 0 1
L

−R̃
L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

N =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0

1 −RR̃
R+R̃

−R̃
R+R̃

0 0 0

0 0 0 0 0 0

0 0 1 −RR̃
R+R̃

−R̃
R+R̃

0

0 0 0 0 0 0

0 0 0 0 1 −R̃

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

B =
[

1
C̃R

0 0 0 0 0 0
]T

C =
[
− 1

R 0 0 0 0 0 0
]
.

For larger n, the band structure of A and N is extended363

periodically. To see the behavior of our two methods, we reduce364

from order n = 20 to the orders r = 1, 3, 5, . . . , 19, and com-365

pute both the theoretical bounds and the actual approximation366

errors in the H∞-norm; see Fig. 2.367

Fig. 2. In this example, for both types the bounds hold, and for all reduced
orders, type I gives a smaller H∞-error than type II.

Fig. 3. Comparison of singular values and relative output error.

C. Heat Transfer Problem 368

As another example we consider a stochastic modification of 369

the heat transfer problem described in [14]. On the unit square 370

Ω = [0, 1]2, the heat equation xt = Δx is given with Dirichlet 371

condition x = uj , j = 1, 2, 3, on three of the boundary edges 372

and a stochastic Robin condition n · ∇x = (1/2 + ẇ)x on the 373

fourth edge (where ẇ stands for white noise). A standard five- 374

point finite-difference discretization on a 10 × 10 grid leads 375

to a modified Poisson matrix A ∈ R100×100 and corresponding 376

matrices N ∈ R100×100 and B ∈ R100×3. We use the input 377

u ≡

⎡
⎣11
1

⎤
⎦

and choose the average temperature as the output, i.e., C = 378

(1/100)[1, . . . , 1]. We apply balanced truncation of type I 379

and type II. For type II, an LMI-solver (MATLAB function 380

mincx) is used to compute P as a solution of the LMI (24) 381

which minimizes traceP or tracePQ. 382

In the following figure (Fig. 3), we compare the reduced 383

systems of order r = 20 for both types. The left diagram shows 384

the decay of the singular values. Since the LMI-solver was 385

called with tolerance level 10 −9, only the first about 25 singular 386

values for type II have the correct order of magnitude. In this 387

region, the decay for both types is roughly linear. Some analysis 388

of this behavior for type I has been carried out in [28]. For 389

type II, so far no theoretical results are available. 390

The diagram on the right displays the approximation error 391

‖y(t)− yr(t)‖ over a given time interval. For both types it has 392

the same order of magnitude. In fact, for many examples we 393

have observed both methods to yield very similar results. 394

The estimated error norm
∑n

j=r+1 σj and the actual approx- 395

imation error ‖L− L10‖ are given in Table II. 396
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TABLE II
ERROR BOUNDS AND APPROXIMATION ERRORS FOR BOTH TYPES

TABLE III
COMPARISON OF BOTH REDUCTION METHODS

As we can see, the upper error bound fails for type I, but is397

correct for type II. Nevertheless, judging from the H∞ error,398

neither of the types seems to be preferable over the other.399

D. Summary400

Clearly, higher dimensional examples are required to get401

more insight. To this end, a more sophisticated method for the402

solution of (24) is needed. With general-purpose LMI-software403

on a standard Laptop, we hardly got higher than n = 100.404

V. COMPARISON405

Table III summarizes properties of our two methods.406

As long as efficient algorithms for the solution of (7b) are not407

available, practical evidence favors to use the type I method in408

applications. Although there is no strict H∞-type error bound409

for this case, in most examples the decay of singular values still410

roughly indicates the decay of the approximation error.411

VI. CONCLUSIONS AND FUTURE WORK412

We have discussed two ways of generalizing balanced trun-413

cation for stochastic linear systems. The main theoretical con-414

tributions of this paper are the preservation of asymptotic415

stability for type II balanced truncation proved in Theorem II.2416

and the new proof of the H∞ error bound in Theorem II.4.417

The efficient solution of the matrix inequality (7b) is an open418

issue and requires further research. The same is true for the419

computation of the stochastic H∞-norm. Moreover, we are still420

looking for adequate interpretations of our approaches, e.g., in421

terms of energy minimization or Hankel operators. We hope to422

trigger some research in this direction.423

APPENDIX A424

ASYMPTOTIC MEAN SQUARE STABILITY425

Consider the stochastic linear system of Itô-type426

dx = Ax dt+Nx dw (25)

where w = (w(t))t∈R+
is a zero-mean real Wiener process on a427

probability space (Ω,F , μ) with respect to an increasing family428

(Ft)t∈R+
of σ-algebras Ft ⊂ F (e.g., [25], [26]).429

Let L2
w(R+,R

q) denote the corresponding space of nonan- 430

ticipating stochastic processes v with values in Rq and norm 431

‖v(·)‖2L2
w
:= E

⎛
⎝ ∞∫

0

‖v(t)‖2 dt

⎞
⎠ < ∞

where E denotes expectation. For initial data x(0) = x0, the 432

solution can be written as x(t) = Φ(t)x0 with the fundamental 433

matrix solution Φ(t), satisfying Φ(0) = I 434

By definition, system (25) is asymptotically mean-square- 435

stable, if E(‖x(t)‖2) t→∞−→ 0, for all initial conditions x0. In this 436

case, for simplicity, we also call the pair (A,N) asymptotically 437

mean-square stable. 438

We have the following version of Lyapunov’s matrix 439

theorem; see [23]. Here ⊗ denotes the Kronecker product. 440

Theorem A.1: The following are equivalent. 441442

(i) System (25) is asymptotically mean-square stable. 443

(ii) max{�λ ‖ λ ∈ σ(A ⊗ I + I ⊗A+N ⊗N)} < 0 444

(iii) ∃Y > 0 : ∃X > 0: ATX +XA+NTXN = −Y 445

(iv) ∀Y > 0 : ∃X > 0: ATX +XA+NTXN = −Y 446

(v) ∀Y ≥ 0 : ∃X ≥ 0: ATX +XA+NTXN = −Y 447

Remark A.2: The theorem (like all other results in this paper) 448

carries over to systems 449

dx = Ax dt+

k∑
j=1

Njx dwj

with more than one noise term, and many more equivalent 450

criteria can be provided; see, e.g., [34] or [18, Th. 3.6.1]. 451

The following theorem does not require any stability assump- 452

tions (see [18, Th. 3.2.3]). It is central in the analysis of mean- 453

square stability. 454

Theorem A.3: Let 455

α = max {�λ| λ ∈ σ(A ⊗ I + I ⊗A+N ⊗N)} .

Then there exists a nonnegative definite matrix V �= 0, so that 456

(L∗
A +Π∗

N ) (V ) = AV + V AT +NVNT = αV.

We also note a simple consequence of this theorem [24, 457

Cor. 3.2]. Here 〈Y, V 〉 = trace(Y V ) is the Frobenius inner 458

product for symmetric matrices. 459

Corollary A.4: Let α, V as in the theorem. For given Y ≥ 0 460

assume that 461

∃X > 0 : LA(X) + ΠN (X) ≤ −Y. (26)

Then α ≤ 0. Moreover, if α = 0 then Y V = V Y = 0. 462

APPENDIX B 463

STOCHASTIC BOUNDED REAL LEMMA 464

Now let us consider system (5) with input u and output y. 465

If (A,N) is asymptotically mean-square stable, then (5) de- 466

fines an input output operator L : u �→ y from L2
w(R,R

m) to 467

L2
w(R,R

p), see [17]. By ‖L‖ we denote the induced operator 468

norm, which is an analogue of the deterministic H∞-norm. It 469

can be characterized by the stochastic bounded real lemma. 470
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Theorem A.5: [17] For γ > 0, the following are equivalent.471
472

(i) System (25) is asymptotically mean-square stable and473

‖L‖ < γ.474

(ii) There exists a negative definite solution X < 0 to the475

Riccati inequality476

ATX +XA+NTXN − CTC − γ−2XBBTX > 0.

(iii) There exists a positive definite solution X > 0 to the477

Riccati inequality478

ATX +XA+NTXN + CTC + γ−2XBBTX < 0.

We have stated the obviously equivalent formulations (ii) and479

(iii) to avoid confusion arising from different formulations480

in the literature. Under additional assumptions also nonstrict481

versions can be formulated. The following sufficient criterion482

is given in [18, Cor. 2.2.3] (where also the signs are changed).483

Unlike in the previous theorem, here asymptotic mean-square484

stability is assumed at the outset.485

Theorem A.6: Assume that (25) is asymptotically stable in486

mean-square. If there exists a nonnegative definite matrixX≥0,487

satisfying488

ATX +XA+NTXN + CTC + γ−2XBBTX ≤ 0

then ‖L‖ ≤ γ.489

APPENDIX C490

UNOBSERVABLE AND UNREACHABLE SUBSPACES491

Definition A.7: Consider system (5). A vector v ∈ Rn is492

called unobservable, if the initial condition x(0)=v with u≡0493

produces the output y ≡ 0. The vector v is called unreachable,494

if x(t) �= v for all t > 0 and any solution with initial value495

x(0) = 0 and arbitrary input u.496

If (A,N) is asymptotically mean-square stable, then (see [14,497

Th. 3.1]) the unobservable and the unreachable subspace can be498

characterized as the kernels of Q and P defined by499

ATQ +QA+NTQN = −CTC

AP + PAT +NPNT = −BBT .

Theorem A.8: A state v is500501

(a) unobservable, if and only if Qv = 0.502

(b) unreachable, if and only if Pv = 0.503

In particular, the system is observable and reachable, if and only504

if Q > 0 and P > 0.505
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