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Abstract. We describe how the TwoSpect data analysis method for continuous

gravitational waves (GWs) has been tuned for directed sources such as the Low

Mass X-ray Binary (LMXB), Scorpius X-1 (Sco X-1). A comparison of five search

algorithms generated simulations of the orbital and GW parameters of Sco X-1.

Where that comparison focused on relative performance, here the simulations help

quantify the sensitivity enhancement and parameter estimation abilities of this directed

method, derived from an all-sky search for unknown sources, using doubly Fourier-

transformed data. Sensitivity is shown to be enhanced when the source sky location

and period are known, because we can run a fully-templated search, bypassing the

all-sky hierarchical stage using an incoherent harmonic sum. The GW strain and

frequency as well as the projected semi-major axis of the binary system are recovered

and uncertainty estimated, for simulated signals that are detected. Upper limits on

GW strain are set for undetected signals. Applications to future GW observatory

data are discussed. Robust against spin-wandering and computationally tractable

despite unknown frequency, this directed search is an important new tool for finding

gravitational signals from LMXBs.

PACS numbers: 04.30.-w, 04.30.Tv, 04.40.Dg, 95.30.Sf., 95.75.Pq, 95.85.Sz, 97.60.Jd

1. Introduction

Continuous gravitational waves (GWs) from neutron stars in binary systems seem likely

to be one of the most interesting types detectable by ground-based interferometric

observatories. Binary systems constitute 237 of 578 (44%) of known pulsars in the ATNF

catalog (v1.53, 2015) [1] with rotational frequency faster than 5 Hz, the approximate

lower bound of the frequency range of Advanced LIGO and Advanced Virgo [2, 3].

TwoSpect [4, 5] is one data analysis method for targeting systems of Low Mass X-ray

Binaries (LMXBs), including the prototypical Scorpius X-1 (Sco X-1). This method

can apply to continuous-wave (CW) GWs of unknown frequencies from neutron stars in

binary systems, with unknown sky locations, orbital periods, or projected semi-major

axes. It was used in a prior all-sky search for CWs from unknown sources with data

http://arxiv.org/abs/1512.02105v2
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from LIGO Science Run 6 and Virgo Science Runs 2 & 3 [6]. This paper describes

analysis modifications, when sky location and orbital period are known, to run a directed

search. The relative performance of this method was shown in a comparison of five

algorithms [7]. More sensitive than the all-sky search, the new directed methodology

is presented here, including discussion of detection criteria, parameter estimation, and

upper limit strategy. Now, in the wake of the first GW observation [8], we soon hope to

observe LMXBs such as Sco X-1.

CW analyses for isolated neutron stars are computationally-demanding [9] but

conceptually simple. Ellipticity in a rotating star, or stellar r-modes [10, 11], would

generate a time-varying mass quadrupole moment that could induce CW emission.

When these emissions, with a dimensionless strain amplitude h0 and a phase evolution

described in Section 2, arrive at a GW observatory, they may be very faint. CW analyses

include the F -statistic, Hough, StackSlide and PowerFlux methods [12–17]. Many stars,

possibly the best GW sources, are unknown or have ephemerides insufficiently precise to

make a fully-coherent search tractable. Different strategies are therefore used depending

on available information.

CW searches are categorized as all-sky (for unknown objects), directed (sky location

known) and targeted (spin frequency also known). When sky location and other

ephemerides are known, computational cost can often be reduced or reinvested in

increased sensitivity. As recently reviewed [18], directed [19, 20] and targeted [21, 22]

searches now exist.

Signals from neutron stars with rotational periods of milliseconds should populate

the GW spectrum. Millisecond pulsars appear to have a speed limit somewhat higher

than 700 Hz but below their expected relativistic break-up speed [23]: GW emission is a

possible cause. Dedicated analyses are motivated by the large fraction of these pulsars

that are in binary systems.

Binary systems intrinsically have more parameters to analyze than isolated stars.

TwoSpect [5] uses doubly Fourier-transformed data in the first practical all-sky search

for unknown neutron stars in binary systems [6]. Other binary searches include

developments of the Sideband [24, 25], Radiometer [26, 27], Polynomial [28], and

CrossCorr [29, 30]. A systematic comparison [7] challenged these five methods to detect

simulated signals from Sco X-1. A stacked F -statistic, derived from the coherent F -

statistic [31], is under investigation [32].

LMXBs, including Sco X-1, are believed to spin-up (increase rotational frequency)

by accretion-driven recycling [33]. Accretion can also lead to non-axisymmetry that

induces emission. These mechanisms suggest a prime GW source. In the torque balance

hypothesis, spin-up would continue until it equaled and canceled spin-down from GW

emission [34]. This hypothesis can be quantified in terms of GW strain.

Torque balance predicts a characteristic strain hc given by Equation 1 (Equation

4 of Bildsten [35]; note hc/h0 = 2.9/4.0). For an LMXB with flux FX−ray and NS that
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rotates at a frequency νs, radiating at the quadrupolar GW frequency f = 2νs,

hc ≈ 4× 10−27

(

300 Hz

νs

)1/2( FX−ray

10−8 erg cm−2 s−1

)1/2

. (1)

With X-ray flux (3.9×10−7 erg cm−2 s−1 [36]) but unknown frequency for Sco X-1,

this limit can be evaluated for f between 50 and 1500 Hz [7], although large systematic

uncertainties mean h0 could be larger or smaller:

h0 =
4.0

2.9
hc,

≈ 3.5× 10−26

(

600 Hz

f

)1/2

,

→ h0 < 2.2× 10−26 (f = 1500 Hz), h0 < 1.2× 10−25 (f = 50 Hz). (2)

Angular momentum from accretion would counterbalance that lost to GW emission.

If true, f would remain stable for long durations, aside from spin-wandering due to

variations in accretion. Computational costs are thus reduced by the restricted range

of the frequency-derivative.

The torque-balance levels predicted by Equation 2 are near the estimated thresholds

of detection, meriting effort in enhancing the sensitivity of our methods. Directed

search improvements skip the computation-saving hierarchical steps of the all-sky search,

testing all points in parameter space with templates for enhanced sensitivity to a signal

from a known sky location. This paper details the directed, fully-templated method and

shows its application to simulated data containing Sco X-1 signals.

2. Signal model

GW signals are defined by h(t), strain as a function of time. Models of h(t) in a binary

search [5] depend on phase evolution, Φ(t),

Φ(t) = Φ0 + 2πf0 · τ(t) + ∆fobs · P · sin (Ω[t− Tasc]) , (3)

h(t) = h0F+
1 + cos2 ι

2
cosΦ(t) + h0F× cos ι sin Φ(t). (4)

Here solar-system barycentered time is τ(t) and Φ(t = 0) ≡ Φ0. We also neglect spin-

wandering, which could manifest as stochastic variation in Φ0.

The TwoSpect model does not currently search over amplitude parameters : h0 is

the GW strain amplitude, ι is the inclination angle of the neutron star with respect to

the source, ψ is the GW polarization angle. While h0 can be recovered, its estimation

is confounded by ι. Both ι and ψ affect amplitude through detector response, which

depends on angle via the plus- and cross antenna functions, F+ and F×. Initial GW

phase, Φ0, further specifies the signal, but is neither explored nor recoverable.

Our search is over unknown Doppler parameters, which drive signal evolution. Sky

location (α, δ) is known for Sco X-1, as is orbital period P = 2π/Ω. Initial orbital
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phase is fixed by time of ascension Tasc, to which our method is currently insensitive.

Frequency f and projected semi-major axis a sin i (expressed in light-seconds, ls) must

be searched over. Because the signal is frequency-modulated by the orbital motion of the

source in the circular binary system, the latter parameter manifests through modulation

depth ∆fobs = 2πf0 · (a sin i)/(cP ).

3. Analysis statistic

TwoSpect has already been described for the all-sky analysis [5, 6]. Only a brief

summary is given here on the elements common to the directed analysis, with details

in Appendix A.

Data containing calibrated GW strain, originally recorded by each observatory as

time series, are read into the program from a sequence of short Fourier transforms

(SFTs). These SFTs, on the order of minutes long, are shorter than the total observation

time Tobs, on the order of months. Noise and antenna pattern weights are applied to

enhance sensitivity by weighting those SFTs that are more sensitive to a putative source.

Each SFT contains K frequency bins. The Earth’s motion Doppler shifts the apparent

frequency of a source, so these bins must be barycentered: their indices are shifted such

that an unmodulated frequency from a given sky location remains in the same bin for

all SFTs. These frequency bins represent the instantaneous frequency f of the signal.

A second Fourier transform is performed, transforming the power in each frequency bin:

the transform is from SFT time to f ′. Effectively, f ′ represents the orbital frequency of

the binary system.

Templates are theM pixel weights wi in the 2-D image-plane (f, f ′). Each template

corresponds to a signal model from the (f0,∆fobs) astrophysical parameter space. After

the second Fourier transform, the powers Zi of data pixels in the (f, f ′) are measured

and noise-background λi estimated. The test statistic, R, is the projection of the data

(noise-subtracted powers) onto the templates, normalized by the templates:

R =

∑M−1
i=0 wi[Zi − λi]
∑M−1

i=0 [wi]2
. (5)

Estimated p-values for this statistic allow determination of detection probability.

Expositions of the detection statistic and signal model can be found in previous methods

papers [5, 37].

4. Application to directed searches

4.1. Sensitivity and computational cost

The original design of the all-sky analysis employs hierarchical analysis to control

computational costs while still maintaining good sensitivity to a broad parameter

space [5]. Each narrow frequency band requires corrections for the Doppler effect caused

by Earth’s motion. Because this correction depends on sky position, an all-sky search
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Table 1. Sco X-1 prior measured parameters from electromagnetic observations.

Note that the projected semi-major axis value is derived from a velocity amplitude of

K1 = 40± 5 km s−1 [7, 31].

Sco X-1 parameter Value Units

Distance [40] 2.8± 0.3 kpc

Eccentricity (ǫ) [7] < 0.068 (3σ) —

Right ascension (α) [41] 16:19:55.067 ±0.06′′ —

Declination (δ) [41] −15◦38′25.02′′ ± 0.06′′ —

X-ray flux at Earth (FX−ray) [36] 3.9× 10−7 erg cm−2 s−1

Orbital period (P ) [38] 68023.70± 0.04 s

Projected semi-major axis (a sin i) [42] 1.44± 0.18 ls

for typical SFT lengths of several minutes would need O(1018) templates; in practice,

an incoherent harmonic sum is used to reduce this number, only calculating templates

for candidates with significant sums. This practice limits sensitivity [5]. The new,

directed search in this paper can use O(108) templates at a single sky location with full

sensitivity, because R-statistics are returned for every template.

For Sco X-1, distance, eccentricity, X-ray luminosity, sky location, and orbital

period are known with good precision and projected semi-major axis is measured to

be 1.44 ± 0.18 ls, (Table 1). NS spin frequency, however, is unknown [38]. Other

targets, such as XTE J1751-305 [39], have known frequency, reducing computational

costs substantially. Sco X-1, XTE J1751-305, and other LMXBs are the principal sources

for the new, directed method, described next.

Searching over projected semi-major axis in the range [−3σa sin i,+3σa sin i], around

the measured value, and over GW signal frequency f from fmin to fmax, incurs a

predictable computational cost. With a fixed rectangular parameter spacing of 1/(2Tcoh)

in f and 1/(4Tcoh) in ∆fobs, using SFTs of coherence time Tcoh and analysis bands of

width fbw, the search uses Ntemplate templates per observatory (Appendix A):

Ntemplate = [1 + 2fbwTcoh]× Σ
j=

fmax−fmin
fbw

j=1

[

1 + 2π (fmin + jfbw)
4Tcoh
cP

6σa sin i

]

, (6a)

= 2

(

Tcoh +
1

fbw

)[

1 +
4πTcoh
cP

(6σa sin i)(fmax + fmin + fbw)

]

(fmax − fmin). (6b)

4.2. Participation in a Sco X-1 mock data challenge

Several analyses can search for CWs from known neutron stars in binary systems.

TwoSpect can also seek unknown systems‡. The Sco X-1 Mock Data Challenge (MDC)

compares five methods [7], including the new, directed version of TwoSpect. While the

MDC published the results of the participants, this paper explains how our results were

obtained and how similar analyses apply to forthcoming observations.

‡ Other all-sky binary search programs are based on the Polynomial [28] and Radiometer [27] methods.
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The MDC simulates 50 open, unblinded and 50 closed, blinded signals, with signal

parameters drawn from Sco X-1 astrophysical priors. Each signal is also known as an

injection. Three observatories are simulated: H1 (Hanford), L1 (Livingston), and V1

(Virgo). Within 100 frequency bands of 5 Hz each, f is uniformly distributed. Bands

cover a range from 50 to 1500 Hz and contain Gaussian noise simulating a detector

with noise floor 4 × 10−24 Hz−1/2, the expected Advanced LIGO minimum. Projected

semi-major axis a sin i is Gaussian-distributed with mean 1.44 ls and standard deviation

0.18 ls. Period P is Gaussian-distributed with mean 68023.70 s and standard deviation

0.04 s. Sky location is (α, δ) = (16:19:55.067,−15◦38′25.02′′). The uncertainty in period

is small enough that it is not a free parameter.

Our directed search over f and a sin i, with a fixed period, requires approximately

Ntemplate = 5.0 × 107 templates per observatory, covering 100 bands of 5 Hz each, 500

Hz total. With three observatories, 1.5× 108 templates are needed.

Figure 1 shows a wide analysis that is magnified in Figure 2. These analyses require

minimal modification from that of the all-sky search: R-statistic and p-value code was

identical, aside from looping over all template positions in the parameter grid.

5. Directed search demonstration and outlier follow-up

The new, directed method is demonstrated through the MDC described in Section 4.

This MDC paper [7] presents the performance of each participating pipeline but not the

details of our method. Here we highlight methodology not elaborated in the MDC paper,

referencing the performance of the directed method for illustration and for contrast with

the all-sky method [5].

After writing a loop over templates, post-processing is the main modification to

the pipeline: new detection criteria and techniques for parameter and upper limit

estimation are required, because the fully-templated output differs significantly from

that of hierarchical method. In this section, we detail how these results have been

obtained and establish a basis for future applications.

5.1. Overview of detection and parameter estimation

A set of extremal p-value outliers in 5 Hz bands is produced for each observatory, subject

to a p-value threshold inferred from Gaussian noise. These sets are compared in pairwise

coincidence (H1-L1, H1-V1, or L1-V1). Coincidence of outliers allows f or ∆fobs to differ

by ≤ 1/Tcoh between observatories, based on prior experience from the all-sky search [6].

This allowed difference is 2 steps in the f grid or 4 in the ∆fobs grid. Surviving outliers

are classified as detections.

For a given detection in one band, the signal parameters are inferred from the

values of the template with the highest (single-observatory) p-value. These parameters

include f , a sin i, and h0. Again, for open signals, the true parameters were known in

advance. Total uncertainty in f and a sin i, and non-systematic uncertainty (random)
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Figure 1. Simulated signal, 100.015 Hz frequency (f), 1.44 ls projected semi-major

axis (modulation depth 0.0133 Hz, ∆fobs), showing single-template − log10 p-value.

The graph spans 241 templates in ∆fobs, 721 in f , twice as dense in ∆fobs as in f .

A signal with h0 = 4 × 10−21 is injected into a Gaussian noise amplitude spectral

density of 4 × 10−24 Hz−1/2, observed for 106 seconds. The p-value is extrapolated

from the R statistic. For illustration, ∆fobs extends below zero to show that the code

is well-behaved and that the algorithm gracefully mirrors results for negative input

parameters. Most importantly, − log10 p is maximal at the true parameters. Signal is

partly recovered when template f differs from the true signal by plus or minus ∆fobs,

and also when template f and ∆fobs differ equally from the true parameters.

in h0, is determined from the standard deviation of the set of parameters of recovered

open signals compared to their true parameters, as detailed in section 5.3.

The estimated strain is hrec ∝ R1/4. Systematic uncertainty arises from the

unknown inclination angle, cos ι, which dominates the total uncertainty in strain. This

ambiguity cannot be resolved with the present algorithm and depends partially on

the assumed prior distribution of signal amplitudes; the uncertainty is estimated by

simulation in Section 5.4. With new algorithm enhancements since the MDC, cos ι can

become a searched parameter.
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Figure 2. Heatmaps for H1, L1, and V1 observatory (top to bottom), of − log10 p-

value for 11x11 templates centered on Sco X-1 MDC signal 8. This injection was

detectable in a year of simulated data at h0 = 5.6 × 10−25 in noise of 4 × 10−24

Hz−1/2 and cos ι = 0.09. Maxima for all observatories are within a template of the

true parameters.

Due to the uniform noise floor and low number of injections, a single upper limit

value is declared for all 100 bands based on the best estimate of the 95% confidence

level of non-detected signals in the open set of injections.

In future applications to real data, the directed analysis can be post-processed using

the detection criteria and parameter estimation methods described here. Improved

upper limits methods are underway, and a strong candidate signal would likely be

followed-up with other analyses, but the core pipeline is the same.
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5.2. Detection claims

Studying the Gaussian noise in the Sco X-1 MDC open data set, we can set thresholds for

detection. In real searches, detection candidates are followed-up, so the same thresholds

developed here are used to mark interesting candidates.

To obtain a Gaussian noise sample, we excise injection signals, which are visible

in the f vs ∆fobs plane. The excised region depends on injection frequency finj and

modulation depth ∆finj, on the Earth-orbital Doppler shift (≈ 10−4), and additional

bins (at least 10) to avoid spectral leakage. The half-width excised for each injection is

δfinj:

δfinj = 2× (10−4 × finj +∆finj) +
10

360
Hz. (7)

The remaining noise sample is the data set with all intervals [finj − δfinj, finj + δfinj]

removed. In the remaining noise sample, the estimated p-value distribution is not

perfectly uniform, due to gaps in the data. Nonetheless, the noise sample provides

a distribution of template R-statistics and p-values in the absence of signals. This

procedure provides an empirical measure of the estimated p-value that corresponds to

an actual false alarm probability of 1% per 5 Hz frequency band. Taken together, these

let us establish detection criteria.

If there is any candidate surviving the following criteria in a 5 Hz band, we mark

it detected, else not detected:

• single-IFO candidates are the top 200 most extreme p-value outliers in a 5-Hz band,

of those that pass a log10 p ≤ T threshold, where T = −7.75 if f < 360.0 Hz (those

that used 840-s SFTs) or −12.0 if f ≥ 360.0 Hz (those that used 360-s SFTs). Note:

The large discrepancy between the p-value thresholds in the MDC is a historical

artifact from a configuration error. The discrepancy is much reduced when this

is fixed, as done for future analyses. Our expectation remains that the threshold

should be independent of coherence time.

• each candidate must survive at least one double-IFO coincidence test, involving a

pairwise comparison of single-IFO candidates to see whether they are within 1/TSFT
in both frequency (f) and modulation depth (∆fobs).

5.3. Parameter estimation and uncertainty for detected signals

Each template is associated with a particular (f,∆fobs), so parameters are currently

read off from the template with the extremal p-value corresponding to a detection. In

the future, accuracy might be improved using interpolation, but the MDC validates

that the existing method is highly-accurate. If signals were suspected in real data, this

procedure, possibly extended with additional simulations, could generate a parameter

space volume for follow-ups to examine.

The open set of signals, of which 31 of 50 were detected, are the foundation

for understanding parameter estimation uncertainty. The reconstructed h0 output is
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hrec = CR1/4. The value of C is determined from the mean value of a large number of

simulations for circularly-polarized waves over the whole sky and full range of f , P , and

∆fobs.

Then hrec is rescaled twice, first by ρR for more accurate measurement at the Sco

X-1 period and modulation depth, and second by ρcos ι for unknown cos ι. Thus the final

claimed value of h0 for a signal j is (h0)j :

(h0)j = ρRρcos ιhrec,j. (8)

The first scale factor, ρR = 1.11, corrects the average values of hrec (h0-reconstructed)

in the open set to match the corresponding heff (h0-effective, given circular polarization

weightings). That is, h̄eff = 1.11× h̄rec, where heff is defined a priori by hinj (h0-injected)

and cos ι:

heff =
1√
2

√

(

1 + cos2 ι

2

)2

+ (cos ι)2 × hinj. (9)

In the MDC study [7], 4 of the 31 detected, open signals account for the largest

frequency estimation error. This error arose from a misconfiguration that does not affect

the other analyses; it was addressed by taking those 4 as one class and the remaining 27

as another, a step that should be unnecessary in future analyses. Then, the uncertainty

due to random error for h0, f , and a sin i is estimated by the standard deviation between

the recovered and true parameters:

σ2
f =

1

Nopen − 1

Nopen
∑

j∈{open}

(frec,j − finj,j)
2 , (10)

σ2
a sin i =

1

Nopen − 1

Nopen
∑

j∈{open}

((a sin i)rec,j − (a sin i)inj,j)
2 , (11)

σ2
h0,rand

=
1

Nopen − 1

Nopen
∑

j∈{open}

(ρR × hrec,j − heff ,j)
2 , (12)

where Nopen is the number of open injections, σf , σa sin i, and σh0
are the uncertainties

we state for recovered frec, (a sin i)rec, and hrec given injected finj, (a sin i)inj, and hinj.

The error between injected and recovered parameters does not show any other clear

correlation with p-value or signal frequency, at least in the 31 detected signals. Except

for the most marginally detected signals, where noise fluctuations matter, uncertainty

in f and a sin i is dominated by the template grid spacing. The σf and σa sin i error bars

have been used uniformly for claiming uncertainties on the signals in the MDC.

The largest source of uncertainty for h0 comes from correction for systematic

underestimation, multiplying a factor of 1.74 into C. This uncertainty is the ambiguity

in cos ι discussed in Section 5.4. Parameter estimation uncertainty for f and a sin i is

then just the random error; for h0, it is the quadrature sum of random error and cos ι

ambiguity.
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5.4. Ambiguity from cos ι

The largest systematic uncertainty in h0 comes from the unknown cos ι. The method is

optimized for | cos ι| = 1 and computes the R statistic by weighting the SFTs assuming

circularly-polarized GWs, which still provides good sensitivity for other polarizations.

Recall that hrec must be scaled by ρR = 1.11 to match heff . When a source is circularly

polarized, the analysis estimates ρRhrec ≈ hinj. In the case of linear polarization,

Equation 9 indicates that hinj will be about 23/2 times larger than heff (and so hrec).

The aim is to find an average conversion factor from hrec to hinj and a robust estimate

of the uncertainty.

Since heff of circularly-polarized signals is greater, those signals are more easily

detectable than linearly-polarized signals of equivalent hinj. Therefore the signals that

are detectable are biased, near threshold, to being more likely circularly polarized. This

“circularizes” the correction factor, depending on the detection efficiency of the pipeline

and on the assumed prior distribution of strain amplitudes. Although the effect is minor,

estimating its size requires simulation.

The simulation generates 2 million signal amplitudes between hinj = 3× 10−26 and

hinj = 3× 10−24 with a distribution of 1/h0, the assumed prior distribution of h0 values.

This simulation code is independent of TwoSpect and should apply to similar directed

searches. In this simulation, ρR is 1 for simplicity, so we can treat hrec = heff here. We

model detection efficiency by assuming no signals are detected below heff = 1×10−25, all

are detected above heff = 3×10−25, and the fraction detected is linear in h0 between those

values. Together with a uniform cos ι distribution of [−1, 1], this leads to a trapezoidal

distribution of recovered, detected h0 values with a curved lower (left) edge (Figure 3).

Part of the domain of the simulation must be excluded. To find the average

hinj/hrec for a given hrec, every hrec must correspond to a full sampling of the range of

polarizations. A large hinj with linear polarization or small hinj with circular polarization

could have the same hrec. No linearly-polarized signals could produce hrec above

1 × 10−24, because Equation 9 shows that the largest signal, hinj = 3 × 10−24, would

be reconstructed a factor of 2
√
2 smaller, at hrec = 1.06 × 10−24 (again, ρR = 1 for the

simulation). Above 1 × 10−24, polarizations tend to be more circular, thus the average

ratio must exclude this region or it will be biased by the limited range of the simulation

hinj. Expanding the domain would raise the cutoff, although the resulting ratio would

no longer perfectly correspond to the MDC.

With the domain of the simulation determined, we compute that mean ratio of hinj
to hrec to be 1.74. Fine-binning hrec, an interval of [1.74 − σcos ι, 1.74 + σcos ι] encloses

68% of corresponding hinj when σcos ι is 0.37 (found by manual optimization). Therefore

our best estimate for the correction factor ρcos ι, with σcos ι inferred as the standard

deviation, is 1.74± 0.37. This factor multiplies ρR, which is found to be 1.11.

The systematic uncertainty, being the uncertainty σcos ι in the correction factor,

scales with signal strength; the non-systematic (random) is fixed and is also multiplied

by the correction factor. The final estimate of the uncertainty in h0 for signal j is the
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Figure 3. Histogram, 150 bins, of the distribution of 2 million simulated signals,

strain between 3 × 10−26 and 3 × 10−24 under a log-uniform distribution, following

application of cos ι and detection efficiency cuts.

quadrature sum of the systematic and non-systematic uncertainties:

σ(h0),j =

√

(ρcos ι × σh0,rand)
2 + (σcos ι × ρR × hrec,j)

2. (13)

For future data, a similar simulation could be run, with an updated detection

efficiency model and prior distribution of strains, to find the uncertainty in h0 due to

cos ι for promising signals.

5.5. Accuracy of parameter estimation uncertainty claims

The scheme described above reliably recovers parameters and states uncertainties

consistent with the true distribution of errors, as shown in the MDC [7]. Verifying

the calibration factors and confidence intervals once more, one can confirm that a

conservative fraction of h0, f and a sin i are within their 1-σ error bars: 77.4% for

σh0
, 74.2% for σf , and 67.7% for σa sin i.
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5.6. Upper limits for undetected signals and detection efficiency

Only upper limits have come from CW searches to date. Until GWs are detected from

neutron stars, the scientific value of a CW analysis is to constrain the plausible h0
and inferred ellipticity from those stars. For the MDC-simulated signals, we simplified

upper-limit estimation. In a real detector, noise varies with frequency [43]; in this

simulation, the noise floor is flat at 4 × 10−24 Hz−1/2. Given observational data, we

would inject a large number of simulated signals into a number of smaller bands, in

order to understand the upper limit as a function of frequency.

To measure detection efficiency, we calculate the heff for all signals and find the

average detection rate for a given heff . Binomial uncertainty is also calculated and each

1-σ deviation (per 5-signal bin) is graphed in Figure 4, which shows a least-squares

sigmoid fit. This detection efficiency curve maps from strain to probability of detection.

Next we would like an upper limit function that takes a probability as an input and

returns a strain that, with the given probability, is no less than the actual strain.

To characterize the upper limit, we plot the distribution of hrec versus injected

heff in Figure 5. We verify that 95% of non-detected open signals are covered by a

naive upper limit of hrec = 2.19 × 10−25. This claim does not rely on binning but

rather on the sampling density of the injections. This number, when corrected by the

ρR rescaling factor of 1.11 and cos ι correction ρcos ι of 1.74, yields the upper limit of

(1.74) × (1.11) × 2.19 × 10−25 = 4.23 × 10−25. Because of the flat noise floor, this is

reported as a single upper limit for any non-detections in the MDC.

Frequency-dependent upper limits are well under development for actual

observations. Sigmoid fits to the detection efficiency of a set of injections into real

data are generated, one fit per frequency band. Upper limits at a given confidence can

then be taken as the h0 that yields a detection efficiency equal to that confidence. This

advancement post-dates the MDC and is planned for future applications.

6. Conclusions

6.1. MDC results

TwoSpect analyses applied to the MDC data set detect more stars than the Radiometer,

Sideband, or Polynomial pipelines; only the CrossCorr algorithm found more signals [7].

Each detection includes an estimate of a sin i, which is not produced by Radiometer,

Sideband, or Polynomial. The MDC did not model the spin-wandering of the neutron

star that is expected in real data, although participants were told to assume its presence,

and spin-wandering is planned for future MDCs. TwoSpect is also theoretically highly

robust against spin-wandering. This method has already been applied to real data [6],

though not using the directed search in a fully-templated mode. This experience

validates the program’s robustness with respect to non-Gaussian data artifacts. In

all, 34 of 50 closed (and 31 of 50 open) signals are detected, and f , a sin i, and h0 are

estimated. Strain upper limits of 4.23 × 10−25 noise of in 4 × 10−24 strain Hz1/2 are
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Figure 4. Detection efficiency for open and closed signals. Because only 100 signals

are in the data set, this curve has fluctuations and large 1-σ error bars. Moreover, the

binomial error for these error bars is zero in bins where no or all signals are detected,

which is not necessarily realistic. The 95% level is just below 2×10−25 (before rescaling

factors of 1.74 and 1.11), corroborating better techniques of estimating the upper limit.

determined for the 16 non-detected, closed signals. Although the distribution of h0
values in the MDC was astrophysically optimistic, the MDC validated our ability to

claim detections and recover orbital and GW parameters accurately.

6.2. Future directed CW binary searches

Algorithms such as TwoSpect are designed to find astrophysically-plausible strain from

LMXBs. Torque-balance arguments suggest that strain could exceed 10−25 for Sco X-1

if it rotates at low frequencies.

The previously-published all-sky search in a year of S6 data set an overall upper
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Figure 5. Detections and upper limit determination, with all 100 simulated signals.

Injections are seen in three (black circle), one (gray triangle), or zero (open box)

observatory pairs and plotted in recovered strain versus effective circular strain

injected. The most significant template is shown, in each band, in each observatory,

whether detected or not. (There are no injections seen with two detection pairs,

because this plot shows only the loudest outlier from each 5 Hz band; if some injection

were seen in two and not three pairs, it would mean two distinct coincidences were

seen, only one of which would be the loudest). We identify a shelf of non-detected

signals that are 95% covered by an upper limit about 2.19 × 10−25. This number,

when corrected, yielded the upper limit of 1.74*1.11*2.19 × 10−25 = 4.23 × 10−25.

The unity-slope black line is shown to ascertain whether a further empirical rescaling

factor is needed to match the dashed-and-dotted least-squares linear fit (it is: constant

1.11). The zero-slope horizontal dashed line is shown to indicate the ninety-five percent

confidence upper limit in the absence of detection.
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limit for circular polarization of 2.3 × 10−24 at 217 Hz [6], set for an H1 amplitude

spectral density of 2.0× 10−23 Hz−1/2. For random polarization, a multiplicative factor

of 2.2 was applied, for an upper limit of 5.1 × 10−24. This corresponds to a sensitivity

depth (factor below the noise floor: Appendix A) of 8.7 Hz−1/2 for circular polarization

but 4.0 Hz−1/2 for random. Extrapolating to Advanced LIGO design sensitivities of

4× 10−24 Hz−1/2, this implies an upper limit around 5× 10−25 for circular polarization

and 1× 10−24 for random. However, the all-sky paper included an opportunistic search

for Sco X-1 on a narrow frequency range (20 to 57.25 Hz), setting a random polarization

limit of 2 × 10−23 at 57 Hz in an L1 amplitude spectral density 1.8 × 10−22 Hz−1/2, a

depth of 9 Hz−1/2. This opportunistic search used 1800-s SFTs; longer SFT durations

increase theoretical sensitivity. Significant improvement comes from focusing on one sky

location; this can be viewed as a reduced trials factor. The directed search demonstrated

in this paper achieved an 4.23×10−25 upper limit in simulated data at design sensitivity,

a depth of 9.5 Hz−1/2. It achieved this depth despite being tested with shorter (360-s

and 840-s) SFTs. The directed search is also scalable over a much wider parameter

range, like the all-sky method over which it gains twofold in sensitivity.

While real data complications may worsen this limit, several simplified and

conservative steps were taken. The limit may improve with the enhancements now

under developement, when fully tested with injections as in the all-sky search. Even

now, the method in this paper is more sensitive for random polarization than the all-sky

method is for optimal, circular polarization. Additional improvements to the algorithm,

such as coherent SFT summing, have been developed [37] and could further improve

this limit in the future, pushing toward the torque-balance strain.

Directed TwoSpect analyses have been demonstrated in this paper. Comprehen-

sively covering the parameter space of Sco X-1 at full sensitivity with the directed search,

instead of hierarchically as before, does increase the probability of detection and im-

prove upper limits. When detections do occur, the ability to determine the frequency

and projected semi-major axis of the neutron star in the binary system will prove highly

informative. Analyses of real data for signals from Sco X-1 and additional neutron stars

in binary systems, such as XTE J1751-305, are underway. In the long term, we hope

that the discovery of gravitational waves from neutron stars in LMXBs will provide a

firm link between our observations and electromagnetic astronomy.
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Appendix A. Mathematical details

Appendix A.1. Sensitivity depth

The relative sensitivity of a search can be quantified in terms of sensitivity depth

D(f) [32, 45],

D(f) ≡ S
1/2
H (f)

h0(f)
, (A.1)

for noise power spectral density SH at frequency f and the GW strain h0(f) recoverable

there. The depth generally depends on the observation time, because integrated signal-

to-noise grows. This concept allows us to compare methods across data sets and

extrapolate future performance.

Appendix A.2. Number of templates

Equation 6b is the integrated template density over parameter space dimensions. While

we are interested astrophysically in a sin i, the observable ∆fobs governs template

placement. The equation decomposes into two number densities, Qfrequency and Qmod,

and corresponding dimension length intervals, Lfrequency, Lmod:

Ntemplate = Σ(frequency)Σ(mod)(Lfrequency ×Qfrequency)(Lmod ×Qmod), (A.2)

where Qfrequency is the inverse of the template spacing in frequency, which is 1/(2Tcoh),

so Qfrequency = 2Tcoh. Index the frequency dimension by j bands. One step j is made

per band, width fbw, so the length interval Lfrequency = fbw. Thus

Lfrequency ×Qfrequency = (fbw)× (2Tcoh). (A.3)

With fixed frequency bands, the number of templates per band does not change.

The width in modulation depth, however, depends on a sin i and the frequency

fj = (fmin + jfbw). Each template of ∆fobs is indexed by k. Analogous to before,

Qmod = 1/(4Tcoh), so

Lmod ×Qmod = (∆fmod, j,k)× (4Tcoh) , (A.4)

=

(

2πfj
cP

(a sin i)k

)

× (4Tcoh) , (A.5)

when a sin i is given in light-seconds. Substituting Equation A.3 into Equation A.2, that

term depends on neither the frequency nor modulation depth index, and so pulls out

in front of the sums. Equation A.5 depends on k; the sum Σ(mod) is evaluated from

(a sin i)k = (a sin i− 3σa sin i) to (a sin i+ 3σa sin i) in practice, for an integrated length of

6σa sin i.

Combining these elements, including indexing frequency band steps by j,

Ntemplate = (fbw × 2Tcoh)Σj
2π(fmin + jfbw)

cP
6σa sin i × 4Tcoh. (A.6)
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Writing the limits of the sum of frequency bands, in addition to inserting ones to account

for the edges of each sum, yields Equation 6b.

Appendix A.3. Test statistic calculation

The construction of this R-statistic can be described in several steps. The most

important points from the original methods paper [5] are reiterated here, with some

clarification. Science/observing runs are first parcelled into overlapping short Fourier

transforms (SFTs), performed in the detector frame. The SFTs have typical coherence

time Tcoh (referred to as TSFT in newer publications [37]) ranging from 60 s to 1800 s,

depending on the hypothesized time-derivative of neutron star frequency [5]. The total

number of SFTs with 50%-overlap for an observing time Tobs is N ,

N = floor

(

2Tobs
Tcoh

)

− 1. (A.7)

SFT number in the observing run are indexed by n ∈ [0, . . . , N − 1]; SFT frequency bin

is indexed by k ∈ [0, . . . , K − 1], where K = TcohfN for a Nyquist frequency fN and

only positive frequencies k = Tcohf are used. Thus the transformation from time series

to SFTs is a map from x(t) (= h(t) + n(t), signal strain plus noise) to x̃nk .

This array of n still depends on detector time t, and the analysis is to be done in

Solar System Barycenter (SSB) time tSSB. Travel from the source to SSB introduces an

overall phase shift; uncertainty in the distance and proper motion is systematic and the

same for gravitational and electromagnetic observations. Detector time is recorded in

GPS time, running parallel with Terrestrial Time (TT), and SSB time runs parallel with

Barycentric Dynamical Time (TDB). SSB time corrects t by δtR for relativistic effects.

Another overall phase shift is caused by Roemer delay ∆tR, the dot product of n̂/c from

the SSB to the sky location of interest with ~r from the SSB to the detector [5, 12, 37].

Barycentering detector-frame data is equivalent to resampling in τ(t) = tSSB(t)+∆tR(t),

τ(t) = t+
~r(t) · n̂
c

+ δtR. (A.8)

Each SFT frequency bin x̃nk is Doppler shifted to a frequency bin in the SSB

frame corresponding to the sky location, frequency, and time t of the midpoint of the

SFT n under investigation: k(f(α, δ, t)) → k(fSSB(τ)). This barycentering procedure

corresponds to the time-domain Equation A.8. Henceforth, barycentering is implicit in

the k index.

Define the power P n
k = 2|x̃nk |2/TSFT. Let 〈Pk〉n be the expected (estimated from a

running mean over nearby n) noise-only power in a frequency bin k for SFT n. Also let

F 2
n ≡ F 2

+,n+F
2
×,n for the antenna pattern at the chosen sky location and SFT n – taking

this equal-weighted sum of F+ and F× polarization components implies an assumption

of circular polarization. Then the estimated power in a given bin P̃ n
k is normalized such

that random, white, Gaussian noise will have an expectation value of 1 [5]:

P̃ n
k =

F 2
n(P

n
k − 〈Pk〉n)

(〈Pk〉n)2

[

N
∑

n′

F 4
n′

(〈Pk〉n
′

)2

]−1

. (A.9)
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Then each row of barycentered frequency bins k is treated as a time series in n.

Power for bin k in that time series is Fourier transformed by Ff ′ into Zk(f
′), where f ′

is the second Fourier transform frequency. During the transform, the background noise

power λ(f ′) is estimated from the noise in the SFTs, assuming the noise is Gaussian.

This second Fourier power Zk(f
′) follows a χ2 distribution with 2 degrees of freedom

and mean 1.0, is proportional to h4, and is constructed by

Zk(f
′) =

∣

∣

∣
Ff ′ [P̃ n

k ]
∣

∣

∣

2

〈λ(f ′)〉 . (A.10)

When re-indexed by sorted template weight, i, Zk(f
′) becomes Zi in Equation 5.

Extensive discourse on the details of these calculations, as well as the estimation of

background and calculation of template weights, is found is the original TwoSpect

methods paper [5], and a paper on coherent addition of SFTs rigorously derives the

SFT power by including Dirichlet kernel terms. Given the second Fourier power, we

calculate the R-statistic its p-value, from which we seek to make a detection.

References

[1] Manchester R, Hobbs G, Teoh A and Hobbs M 2005 Astronom. J. 129 4

[2] Harry G et al. 2010 Class. Quant. Grav. 27 084006

[3] Acernese F et al. 2009 Advanced Virgo baseline design Tech. Rep. VIR-0027A-09

Virgo

[4] Goetz E A 2010 Gravitational wave studies: detector calibration and an all-sky

search for spinning neutron stars in binary systems Ph.D. thesis University of

Michigan

[5] Goetz E and Riles K 2011 Class. Quant. Grav. 28 215006

[6] Aasi J et al. 2014 Phys. Rev. D 90 062010

[7] Messenger C, Bulten H J, Crowder S G, Dergachev V, Galloway D K, Goetz E,

Jonker R J G, Lasky P D, Meadors G D, Melatos A, Premachandra S, Riles K,

Sammut L, Thrane E H, Whelan J T and Zhang Y 2015 Phys. Rev. D 92(2) 023006

[8] Abbott B et al. (LIGO Scientific Collaboration and Virgo Collaboration) 2016 Phys.

Rev. Lett. 116(6) 061102

[9] Brady P, Creighton T, Cutler C and Schutz B 1998 Phys. Rev. D 57(4) 2101

[10] Shawhan P 2010 Class. Quant. Grav. 27 084017

[11] Owen B 2010 Phys. Rev. D 82 104002

[12] Jaranowski P, Królak A and Schutz B 1998 Phys. Rev. D 58 063001

[13] Krishnan B, Sintes A M, Papa M A, Schutz B F, Frasca S and Palomba C 2004

Phys. Rev. D 70 082001

[14] Abbott B 2008 Phys. Rev. D 77 022001



REFERENCES 20

[15] Abbott B et al. 2009 Phys. Rev. Lett 102 111102

[16] Dergachev V 2010 Class. Quant. Grav. 27 205017

[17] Abadie J et al. 2012 Phys. Rev. D 85 022001

[18] Riles K 2013 Prog. in Particle & Nucl. Phys. 68 1

[19] Wette K et al. 2008 Class. Quant. Grav. 25 235011

[20] Abadie J et al. 2010 ApJ 722 1504

[21] Dupuis R and Woan G 2005 Phys. Rev. D 72 102002

[22] Aasi J et al. 2014 Astrophys. J 785 119

[23] Chakrabarty D et al. 2003 Nature 424 42

[24] Messenger C and Woan G 2007 Classical and Quantum Gravity 24 S469

[25] Sammut L, Messenger C, Melatos A and Owen B 2014 Phys. Rev. D 89 043001

[26] Ballmer S W 2006 Classical and Quantum Gravity 23 S179

[27] Abadie J et al. 2011 Phys. Rev. Lett. 107 271102

[28] van der Putten S, Bulten H J, van den Brand J F J and Holtrop M 2010 Journal

of Physics Conference Series 228 012005

[29] Dhurandhar S, Krishnan B, Mukhopadhyay H and Whelan J T 2008 Phys. Rev. D

77(8) 082001

[30] Whelan J T, Sundaresan S, Zhang Y and Peiris P 2015 Phys. Rev. D 91(10) 102005

[31] Abbott B et al. 2007 Phys. Rev. D 76 082001

[32] Leaci P and Prix R 2015 Phys. Rev. D 91(10) 102003

[33] Papaloizou J and Pringle J 1978 MNRAS 184 501

[34] Wagoner R 1984 Ap. J. 278 345

[35] Bildsten L 1998 Astrophys. J. Lett. 501 L89

[36] Watts A, Krishnan B, Bildsten L and Schutz B 2008 MNRAS 389 839

[37] Goetz E and Riles K 2015 (Preprint gr-qc/1510.06820)

[38] Galloway D K, Premachandra S, Steeghs D, Marsh T, Casares J and Cornelisse R

2014 Ap J 781 14 (Preprint 1311.6246)

[39] Markwardt C et al. 2002 Astrophys. J 575 L21–L24

[40] Bradshaw C, Fomalont E and Geldzahler B 1999 ApJ 512 L121

[41] Skrutskie M F et al. 2006 The Astronomical Journal 131 1163–1183

[42] Steeghs D and Casares J 2002 568 273–278 (Preprint astro-ph/0107343)

[43] Abadie J et al. 2010 NIM-A 623 223–240

[44] The LIGO Scientific Collaboration LALApps repository Web: http://www.lsc-

group.phys.uwm.edu/daswg/

[45] Behnke B, Papa M and Prix R 2015 PRD 91 064007

gr-qc/1510.06820
1311.6246
astro-ph/0107343

	1 Introduction
	2 Signal model
	3 Analysis statistic
	4 Application to directed searches
	4.1 Sensitivity and computational cost
	4.2 Participation in a Sco X-1 mock data challenge

	5 Directed search demonstration and outlier follow-up
	5.1 Overview of detection and parameter estimation
	5.2 Detection claims
	5.3 Parameter estimation and uncertainty for detected signals
	5.4 Ambiguity from cos
	5.5 Accuracy of parameter estimation uncertainty claims
	5.6 Upper limits for undetected signals and detection efficiency

	6 Conclusions
	6.1 MDC results
	6.2 Future directed CW binary searches

	Appendix A Mathematical details
	Appendix A.1 Sensitivity depth
	Appendix A.2 Number of templates
	Appendix A.3 Test statistic calculation


