日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Asymmetry of Drosophila ON and OFF motion detectors enhances real-world velocity estimation

MPS-Authors
/persons/resource/persons101824

Leonhardt,  Aljoscha
Department: Circuits-Computation-Models / Borst, MPI of Neurobiology, Max Planck Society;

/persons/resource/persons98401

Ammer,  Georg
Department: Circuits-Computation-Models / Borst, MPI of Neurobiology, Max Planck Society;

/persons/resource/persons49139

Meier,  Matthias
Department: Circuits-Computation-Models / Borst, MPI of Neurobiology, Max Planck Society;

/persons/resource/persons49137

Serbe,  Etienne
Department: Circuits-Computation-Models / Borst, MPI of Neurobiology, Max Planck Society;

/persons/resource/persons59233

Bahl,  Armin
Department: Circuits-Computation-Models / Borst, MPI of Neurobiology, Max Planck Society;

/persons/resource/persons38770

Borst,  Alexander
Department: Circuits-Computation-Models / Borst, MPI of Neurobiology, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Leonhardt, A., Ammer, G., Meier, M., Serbe, E., Bahl, A., & Borst, A. (2016). Asymmetry of Drosophila ON and OFF motion detectors enhances real-world velocity estimation. Nature Neuroscience, 19(5), 706-715. doi:10.1038/nn.4262.


引用: https://hdl.handle.net/11858/00-001M-0000-002A-6F62-0
要旨
The reliable estimation of motion across varied surroundings represents a survival-critical task for sighted animals. How neural circuits have adapted to the particular demands of natural environments, however, is not well understood. We explored this question in the visual system of Drosophila melanogaster. Here, as in many mammalian retinas, motion is computed in parallel streams for brightness increments (ON) and decrements (OFF). When genetically isolated, ON and OFF pathways proved equally capable of accurately matching walking responses to realistic motion. To our surprise, detailed characterization of their functional tuning properties through in vivo calcium imaging and electrophysiology revealed stark differences in temporal tuning between ON and OFF channels. We trained an in silico motion estimation model on natural scenes and discovered that our optimized detector exhibited differences similar to those of the biological system. Thus, functional ON-OFF asymmetries in fly visual circuitry may reflect ON-OFF asymmetries in natural environments.