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Dual pairs of generalized Lyapunov inequalities
and balanced truncation of stochastic linear systems

Peter Benner, Tobias Damm, and Yolanda Rocio Rodriguez Cruz

Abstract—We consider two approaches to balanced trunca-
tion of stochastic linear systems, which follow from different
generalizations of the reachability Gramian of deterministic
systems. Both preserve mean-square asymptotic stability, but
only the second leads to a stochastic H∞-type bound for the
approximation error of the truncated system.

Index Terms—generalized Lyapunov equation, model order re-
duction, balanced truncation, stochastic linear system, asymptotic
mean square stability
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INTRODUCTION

Optimization and (feedback) control of dynamical systems
is often computationally infeasible for high dimensional plant
models. Therefore, one tries to reduce the order of the system,
so that the input-output mapping is still computable with
sufficient accuracy, but at considerably smaller cost than
for the original system, [1], [2], [3], [4], [5]. To guarantee
the desired accuracy, computable error bounds are required.
Moreover, system properties which are relevant in the context
of control system design like asymptotic stability need to be
preserved. It has long been known that for linear time-invariant
(LTI) systems the method of balanced truncation preserves
asymptotic stability and provides an error bound for the L2-
induced input-output norm, that is the H∞-norm of the asso-
ciated transfer function, see [6], [7]. When considering model
order reduction of more general system classes, it is natural to
try to extend this approach. This has been worked out for
descriptor systems in [8], for time-varying systems in [9],
[10], [11], for bilinear systems in [12], [13], [14] and general
nonlinear systems e.g. in [15]. Yet another generaliztion of
LTI systems is obtained considering dynamics driven by noise
processes. This leads to the class of stochastic systems, which
have been considered in a system theoretic context e.g. in
[16], [17], [18]. Quite recently, balanced truncation has also
been described for linear stochastic systems of Itô type in [14],
[19], [20]. Already the formulation of the method leads to two
different variants that are equivalent in the deterministic case,
but not so for stochastic systems. It is natural to ask which
of the above mentioned properties of balanced truncation also
hold for these variants. The aim of this paper is to answer this
question.
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Let us first recapitulate balanced truncation for linear deter-
ministic control systems of the form

ẋ = Ax+Bu, y = Cx, σ(A) ⊂ C− . (1)

Here A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, and x(t) ∈ Rn,
y(t) ∈ Rp and u(t) ∈ Rm are the state, output, and input of
the system, respectively. Moreover σ(A) denotes the spectrum
of A and C− the open left half complex plane. Let

LA : X 7→ ATX +XA

denote the Lyapunov operator and

L∗A : X 7→ AX +XAT

its adjoint with respect to the Frobenius inner product. Then
σ(A) ⊂ C− if and only if there exists a positive definite
solution X of the Lyapunov inequality LA(X) < 0, by
Lyapunov’s classical stability theorem, see e.g. [21].

Balanced truncation means truncating a balanced realiza-
tion. This realization is obtained by a state space transforma-
tion computed from the Gramians P and Q, which solve the
dual pair of Lyapunov equations

LA(Q) = ATQ+QA = −CTC , (2a)

L∗A(P ) = AP + PAT = −BBT , (2b)

or more generally the inequalities

LA(Q) ≤ −CTC , L∗A(P ) ≤ −BBT . (3)

These (in)equalities are essential in the characterization of
stability, controllability and observability of system (1). If
detP 6= 0, the inequalities (3) can be written as

LA(Q) ≤ −CTC , (4a)

LA(P−1) = P−1A+ATP−1 ≤ −P−1BBTP−1 . (4b)

In the present paper we discuss extensions of (3) and (4)
for stochastic linear systems.

As indicated above, the equivalent formulations (3) and
(4) lead to different generalizations, if we consider Itô-type
stochastic systems of the form

dx = Axdt+Nxdw +Budt , y = Cx , (5)

where A,B,C are as in (1) and N ∈ Rn×n. System (5) is
asymptotically mean-square stable (e.g. [22], [23], [18]), if
and only if there exists a positive definite solution X of the
generalized Lyapunov inequality

(LA + ΠN )(X) = ATX +XA+NTXN < 0 .
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Here ΠN : X 7→ NTXN and Π∗N : X 7→ NXNT . This
stability criterion indicates that in the stochastic context the
generalized Lyapunov operator LA + ΠN takes over the role
of LA. Substituting LA by LA+ΠN in (3) and (4), we obtain
two different dual pairs of generalized Lyapunov inequalities.
We call them type I:

(LA + ΠN )(Q) = ATQ+QA+NTQN ≤ −CTC , (6a)

(LA + ΠN )∗(P ) = AP + PAT +NPNT ≤ −BBT , (6b)

and type II:

(LA + ΠN )(Q) = ATQ+QA+NTQN

≤ −CTC , (7a)

(LA + ΠN )(P−1) = ATP−1 + P−1A+NTP−1N

≤ −P−1BBTP−1 . (7b)

Note that (6) corresponds to (3) in the sense that L∗A(P ) has
been replaced by (LA + ΠN )∗(P ), while (7) corresponds to
(4), where LA(P−1) has been replaced by (LA+ ΠN )(P−1).
In general (if N and P do not commute), the inequalities (6b)
and (7b) are not equivalent. At first glance it is not clear which
generalization is more appropriate.

If the system is asymptotically mean-square stable and
certain observability and reachability conditions are fulfilled,
then for both types there are solutions Q,P > 0. By a suitable
state space-transformation, it is possible to balance the system
such that Q = P = Σ > 0 is diagonal. Consequently, the usual
procedure of balanced truncation can be applied to reduce the
order of (5). For simplicity, let us refer to this as type I or
type II balanced truncation.

Under natural assumptions, this reduction preserves mean-
square asymptotic stability. For type I, this nontrivial fact has
been proven in [24]. Moreover, in [20], an H2-error bound has
been provided. However, different from the deterministic case,
there is no H∞-type error bound in terms of the truncated
entries in Σ. This will be shown in Example I.3.

In contrast, for type II, an H∞-type error bound has been
obtained in [19]. In the present paper, as one of our main
contributions, we show in Theorem II.2 that type II balanced
truncation also preserves mean-square asymptotic stability.
The proof differs significantly from the one given for type
I. Using this result, we are able to give a more compact proof
of the error bound, Theorem II.4, which exploits the stochastic
bounded real lemma [17].

We illustrate our results by analytical and numerical exam-
ples in Section IV.

I. TYPE I BALANCED TRUNCATION

Consider a stochastic linear control system of Itô-type

dx = Axdt+

k∑
j=1

Njx dwj +Budt , y = Cx , (8)

where wj = (wj(t))t∈R+ are uncorrelated zero mean real
Wiener processes on a probability space (Ω,F , µ) with respect
to an increasing family (Ft)t∈R+

of σ-algebras Ft ⊂ F
(e.g. [25], [26]).

To simplify the notation, we only consider the case k = 1
and set w = w1, N = N1. But all results can immediately be
generalized for k > 1.
Let L2

w(R+,Rq) denote the corresponding space of non-
anticipating stochastic processes v with values in Rq and norm

‖v(·)‖2L2
w

:= E
(∫ ∞

0

‖v(t)‖2dt
)
<∞,

where E denotes expectation.
Let the homogeneous equation dx = Axdt + Nxdw be

asymptotically mean-square-stable, i.e. E(‖x(t)‖2)
t→∞−→ 0, for

all solutions x.
Then, by Theorem A.1 the equations

ATQ+QA+NTQN = −CTC ,

AP + PAT +NPNT = −BBT ,

have unique solutions Q ≥ 0 and P ≥ 0. Under suitable
observability and controllability conditions, Q and P are
nonsingular.

A similarity transformation

(A,N,B,C) 7→ (S−1AS, S−1NS, S−1B,CS)

of the system implies the contragredient transformation as

(Q,P ) 7→ (STQS, S−1PS−T ) .

Choosing e.g. S = LV Σ−1/2, with Cholesky factorizations
LLT = P , RTR = Q and a singular value decomposition
RL = UΣV T , we obtain S−1 = Σ−1/2UTR and

STQS = S−1PS−T = Σ = diag(σ1, . . . , σn) .

After suitable partitioning

Σ =

[
Σ1 0
0 Σ2

]
, S =

[
S1 S2

]
, S−1 =

[
T1
T2

]
a truncated system is given in the form

(A11, N11, B1, C1) = (T1AS1, T1NS1, T1B,CS1) .

The following result has been proven in [24].

Theorem I.1 Let A,N ∈ Rn×n satisfy

σ(I ⊗A+A⊗ I +N ⊗N) ⊂ C− .

For a block-diagonal matrix Σ = diag(Σ1,Σ2) > 0 with
σ(Σ1) ∩ σ(Σ2) = ∅, assume that

ATΣ + ΣA+NTΣN ≤ 0 and AΣ + ΣAT +NΣNT ≤ 0.

Then, with the usual partitioning of A and N , we have

σ(I ⊗A11 +A11 ⊗ I +N11 ⊗N11) ⊂ C− .

Its implication for mean-square stability of the truncated
system is immediate.

Corollary I.2 Consider an asymptotically mean square stable
stochastic linear system

dx = Axdt+Nxdw .
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Assume that a matrix Σ = diag(Σ1,Σ2) is given as in
Theorem I.1 and A and N are partitioned accordingly.
Then the truncated system

dxr = A11xr dt+N11xr dw

is also asymptotically mean square stable.

If the diagonal entries of Σ2 are small, it is expected that
the truncation error is small. In fact this is supported by an
H2-error bound obtained in [20]. Additionally, however, from
the deterministic situation (see [6], [2]), one would also hope
for an H∞-type error bound of the form

‖y − yr‖L2
w(R+,Rp)

?
≤ α(trace Σ2)‖u‖L2

w(R+,Rm) (9)

with some number α > 0. The following example shows that
no such general α exists.

Example I.3 Let A = −
[

1 0
0 a2

]
with a > 1, N =[

0 0
1 0

]
, B =

[
1
0

]
, C =

[
0 1

]
.

Solving (6) with equality, we get P =

[
1
2 0
0 1

4a2

]
, Q =[

1
4a2 0
0 1

2a2

]
with σ(PQ) = { 1

8a2 ,
1

8a4 } so that Σ =

diag(σ1, σ2), where σ1 = 1√
8a

and σ2 = 1√
8a2

. The system

is balanced by the transformation S =

[
2a2 0
0 1/2

]1/4
.

Then CS = 1
21/4

[
0 1

]
so that Cr = 0 for the truncated

system of order 1. Thus the output of the reduced system is
yr ≡ 0, and the truncation error ‖L − Lr‖ is equal to the
stochastic H∞-norm (see [17]) of the original system,

‖L‖ = sup
x(0)=0,‖u‖L2

w
=1

‖y‖L2
w
.

We show now that this norm is equal to 1√
2a

= 2aσ2.
Thus, depending on a, the ratio of the truncation error and
trace Σ2 = σ2 can be arbitrarily large.

According to the stochastic bounded real lemma, Theorem
A.5, ‖L‖ is the infimum over all γ so that the Riccati inequality

0 < ATX +XA+NTXN − CTC − 1

γ2
XBBTX (10)

=

[ −2x1 + x3 − 1
γ2x

2
1 −(a2 + 1)x2 − 1

γ2x1x2
−(a2 + 1)x2 − 1

γ2x1x2 −2a2x3 − 1
γ2x

2
2 − 1

]
possesses a solution X =

[
x1 x2
x2 x3

]
< 0.

If a given matrix X satisfies this condition, then so does
the same matrix with x2 replaced by 0. Hence we can assume
that x2 = 0, and end up with the two conditions x3 < − 1

2a2

and (after multiplying the upper left entry with −γ2)

0 > x21 + 2γ2x1 − γ2x3 = (x1 + γ2)2 − γ2(γ2 + x3)

> (x1 + γ2)2 − γ2(γ2 − 1
2a2 ) .

Thus necessarily γ2 > 1
2a2 , i.e. γ > 1√

2a
. This already proves

that ‖L‖ ≥ 1√
2a

= 2aσ2, which suffices to disprove the
existence of a general bound α in (9). Taking infima, it is
easy to show that indeed ‖L‖ = 1√

2a
.

II. TYPE II BALANCED TRUNCATION

We now consider the inequalities (7).

Lemma II.1 Assume that dx = Axdt + Nxdw is asymp-
totically mean-square-stable. Then inequality (7b) is solvable
with P > 0.

Proof: By Theorem A.1, for a given Y < 0, there exists a
P̃ > 0, so that AT P̃−1 + P̃−1A + NT P̃−1N = Y . Then
P = ε−1P̃ , for sufficiently small ε > 0, satisfies

ATP−1 + P−1A+NTP−1N = εY < −ε2P̃−1BBT P̃−1

so that (7b) holds even in the strict form. �

It is easy to see that like in the previous section a state space
transformation

(A,N,B,C) 7→ (S−1AS, S−1NS, S−1B,CS)

leads to a contragredient transformation Q 7→ STQS, P 7→
S−1PS−T of the solutions. That is, Q and P satisfy (7a)
and (7b), if and only if STQS and S−1PS−T do so for the
transformed data. As before, we can assume the system to be
balanced with

Q = P = Σ = diag(σ1I, . . . , σνI) =

[
Σ1

Σ2

]
, (11)

where σ1 > . . . > σν > 0 and σ(Σ1) = {σ1, . . . , σr},
σ(Σ2) = {σr+1, . . . , σν}. Hence, we will now assume (after
balancing) that a diagonal matrix Σ as in (11) is given which
satisfies

ATΣ + ΣA+NTΣN ≤ −CTC , (12a)

ATΣ−1 + Σ−1A+NTΣ−1N ≤ −Σ−1BBTΣ−1 . (12b)

Partitioning A, N , B, C like Σ, we write the system as

dx1 = (A11x1 +A12x2) dt+ (N11x1 +N12x2) dw +B1u dt

dx2 = (A21x1 +A22x2) dt+ (N21x1 +N22x2) dw +B2u dt

y = C1x1 + C2x2 .

The reduced system obtained by truncation is

dxr = A11xr +N11xr dw +B1u dt , yr = C1xr .

The index r is the number of different singular values σj
that have been kept in the reduced system. In the following
subsections, we consider matrices

A =

[
A11 A12

A21 A22

]
, N =

[
N11 N12

N21 N22

]
,

Σ = diag(Σ1,Σ2) as in (11), and equations of the form

ATΣ + ΣA+NTΣN = −C̃T C̃ (13a)

ATΣ−1 + Σ−1A+NTΣ−1N = −B̃B̃T (13b)

with arbitrary right-hand sides −C̃T C̃ ≤ 0 and −B̃B̃T ≤ 0.
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For convenience, we write out the blocks of these equations
explicitly:

AT11Σ1 + Σ1A11 +NT
11Σ1N11

= −NT
21Σ2N21 − C̃T1 C̃1 (14)

AT12Σ1 + Σ2A21 +NT
12Σ1N11

= −NT
22Σ2N21 − C̃T2 C̃1 (15)

AT22Σ2 + Σ2A22 +NT
22Σ2N22

= −NT
12Σ1N12 − C̃T2 C̃2 (16)

AT11Σ−11 + Σ−11 A11 +NT
11Σ−11 N11

= −NT
21Σ−12 N21 − B̃1B̃

T
1 (17)

AT12Σ−11 + Σ−12 A21 +NT
12Σ−11 N11

= −NT
22Σ−12 N21 − B̃2B̃

T
1 (18)

AT22Σ−12 + Σ−12 A22 +NT
22Σ−12 N22

= −NT
12Σ−11 N12 − B̃2B̃

T
2 (19)

A. Preservation of asymptotic stability

The following theorem is the main new result of this paper.

Theorem II.2 Let A and N be given such that

σ(I ⊗A+A⊗ I +N ⊗N) ⊂ C− . (20)

Assume further that for a block-diagonal matrix Σ =
diag(Σ1,Σ2) > 0 with σ(Σ1) ∩ σ(Σ2) = ∅, we have

ATΣ + ΣA+NTΣN ≤ 0 and (21a)

ATΣ−1 + Σ−1A+NTΣ−1N ≤ 0 . (21b)

Then, with the usual partitioning of A and N , we have

σ(I ⊗A11 +A11 ⊗ I +N11 ⊗N11) ⊂ C− . (22)

Again we have an immediate interpretation in terms of mean-
square stability of the truncated system.

Corollary II.3 Consider an asymptotically mean square sta-
ble stochastic linear system

dx = Axdt+Nxdw .

Assume that a matrix Σ = diag(Σ1,Σ2) is given as in
Theorem II.2 and A and N are partitioned accordingly.
Then the truncated system

dxr = A11xr dt+N11xr dw

is also asymptotically mean square stable.

Proof of Theorem II.2: Note that the inequalities (21) are
equivalent to the equations (14) – (19) with appropriate right-
hand sides −C̃T C̃ and −B̃B̃T .
By way of contradiction, we assume that (22) does not hold.
Then by Theorem A.3, there exist V ≥ 0, V 6= 0, α ≥ 0 such
that

A11V + V AT11 +N11V N
T
11 = αV . (23)

Taking the scalar product of the equation (14) with V , we
obtain 0 ≥ α trace(Σ1V ) whence α = 0 and C̃1V = 0,
N21V = 0 by Corollary A.4. Hence(

AT11Σ1 + Σ1A11 +NT
11Σ1N11

)
V = 0 . (24)

Analogously, we have B̃T1 V = 0 by (15).
In particular, from N21V = 0, we get

(L∗A + Π∗N )

([
V 0
0 0

])
=

[
A11V + V AT11 +N11V N

T
11 V AT21 +N11V N

T
21

A21V +N21V N
T
11 N21V N

T
21

]
=

[
0 V AT21

A21V 0

]
.

We will show that A21V = 0, which implies

0 ∈ σ(I ⊗A+A⊗ I +N ⊗N) (25)

in contradiction to (20), and thus finishes the proof.
We first show that ImV is invariant under A11 and N11.

To this end let V z = 0. Then by (23),

0 = zT
(
A11V + V AT11 +N11V N

T
11

)
z = zTN11V N

T
11z ,

whence also V NT
11z = 0, i.e. NT

11z ∈ KerV . From this, we
have

0 =
(
A11V + V AT11 +N11V N

T
11

)
z = V AT11z ,

implying AT11z ∈ KerV . Thus AT11 KerV ⊂ KerV and
NT

11 KerV ⊂ KerV .
Since KerV = (ImV )⊥, it follows further that ImV is

invariant under A11 and N11.
Let V = V1V

T
1 , where V1 has full column rank, i.e.

detV T1 V1 6= 0. Then by the invariance, there exist square
matrices X and Y , such that

A11V1 = V1X and N11V1 = V1Y .

It follows that

0 = A11V1V
T
1 + V1V

T
1 A

T
11 +N11V1V

T
1 N

T
11

= V1(X +XT + Y Y T )V T1 ,

whence X +XT + Y Y T = 0. Moreover, from (24), we get

AT11Σ1V1 = −Σ1A11V1 −NT
11Σ1N11V1

= −Σ1V1X −NT
11Σ1V1Y . (26)

Using this substitution in the following computation, we obtain

0 ≥ V T1 Σ2
1

(
AT11Σ−11 + Σ−11 A11 +NT

11Σ−11 N11

)
Σ2

1V1

= V T1 Σ2
1(AT11Σ1V1) + (AT11Σ1V1)TΣ2

1V1

+ V T1 Σ2
1N

T
11Σ−11 N11Σ2

1V1

= −V T1 Σ3
1V1X −XTV T1 Σ3

1V1 (27)

− V T1 Σ2
1N

T
11Σ1V1Y − Y TV T1 Σ1N11Σ2

1V1

+ V T1 Σ2
1N

T
11Σ−11 N11Σ2

1V1 .
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We will show that the right hand side has nonnegative trace.
This then implies that the whole term vanishes. Note that

trace(Y TV T1 Σ3
1V1Y ) = trace(V T1 Σ3

1V1Y Y
T )

= trace(−V T1 Σ3
1V1(X +XT ))

= trace(−V T1 Σ3
1V1X −XTV T1 Σ3

1V1) .

Taking the trace in (27), we have

0 ≥ trace
(
Y TV T1 Σ3

1V1Y − V T1 Σ2
1N

T
11Σ1V1Y

− Y TV T1 Σ1N11Σ2
1V1 + V T1 Σ2

1N
T
11Σ−11 N11Σ2

1V1

)
= trace

[
V1Y
V1

]T
M

[
V1Y
V1

]
.

where

M =

[
Σ3

1 −Σ1N11Σ2
1

−Σ2
1N

T
11Σ1 Σ2

1N
T
11Σ−11 N11Σ2

1

]
.

The matrix M is positive semidefinite, because the upper
left block is positive definite, and the corresponding Schur
complement

Σ2
1N

T
11Σ−11 N11Σ2

1 − Σ2
1N

T
11Σ1Σ−31 Σ1N11Σ2

1 = 0

vanishes. Hence[
Σ3

1 −Σ1N11Σ2
1

−Σ2
1N

T
11Σ1 Σ2

1N
T
11Σ−11 N11Σ2

1

] [
V1Y
V1

]
= 0

implying via the first block row that N11Σ2
1V1 = Σ2

1V1Y .
From (27), using also (26) again, we thus have

0 =
(
AT11Σ−11 + Σ−11 A11 +NT

11Σ−11 N11

)
Σ2

1V1

= −Σ1V1X −NT
11Σ1V1Y + Σ−11 A11Σ2

1V1 +NT
11Σ1V1Y

= −Σ1V1X + Σ−11 A11Σ2
1V1 ,

i.e. A11Σ2
1V1 = Σ2

1V1X . It follows that for arbitrary k ∈ N,
the eigenvector V in (23) can be replaced by

Σ2k
1 V Σ2k

1 = Σ2k
1 V1V

T
1 Σ2k

1

because

0 = Σ2
1V1

(
X +XT + Y Y T

)
V T1 Σ2

1

= A11

(
Σ2

1V1V
T
1 Σ2

1

)
+
(
Σ2

1V1V
T
1 Σ2

1

)
AT11

+N11

(
Σ2

1V1V
T
1 Σ2

1

)
NT

11 .

Induction leads to

0 = A11

(
Σ2k

1 V1V
T
1 Σ2k

1

)
+
(
Σ2k

1 V1V
T
1 Σ2k

1

)
AT11

+N11

(
Σ2k

1 V1V
T
1 Σ2k

1

)
NT

11 .

As above, we conclude that N21Σ2k
1 V1 = 0, C̃1Σ2k

1 V1 = 0,
and B̃T1 Σ2k

1 V1 = 0. Multiplying (15) with Σ
2(k−1)
1 V1 and (18)

with Σ2k
1 V1, we get

AT12Σ2k−1
1 V1 + Σ2A21Σ

2(k−1)
1 V1 +NT

12Σ2k−1
1 V1Y = 0 ,

AT12Σ2k−1
1 V1 + Σ−12 A21Σ2k

1 V1 +NT
12Σ2k−1

1 V1Y = 0 .

Hence (after multiplication with Σ2), for all k ≥ 1, we have

Σ2
2A21Σ

2(k−1)
1 V1 = −Σ2

(
AT12Σ2k−1

1 V1 +NT
12Σ2k−1

1 V1Y
)

= A21Σ2k
1 V1 .

Applying this identity repeatedly, we get

A21Σ2k
1 V1 = Σ2k

2 A21V1 for all k ∈ N.

If µ is the minimal polynomial of Σ2
1, then σ(Σ1)∩σ(Σ2) = ∅

implies detµ(Σ2
2) 6= 0 and

0 = A21µ(Σ2
1)V1 = µ(Σ2

2)A21V1 ,

whence A21V1 = 0 and also A21V = 0. Hence we obtain the
contradiction (25). �

B. Error estimate

The following theorem has been proven in [19] using
LMI-techniques. Exploiting the stability result in the previous
subsection, we can give a slightly more compact proof based
on the stochastic bounded real lemma, Theorem A.6.

Theorem II.4 Let A and N satisfy

σ(I ⊗A+A⊗ I +N ⊗N) ⊂ C− .

Assume furthermore that for Σ = diag(Σ1,Σ2) > 0 with
Σ2 = diag(σr+1I, . . . , σνI) and σ(Σ1) ∩ σ(Σ2) = ∅, the
following Lyapunov inequalities hold,

ATΣ + ΣA+NTΣN ≤ −CTC ,

ATΣ−1 + Σ−1A+NTΣ−1N ≤ −Σ−1BBTΣ−1 .

If x(0) = 0 and xr(0) = 0, then for all T > 0, it holds that

‖y − yr‖L2
w([0,T ]) ≤ 2(σr+1 + . . .+ σν)‖u‖L2

w([0,T ]) .

Proof: We adapt a proof for deterministic systems e.g. [2,
Theorem 7.9]. In the central argument we treat the case where
Σ2 = σνI and show that

‖y − yν−1‖L2
w[0,T ] ≤ 2σν‖u‖L2

w[0,T ] . (28)

From (14) and (17), we can see that also

AT11Σ1 + Σ1A11 +NT
11Σ1N11 ≤ −CT1 C1 ,

AT11Σ−11 + Σ−11 A11 +NT
11Σ−11 N11 ≤ −Σ−11 B1B

T
1 Σ−11 .

Hence we can repeat the above argument to remove
σν−1, . . . , σr+1 successively. By the triangle inequality we
find that

‖y − yr‖L2
w[0,T ] ≤

ν−1∑
j=r

‖yj+1 − yj‖L2
w[0,T ]

≤ 2(σν + . . .+ σr+1)‖u‖L2
w[0,T ] .

which then concludes the proof.
To prove (28), we make use of the stochastic bounded real
lemma. In the following let r = ν − 1 and consider the error
system defined by

dxe = Aexe dt+Nexe dw +Beu dt ,

ye = Cexe = y − yr ,
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where

xe =

 x1
x2
xr

 , Ae =

 A11 A12 0
A21 A22 0
0 0 A11

 ,
Ne =

 N11 N12 0
N21 N22 0

0 0 N11

 , Be =

 B1

B2

B1

 ,
Ce =

[
C1 C2 −C1

]
.

Applying the state space transformation

 x̃1
x̃2
x̃r

 =

 x1 − xr
x2

x1 + xr

 =

 Ir 0 −Ir
0 In−r 0
Ir 0 Ir


︸ ︷︷ ︸

=S−1

 x1
x2
xr

 ,

we obtain the transformed system

Ãe = S−1AeS =

 A11 A12 0
1
2A21 A22

1
2A21

0 A12 A11

 ,

Ñe = S−1NeS =

 N11 N12 0
1
2N21 N22

1
2N21

0 N12 N11

 ,

B̃e = S−1B

 0
B2

2B1

 , C̃e = CeS =
[
C1 C2 0

]
.

By Theorem A.6, we have ‖Le‖ ≤ 2σν , if the Riccati
inequality

Rγ(X) = ÃTe X +XÃe + ÑT
e XÑe + C̃Te C̃e

+
1

4σ2
ν

XB̃eB̃
T
e X ≤ 0 (29)

possesses a solution X ≥ 0. We will show now that the block-
diagonal matrix

X = diag(Σ1, 2Σ2, σ
2
νΣ−11 ) = diag(Σ1, 2σνI, σ

2
νΣ−11 ) > 0

satisfies (29). Partitioning Rσν (X) =

 R11 RT21 RT31
R21 R22 RT32
R31 R32 R33

,

we have

R11 = AT11Σ1 + Σ1A11 +NT
11Σ1N11 +

σν
2
NT

21N21 + CT1 C1

= AT11Σ1 + Σ1A11 +NT
11Σ1N11 +NT

21Σ2N21 + CT1 C1

− σν
2
NT

21N21

R21 = AT12Σ1 + σνA21 +NT
12Σ1N11 + σνN

T
22N21 + CT2 C1

R31 =
σν
2
NT

21N21

R22 = 2σν(AT22 +A22 +NT
22N22) +NT

12Σ1N12

+ σ2
νN

T
12Σ−11 N12 + CT2 C2 +B2B

T
2

= AT22Σ2 + Σ2A22 +NT
22Σ2N22 +NT

12Σ1N12 + CT2 C2

+ σ2
ν(AT22Σ−12 + Σ−12 A22 +NT

22Σ−12 N22

+NT
12Σ−11 N12 + Σ−12 B2B

T
2 Σ−12 )

R32 = σ2
ν(Σ−11 A12 +NT

11Σ−11 N12) + σν(AT21 +NT
21N22)

+ σνΣ−11 B1B
T
2

= σ2
ν(Σ−11 A12 +NT

11Σ−11 N12 +AT21Σ−12 +NT
21Σ−12 N22

+ Σ−11 B1B
T
2 Σ−12 )

R33 = σ2
ν(AT11Σ−11 + Σ−11 A11 +NT

11Σ−11 N11) +
σν
2
NT

21N21

+ σ2
νΣ−11 B1B

T
1 Σ−11

= σ2
ν(AT11Σ−11 + Σ−11 A11 +NT

11Σ−11 N11

+ Σ−11 B1B
T
1 Σ−11 +NT

21Σ−12 N21)− σν
2
NT

21N21

With the permutation matrix J =

[
0 I
I 0

]
we define

M = J(ATΣ−1 + Σ−1A+NTΣ−1N + Σ−1BBTΣ−1)J ,

where M ≤ 0 by (13b). Using (14) – (19), we have

Rσν (X) =

[
ATΣ + ΣA+NTΣN + CTC 0

0 0

]

− σν
2

 NT
21

0
−NT

21

 NT
21

0
−NT

21

T + σ2
ν

[
0 0
0 M

]
≤ 0 ,

which is inequality (29). �

Example II.5 Let the system (A,N,B,C) and Q be as in
Example I.3. The matrix

P =

[
1 +
√

1− p 0
0 p

]−1
> 0 , where 0 < p ≤ 1 ,

satisfies inequality (7b). As in Example I.3, we have Lr = 0
for the corresponding reduced system of order 1, so that the
truncation error again is 1√

2a
, independently of p ∈ ]0, 1].

On the other hand we have

σ2
2 = minσ(PQ) =

1

4a2(1 +
√

1− p)
≤ 1

8a2
,
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with equality for p → 0. Theorem II.4 thus gives the sharp
error bound 2σ2 = 1√

2a
. Note, that there is no P > 0

satisfying the equation (7b).

The previous example illustrates the problem of optimizing
over all solutions of inequality (7b).

III. NUMERICAL EXAMPLES

To compare the reduction methods we need to compute
Q,P from (6) or (7). Instead of the inequalities (6a), (6b), (7a)
we can consider the corresponding equations, for which quite
efficient algorithms have been developed recently, e.g. [27],
[28], [29], [30]. These also allow for a low-rank approximation
of the solutions. In contrast we cannot replace (7b) by the
corresponding equation, because this may not be solvable (see
Example II.5). Even worse, we do not have any solvability or
uniqueness criteria nor reliable algorithms.

Therefore, in general, we have to work with the inequality
(7b), which is solvable according to Lemma II.1, but of course
not uniquely solvable.

In view of our application, we aim at a solution P of (7b),
so that (some of) the eigenvalues of PQ are particularly small,
since they provide the error bound. Choosing a matrix Y < 0
and a very small ε along the lines of the proof of Lemma II.1
can be contrary to this aim. Hence some optimization over all
solutions of (7b) is required.

Note also that a matrix P > 0 satisfies (7b), if and only if
it satisfies the linear matrix inequality (LMI)[

PAT +AP +BBT PNT

NP −P

]
≤ 0 . (30)

Thus, LMI optimal solution techniques are applicable. How-
ever, their complexity will be prohibitive for large-scale prob-
lems. Therefore further research for alternative methods to
solve (7b) adequately is required.

By L and Lr, we always denote the original and the r-
th order approximated system. The stochastic H∞-type norm
‖L−Lr‖ is computed by a binary search of the infimum of all
γ such that the Riccati inequality (10) is solvable. The latter is
solved via a Newton iteration as in [18]. Finally, the Lyapunov
equations (2) are solved by preconditioned Krylov subspace
methods described in [27].
Unfortunately, for small γ, i.e. for small approximation er-
rors, this method of computing the error runs into numerical
problems, because (10) contains the term γ−2. This apparently
leads to cancellation phenomena in the Newton iteration, if e.g.
γ < 10−7. Therefore we mainly concentrate on cases where
the error is larger, that is we make r sufficiently small.

A. Type II can be better than type I

In many examples we observe that type II reduction gives
a valid error bound, but the approximation error still is better
with type I. This, however, is not always true, as the example

(A,N,B,CT ) =

([
−1 1

0 −1

]
,

[
0 0
1 0

]
,

[
0
3

]
,

[
3
0

])

shows. It can easily be verified that the type I Lyapunov
equations (6) are solved by

Q =

[
6 3
3 3

]
and P =

[
3 3
3 6

]
.

The type II inequalities (7) are e.g. solved by

Q =

[
6 3
3 3

]
and P =

[
8 0
0 12

]
.

Reduction to order r = 1 gives the following error bounds
and approximation errors for both types:

σ2 ‖L− L1‖
I 2.4853 3.9647
II 6.9282 3.5614

As we see, the type I approximation error is larger than both
the truncated singular value and the type II approximation
error.

B. An electrical ladder network with perturbed inductance

As our first example with a physical background, we take up
the electrical ladder network described in [31], consisting of
n/2 sections with a capacitor C̃, inductor L̃ and two resistors
R and R̃ as depicted here.

R = 0.1 L̃ = 0.1

C̃
=

0.1

R̃
=

1

V

I

But following e.g. [32], we assume that the inductance L̃ is
subject to stochastic perturbations. For simplicity, we replace
the inverse L̃−1 formally by L−1 + ẇ in all sections. Here
L = 0.1 and ẇ is white noise of a certain intensity σ, where
we set σ = 1. E.g. for n = 6, we have the system matrices

A =



−1

C̃R

−1

C̃
0 0 0 0

1
L

−RR̃

L(R+R̄)
−R̃

L(R+R̄)
0 0 0

0 R̃

C̃(R+R̃)
−1

C̃(R+R̃)
−1
C̄

0 0

0 0 1
L

−RR̃

L(R+R̃)
−R̃

L(R+R̃)
0

0 0 0 R̃

C̃(R+R̄)
−1

C̃(R+R̃)
−1

C̃

0 0 0 0 1
L

−R̃
L



N =



0 0 0 0 0 0

1 −RR̃

R+R̃

−R̃

R+R̃
0 0 0

0 0 0 0 0 0

0 0 1 −RR̃

R+R̃

−R̃

R+R̃
0

0 0 0 0 0 0

0 0 0 0 1 −R̃


B =

[
1

C̃R
0 0 0 0 0 0

]T
C =

[
− 1

R
0 0 0 0 0 0

]
.

For larger n, the band structure of A and N is extended
periodically. To see the behaviour of our two methods, we
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reduce from order n = 20 to the orders r = 1, 3, 5, . . . , 19,
and compute both the theoretical bounds and the actual ap-
proximation errors in the H∞-norm. The results are shown in
the following figure.

0 5 10 15 20

10−5

100

 

 

bound I
error I
bound II
error II

In this example, for both types the bounds hold, and for all
reduced orders, type I gives a better approximation than type
II.

C. A heat transfer problem
As another example we consider a stochastic modification of

the heat transfer problem described in [14]. On the unit square
Ω = [0, 1]2 the heat equation xt = ∆x is given with Dirichlet
condition x = uj , j = 1, 2, 3 on three of the boundary edges
and a stochastic Robin condition n · ∇x = (1/2 + ẇ)x on the
fourth edge (where ẇ stands for white noise). A standard 5-
point finite difference discretization on a 10×10 grid leads to
a modified Poisson matrix A ∈ R100×100 and corresponding
matrices N ∈ R100×100 and B ∈ R100×3. We use the input
u ≡

[
1
1
1

]
and choose the average temperature as the output,

i.e. C = 1
100 [1, . . . , 1]. We apply balanced truncation of type I

and type II. For type II, an LMI-solver (MATLAB R© function
mincx) is used to compute P as a solution of the LMI (30)
which minimizes traceP or tracePQ.

In the following two figures, we compare the reduced
systems of order r = 20 for both types. The left figure
shows the decay of the singular values. Since the LMI-solver
was called with tolerance level 10−9, only the first about 25
singular values for type II have the correct order of magnitude.
The right figure shows the approximation error ‖y(t)−yr(t)‖
over a given time interval. For both types it has the same order
of magnitude. In fact, for many examples we have observed
both methods to yield very similar results.

0 20 40 60 80 10010−20

10−15

10−10

10−5

100 Decay of singular values

 

 

type 1
type 2

0 0.2 0.4 0.6 0.8 10

0.5

1

1.5

2

2.5x 10−5 Output error, n=100, r=20

 

 

type I
type II

We have computed the estimated error norm and the actual
approximation error for both types:∑100

j=11 σj ‖L− L10‖
∑100
j=21 σj ‖L− L20‖

I 4.66e− 06 9.30e− 06 2.00e− 09 9.65e− 09
II 1.75e− 05 4.83e− 06 1.72e− 08 9.70e− 09

As we can see, the upper error bound fails for type I, but is
correct for type II. Nevertheless, judging from the H∞ error,
neither of the types seems to be preferable over the other.

D. Summary

Clearly, higher dimensional examples are required to get
more insight. To this end a more sophisticated method for the
solution of (30) is needed. With general purpose LMI-software
on a standard Laptop, we hardly got higher than n = 100.

IV. CONCLUSIONS

We have compared two types of balanced truncation for
stochastic linear systems, which are related to different
Gramian type matrices P and Q. The following table collects
properties of these reduction methods.

Type I II
Def. of P,Q (6) (7)
Stability? Yes, [24] Yes, Thm. II.2
H2-bound? Yes, [20] no result
H∞-bound? No, Ex. I.3 Yes, Thm. II.4 or [19]

The main contributions of this paper are the preservation of
asymptotic stability for type II balanced truncation proved
in Theorem II.2 and the new proof of the H∞ error bound
in Theorem II.4. The efficient solution of (7b) is an open
issue and requires further research. The same is true for the
computation of the stochastic H∞-norm.

APPENDIX

ASYMPTOTIC MEAN SQUARE STABILITY

Consider the stochastic linear system of Itô-type

dx = Axdt+Nxdw , (31)

where w = (w(t))t∈R+
is a zero mean real Wiener process

on a probability space (Ω,F , µ) with respect to an increasing
family (Ft)t∈R+ of σ-algebras Ft ⊂ F (e.g. [25], [26]).
Let L2

w(R+,Rq) denote the corresponding space of non-anti-
cipating stochastic processes v with values in Rq and norm

‖v(·)‖2L2
w

:= E
(∫ ∞

0

‖v(t)‖2dt
)
<∞,

where E denotes expectation. By definition, system (31) is
asymptotically mean-square-stable, if E(‖x(t)‖2)

t→∞−→ 0, for
all initial conditions x(0) = x0.

We have the following version of Lyapunov’s matrix theo-
rem, see [23]. Here ⊗ denotes the Kronecker product.

Theorem A.1 The following are equivalent.

(i) System (31) is asymptotically mean-square stable.
(ii) max{<λ

∣∣ λ ∈ σ(A⊗ I + I ⊗A+N ⊗N)} < 0
(iii) ∃Y > 0 : ∃X > 0: ATX +XA+NTXN = −Y
(iv) ∀Y > 0 : ∃X > 0: ATX +XA+NTXN = −Y
(v) ∀Y ≥ 0 : ∃X ≥ 0: ATX +XA+NTXN = −Y



9

Remark A.2 The theorem (like all other results in this paper)
carries over to systems

dx = Axdt+

k∑
j=1

Njx dwj

with more than one noise term, and many more equivalent
criteria can be provided, see e.g. [33] or [18, Theorem 3.6.1].

The following theorem does not require any stability as-
sumptions (see [18, Theorem 3.2.3]). It is central in the
analysis of mean-square stability.

Theorem A.3 Let

α = max{<λ
∣∣ λ ∈ σ(A⊗ I + I ⊗A+N ⊗N)} .

Then there exists a nonnegative definite matrix V 6= 0, such
that

(L∗A + Π∗N )(V ) = AV + V AT +NVNT = αV .

We also note a simple consequence of this theorem [24,
Corollary 3.2]. Here 〈Y, V 〉 = trace(Y V ) is the Frobenius
inner product for symmetric matrices.

Corollary A.4 Let α, V as in the theorem. For given Y ≥ 0
assume that

∃X > 0 : LA(X) + ΠN (X) ≤ −Y . (32)

Then α ≤ 0. Moreover, if α = 0 then Y V = V Y = 0.

THE STOCHASTIC BOUNDED REAL LEMMA

Now let us consider system (5) with input u and output y.
If system (31) is asymptotically mean-square stable, then (5)
defines an input output operator L : u 7→ y from L2

w(R,Rm) to
L2
w(R,Rp), see [17]. By ‖L‖ we denote the induced operator

norm, which is an analogue of the deterministic H∞-norm. It
can be characterized by the stochastic bounded real lemma.

Theorem A.5 [17] For γ > 0, the following are equivalent.
(i) System (31) is asymptotically mean-square stable and
‖L‖ < γ.

(ii) There exists a negative definite solution X < 0 to the
Riccati inequality

ATX +XA+NTXN − CTC − γ−2XBBTX > 0 .

(iii) There exists a positive definite solution X > 0 to the
Riccati inequality

ATX +XA+NTXN + CTC + γ−2XBBTX < 0 .

We have stated the obviously equivalent formulations (ii) and
(iii) to avoid confusion arising from different formulations
in the literature. Under additional assumptions also non-strict
versions can be formulated. The following sufficient criterion
is given in [18, Corollary 2.2.3] (where also the signs are
changed). Unlike in the previous theorem, here asymptotic
mean-square stability is assumed at the outset.

Theorem A.6 Assume that (31) is asymptotically stable in
mean-square. If there exists a nonnegative definite matrix
X ≥ 0, satisfying

ATX +XA+NTXN + CTC + γ−2XBBTX ≤ 0 ,

then ‖L‖ ≤ γ.
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[29] D. Kressner, P. Sirković, Greedy low-rank methods for solving general
linear matrix equations, Technical report, ANCHP, MATHICSE, EPF
Lausanne, Switzerland (2014).

[30] S. Shank, V. Simoncini, D. Szyld, Efficient low-rank solutions of
generalized Lyapunov equations, Report 14-11-10, Department of Math-
ematics Temple University, Philadelphia, PA 19122 (2014).

[31] S. Gugercin, A. Antoulas, A survey of model reduction by balanced
truncation and some new results, Int. J. Control 77 (8) (2004) 748–766.

[32] V. A. Ugrinovskii, I. R. Petersen, Absolute stabilization and minimax
optimal control of uncertain systems with stochastic uncertainty, SIAM
J. Control Optim. 37 (4) (1999) 1089–1122.

[33] H. Schneider, Positive operators and an inertia theorem, Numer. Math.
7 (1965) 11–17.


	I Type I balanced truncation
	II Type II balanced truncation
	II-A Preservation of asymptotic stability
	II-B Error estimate

	III Numerical Examples
	III-A Type II can be better than type I
	III-B An electrical ladder network with perturbed inductance
	III-C A heat transfer problem
	III-D Summary

	IV Conclusions
	Appendix
	References

