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Anisotropic loop quantum cosmology with self-dual variables

Edward Wilson-Ewing∗

Max Planck Institute for Gravitational Physics (Albert Einstein Institute),
Am Mühlenberg 1, 14476 Golm, Germany, EU

A loop quantization of the diagonal class A Bianchi models starting from the complex-valued
self-dual connection variables is presented in this paper. The basic operators in the quantum theory
correspond to areas and generalized holonomies of the Ashtekar connection and the reality conditions
are implemented via the choice of the inner product on the kinematical Hilbert space. The action
of the Hamiltonian constraint operator is given explicitly for the case when the matter content is
a massless scalar field (in which case the scalar field can be used as a relational clock), and it is
shown that the big-bang and big-crunch singularities are resolved in the sense that singular and
non-singular states decouple under the action of the Hamiltonian constraint operator.

I. INTRODUCTION

The introduction of the self-dual connection variables
in general relativity [1, 2] raised the possibility of de-
veloping a non-perturbative theory of quantum gravity
based on the quantization techniques of gauge theories
[3, 4]. However, there are two major obstacles that arise
in the attempt to perform the canonical quantization of
general relativity based on the complex-valued SL(2,C)
Ashtekar connection: (i) the fundamental operators of
the theory must satisfy non-trivial reality conditions, and
(ii) the measure for generalized SL(2,C) connections is
non-compact, with no known regulator available.
A major step forward was therefore made possible

when it was shown that the real-valued SU(2) Ashtekar-
Barbero connection could be used instead [5], and indeed
the use of these variables has led to significant progress
in loop quantum gravity, most particularly results show-
ing that there is a unique cyclic representation of the
kinematical Hilbert space of LQG that is invariant under
spatial diffeomorphisms [6, 7] (although see also [8, 9])
as well as candidate definitions of the Hamiltonian con-
straint operator [10–14].
Nonetheless, despite these important results, there are

some drawbacks associated to the Ashtekar-Barbero vari-
ables. First, the Ashtekar-Barbero variables require the
introduction of the real-valued Immirzi parameter γ [15],
a parameter that has no classical analog in standard gen-
eral relativity, but appears in the spectra of operators
corresponding to geometric observables [16–21]. (Note
that the self-dual variables are recovered for γ = ±i.)
Second, the Hamiltonian constraint becomes more com-
plicated, in that it contains an additional term whose
presence necessarily leads to additional quantization am-
biguities. Third, the Ashtekar-Barbero connection is not
a true space-time connection: while it transforms as a
connection under spatial diffeomorphisms, it does not un-
der time-like diffeomorphisms [22, 23].
More recently, it has been shown that a black hole

entropy of S = A/4G~ is obtained after performing an
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analytic continuation of γ → i [24–27]. This result may
indicate that an Immirzi parameter of γ = i (which is to
say, self-dual variables) captures the correct black hole
physics, and that it may be important to set the Immirzi
parameter to γ = i in full LQG as well. There are also a
number of interesting studies on various other aspects of
black hole physics in LQG which lead to similar conclu-
sions [28–31].

These recent results in black hole physics, together
with the drawbacks of the Ashtekar-Barbero connec-
tion described above, suggest that it may be fruitful
to reexamine the two main obstacles to a well defined
canonical theory of quantum gravity based on the self-
dual Ashtekar variables, namely the reality conditions
and the measure problem. A first step in this direc-
tion is to study the canonical quantization of symmetry-
reduced models where the reality conditions become
simpler, and where the measure problem is typically
avoided. To date, the canonical quantization in terms
of self-dual variables has been achieved for two fami-
lies of symmetry-reduced space-times: the spherically
symmetric and asymptotically flat vacuum Schwarzschild
space-times [32], and the homogeneous and isotropic
Friedmann-Lemâıtre-Robertson-Walker (FLRW) cosmo-
logical space-times with a massless scalar field [33]. (As
an aside, note that an alternative approach to study-
ing quantum cosmology with γ = i is to quantize in
terms of the Ashtekar-Barbero variables and then an-
alytically continue γ → i [34].) In this paper, I will
consider the canonical quantization in terms of self-dual
variables of diagonal type A Bianchi space-times, which
allow for the presence of anisotropies. The restriction
to type A Bianchi models (which will be defined below
in Sec. II A) is necessary as these are the only ones for
which a Hamiltonian formulation is known, and I only
consider diagonal models for the sake of simplicity. Note
that this is a large family of space-times: diagonal type
A Bianchi models include Bianchi space-times of type I,
type II, type VIII and type IX.

While this work will extend in as straightforward a
manner as is possible a number of results obtained for
the FLRW space-times in [33], it shall become clear that
the presence of anisotropies significantly complicates the
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form of the reality conditions. For the spatially flat and
closed FLRW space-times (the ones studied in [33]), the
reality conditions take an especially simple form since the
spin-connection does not depend on the densitized triads.
This is no longer the case for the Bianchi space-times:
now the spin-connection will depend in a non-trivial fash-
ion on the densitized triads, and this will make the im-
plementation of the reality conditions more difficult.
Furthermore, beyond the goal of exploring how the re-

ality conditions can be imposed in a more general con-
text, studying the quantum cosmology of the Bianchi
models is also important for an additional reason: the
Belinskii-Khalatnikov-Lifshitz (BKL) conjecture claims
that, as a generic space-like singularity is approached,
neighbouring points decouple in the sense that space-like
derivatives are negligible compared to time-like deriva-
tives [35–37]. Then, the dynamics at each point are well
approximated by the ordinary differential equations that
govern the evolution of the homogeneous Bianchi space-
times. Thus, understanding the dynamics of the Bianchi
space-times in regions near where the space-time would
become singular in classical general relativity (i.e., where
quantum gravity effects are expected to become impor-
tant) may also give important insights into the dynamics
of generic space-times in regions where general relativity
would predict a space-like singularity to arise.
Due to the importance of the BKL conjecture, the

Bianchi space-times have already been studied in some
detail in a variety of approaches, in particular in the loop
quantum cosmology based on the Ashtekar-Barbero con-
nection variables (which I shall call ‘standard LQC’ in
this paper). The results of standard LQC for the Bianchi
space-times can be found in the reviews [38–40] and the
many references therein; since the object of this paper
is a loop quantization for the Bianchi space-times using
self-dual variables, many of the techniques developed in,
and the results obtained from, studies of the standard
LQC of the Bianchi models will be very useful here.
The outline of the paper is as follows: there is a

brief review of the Bianchi space-times in general rela-
tivity and in particular a description of their Hamilto-
nian framework in terms of the self-dual Ashtekar vari-
ables in Sec. II. Then the canonical quantization is per-
formed in Sec. III: the reality conditions are imposed
via an appropriate choice of the inner product for the
kinematical Hilbert space in Sec. III A, the Hamiltonian
constraint operator is defined in Sec. III B, and the re-
sulting self-dual LQC is compared to standard LQC in
Sec. III C. Then, the effective equations are briefly pre-
sented in Sec. IV and there is a discussion in Sec. V.

II. BIANCHI SPACE-TIMES

The Bianchi cosmologies are four-dimensional space-
times that are spatially homogeneous and whose symme-
try group is simply transitive. The Bianchi models can
be classified in terms of their symmetry group, and this

Bianchi Model n
1

n
2

n
3

Type I 0 0 0

Type II 1 0 0

Type VI0 1 -1 0

Type VII0 1 1 0

Type VIII 1 1 -1

Type IX 1 1 1

TABLE I. The values of nj for class A Bianchi models [42].

classification is reviewed in Sec. II A. In Sec. II B, a fidu-
cial cell is introduced in order to regulate integrals for
the case of non-compact spaces, and the discrete parity
symmetries of the Bianchi space-times are also described.
Finally, the Hamiltonian framework for the diagonal class
A Bianchi models in terms of the self-dual variables is
reviewed in Sec. II C. This section only covers the mate-
rial that will be directly necessary for the remainder of
the paper; significantly more information concerning the
Bianchi cosmologies is given in, e.g., [41, 42].

A. Classification of the Bianchi Models

The Bianchi space-times are spatially homogeneous,
with a three-dimensional isometry group spanning the
spatial surface Σ that can be parametrized by three lin-

early independent Killing vectors ξ̊aj . A basis of fiducial
triads e̊aj can be generated by requiring that their Lie
derivative with respect to the Killing vector fields van-

ishes, [̊ej , ξ̊k]
a = 0.

These fiducial triads satisfy the relations

[̊ek, e̊l]
a = Cj

kle̊
a
j , (1)

while the fiducial co-triads ω̊j
a —that are dual to the fidu-

cial triads— satisfy

dω̊j +
1

2
Cj

kl ω̊
k ∧ ω̊l = 0, (2)

where the Cj
kl = Cj

[kl] are the structure constants of
the Bianchi model.
The Bianchi models can be separated into two groups:

class A where Cj
jk = 0, and class B where the trace

of the structure constants does not vanish. For Bianchi
models of class A, it is possible to choose the fiducial
triads in such a way so that the structure constants are
entirely determined by three constants nj [42]:

Cj
kl = nj ǫ̊jkl, no sum over j, (3)

with nj = 0,±1. Here ǫ̊jkl is totally antisymmetric with
ǫ̊123 = 1. Table I shows the value of the nj for each class
A Bianchi model.
The standard Hamiltonian treatment fails for class B

Bianchi models [43], and there is no known canonical
framework for these space-times. For this reason only
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Bianchi models that are of class A will be considered in
this paper. Furthermore, for the sake of simplicity only
diagonal models will be considered, in which case the
space-time metric has the form

ds2 = −N(t)2dt2 +
∑

j

aj(t)
2(ω̊j)2, (4)

where N(t) is the lapse function and aj(t) are the three
directional scale factors. Requiring that the metric have
a diagonal form can always be achieved in the Bianchi
models type VIII and IX via a careful choice for the ω̊j

a.
On the other hand, for the other class A Bianchi models
imposing diagonality does correspond to a mild loss of
generality in the sense that this restriction corresponds
to fixing certain constants of motion [44].
Given the line element (4), for diagonal class A Bianchi

models the physical triads and co-triads are related to the
fiducial ones via

eaj =
1

aj(t)
e̊aj , ωj

a = aj(t)ω̊
j
a, no sum over j, (5)

which define the spatial metric (at some fixed time) by

qab = ωj
aω

j
b δjk, (6)

and therefore the problem of determining the dynamics of
a diagonal class A Bianchi space-time has been reduced
to solving for the time evolution of the three directional
scale factors aj(t).

B. Integrals and Parity Symmetries

Before presenting the Hamiltonian framework for the
diagonal class A Bianchi models, it is necessary to ensure
that integrals are well defined (which is not automatic
in non-compact homogeneous spaces), and also to un-
derstand how the basic variables change under a parity
transformation so that this discrete symmetry can later
be properly encoded in the quantum theory. I will begin
with the first point.
Depending on the Bianchi model, different topologies

are allowed. While topological and global aspects of the
Bianchi space-times are not the main focus of this paper,
it is important to differentiate between compact and non-
compact spaces. This distinction is necessary since the
Hamiltonian that will be introduced in Sec. II C is in
fact the integral of a Hamiltonian density over the spatial
surface, and integrals evaluated in homogeneous spaces
(where there is no falloff at infinity) that are non-compact
necessarily diverge. On the other hand, if the space is
compact, then the integral is finite.
Therefore, in compact spaces integrals can be evalu-

ated over the entire space, while for non-compact spaces
the integrals must be restricted to a finite region of the
space. This finite region of Σ will be called the fidu-
cial cell and denoted by V . The fiducial cell acts as an

infrared regulator, and once the quantum theory is de-
fined, this regulator can be removed by taking the limit
of V → Σ. (The classical theory is independent of the
choice of V , but there do exist some subtle effects in the
quantum theory concerning the amplitude of quantum
fluctuations [45]. For this reason the regulator must be
removed in the quantum theory in order to recover truly
global observables that are not restricted to a finite sub-
region of Σ. In the V → Σ limit, the quantum fluctua-
tions of global observables will be negligible for sharply
peaked states, but effects coming from the underlying
Planck-scale quantum geometry will remain. It appears
necessary to go beyond the minisuperspace approxima-
tion in order to fully understand the effect of quantum
fluctuations in non-compact homogeneous space-times.)
It is useful to define the quantities

Vo =

∫

V

√
q̊, ℓo = (Vo)

1/3, (7)

corresponding to the volume of the fiducial cell (or the
spatial surface for compact spaces) with respect to the
metric q̊ab = ω̊j

aω̊
k
b δjk, and its cube root. From now on,

in order to simplify the notation, V will represent the
fiducial cell for non-compact spaces, and the entire spa-
tial surface Σ for compact spaces. Due to homogeneity,
the result of any integral over V with respect to the fidu-
cial metric is equivalent to multiplying the integrand by
Vo/

√
q̊.

Thus, the introduction of the fiducial cell ensures that
integrals are well defined, and acts as an infrared regula-
tor in non-compact spaces.
The second topic of this part is parity transformations.

A parity transformation flips the orientation of one or
several of the physical triads while leaving all fiducial
quantities invariant. While the metric does not depend
on the orientation or the handedness of the triads (and
so the physics is invariant under these parity transfor-
mations), the basic variables of the quantum theory will
change under a parity transformation and therefore it is
important to understand them and, ultimately, to include
them as a discrete symmetry in the quantum theory.
Since the sign of the directional scale factors aj(t) en-

codes the orientation of the triads, the parity transforma-
tions act by changing the sign of the relevant directional
scale factor while leaving all of the fiducial structures like
e̊ak and ω̊j

a invariant. For example, the parity transforma-
tion Π1 that sends ea1 → −ea1 acts on the aj as

Π1(a1) = −a1, Π1(a2) = a2, Π1(a3) = a3. (8)

As already mentioned, the metric (4) is clearly left invari-
ant under parity transformations. It is useful to define

εj = sgn(aj), (9)

and then the εj can be used as a shorthand to denote the
orientation of the triads.
An important point is that the spatial volume 3-form

ǫabc is invariant under such a parity transformation: the
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integral of some function over V does not depend on the
choice of the triads (and therefore does not depend on
their orientation either). This is due to the fact that
the orientation of the manifold and the orientation of the
triads eai are not the same thing and may be opposite.
Here, the orientation of the manifold is fixed, while the
orientation of the triads is what is reversed under the
action of the parity operators Πj . Hence, the spatial
volume 3-form ǫabc is fixed.
However, since the 3-form in internal indices ǫjkl (not

to be confused with the antisymmetric tensor ǫ̊jkl appear-
ing in the structure constants which is invariant under all
transformations) is related to the volume 3-form as

ǫjkl = ǫabce
a
j e

b
ke

c
l , (10)

it follows that under a parity transformation ǫjkl does
change sign,

Πj(ǫklm) = −ǫklm. (11)

This suggests the definition

ε = ǫ123, (12)

where ε = ±1, and so Πj(ε) = −ε. Given the transfor-
mation properties of ε under the Πj and using the con-
dition that the orientation of ǫabc and ǫjkl should agree
for right-handed triads (i.e., when all εj are positive and
the orientation of the triads agrees with that of the man-
ifold), it follows that

ε = ε1ε2ε3. (13)

Thus, under a parity transformation Πj , the orientation
of that triad is flipped, which corresponds to changing
the sign of εj. From this discussion, it follows that the
Ashtekar connection, the densitized triad and the spin-
connection (which will all be introduced in the next sub-
section) all change sign under a parity transformation.
It can be checked that the reality conditions transform
properly under the action of Πj , and it will also be neces-
sary to appropriately incorporate the effect of the parity
transformations in the quantum theory.

C. Self-Dual Variables

The complex-valued self-dual variables are the self-
dual Ashtekar connection,

Aj
a = Γj

a + iKj
a, (14)

which is constructed from the spin-connection Γj
a and

the extrinsic curvature Kj
a = Kabe

b
j , and the conjugate

variable to Aj
a, the densitized triad

Ea
j =

√
q eaj , (15)

which is composed of the determinant q of the spatial
metric and the physical triads eaj defined in (5). Since

the Ashtekar connection is complex-valued, in order to
recover (real-valued) general relativity, it is necessary to
impose the two reality conditions

Aj
a +

(
Aj

a

)⋆
= 2Γj

a, Ea
jE

b
kδ

jk > 0. (16)

These are the basic variables that the remainder of the
paper will be based upon. For a more detailed introduc-
tion to self-dual variables, see, e.g., [46].
For diagonal class A Bianchi models, the Ashtekar con-

nection and the densitized triads can be parametrized as
[47]

Aj
a =

cj
ℓo
ω̊j
a, Ea

j = pj

√
q̊

ℓ2o
e̊aj , no sum over j, (17)

and then, for these variables, the symplectic structure of
self-dual general relativity induces the Poisson brackets

{cj , pk} = i · 8πGδjk. (18)

It is helpful to relate the cj and pj to the more famil-
iar geometrodynamical variables in terms of aj(t) and
ȧj(t), where the dot denotes differentiation with respect
to proper time. From (5) and

√
q = |a1a2a3|

√
q̊, it imme-

diately follows that the pj are related to the directional
scale factors as, e.g., p1 = ε1|a2a3|ℓ2o and cyclic permu-
tations thereof. Clearly, the sign of pj determines the
orientation of eaj , and changes under the parity transfor-
mation Πj .
Relating cj to the geometrodynamical variables re-

quires two steps. First, the spin-connection components
are, e.g., [47, 48]

Γ1
a = −ǫ1jkebj

(
∂[aωb]k +

1

2
eckω

l
a∂[cωb]l

)

=
ε

2

(
n2 p3

p2
+ n3 p2

p3
− n1 p2p3

p21

)
ω̊1
a =: Γ1ω̊1

a, (19)

where the shorthand Γj
a = Γjω̊j

a (no sum over j) has
been introduced. The other components of the spin-
connection can be obtained via cyclic permutations. Im-
portantly, the spin-connection components are diagonal
with respect to the fiducial co-triads ω̊j

a: otherwise the
parametrization of the Ashtekar connection in (17) would
fail. This is a property of class A Bianchi models that
greatly simplifies the Hamiltonian treatment, as well as
the quantization procedure.
Second, it is easy to check that in general relativity the

extrinsic curvature is given by Kj
a = ȧjω̊j

a, where there
is no sum over j and the dot denotes a derivative with
respect to the proper time t. (Note however that the
relation between the extrinsic curvature and the proper
time derivatives of the directional scale factors is more
complicated in LQC, even in the effective theory.) The
combination of these two results shows how each of the cj
can be related to the directional scale factors and their
time derivatives in classical general relativity as cj =
ℓo(Γj + i · ȧj).
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In order to express the spin-connection in a simpler
way, it is helpful to introduce

r1 =

∣∣∣∣
p2p3
p1

∣∣∣∣ , r2 =

∣∣∣∣
p1p3
p2

∣∣∣∣ , r3 =

∣∣∣∣
p1p2
p3

∣∣∣∣ , (20)

in order to define

s = njrj . (21)

Then, the spin-connection is given by

Γj =
1

2
· ∂s
∂pj

= − i

16πG
{cj, s}. (22)

Writing the spin-connection in this way not only leads to
a relatively simple form of the reality conditions in the
classical theory,

cj + c⋆j = − iℓo
8πG

{cj, s}, p⋆j = pj , (23)

but will also give some important insight into how the
reality conditions can be imposed in the quantum theory.
The next step is to determine the dynamics of the cj

and pj, which requires the construction of the Hamil-
tonian constraint which is composed of the scalar, dif-
feomorphism and Gauss constraints. It is easy to check
that when the self-dual variables have the form (17), the
Gauss and diffeomorphism constraints are automatically
satisfied, and only the scalar constraint is left,

H =

[
Ea

jE
b
k

16πG
√
q
ǫjklFab

l +
π2
φ

2
√
q

]
≈ 0, (24)

where the ‘≈ 0’ indicates that the constraint must vanish
for physical solutions. Here the matter content has been
chosen to be a massless scalar field φ, and its conjugate
momentum is denoted by πφ.
Since the Gauss and diffeomorphism constraints van-

ish, the Hamiltonian constraint is simply CH =
∫
NH,

with N being the lapse. In terms of the cj and pj , CH is

CH =
N

8πG
√
|p1p2p3|

[
p1p2

(
c1c2 − n3ℓoεc3

)

+ p2p3
(
c2c3 − n1ℓoεc1

)
+ p1p3

(
c1c3 − n2ℓoεc2

)
]

+
Np2φ

2
√
|p1p2p3|

≈ 0, (25)

where πφ =
√
|q| φ̇ = pφ

√
q̊/Vo. With this definition for

pφ, the Poisson bracket for the massless scalar field is
given by {φ, pφ} = 1. Note that all terms ε2 have been
set to 1.
The Hamiltonian constraint generates the dynamics of

the Bianchi models; for any observable O,

dO
dT

= {O, CH}, (26)

where T is the time variable related to proper time via
NdT = dt. For example, taking N = 1,

ṗ1 =
−ip1√
|p1p2p3|

[
p2c2 + p3c3 − ℓon

1ε
p2p3
p1

]
, (27)

(recall that the dot denotes d/dt). Clearly, the time
derivatives of the other pj can be obtained via cyclic per-
mutations, and time derivatives of other observables of
interest can be obtained by the same procedure.
Finally, generalized holonomies play an important role

in the quantum theory. In the previous treatment of
the self-dual LQC of FLRW space-times [33], a family
of ‘generalized holonomies’ parametrized by α ∈ C were
introduced,

h = P exp

[∫

edge

αAa

]
, (28)

with Aa := Aj
a σj/2i, where the σj are the Pauli matri-

ces; standard holonomies are recovered for α = 1. This
extension was necessary since it was impossible to de-
fine operators corresponding to standard holonomies in
the kinematical Hilbert space of self-dual LQC for FLRW
space-times. Rather, only generalized holonomies with α
completely imaginary were well defined. This will turn
out to be the case for Bianchi models as well, as shall be
shown in Sec. III A.
At this point it is worth pointing out two properties

that generalized holonomies have in common with stan-
dard holonomies. First, generalized holonomies are el-
ements of SL(2,C). The definition (28) has a simple
form due to the representation of the self-dual sl(2,C)
connection Aj

a being a three-dimensional complex vec-
tor space, and thus it is clear that if Aa ∈ sl(2,C),
so is αAa for α ∈ C. (Note that defining generalized
holonomies for other Lie algebras may not be as straight-
forward.) Second, the composition and inversion rules
for generalized holonomies are the same as for standard
holonomies. These properties hold generally, and not just
for homogeneous space-times. Note however that gener-
alized holonomies do not transform in the same way as
standard holonomies under gauge transformations.
Of course, the actual form of the generalized

holonomies will simplify in Bianchi space-times. Due to
their spatial homogeneity, it is sufficient to calculate the
generalized holonomies that are tangent to the fiducial
triads. A generalized holonomy of the Ashtekar connec-
tion tangent to e̊aj and of length µ̊ℓo with respect to the
fiducial metric is

hj(µ̊) = exp

(∫ µ̊ℓo

0

Aj
ae̊

a
j ασj/2i

)

= cosh

(
αµ̊cj
2i

)
I+ sinh

(
αµ̊cj
2i

)
σj , (29)

where there is no sum over j in either of the lines. Since
the only dependence on cj in these expressions is in
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the hyperbolic trigonometric functions, it will be suffi-
cient to define operators corresponding to exponentials
of αµ̊cj/2i in order to represent generalized holonomies
in the quantum theory.
An important relation for the quantum theory is

cj = lim
µ̊→0

i
Tr[hj(µ̊)σj ]

αµ̊
, no sum over j, (30)

which shows that the phase space variable cj can easily
recovered from the holonomies hj(µ̊). This will allow
for the definition of a non-local connection operator in
terms of a generalized holonomy hj(µ̊) of an appropriate
(Planck-sized) length, as shall be explained in Sec. III B.

III. THE QUANTUM THEORY

Using the function s(pj) determined by the Bianchi
model structure constants in (21), it is possible to pro-
ceed with the canonical loop quantization of all diagonal
class A Bianchi models in one go. This section is split
in three parts: in the first, the kinematical Hilbert space
is defined and the reality conditions of the fundamental
operators of the theory are imposed through the choice
of the inner product; in the second, the Hamiltonian con-
straint operator is constructed and some of its properties
are studied; and in the third, the resulting theory of self-
dual LQC is compared to standard LQC.

A. The Kinematical Hilbert Space

The kinematical Hilbert space H is given by the tensor
product of the kinematical Hilbert space of the gravita-
tional sector Hg and of the matter sector Hm,

H = Hg ⊗Hm. (31)

For Hg, the second reality condition in (23) suggests
that it may be convenient to use |p1, p2, p3〉 as a basis for
the gravitational sector of the kinematical Hilbert space,
with pj ∈ R due to the reality condition. For now, it
shall be assumed that any single basis vector of this type
is normalizable; this shall be shown to be the case below.
By definition, the p̂j operators act by multiplication

on this basis, for example

p̂1|~p 〉 = p1|~p 〉, (32)

where |~p 〉 is shorthand for |p1, p2, p3〉. The other fam-
ily of fundamental operators in the gravitational sector
corresponds to generalized holonomies of Aj

a along paths
tangential to e̊aj of length µ̊, which following (29) can be
entirely expressed in terms of the shift operators

êµc1 |p1, p2, p3〉 = |p1 + 8πG~µ, p2, p3〉, (33)

where µ = αµ̊/2i. Clearly, since the states |~p 〉 ∈ Hg only
for pj ∈ R, it follows that µ ∈ R is a necessary condition

for this shift operator to be well defined on Hg. Since µ̊ is
real-valued by definition, it follows that α must be purely
imaginary, and this shows that it is the same family of
generalized holonomies that is well defined for the self-
dual LQC of the FLRW space-times and of the Bianchi
models. In neither case are the standard holonomy oper-
ators well defined in self-dual LQC, and only operators
corresponding to generalized holonomies with a purely
imaginary α exist in their respective kinematical Hilbert
spaces. This suggests that, when working with the self-
dual connection variables, holonomies are not appropri-
ate operators in the quantum theory: instead one should
work with generalized holonomies with imaginary α.
Finally, the last fundamental operator to be defined

is the inverse triad operator. The starting point of the
definition of Hg was assuming the states |~p 〉 to be nor-
malizable basis vectors (again, this will be shown to be
the case below). Then, since |0, 0, 0〉 is an element of Hg,
the operator (p̂j)

−1 is not well defined on Hg and for
this reason it is necessary to define an alternative inverse
triad operator. This can be done by adapting one of the
Thiemann identities [10] to the symmetry-reduced phase
space of LQC, but there is considerable freedom in this
choice (see e.g. [49] for a discussion concerning the quan-
tization ambiguities related to the choice of the inverse
triad operator in standard LQC; the same ambiguities
arise in self-dual LQC). In this paper, I shall define the
inverse triad operators to be of the form

1̂

p1
|~p 〉 =

{
0 for p1 = 0
1
p1
|~p 〉 otherwise,

(34)

(and analogous definitions for the inverse triad operators
corresponding to p2 and p3) for two reasons. First, for
any other known choice of inverse triad operator, the op-
erator depends on global quantities and, for non-compact
spaces, on the choice of the fiducial cell. While this is es-
pecially problematic for the case of non-compact spaces
since any dependence of physical quantities on the fidu-
cial is unphysical, this dependence in non-compact spaces
vanishes in the limit of V → Σ. However, once this limit
has been taken, the resulting form of the inverse triad op-
erator is necessarily (34). (Note that while other choices
of inverse triad operators are possible for compact spaces,
it is simplest to take the same inverse triad operator for
compact and non-compact spaces.) Second, this choice
of inverse triad operator is particularly convenient since
the product of p̂j with its ‘inverse’ (34) is the identity
everywhere, except for the basis vectors where pj = 0
which are annihilated by the two operators.
Following the same philosophy, the r̂j operators are

defined following (32) and (34), for example

r̂1|~p 〉 =
{
0 if any pj = 0,∣∣∣ p2p3

p1

∣∣∣ |~p 〉 otherwise.
(35)

With these three types of operators defined, the next
step is to define the inner product in such a way that the
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reality conditions (23) are properly implemented in the
quantum theory. The reality conditions, in terms of the
operators defined above, become

(p̂j)
† = p̂j. (36)

and
(
êµcj

)†
∼ e−µ(cj+ℓo[cj,s]/8πG~). (37)

Note that the Poisson bracket in (23) has been replaced
by a commutator via {·, ·} → [·, ·]/i~, and recall also from
the discussion above that µ ∈ R and therefore µ̄ = µ.
The ∼ in (37) indicates that the operator on the right-
hand-side remains to be precisely defined; among other
ambiguities it is necessary to choose a particular factor-
ordering. However, no matter the factor-ordering, due
to the non-commutativity of the basic operators it will
only be possible to impose the reality conditions up to
leading order with quantum corrections of the order of ~
unavoidable.
The qualitative form of the second reality condition

and the Baker-Campbell-Hausdorff equation (to leading
order) suggest that the operator equation corresponding
to the reality condition (23) could be written as

(
êµcj

)†
= ̂e−sℓo/8πG~ ê−µcj ̂esℓo/8πG~. (38)

While in principle it would be possible to include the
higher order terms in the Baker-Campbell-Hausdorff
equation, there is no need for this since there already ex-
ist operator-ordering ambiguities in the definition of this
operator equation in any case, and the reality condition
as written in (38) is already sufficient in order to recover
the classical relation (23) for states that have support on
pj much greater than the ℓ2Pl.
Further support for this choice is given by the form

this reality condition has in the quantum theory for the
closed FLRW space-time [33],

(
êµc
)†

= ̂e−3|p|ℓo/8πG~ ê−µc ̂e3|p|ℓo/8πG~.

The closed FLRW space-time is obtained by starting from
the Bianchi IX model and imposing isotropy. In that
case, the structure constants are n1 = n2 = n3 = 1
and all of the directional variables are taken to be equal,
p = pj , c = cj . It is clear that for the closed FLRW
cosmology, s = 3|p|. Then, it is easy to see that replacing
3|p| by s in the reality condition for FLRW space-times
also gives precisely (38).
In order to determine the appropriate inner product,

it is again helpful to consider the self-dual LQC of closed
FLRW space-times, where the inner product is

〈k|p 〉 = e3ℓo|p|/8πG~ δk,p,

which suggests that the inner product for the anisotropic
space-times in self-dual LQC should be

〈~k |~p 〉 = es(~p)ℓo/8πG~ δk1,p1
δk2,p2

δk3,p3
, (39)

where ŝ |~p 〉 = s(~p ) |~p 〉, with r̂j being defined in (35), and
δ denotes the Kronecker delta. With this inner product,
all kets |~p〉 with pj ∈ R are normalizable, and this verifies
the assumption made at the beginning of this section.
Given this inner product, any normalized state in the

Hilbert space has the form

ψ(p) =
∑

~p∈R3

C~p |~p 〉, (40)

with
∑

~p e
s(~p)ℓo/8πG~|C~p|2 = 1.

It is a straightforward task to show that with the in-
ner product (39), the reality conditions encoded in the
operator equations (36) and (38) hold. First, the reality
condition (36) is clearly satisfied by imposing that Hg is
spanned by the basis kets |~p 〉 with pj ∈ R. Second, using
the definition of the inner product, it follows that (38) is
also satisfied:

〈~k | ̂e−sℓo/8πG~ê−µcj ̂esℓo/8πG~|~p 〉 = e(∆s)ℓo/8πG~〈~k |~p−〉
= es(~p)ℓo/8πG~ δ3~k,~p

−

= es(~p)ℓo/8πG~ δ3~k+,~p

= 〈~k |
(
êµcj

)†|~p 〉, (41)

where |~p−〉 = ê−µcj |~p 〉, |~k+〉 = êµcj |~k 〉, and ∆s = s(~p) −
s(~p−).
To show that (38) correctly captures the classical real-

ity condition (23), in the relation

e(∆s)ℓo/8πG~〈~k |ê−µcj |~p 〉 = 〈~k |
(
êµcj

)†
|~p 〉 (42)

coming from the first and fourth lines of (41), the ∆s
term can be Taylor-expanded for pj much greater than
the Planck area. For example, for the shift operator with
internal index j = 1, |~p−〉 = |p1 − 8πG~µ, p2, p3〉 and,
assuming that p1 ≫ 8πG~µ and p2, p3 > 0,

∆s = n1

(
p2p3
p1

− p2p3
p1 − 8πG~µ

)
+ 8πG~µ

(
n2 p3
p2

+ n3 p2
p3

)

≈ 8πG~µ

(
−n1 p2p3

p21
+ n2 p3

p2
+ n3 p2

p3

)
, (43)

where terms of the order 8πG~µp2p3/p
3
1 and smaller

have been dropped; and the result is clearly the spin-
connection component Γ1 given in (19) multiplied by
16πG~µ. (It is easy to check that the correct result is
also obtained if any number of the pj are negative, so
long as |p1| ≫ 8πG~µ.) The same calculation clearly
holds for j = 2 and j = 3 and thus, up to terms of the
order of G~/pj which are negligible in the semi-classical
limit,

e2ℓoµΓ
j 〈~k |ê−µcj |~p 〉 ≈ 〈~k |

(
êµcj

)†
|~p 〉. (44)

This shows that the operator equation (38) does indeed
provide an appropriate form of the reality condition (23)
for the quantum theory.
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The last operators that remain to be defined on Hg

are the parity operators corresponding to the discrete
symmetries (8), which act as, for example,

Π̂1|p1, p2, p3〉 = | − p1, p2, p3〉. (45)

It is also convenient to define the ε̂j operators as a short-
hand for the operators corresponding to sgn(pj),

ε̂j = ̂sgn(pj). (46)

Since the orientation of the triads does not affect the
classical theory, the wave functions ψ(~p) are required to
be invariant under parity transformations, i.e.,

Π̂jψ(~p) = ψ(~p), (47)

for all j. This completes the definition of the kinematical
Hilbert space for the gravitational sector.
To recap, the kinematical Hilbert space Hg is spanned

by the basis vectors |~p 〉 with ~p ∈ R3, and the fundamen-
tal operators are the p̂j which act by multiplication, the
shift operators (33) and the inverse triad operators (34).
Then, the classical reality conditions are translated into
the operator equations (36) and (38), and these operator
equations hold for the inner product (39). Furthermore,
wave functions are required to be invariant under the
parity transformations (47).
Finally, the kinematical Hilbert space Hm correspond-

ing to the scalar field sector is the standard space of
square-integrable functions χ(φ) with respect to the
Lebesgue measure dφ, and the fundamental operators are

φ̂ χ(φ) = φχ(φ), π̂φ χ(φ) = −i~dχ(φ)
dφ

. (48)

B. The Hamiltonian Constraint Operator

In order to define the operator corresponding to the
Hamiltonian constraint (25) for some choice of the lapse
function, it is necessary to define an operator correspond-
ing to the phase space variables cj : while operators cor-
responding to πφ and the pj (as well as inverse powers
of them) are defined in the previous section, no operator
corresponding directly to cj was introduced.
This is no accident as there is in fact no operator that

directly corresponds to cj in the quantum theory: it can
readily be checked that the action of the shift opera-
tor (33) is not continuous with respect to the parameter
µ and therefore infinitesimal shifts are not well defined.
(This is because the kinematical inner product depends
on Kronecker delta functions which are not continuous
in their arguments.) Instead, it is necessary to express
cj in terms of small but finite shift operators. This fol-
lows from the definition of the kinematical Hilbert space
which was constructed following the techniques of loop
quantum gravity, and is analogous to the fact that (gener-
alized) holonomies of the connection are the fundamental
operators of the theory, not the connection itself.

Furthermore, the requirement that the cj vari-
ables must be represented in the quantum theory by
holonomies of finite length can be understood to capture
the Planck-scale discreteness of loop quantum gravity:
given the discrete spectrum of geometrical observables in
loop quantum gravity, it does not make sense to calcu-
late the parallel transport of the connection along a path
that is shorter than the Planck length. Therefore, it is
appropriate to define the non-local operator correspond-
ing to the cj phase space variables using holonomies along
edges of a minimum physical length determined by quan-
tum gravity1. This minimum length ℓm is expected to be
of the order of the Planck length, although in order to ob-
tain a specific value it would be necessary to derive (self-
dual) LQC from (self-dual) LQG. (In the standard LQC
of the FLRW and the Bianchi I space-times, it is the field
strength that is expressed in terms of holonomies, and it
is assumed that the area of the loop encircled by the
holonomy is the smallest non-vanishing eigenvalue of the
area operator in LQG [52–54]. This suggests that taking
ℓm to be the square root of the minimal non-zero eigen-
value of the area operator in self-dual LQG [55] would
be a reasonable choice, but since a specific choice is not
necessary in any case here, I will leave ℓm free.)
Following this reasoning, the non-local connection op-

erator ĉj is obtained via the relation (30), with the differ-
ence that, instead of taking the limit of the path length
to vanish, it is set equal to the minimal physical length
ℓm.
It is important to note that this minimal length is of

course measured with respect to the physical metric qab
and not with respect to the fiducial metric q̊ab. Since the
holonomies hj(µ̊j) defined in (29) have a length of µ̊jℓo
with respect to q̊ab, their physical length with respect to
qab is |aj |̊µjℓo (no sum over j). Thus, requiring that the
physical path-length of the holonomy be ℓm (and recall
also the relations between the scale factors and the pj ,
e.g., p1 = sgn(a1)|a2a3|ℓ2o) gives

ℓm = |aj |̊µjℓo ⇒ µ̊j = ℓm ·
√∣∣∣∣

pkpl
pj

∣∣∣∣, (49)

where there is no sum over j and it is understood that
in the second equation k and l are the two indices dif-
ferent from j; for example, µ̊1 = ℓm

√
|p2p3/p1|. This

procedure gives a value of µ̊ which corresponds to the

1 There are two reasons for defining a non-local connection oper-
ator rather than a non-local field strength operator for the self-
dual LQC of Bianchi space-times: (i) for generalized holonomies
with a purely imaginary α, the relation between the field strength
Fab

k and the matrix elements Fab
A

B is much more complicated
than for the connection [33], and (ii) even in standard LQC, for
Bianchi models with non-vanishing spatial curvature the field
strength is not an almost-periodic function of the connection
and therefore it is not known how to represent it as an operator
in the quantum theory [50, 51].
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standard ‘improved dynamics’ loop quantization proce-
dure of the Bianchi models [50, 51, 54].
The resulting non-local ĉj operator (ignoring factor-

ordering ambiguities for now and dropping the hats on
operators in order to avoid unnecessary clutter in the
notation) is

ĉj =
eλm

√
|pj/pkpl|cj − e−λm

√
|pj/pkpl|cj

2λm
√
|pj/pkpl|

, (50)

where λm = αℓm/2i, and again there is no sum over any
of the internal indices and it is understood that k 6= l are
the two indices different from j.
Note however that the operator

N
±
j = e±λm

√
|pj/pkpl|cj (51)

(where as above there is no sum over j, and k, l are un-
derstood to be different from j and each other) is not
one of the simple shift operators defined in (33) since the
exponent includes pj terms and therefore it is not imme-
diately obvious how it acts on a given state. The action
of this operator can be understood by introducing the
variables

bj =
√
|pj|cj, no sum over j, (52)

ϑj = sgn(pj)
√
|pj |, no sum over j, (53)

V = ϑ1ϑ2ϑ3. (54)

Since the Poisson bracket of the variables (bj , ϑk) is given
by {bj, ϑk} = i · 4πGδjk, the operator N±

j can be under-
stood to act as a shift operator where the wave function is
shifted in the ϑj argument by an amount which depends
on ϑk and ϑl. For example,

N
±
1 |ϑ1, ϑ2, ϑ3〉 = |ϑ1 ± 4πGλm · |ϑ2ϑ3|−1, ϑ2, ϑ3〉. (55)

Again, this is analogous to the ‘improved dynamics’ pre-
scription for Bianchi models in standard LQC [50, 51, 54].

Here the basis |~ϑ〉 is simply a relabeling of |~p〉,
|ϑ1, ϑ2, ϑ3〉~ϑ = |sgn(ϑ1)ϑ21, sgn(ϑ2)ϑ22, sgn(ϑ3)ϑ23〉~p, (56)

where the subscript denotes the label of the basis states.
This completes the definition of the non-local connec-

tion operator ĉj (up to factor-ordering choices), and with
this it is now possible to construct and study the Hamil-
tonian constraint operator.
In order to do this, it is necessary to choose a lapse and

a specific factor-ordering for the Hamiltonian constraint
operator and then determine its action. The Hamiltonian
constraint operator contains a number of terms, which
can be grouped in the following fashion:

ĈH = Ĉ(12) + Ĉ(23) + Ĉ(13) + ℓon
j Ĉn

j − ~2

2
∂2φ. (57)

Taking the lapse N = |V |, which is known to simplify
the form of the constraint [54], and choosing a factor-
ordering motivated by previous studies of the Bianchi

models in standard LQC [54, 56], the various terms have
a relatively simple form. For example,

Ĉ(12) =
√

|V |
64πGλ2m

[
(N+

1 −N−
1 )|V |(N+

2 −N−
2 )

+ (N+
2 −N−

2 )|V |(N+
1 −N−

1 )

]
√
|V |, (58)

and

Ĉn
j = − |ϑkϑl|3

16πGλm
· 1√

|ϑj |
· (N+

j −N−
j ) · 1√

|ϑj |
, (59)

where it is understood that there is no sum over j, and
that k and l are both different from j and each other in

the definition of Ĉn
j . The shift operators N±

j appearing
here are defined as

N±
j =

1

2

(
εjN

±
j +N

±
j εj

)
, no sum over j. (60)

This factor-ordering, first suggested in [56], is convenient
since it annihilates any eigenket |ϑ1, ϑ2, ϑ3〉 whose volume
V would change sign when acted upon by N±

j . Thus, the
octants of positive and negative ϑj are not mixed under
the action of N±

j . This property will simplify the analy-
sis of the action of the Hamiltonian constraint operator
below.
Then, defining the operator

Θ = −2
[
Ĉ(12) + Ĉ(23) + Ĉ(13) + ℓon

j Ĉn
j

]
, (61)

and requiring that the Hamiltonian constraint opera-
tor (57) annihilate states Ψ(ϑ1, ϑ2, ϑ3, φ) in the physical
Hilbert space gives

− ~
2∂2φΨ = ΘΨ. (62)

Since Θ acts only on the gravitational sector, the scalar
field can be used as a relational clock, and Θ can be
treated as a true Hamiltonian (assuming that it is self-
adjoint). The positive frequency solutions, namely the
solutions to

− i~∂φΨ =
√
ΘΨ, (63)

constitute the physical Hilbert space.
At this point, it can be checked that all singular states

(i.e., states that correspond to the classical big-bang or
big-crunch singularity of V = 0) are annihilated by Θ.
Denoting singular states as |ϑ1, ϑ2, ϑ3〉sing,

Θ|ϑ1, ϑ2, ϑ3〉sing = 0, (64)

and therefore all singular states are stationary with re-
spect to the relational time φ.
An important property of Θ is that singular states de-

couple from non-singular states under its action. First,
singular states remain singular, as seen in (64). Second,
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any non-singular state that would be shifted to a singu-
lar state with V = 0 is annihilated by a prefactor of V
to some power (recall that inverse power operators of ϑj
are defined such that they annihilate states where ϑj van-
ishes). Thus, if one constructs an initial state Ψns(φo)
that only has support on non-singular states, Ψns(φ) will
continue to be non-singular for all φ.
The next step is to study in further detail the action

of Θ on non-singular states. This task is simplified by
the fact that, given the definition of N±

j in (60), it fol-
lows that the octants of positive and negative ϑj are not
mixed under the action of Θ. Therefore, it is possible to
study the action of Θ on one octant at a time. A fur-
ther simplification arises from the parity properties of Θ.
Recall the parity transformations (47) (which act on the
ϑj variables as, e.g., Π1|ϑ1, ϑ2, ϑ3〉 = | − ϑ1, ϑ2, ϑ3〉) un-
der whose action the wave function is required to remain
invariant. It is easy to check that

ΠjN±
k Πj =

{
N±

k if j 6= k,

−N∓
k if j = k,

no sum over j, (65)

from which it immediately follows that

ΠjΘΠj = Θ, no sum over j. (66)

Therefore, due to the invariance of Θ under parity trans-
formations, it is convenient to first determine the action
of Θ on the positive octant where ϑj > 0. Then, it is
easy to determine the action of Θ in the other octants
by exploiting the fact that it is invariant under parity
transformations.
When acting on the positive octant, the action simpli-

fies considerably and is given below. The action of the
C(jk) terms combine in a relatively simple form, and so
the action of Θ can be written in the following form,

ΘΨ =
−
√
V

32πGλ2m

[
V +

√
V ++Ψ++ + θV −−V −

√
V −−Ψ−−

−
√
V
(
V +Ψ−++ θV −V −Ψ+−

)]
+ ℓon

jΘn
jΨ, (67)

where θx is the Heaviside function which vanishes for
x ≤ 0 and is 1 elsewhere, and

V ± = V ± 2πG~λm, V ±± = V ± 4πG~λm. (68)

The shifted wave functions are defined as

Ψ++(ϑ1, ϑ2, ϑ3) =
∑

j 6=k

N
+
j N

+
k Ψ(ϑ1, ϑ2, ϑ3), (69)

Ψ−−(ϑ1, ϑ2, ϑ3) =
∑

j 6=k

N
−
j N

−
k Ψ(ϑ1, ϑ2, ϑ3), (70)

Ψ+−(ϑ1, ϑ2, ϑ3) =
∑

j 6=k

N
+
j N

−
k Ψ(ϑ1, ϑ2, ϑ3), (71)

Ψ−+(ϑ1, ϑ2, ϑ3) =
∑

j 6=k

N
−
j N

+
k Ψ(ϑ1, ϑ2, ϑ3). (72)

Note that since N
±
j and N

±
k don’t commute for j 6= k,

each Ψ±± contains six terms, and each of them has the
form, e.g.,

N
+
1 N

+
2 Ψ(ϑ1, ϑ2, ϑ3) = Ψ

(
ϑ1 · V −−

V −
, ϑ2 · V −

V , ϑ3

)
, (73)

or

N
+
1 N

−
2 Ψ(ϑ1, ϑ2, ϑ3) = Ψ

(
ϑ1 · V

V + , ϑ2 · V +

V , ϑ3

)
. (74)

Importantly, Ψ++,Ψ+−,Ψ−+ and Ψ−− are all eigenvec-
tors of V̂ with eigenvalues V ++, V, V and V −− respec-
tively.
Finally, the operators Θn

j act as, for example,

Θn
1Ψ(ϑ1, ϑ2, ϑ3) =

V 7/2

8πGλmϑ41

[
1√
V +

Ψ
(
ϑ1 · V +

V , ϑ2, ϑ3

)

− θV −√
V −

Ψ
(
ϑ1 · V −

V , ϑ2, ϑ3

)]
. (75)

The actions of Θn
2 and Θn

3 are given by permutations
of (75). (It is understood that the numerical prefactor

θV −/
√
V − is zero for V − = 0.)

As already mentioned, the action of Θ in the different
octants are related in a trivial fashion due to the invari-
ance of Θ under parity transformations.
Note that, as pointed out in [54], the explicit form of

the action of the Hamiltonian constraint operator can be
simplified by using V as a quantum number (which is
shifted by a constant factor) rather than one of the ϑj
(which are rescaled by a prefactor that depends on V ),
which should be kept in mind for more detailed analytical
or numerical investigations of the quantum dynamics.
This completes the explicit definition of the Hamilto-

nian constraint operator in self-dual LQC for diagonal
type A Bianchi models. One of its main properties, al-
ready mentioned above, is that the singularity is resolved
in the sense that non-singular and singular states decou-
ple under its action.
Another interesting property of the Hamiltonian con-

straint operator is that, when the spatial curvature is
non-vanishing, Θ has a different form in self-dual LQC
than in standard LQC. However, in the case of the
Bianchi type I space-time that has zero spatial curva-
ture, the Hamiltonian constraints of self-dual and stan-
dard LQC are in fact identical (with the replacement

γ
√
∆ → λm from [54]). Thus, in the absence of spatial

curvature, standard and self-dual LQC give the same re-
sult, and therefore all of the results obtained in [54] for
standard LQC of Bianchi type I space-times also hold
in self-dual LQC. In particular, there exists a projection
map from the self-dual LQC for the Bianchi I space-time
to the self-dual LQC for the isotropic flat FLRW space-
time which gives the correct Hamiltonian constraint op-
erator, showing that in this restricted setting the symme-
try reduction from the Bianchi type I space-time to the
flat FLRW space-time (i.e., the imposition of isotropy)
commutes with the loop quantization, whether one uses
self-dual variables or the Ashtekar-Barbero variables.
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C. Relation to Standard LQC

Now that the kinematical Hilbert space and the Hamil-
tonian constraint operators for anisotropic self-dual LQC
have been constructed, it is possible to compare the re-
sulting theory with standard anisotropic LQC. As shall
be shown here, while the kinematical Hilbert spaces are
isomorphic, the physical Hilbert spaces are different when
the spatial curvature is non-zero. This is the same result
that was found for the self-dual LQC of the FLRW space-
times [33].
In order to compare these two theories, recall that in

standard LQC the Ashtekar-Barbero connection and the
densitized triads are parametrized as

Ãj
a =

c̃j
ℓo
ω̊j
a, Ẽa

j = p̃j

√
q̊

ℓ2o
e̊aj , no sum over j, (76)

where I have placed tildes on the variables of standard
LQC in order to differentiate them from the variables of
self-dual LQC. Since Ãj

a = Γj
a+γK

j
a, the relation between

these variables is given by

c̃j = −iγcj + (1 + iγ)ℓoΓj , p̃j = pj . (77)

A convenient basis for the standard LQC kinematical
Hilbert space of the Bianchi models is given by eigen-
states of the operators corresponding p̃j , whose inner
product is given by

〈p̃1, p̃2, p̃3|k̃1, k̃2, k̃3〉 = δp̃1,k̃1
δp̃2,k̃2

δp̃3,k̃3
, (78)

and the other family of basic operators on the kinematical
Hilbert space are those corresponding to complex expo-
nentials of cj which act as shift operators, for example

eiµc1 |p̃1, p̃2, p̃3〉 = |p̃1 + 8πG~γ, p̃2, p̃3〉. (79)

Then, the relation (77) and the Baker-Campbell-
Hausdorff equation (to leading order) together suggest re-
lating the operators corresponding to holonomies in stan-
dard LQC and generalized holonomies2 (with complex-
valued α) in self-dual LQC via

eiµc̃j = e(i−γ)sℓo/16πG~γeµγcje−(i−γ)sℓo/16πG~γ . (80)

If one then also requires that the basis states of standard
LQC and self-dual LQC be related by

|p1, p2, p3〉 = e(i−γ)sℓo/16πG~γ |p̃1, p̃2, p̃3〉, (81)

the result is exactly the kinematical Hilbert space defined
in Sec. III A, with the same basic operators. This map

2 This relation between standard holonomies of the Ashtekar-
Barbero connection and generalized holonomies (with imaginary
α) of the self-dual connection provides a further motivation to
introduce generalized holonomies when working with self-dual
variables.

provides a simple way to translate between the kinemat-
ical Hilbert spaces of standard and self-dual LQC, which
are clearly isomorphic.
On the other hand, the Hamiltonian constraint oper-

ators in standard and self-dual LQC are different. This
can be seen by taking the Hamiltonian constraint opera-
tor of standard LQC for, e.g., the Bianchi IX space-time
given in [51], and there replacing the standard LQC op-

erators Ṽ = V, ϑ̃j = ϑj and

Ñ±
j = e(i−γ)sℓo/16πG~γN±

j e
−(i−γ)sℓo/16πG~γ , (82)

by their counterparts in self-dual LQC. The resulting
Hamiltonian constraint operator is very similar to the
self-dual LQC Hamiltonian constraint operator (61),
although with two important differences (beyond the
factor-ordering ambiguities which in any case arise in
both standard and self-dual LQC). First, the shift op-
erators in the self-dual CH do not preserve the norm
of the states they act upon. This is different from
the Hamiltonian constraint operator coming from stan-
dard LQC, where the N±

j operators are now sand-

wiched between exponential operators, as seen in (82),
which ensure that the norm is preserved in that case.
Second, there appear additional terms in the standard
LQC Hamiltonian constraint operator coming from the
(1 + γ2)Ea

jE
b
kǫ

jk
lΩab

l/
√
q term (with Ωab

l = 2∂[aΓ
l
b] +

ǫjk
lΓj

aΓ
k
b corresponding to the spatial curvature) that

arises when the Hamiltonian constraint is expressed in
terms of the Ashtekar-Barbero variables. Due to these
two differences, the Hamiltonian constraints of standard
and self-dual LQC are not equivalent, and the two theo-
ries have different physical Hilbert spaces. This is exactly
analogous to what happens for FLRW space-times [33].
The main difference between the Hamiltonian con-

straint operators of the two theories for anisotropic space-
times concerns the definition of the non-local connec-
tion operator, and whether this basic operator should
correspond to the self-dual connection, or the Ashtekar-
Barbero connection: this is an ambiguity in the defini-
tion of the field strength operator. Another ambiguity
of the same type arises for the loop quantization of the
closed FLRW space-time, where it is possible to directly
define a non-local field strength operator, or instead first
define a non-local connection operator and use this op-
erator to define the field strength operator. An inter-
esting result is that, while there do exist some quanti-
tative differences between the dynamics resulting from
the different definitions of the field strength operator,
the qualitative behaviour is not affected by this ambi-
guity [49, 57, 58]. Based on this result, it appears pos-
sible that this other type of field strength quantization
ambiguity —namely, whether the non-local connection
operator corresponds to the self-dual connection or the
Ashtekar-Barbero connection— will not significantly af-
fect the qualitative predictions of anisotropic LQC.
This is reasonable since, despite the differences be-

tween their Hamiltonian constraint operators, there are
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important similarities between standard LQC and self-
dual LQC. Most obviously, the Hamiltonian constraint
equation has the form of a difference equation, and the
big-bang and big-crunch singularities of the classical the-
ory are resolved in the sense that the zero-volume states
decouple from the non-singular states under the action
of the Hamiltonian constraint operator.
Some further evidence in this direction is offered by the

following. In the limit of vanishing spatial curvature, the
resulting space-time is the Bianchi type I model. For this
model, all of the nj = 0 and hence s = 0, and as pointed
out above in Sec. III B, the self-dual and standard LQC
Hamiltonian constraints are in this case equal. Therefore,
the predictions of self-dual and standard LQC will agree
in regimes where the spatial curvature can be neglected.
Nonetheless, numerical simulations are likely necessary
in order to quantify the differences between the quantum
dynamics of standard and self-dual LQC, especially in
the Planck regime.
The main open question at this point is to understand

the full quantum dynamics, first for semi-classical states,
and then for more widely spread states (as has been done
in standard LQC for isotropic space-times in [52, 59, 60]
and [61–63], respectively). However, this is a very dif-
ficult problem for the Bianchi space-times due to the
complexity of the difference equation coming from the
Hamiltonian constraint operator, and particularly of the
form that the shifts in the ϑj variables takes. Indeed,
there do not yet exist any studies of the quantum dy-
namics of semi-classical states in standard LQC for the
Bianchi type I space-time (for the improved dynamics
prescription given in [54]), the simplest of the Bianchi
models. Nonetheless, despite the difficulty of studying
the full quantum dynamics of even semi-classical states,
important insights can be obtained by studying the ef-
fective equations.

IV. THE EFFECTIVE THEORY

The effective theory is obtained by treating the Hamil-
tonian constraint operator (57) as a classical constraint
on the original phase space, which is then called the ef-
fective Hamiltonian constraint [52, 64], and the effective
equations are simply given by the Poisson brackets of the
observable O of interest with the effective Hamiltonian
constraint, dO/dT = {O, Ceff

H }.
The effective equations have already been found to be

very useful in standard LQC where they are in good
agreement with the full quantum dynamics of a large
class of semi-classical states. Indeed, in the isotropic
space-times in standard LQC where the full quantum
dynamics of semi-classical states have been studied an-
alytically and numerically, the effective dynamics pro-
vide an excellent approximation to the evolution (with
respect to a relational clock) of expectation values for
semi-classical states that (i) are sharply peaked in both
conjugate variables and (ii) where the total volume of the

space-time remains much larger than the Planck volume
ℓ3Pl [52, 53, 62, 65–67]. While the reliability of the effec-
tive equations may appear surprising at first, it can be
understood to arise due to the fact that the variables of
interest in quantum comsology (the total volume V , the
total momentum of the scalar field πφ, etc.) are global
observables and correspond to heavy degrees of freedom
so long as V ≫ ℓ3Pl. Therefore, quantum fluctuations
do not become important (assuming they are initially
small), and the effective equations can be trusted even
at the bounce point where quantum gravity effects are
strongest [45].
Thus, the effective equations are also expected to pro-

vide a good approximation to the quantum dynamics of
sharply peaked states in anisotropic self-dual LQC so
long as all ϑj remain much larger than ℓPl. Following
the procedure outlined above, the effective Hamiltonian
constraint —for all diagonal type A Bianchi models in
self-dual LQC— is

Ceff
H =

NV

8πGλ2m

[
sinh

b1
ϑ2ϑ3

sinh
b2
ϑ1ϑ3

− ℓon
1λmV

ϑ41
sinh

b1
ϑ2ϑ3

+ sinh
b1
ϑ2ϑ3

sinh
b3
ϑ1ϑ2

− ℓon
2λmV

ϑ42
sinh

b2
ϑ1ϑ3

+ sinh
b2
ϑ1ϑ3

sinh
b3
ϑ1ϑ2

− ℓon
3λmV

ϑ43
sinh

b3
ϑ1ϑ2

]
+
Np2φ
2V

≈ 0. (83)

Here the lapse N has been left free and Ceff
H is given for

ϑj > 0 (in the effective theory, just as in the classical
theory, it is possible to work in just one octant).
Now the effective equations can be calculated in a

straightforward fashion. For example,

ϑ̇1
ϑ1

= − iN

2λ2m

[
sinh

b2
ϑ1ϑ3

+ sinh
b3
ϑ1ϑ2

]
cosh

b1
ϑ2ϑ3

− iℓon
1NV

2λmϑ41
cosh

b1
ϑ2ϑ3

, (84)

with the effective equations for ϑ̇2 and ϑ̇3 being given by
the appropriate permutations.
These can be related to the directional Hubble rates,

which are given by, e.g.,

H1 =
ȧ1
a1

=
ϑ̇2
ϑ2

+
ϑ̇3
ϑ3

− ϑ̇1
ϑ1
, (85)

and the mean Hubble rate is given by

H =
ȧ

a
=

1

3
(H1 +H2 +H3) , (86)

where a = (a1a2a3)
1/3.

In some cases in standard LQC, it has been possible
to bound the directional Hubble rates in the effective
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theory (and hence bound the expansion and the shear
also) [68, 69]. These bounds then provide evidence that
all strong singularities are resolved in these space-times
in standard LQC [70]. What can be said regarding the
effective theory of self-dual LQC?
As already mentioned in Sec. III B, for the spatially

flat Bianchi type I space-time (where the spin-connection
Γj
a vanishes), standard LQC and self-dual LQC give the

same resulting quantum theory, and hence also the same
effective dynamics. Therefore, the results already found
by studying the effective equations of the Bianchi I model
in standard LQC also hold for self-dual LQC. In partic-
ular, the expansion and shear both have an upper bound
around the Planck scale [68], and Kasner transitions of
the type found in [71] will occur at the bounce.
Concerning the dynamics of Bianchi space-times with

non-vanishing spatial curvature in the effective theory
coming from self-dual LQC, it is likely that numerical
simulations like the ones recently performed in stan-
dard LQC for the Bianchi II and Bianchi IX space-times
[72, 73] will be necessary in order to understand the self-
dual LQC dynamics of these space-times in all regimes.
Nonetheless, it is known from general relativity that as
a big-bang or big-crunch singularity is approached in the
Bianchi models with a massless scalar field (the case con-
sidered here) in a fashion where the ȧj all have the same
sign (i.e., in general relativity this would lead to what is
called an isotropic or ‘point-like’ singularity in the termi-
nology of [74]), the space-times become asymptotically
velocity-term dominated (AVTD) in which case the spa-
tial curvature is negligible [37]. When the spatial curva-
ture becomes negligible, then the Hamiltonian constraint
is essentially that of the Bianchi I space-time, and all of
the results obtained for Bianchi I, described in the para-
graph above, hold for AVTD Bianchi space-times also.
On the other hand, if some of the ϑ̇j have different

signs as the singularity is approached (which would give,
e.g., a cigar-like or a pancake-like singularity in general
relativity), then a Bianchi space-time with non-vanishing
curvature will not be of the AVTD type and one can-
not rely on results coming from the study of the Bianchi
I space-time. While considerably more work is needed
in order to study the dynamics of non-AVTD Bianchi
space-times, this case is particularly interesting as it is
here that the chaotic mixmaster behaviour of the Bianchi
IX space-time arises in general relativity. In particular,
it would be interesting to check in detail whether the
chaotic behaviour found classically persists in the effec-
tive theory. While there are indications that the chaotic
behaviour may disappear when quantum gravity effects
are included [75, 76], this question lies outside of the
scope of this paper and is left for future work.

V. DISCUSSION

A loop quantization of the diagonal type A Bianchi
space-times in terms of the self-dual connection variables

has been presented in this paper. The reality condi-
tions were imposed through the choice of the inner prod-
uct in the kinematical Hilbert space, and then the ‘im-
proved dynamics’ Hamiltonian constraint operator was
constructed using a non-local connection operator (as is
also done in standard LQC for anisotropic space-times
with non-vanishing spatial curvature). A more detailed
study of the dynamics of semi-classical states is left for
future work. Note that while using self-dual variables
simplifies the form of the Hamiltonian constraint oper-
ator since the second term (that appears when using
Ashtekar-Barbero variables) with the prefactor (1 + γ2)
vanishes for γ = i, this happens at the cost of an in-
ner product that has a more complicated form. At this
point, it is not clear whether calculations in the quan-
tum theory are easier with a simple inner product and
a more complicated Hamiltonian constraint operator, or
vice versa.

The key step in this construction was imposing the re-
ality conditions. This was done in two parts: first the
reality conditions were expressed in terms of the funda-
mental operators of the theory, with the relation (23)
simplifying the task, and second, the results of the study
of the closed FLRW space-time in terms of self-dual vari-
ables motivated an ansatz for the form of the inner prod-
uct which was then shown to correctly implement the
reality conditions. The fact that this could be done in a
relatively simple fashion for all diagonal type A Bianchi
models raises the hope that this may also be possible in
more general settings.

Another important point, already noticed in the study
of the self-dual LQC of FLRW space-times, is the ne-
cessity of introducing a family of generalized holonomies
parametrized by α ∈ C. It turns out that it is only when
α is purely imaginary that the generalized holonomies are
well defined in self-dual LQC — standard holonomies of
Aj

a (for which α = 1) are not well defined in the kinemati-
cal Hilbert space. Essentially, the generalized holonomies
of interest (i.e., the ones that become fundamental oper-
ators in self-dual LQC) correspond to objects of the type
h ∼ P exp

∫
iAa.

The reason that operators of this type are the ones that
are well defined in the quantum theory can be under-
stood in the following manner. Generalized holonomies
of the complex-valued Ashtekar connection cannot be
self-adjoint, no matter the choice of α. Then, speaking
loosely, the question becomes whether one prefers the
extrinsic curvature part to be self-adjoint, or the spin-
connection part to be self-adjoint. Recalling that the
holonomy of the real-valued Ashtekar-Barbero connec-
tion is a self-adjoint operator in standard LQC, and since
it is the extrinsic curvature which is canonically conju-
gate to the densitized triad, this suggests choosing the
extrinsic curvature part of the generalized holonomy to
be self-adjoint, and this corresponds to a purely imag-
inary α. From a more technical perspective, this issue
is settled by the fact that for the shift operator to be
well defined in the kinematical Hilbert space of self-dual
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LQC, the shift must be real-valued, and this requirement
also constrains α to be purely imaginary.
An important question now is what can be learnt from

this process and applied to full LQG. First, these results
offer the hope that it may be possible to properly im-
plement the reality conditions, and in particular some
of the techniques developed here may prove to be useful
more generally in imposing the reality conditions. Sec-
ond, the necessity of using generalized holonomies of the
form h ∼ P exp

∫
iAa in self-dual LQC suggests that this

type of generalized holonomies may play an important
role in self-dual LQG as well. Note however that an im-
portant property of standard holonomies is that under
gauge transformations they behave in a very simple fash-
ion. One difficulty in using generalized holonomies in
full quantum gravity (where there are no natural gauge-
fixings available as in quantum cosmology minisuper-
spaces) is that they behave in a significantly more com-
plicated fashion under gauge transformations. Clearly,
this is a difficulty that must be addressed in order to
define a version of self-dual LQG based on generalized
holonomies. The important problem of whether it is pos-
sible to construct a well defined version of self-dual LQG
based on generalized holonomies is left for future work.
Note that another important open problem that must

be addressed in order to properly define self-dual LQG
is to have a well defined measure on the space of gen-
eralized connections. The measure problem is avoided
in self-dual LQC due to the symmetry reduction that is
performed before quantization, and therefore there are no
direct lessons to be learnt from self-dual LQC regarding
this last open problem.
Nonetheless, there are some hints that a careful imple-

mentation of the reality conditions may be important for
the solution of the measure problem in self-dual LQG. A
näıve choice for the inner product in self-dual LQC moti-

vated by the inner product of standard LQC, before any
consideration of the reality conditions, might be of the
form

〈ψ1|ψ2〉= lim
L→∞

1

2L

∫ L

−L

∫ L

−L

dx dy ψ1(c) ψ2(c), (87)

where x = Re(c) and y = Im(c). (Here for the sake
of simplicity I have considered the isotropic case where
the gravitational configuration space is one-dimensional;
however this näıve inner product can directly be general-
ized for the diagonal type A Bianchi models.) This inner
product, however, is pathological as it gives a divergent
norm for the eigenkets |p〉 ∼ epc. Thus, in a (näıve) sense
there is a ‘measure problem’ in self-dual LQC also. How-
ever, once the reality conditions are taken into account,
then the resulting inner product is sufficiently different
from (87) that it gives a finite norm for the eigenkets
|p〉 and has the main qualitative properties expected of
an LQC inner product (see [33] for details). It is possible
that a similar result could be found in LQG: the problems
of the reality conditions and of the non-compact measure
of the generalized connection may not be disconnected.
Rather, this argument suggests that it could be produc-
tive to work on both problems simultaneously and that
the solution of one problem may perhaps simultaneously
provide a solution to the other.
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