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In recent years, the advent of great technological advances has produced a wealth

of very high-dimensional data, and combining high-dimensional information from

multiple sources is becoming increasingly important in an extending range of scientific

disciplines. Partial Least Squares Correlation (PLSC) is a frequently used method for

multivariate multimodal data integration. It is, however, computationally expensive in

applications involving large numbers of variables, as required, for example, in genetic

neuroimaging. To handle high-dimensional problems, dimension reduction might be

implemented as pre-processing step. We propose a new approach that incorporates

Random Projection (RP) for dimensionality reduction into PLSC to efficiently solve

high-dimensional multimodal problems like genotype-phenotype associations. We name

our new method PLSC-RP. Using simulated and experimental data sets containing

whole genome SNP measures as genotypes and whole brain neuroimaging measures

as phenotypes, we demonstrate that PLSC-RP is drastically faster than traditional

PLSC while providing statistically equivalent results. We also provide evidence that

dimensionality reduction using RP is data type independent. Therefore, PLSC-RP opens

up a wide range of possible applications. It can be used for any integrative analysis that

combines information from multiple sources.

Keywords: multivariate multimodal data integration, Partial Least Squares Correlation, dimensionality reduction,

genome-wide association, genetic neuroimaging

1. INTRODUCTION

The majority of human neurological and psychiatric disorders are substantially heritable (Plomin
et al., 1994; Meyer-Lindenberg and Weinberger, 2006; Bigos and Weinberger, 2010; Ge et al.,
2013). Since these illnesses represent an actual problem of public health, it is vitally important
to understand the underlying genetic mechanisms. Substantial progress has been achieved in
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recent years with the emergence of genome-wide association
(GWA) studies (Haines et al., 2005). Typically, these studies focus
on single-nucleotide polymorphisms (SNPs), the most common
type of human genetic variation (Wang et al., 1998; Crawford
and Nickerson, 2005). However, the identification of new SNPs
in GWA studies does not necessarily reveal the variations that
also contribute to human diseases. The discovery of the biological
function that arises from these DNA sequence variations requires
the investigation of the complex relationship between genotype
and phenotype information (Pevsner, 2009; 1000 Genomes
Project Consortium et al., 2010; Baker, 2012), which is known
as the intermediate phenotype concept (Gottesman and Shields,
1967; Gottesman and Gould, 2003). For a number of human
neurological and psychiatric disorders, in particular, alterations
in brain anatomy, function and connectivity have been shown
to be highly heritable and reliably correlated with the disease
(Jansen et al., 2015). Consequently, measures derived from in-
vivo anatomical or functional neuroimaging were increasingly
introduced as intermediate phenotypes for genetic association
analyses.

The statistical analysis of the relationship between the SNP
and the neuroimaging measures requires the solution of high-
dimensional association problems. Since both data sources
naturally involve large numbers of variables, computationally
efficient analysis frameworks are pivotal. Multivariate statistical
techniques have commonly been used in this field, since they
are able to combine the information from multiple markers and
multiple sources simultaneously into the analysis. However, the
higher the dimensionality, the more challenging is the analysis
from a statistical and computational point of view. This relates
to a phenomenon known as the curse of dimensionality, which
states that obtaining a statistically reliable result requires the
sample size to grow exponentially with the dimension (Bellman,
1957, 1960). In addition, computation times become excessively
long with increasing data dimensionality, posing a serious
practical problem for many applications.

One approach for mitigating high-dimensional data analysis
is dimensionality reduction. Various dimensionality reduction
techniques have been proposed for pre-processing in genetic
neuroimaging. In a whole-genome setup including 85,772 SNPs
and 34 brain locations of interest, Le Floch et al. (2012)
used univariate filters with different thresholds in order to
identify a subset of SNPs that were considerably correlated
to the neuroimaging data. The reduced set of SNPs was
further searched for association with the neuroimaging data
using two multivariate strategies, penalized Partial Least Squares
regression (Wold, 1975) and regularized Kernel Canonical
Correlation Analysis (Hotelling, 1936). The authors showed that
a relatively large number of SNPs was needed after filtering
in order to comprise all true positives. However, to avoid
over-fitting, irrelevant SNPs had to be filtered out although
the authors did not define a clear threshold for the filters.
In addition to univariate filtering, Le Floch et al. (2012)
applied Principal component analysis (PCA) (Pearson, 1901) for
dimensionality reduction. Specifically, they performed PCA on
both the neuroimaging and the SNP data set and kept as many
components as necessary to explain 99% of the variance in each

modality. However, all methods based on PCA failed to identify
generalizable associations.

PCA-based dimensionality reduction was also conducted in
a study by Hibar et al. (2011a,b). The authors searched for
associations between 448,293 genome-wide SNPs and 31,662
whole-brain voxels in a large sample of 731 subjects from the
Alzheimer’s disease neuroimaging initiative (ADNI). To reduce
the total number of tests, SNPs were grouped into 18,044 genes
based on gene membership. Principal component regression was
then implemented to search for the combined effect of multiple
SNPs on the brain. Hibar et al. (2011a,b) named their technique
voxel-wise gene-wide association study (vGeneWAS). However,
no genes identified were significant after correction for multiple
testing.

Using the same data set of genome-wide SNPs and whole-
brain neuroimaging voxels from theADNI, in a recent study, Hua
et al. (2015) performed dimensionality reduction by selecting
119 brain regions of interest based on an anatomical brain atlas.
Distance covariance (Székely et al., 2007) was applied to infer
the relationship between the single SNP predictors from the
entire genome and the average voxel values at the 119 brain
regions, utilized as multivariate response. In order to overcome
the multiple testing problem, Hua et al. (2015) also introduced a
local false discovery rate (FDR) modeling algorithm. The authors
showed that using their method, they were able to find 23,128
significant SNPs at α-level 0.05, while simple linear regression
yielded no significant SNPs.

As previous studies have shown, dimensionality reduction
using univariate filters or PCA solves critical over-fitting issues
in genetic neuroimaging applications (Le Floch et al., 2012).
However, both strategies present major limitations. As discussed
by Le Floch et al. (2012), univariate filters are not the optimal
choice, since they can not account for interdependencies
between variables. The genetic and the neuroimaging variants
are, however, naturally highly collinear. PCA has two major
limitations. First, PCA explicitly depends on the input data,
since it uses an optimization criterion to transform the original
variables into a set of orthogonal principal components (Goel
et al., 2005; Sulić et al., 2010). Second and most importantly,
it is computationally expensive, since its runtime is quadratic
in the number of dimensions (Menon, 2007). Thus, in genetic
neuroimaging, where the data sets may capture the whole brain
and the whole genome, respectively, PCA is infeasible in case
there is no powerful compute server available in the lab.

A dimensionality reduction technique that is computationally
efficient is Random projection (RP) (Johnson and Lindenstrauss,
1984). RP uses a random matrix with unit Euclidean column
norms to find a lower-dimensional subspace that approximately
preserves the distances between all pairs of data points in
the original space (Kaski, 1998; Dasgupta, 2000; Bingham and
Mannila, 2001; Lin and Gunopulos, 2003; Vempala, 2004). In
a number of data mining and biological studies (Papadimitriou
et al., 1998; Bingham and Mannila, 2001; Goel et al., 2005;
Sulić et al., 2010; Liu and Fieguth, 2012; Palmer et al., 2015),
RP has been shown to provide good results. Several studies
also compared RP and PCA and showed that their overall
performance was comparably similar, while RP had much lower
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computational requirements (e.g., Bingham and Mannila, 2001;
Goel et al., 2005).

In this study, we propose a new approach that uses RP for
dimensionality reduction to efficiently assess the relationship
between genetic variation and brain imaging measures as an
example for high-dimensional genotype-phenotype association
problems. In particular, we consider Partial Least Squares
Correlation (PLSC) (McIntosh et al., 1996; Tucker, 1958),
which has been shown to be most appropriate for combined
analysis of SNP and neuroimaging data in a systematic
comparison of multivariate techniques (Grellmann et al., 2015).
A key limitation of current PLSC implementations is that
they are computationally expensive in handling large numbers
of variables. We therefore incorporate RP into PLSC, and
name our new method PLSC-RP. Using both simulated and
experimental data sets containing whole genome SNPs and
whole brain neuroimaging measures, we demonstrate that PLSC-
RP provides statistically equivalent results to traditional PLSC.
However, using PLSC-RP, runtime is reduced from hours to
seconds. We also provide evidence that dimensionality reduction
using RP is data type independent and can thus be applied
to both continuous and count data. To establish RP for
multivariate analysis of high-dimensional genotype-phenotype-
associations is, to our knowledge, a strategy never used before.
Importantly, compared to previous applications of RP in data
mining and biological studies (Papadimitriou et al., 1998;
Bingham and Mannila, 2001; Goel et al., 2005; Sulić et al.,
2010; Liu and Fieguth, 2012; Palmer et al., 2015), we had to
address two additional problems. First, in order to be able to
evaluate the contribution of a single genotypic or phenotypic
variable, the multivariate associations detected by PLSC-RP
must be interpretable in the original spaces after dimensionality
reduction. In contrast, previous applications exploited RP such
that learning, classification or clustering were carried out
directly in the compressed domain (e.g., Liu and Fieguth,
2012; Palmer et al., 2015). Second, in genotype-phenotype
association studies, both the genetic and the phenotypic data,
are naturally high-dimensional. Thus, RP needs to be applied
for dimensionality reduction in both domains. The PLSC-
RP method we introduce in this study is favorable since it
fulfills both requirements: the back-transformation of results
after dimensionality reduction is straightforward, and it can be
applied to reduce the number of both the genetic and phenotypic
variables.

In this study, we explicitly applied PLSC-RP for efficient
assessment of genome-wide and whole-brain relations as an
example for high-dimensional association problems. However,
the application of PLSC-RP is not limited to the combined
analysis of brain imaging and genotype data. It might be
considered for fusion of multimodal biological assays such
as genomic, transcriptomic and proteomic data, for fusion of
multimodal brain imaging techniques or, in epidemiological
research, for fusion of environmental factors and measures
characterizing health status. Since PLSC-RP depends on sample
size only and is independent of the number of variables, it is
especially attractive for large-scalemulticenter association studies
or other data sharing projects.

2. MATERIALS AND METHODS

2.1. Random Projection
Random Projection (RP) is a dimensionality reduction
technique, which uses a random matrix with unit Euclidean
column norms to find a lower-dimensional subspace that
approximately preserves the distances between all pairs of
data points in the original space (Kaski, 1998; Dasgupta,
2000; Bingham and Mannila, 2001; Lin and Gunopulos, 2003;
Vempala, 2004). The concept of RP is as follows: Given a data
matrix X ∈ R

N×d, where N is the total number of points and d is
the original dimension, RP transforms X to a lower dimensional
space via the transformation:

XRP = X · R, (1)

where R ∈ R
d×k is a random matrix with unit Euclidean

column norms and XRP ∈ R
N×k is the low-dimensional subspace

with desired lower dimension k. The basic idea for RP is
derived from the Johnson-Lindenstrauss lemma (Johnson and
Lindenstrauss, 1984), which states that a set of N points in a
high-dimensional space can be mapped onto a k > k0 =

O

(

log(N)

ǫ2

)

dimensional subspace such that the distances between

the points are approximately preserved, i.e., not distorted
more than by a factor of 1 ± ǫ, for any ǫ > 0. Note
that the dimensionality reduction according to Johnson and
Lindenstrauss (1984) depends on the number of points N only,
since k is logarithmic in N and independent of the original
dimension d. A proof of this lemma was provided by several
authors (Frankl and Maehara, 1988; Indyk and Motwani, 1998;
Dasgupta and Gupta, 1999).

2.2. Partial Least Squares Correlation
PLSC (McIntosh et al., 1996), first introduced as Tucker Inter-
battery Analysis (Tucker, 1958), is a correlation technique that
analyzes the association between two sets of variables X1 ∈

R
N×d1 and X2 ∈ R

N×d2 . In our application, Matrix X1 collects
in each column the phenotype measures, e.g., the brain activity at
each voxel in the brain. Matrix X2 stores the genotype measures
in each column, e.g., the number of minor alleles for a given SNP.
The number of rows corresponds to the sample size.

To model the relationship between X1 and X2, which are both
standardized column-wise, PLSC successively builds orthogonal
linear combinations of the observed variables of each set (so-
called latent variables), such that the covariance between the pair
of latent variables is maximized,

max
|w1i |=|w2i |=1

cov(X1w1i ,X2w2i ), (2)

where i = 1, . . . , p, p = min(d1, d2). The relationship between
the columns of X1 and X2 is stored in a cross-product matrix
A = X

′

1X2. Singular Value Decomposition (SVD) is used to
decompose A into three matrices,

A = X
′

1X2 = USV
′

= s1u1v
′

1 + s2u2v
′

2 + . . . + spupv
′

p, (3)

where p = min(d1, d2). The coefficients of the PLSC, W1 =
[

w11 , . . . ,w1p

]

and W2 =
[

w21 , . . . ,w2p

]

, equal the matrices
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of left and right singular vectors U and V . They describe the
contribution of each variable in X1 and X2 to the construction
of the linear combinations Z1 = X1W1 and Z2 = X2W2,
so-called latent variables or scores. The singular values si, i =

1, . . . , p, in the SVD provide the covariance between the latent
variables.

2.3. Random Projection for Dimensionality
Reduction in Partial Least Squares
Correlation
Assume that X1 ∈ R

N×d1 and X2 ∈ R
N×d2 are two

data sets, where N is the sample size and d1 and d2 are
the number of variables in X1 and X2, respectively. Both X1

and X2 are column-wise standardized. When the number of
columns in X1 and X2 is high, PLSC will be computationally
expensive. To address the association between X1 and X2 using
a computationally more efficient approach, we apply RP for
dimensionality reduction prior to PLSC. We denote the PLSC
analysis after dimensionality reduction using RP as PLSC-RP
analysis. RP can be used to reduce the number of variables
in X1 (i.e., the phenotype measures), to reduce the number of
variables in X2 (i.e., the genotype measures), or both. Therefore,
we multiply the high-dimensional matrices X1 and/or X2 with
orthonormal random matrices R1 and/or R2. We generate the
elements of the random matrices according to the following
algorithm (Dasgupta, 2000):

1. Assign to each entry of the matrix an independently and
identically distributed (i.i.d.)N (0, 1) value.

2. Orthogonalize the k columns of the matrix using the Gram-
Schmidt algorithm (Björck, 1967).

3. Normalize the columns of the matrix to unit length.

Orthogonalization is important to preserve distances between
the original points in the low-dimensional space (Kaski, 1998).
Unfortunately, enforcing the random matrices to be orthogonal
requires the Gram–Schmidt algorithm, which is computationally
expensive (Sulić et al., 2010). However, it has been shown that
in high-dimensional spaces, there exists a much larger number
of nearly orthogonal than truly orthogonal vectors (Hecht-
Nielsen, 1994). Thus, high-dimensional random matrices might
be sufficiently close to orthogonal (Lin and Gunopulos, 2003) and
the orthogonalization step might be avoided without affecting
the distance preserving properties of Random Projections. Note
that two simpler algorithms for generating sparse random
matrices have been proposed (Achlioptas, 2001). Multiplying the
input matrices with sparse rather than dense random matrices
increases multiplication efficiency. For proof of concept of
PLSC-RP, however, we decided to generate the elements of the
random matrices by a standard normal distribution (Dasgupta,
2000). This way, we avoided potential inaccuracies in our
results due to sparsity, which we later cannot evaluate when
comparing PLSC-RP to its state-of-the-art counterpart PLSC.
We modified the algorithm by Dasgupta (2000) by omitting
the orthogonalization using the Gram-Schmidt algorithm,
since in our application random matrices were consistently
high-dimensional.

2.4. PLSC-RP for Dimensionality Reduction
in X1 OR X2
Assume that X1 is high-dimensional. RP transforms X1 to a lower
dimensional space via the following transformation:

X1RP = X1 · R, (4)

where R ∈ R
d1×k is a random matrix and X1RP ∈ R

N×k is the
low-dimensional subspace of X1 with desired lower dimension
k. We determine the dimensionality of the low-dimensional
subspace matrix X1RP according to the Menon theorem (Menon,
2007), which guarantees the preservation of pairwise distances
with probability of at least 1− N−β if ǫ ∈

[

3
4 ,

3
2

]

for

k ≥ k0: =
16+ 8β

ǫ2
· log(N). (5)

For our application, we selected ǫ = 1.0 and 1 − N−β = 0.95
(yielding β = 0.6505). Note that for the accuracy of the distance
preservation ǫ also values ǫ < 3

4 or ǫ > 3
2 are possible.

However, for ǫ ∈
[

3
4 ,

3
2

]

, the Menon bound adapts best to the
lowest reduced dimension of the projection. Accordingly, the
term PLSC-RP denotes the process of building latent variables
z1RPi = X1RP · w1RPi

and z2i = X2 · w2i , such that the covariance
between the pair of latent variables z1RPi and z2 is maximized,

max
|w1RPi

|=|w2i |=1
cov(z1RPi , z2i ), (6)

where i = 1, . . . , p, p = min(k, d2).
According to Equation (6), we obtain the weightsW2 for data

set X2, which are approximations for the weights computed using
traditional PLSC, since X1RP is only a compressed representation
of X1. However, for the reduced data set, we get weightsW1RP of
the low-dimensional subspace X1RP . To evaluate the contribution
of each single variable in X1, we transform the weightsW1RP back
to the original space, that is W1. Since the weights W2 obtained

by SVD on the cross-product matrix X
′

1RP
X2 are approximations

for the weights obtained by performing SVD on X
′

1X2, we obtain
the original weights W1 by inserting the weights W2 into the
equation for the SVD and rearranging it as follows:

w1i =
1

si · |w2i |
2
· A · w2i , (7)

where A = X
′

1X2 is the cross-product matrix, si is the
singular value of component i, i = 1, . . . , p, p = min(k, d2),

when performing SVD based on X
′

1RP
X2, and component i is

the component explaining the largest proportion of summed
squared cross-block correlations (Bookstein, 1994; McIntosh
et al., 1996). The derivation of Equation (7) is embodied in the
Supplementary Equations (1)–(3). Applying RP to reduce the
number of variables in X2 follows the same logic.
PLSC-RP will be significantly faster than traditional PLSC, since
it operates on a matrix with a much smaller number of columns
(X1RP ∈ R

N×k rather thanX1 ∈ R
N×d1 with k≪d1). Importantly,

permutation testing (Edgington, 1980) can also be performed on
the low-dimensional space.
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2.5. PLSC-RP for Dimensionality Reduction
in X1 AND X2
Assume that both X1 and X2 are high-dimensional. RP
transforms X1 and X2 to lower dimensional spaces via the
following transformation:

X1RP = X1 · R1,

X2RP = X2 · R2.
(8)

We determine the dimensionality of X1RP and X2RP according to
Menon (2007). Note that if X1 and X2 have the same number
of variables, it is sufficient to generate a joint random matrix R

for transformation. In general, however, the number of variables
differs between X1 and X2.

Subsequently, we apply PLSC in order to successively build
latent variables z1RPi = X1RP · w1RPi

and z2RPi = X2RP · w2RPi
,

such that the covariance between the pair of latent variables z1RPi
and z2RPi is maximized, i = 1, . . . , p, p = min(k1, k2). Since the
dimensionality in X1 and X2 is reduced by RP, we obtain weights
W1RP andW2RP for the low dimensional subspacesX1RP andX2RP .
To evaluate the contribution of each single variable in X1 and X2,
we transformed the weights W1RP and W2RP back to the original
space, that isW1 andW2, as follows:

w1i =
1

si · |w2RPi
|2

· cov(X1,X2RP ) · w2RPi
,

w2i =
1

si · |w1RPi
|2

· (cov(X1RP ,X2))
′

· w1RPi
,

(9)

where si is the singular value of component i, i = 1, . . . , p,

p = min(k1, k2), when performing SVD based on X
′

1RP
X2RP , and

component i is the component explaining the largest proportion
of summed squared cross-block correlations (Bookstein, 1994;
McIntosh et al., 1996). The derivation of Equation (9) is
again elucidated in the Supplementary Material (Supplementary
Equations 4–6).

2.6. Comparison of PLSC and PLSC-RP
Weight Profiles
We evaluate the performance of PLSC-RP by comparing its
weight profiles to the weight profiles of PLSC applied to the
same original data set. To measure similarity, we consider three
similarity measures: Pearson correlation (Anderberg, 1973), the
cosine measure (Anderberg, 1973) and the extended Jaccard
similarity (Strehl andGhosh, 2000). In addition, we used ANOVA
(Chambers et al., 1992) for comparison. The ANOVA model
represents a perfect linear relationship between the weights of
PLCS and PLSC-RP, in case the intercept equals 0 and the slope
equals 1.

2.7. Permutation Testing
Permutation testing is used to assess the significance of the
covariance between the pair of latent variables

• z1i and z2i , i = 1, . . . , p, p = min(d1, d2) (traditional PLSC),
• z1RPi and z2i , i = 1, . . . , p, p = min(k, d2) (PLSC-RP on X1RP

and X2),

• z1RPi and z2RPi , i = 1, . . . , p, p = min(k1, k2) (PLSC-RP on
X1RP and X2RP ),

respectively. For this purpose, observations, i.e., rows of
input matrices, are randomly reassigned without replacement
and PLSC (PLSC-RP, respectively) are recalculated. At each
permutation, the statistic (i.e., the covariance of latent variables)
is then compared to the statistic obtained on the original data
with probability value equal to the number of times the statistic
of permuted data exceeds the original value.

2.8. Data Sets
2.8.1. PLSC-RP for High-Dimensional Phenotype

Measures Derived from Neuroimaging
First we illustrate the PLSC-RP methodology for association
analysis of two data sets, where one contains high-dimensional
brain imaging variables as phenotypes. As an example, we used
functional magnetic resonance imaging (fMRI) data, which has
been shown to be highly heritable and reliably correlated with a
number of human neurological and psychiatric diseases (Jansen
et al., 2015). Functional MRI is a brain imaging technique for
measuring neural activity based on changes in blood oxygenation
and blood flow. The brain activity is accessed in volume pixel
elements, called voxels, of the three-dimensional functional
magnetic resonance image. Specifically, the activity in a voxel
is defined as how closely the time-course of the signal from
that voxel matches the expected time-course of activation,
which is determined by the experimental design (Barad et al.,
2009).

As simulation example, we generated fMRI data of increasing
dimensionality (1000, 10,000, 20,000, 30,000, 40,000, 50,000,
70,000, and 90,000 voxels) usingmultivariate normal distribution
with mean and covariance parameters estimated from
experimental fMRI contrast images (Le Floch et al., 2012).
We searched for associations with 50 candidate SNPs simulated
using the gs algorithm (Li and Chen, 2008) based on phase III
HapMap data (The HapMap Consortium, 2003). SNPs were
recoded using the additive genetic model, counting the number
of minor alleles per person. The sample size was chosen to be
100 for all data matrices. For each simulated dimensionality of
the fMRI data set, we induced a linear relationship between one
randomly selected voxel and three SNPs, such that the pairwise
correlation between that voxel, voxels in collinearity with the
selected voxel and the selected SNPs was on average 0.3. This
is in line with association strengths reported in other studies
(Filippini et al., 2009; Potkin et al., 2009; Ousdal et al., 2012).

Using our simulated data, we first applied PLSC to calculate
voxel and SNP weights that maximize the covariance between
the two data sets. We computed as many components as
necessary to explain at least 80% of variance and defined the
causal component, that is the component comprising the linear
relationship between selected voxels and SNPs, by the out-of-
sample covariance, estimated using 10-fold cross-validation (Le
Floch et al., 2012). To assess the significance of the covariance
and to quantify the reliability of weights, we used permutation
testing (Edgington, 1980) and bootstrapping (Tibshirani and
Efron, 1993), respectively.
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Next, we applied PLSC-RP in order to optimize runtime.
As we searched for linear relations between high-dimensional
fMRI measures and a comparably small number of SNPs, we
applied RP to reduce the number of voxels and kept the raw SNP
matrix. To determine the dimensionality of the low-dimensional
fMRI subspace matrix, we adopted the Menon theorem (Menon,
2007) and reduced the number of voxels to 100 dimensions
(Menon lower bound equaled k = 97.6486) for all considered
dimensionalities of the fMRI data set. After back-transformation,
we compared the weight profiles of PLSC-RP to the weight
profiles obtained using traditional PLSC on the same original
data set.

In order to verify our findings on simulated data, we
considered an experimental brain imaging genetics data set
that has been published previously (Ousdal et al., 2012) to test
the hypothesis that monoamines are important modulators of
amygdala activity in the brain (LeDoux, 2007). Therefore, the
authors combined whole-genome microarray SNPs with fMRI
data collected during emotional face-matching task, in which
the participants (healthy controls and patients with diagnosis
of schizophrenia, bipolar disorder or other psychosis) were
presented with two stimuli (human faces expressing anger of
fear) that had to be matched to a target stimulus (Hariri et al.,
2002; Carre et al., 2010). Genotyping was done using an array-
based whole-genome assay and SNPs were recoded using an
additive genetic model. The original analysis was performed
using SPM2 (Friston et al., 2007) following standard pre-
processing pipelines for fMRI data and controlling for diagnosis
type. Gender and age were not significantly different across
subject groups. To search for genome-wide SNPs modulating
amygdala activity, individual contrast values for the right and
left amygdala peak voxel were tested for association with each
SNP separately. The authors reported a significant association
between activation of the left amygdala peak voxel and three
SNPs in high linkage disequilibrium, namely rs10014254 (P =

4.16 × 10−8), rs11722038 (P = 4.20 × 10−8) and rs17529323
(P = 4.66 × 10−8). A significant interaction between SNP
and diagnosis type was not reported (P = 0.28). A more
detailed description of recruitment, experimental task, fMRI data
acquisition, genotyping, quality control and statistical analysis is
provided in the original publication (Ousdal et al., 2012).

To demonstrate the PLSC-RP methodology, we used updated
fMRI images that have been preprocessed using FSL software
(Smith et al., 2004) and genotype information on five SNPs
(rs10014254, rs11722038, rs17529323, rs382013, and rs437633).
Instead of focusing on amygdala as region of interest as in the
original study, we considered whole-brain measures in order to
detect further brain regions involved in the face-matching task.
After removing missing data for all SNPs, we were left with 208
subjects. Statistical analysis was performed as follows. At first
we corrected for diagnosis type as in the original publication.
Then, we applied PLSC considering whole-brain voxels. Finally,
we used our new method PLSC-RP, whereby we reduced the
number of voxels and retained raw SNPs. Specifically, we reduced
the dimensionality of the fMRI matrix to 208 dimensions,
similar to sample size, to match our simulation application above
(dimensionality of the phenotype matrix was reduced to 100

dimensions according to Menon (2007), equal to N = 100). We
compared the results of PLSC-RP to the results obtained using
traditional PLSC. The findings from the original publication
(Ousdal et al., 2012) served as a reference.

2.8.2. PLSC-RP for High-Dimensional Genotypes
In Section 2.8.1, we showed that PLSC-RP is remarkably
faster than PLSC when applied to high-dimensional phenotype
measures. As phenotype measures, we considered brain imaging
data, which is scaled metrically. In many applications, however,
high-dimensional data is considered that is not continuous.
To promote a wider application of PLSC-RP, we considered a
second data set, containing genome-wide SNPs as genotypes
together with candidate phenotype measures. SNP information
statistically represents count data, since SNPs were recoded by
counting the number of minor alleles per person.

To illustrate PLSC-RP for count data, we used a data set
that has been published previously (Breitfeld et al., 2013). For
the original study, participants were recruited from the Sorbs
population. The phenotype inventory consisted, among others,
of anthropometric data (weight, height, waist-to-hip ratio) and
of serum vaspin (Silverman et al., 2001; Hida et al., 2005)
measures extracted from blood. SNP genotyping was performed
using an array-based whole-genome assay. GWA with serum
vaspin was assessed by linear regression in PLINK (Purcell et al.,
2007), correcting for age, gender, and BMI. The authors reported
a significant association between serum vaspin concentration
and six SNPs on chromosome 14, rs11160190 (P = 2.4 ×

10−15), rs6575436 (P = 2.1×10−8), rs4905203 (P = 2.2×10−10),
rs1956713 (P = 1.2 × 10−9), rs1956721 (P = 3.6 × 10−9) and
rs11621467 (P = 9.2 × 10−10). A more detailed description of
participants, phenotyping, genotyping and statistical analysis is
provided in the original publication (Breitfeld et al., 2013).

In contrast to the data sets described in Section 2.8.1
(high-dimensional fMRI images), for the current data set, we
considered only two experimental phenotypes (serum vaspin
concentration and body height), while the genotype data
contained whole-genome SNP information (359,845 SNPs for
865 individuals after quality control and removal of missing
data). Hence, we applied RP to reduce the number of SNPs and
kept the raw phenotype matrix. We adopted our analysis strategy
from Section 2.8.1. For PLSC-RP, we reduced the dimensionality
of the SNP matrix to 865 dimensions, similar to sample size.
PLSC considering all 359,845 SNPs served as a reference.

2.8.3. PLSC-RP for High-Dimensional Neuroimaging

Measures and High-Dimensional SNPs
In Section 2.8.1 and 2.8.2, we illustrated how PLSC-RP performs
when either one of the two data sets searched for association
is high-dimensional. However, PLSC-RP would be of universal
application if it could address both at the same time. Therefore,
we generated simulation data, containing high-dimensional
fMRI measures as phenotypes and high-dimensional SNPs as
genotypes, following our procedure of the previous sections. We
generated fMRI and SNP data of six different dimensionality
combinations.
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1–4 We stepwise increased the dimensionality of both the fMRI
and the SNP data set, such that they contained 1000, 10,000,
20,000, or 40,000 voxels and SNPs.

5 The dimensionality of the fMRI data was higher than the
dimensionality of the SNP data with 50,000 voxels and 1000
SNPs, respectively.

6 The dimensionality of the fMRI data was lower than the
dimensionality of the SNP data with 1000 voxels and 50,000
SNPs, respectively.

The sample size was chosen to be 100 for both data matrices
and all combinations of simulated data. Following our analysis
strategy described in the previous sections, we performed PLSC
on the raw data matrices, and we applied PLSC-RP to optimize
runtime.We used RP to reduce the number of voxels and SNPs to
100 dimensions according to the Menon theorem (Menon, 2007)
for all considered dimensionality combinations.

3. RESULTS

3.1. PLSC-RP for High-Dimensional
Neuroimaging Measures—Continuous
Data
First we compared the results of traditional PLSC and PLSC-RP
on simulated brain imaging data of increasing dimensionality
and candidate SNPs. Specifically, we compared their results
with respect to the causal component, the significance of the
covariance between latent variables and the runtime (Table 1).
For both methods and for all simulated dimensionalities, causal
voxels, and SNPs were represented in the first component,
which is associated with the highest covariance, and covariances
between latent variables were significant. However, PLSC and
PLSC-RP differed considerably in runtime. Importantly, the
higher the number of simulated voxels, the more efficient
was the dimensionality reduction to 100 dimensions using
RP. At maximum, runtime was reduced from 4.2 h to 35.8
s using a standard computer with usual processing power
and memory (physical memory: 192 Gi, physical CPUs:
two Intel Xeon E5630 CPUs with frequency 2.53GHz and
4 cores).

We further compared PLSC and PLSC-RP with regard to
how the individual voxels and SNPs were weighted. A sample
illustration of voxel and SNP weights of PLSC for 90,000
simulated voxels and of PLSC-RP, when the dimensionality of
the fMRI data set was reduced to 100 dimensions, is provided in
Figure 1. Using both PLSC and PLSC-RP, causal voxels and SNPs,
as highlighted in yellow and red, received the highest weights.
Average weights for causal and non-causal voxels and SNPs are
presented in Supplementary Table 1. It shows that voxel and
SNP weights of PLSC and PLSC-RP were highly similar. This
was confirmed by three similarity measures (Table 2). For all
simulated dimensionalities of the fMRI data set, we observed a
Pearson correlation of sP ≈ 1, a cosine measure of sC ≈ 1 and an
extended Jaccard similarity of sJ ≈ 1. In addition, the intercepts
of the ANOVA models were approximately equal to 0 and the
slopes were approximately equal to 1 (Table 2). All P-values were
smaller than 2 · 10−16.

To verify our findings on simulated data, we compared the
results of traditional PLSC and PLSC-RP regarding experimental
brain imaging and genetics data. For both PLSC and PLSC-RP, we
considered only SNP and voxel weights of the first component,
since it already explained a large proportion of variance (72.76
and 69.08% for PLSC and PLSC-RP, respectively). The covariance
of latent variables was significant by permutation testing (P =

0.0248 and P = 0.0490 for PLSC and PLSC-RP, respectively).
We found that using both, PLSC and PLSC-RP, exactly the same
three SNPs (rs10014254, rs11722038 and rs17529323) as reported
in the original publication (Ousdal et al., 2012) were reliable. An
illustration of voxels related to these SNPs is provided in Figure 2.
We were able to replicate an association with amygdala activity
in both hemispheres (Ousdal et al., 2012). Importantly, we found
additional brain regions including cerebellum, left hippocampus,
left lingual gyrus, right putamen, and left lateral occipital cortex.
Voxel weight profiles of PLSC and PLSC-RP were highly similar
(Supplementary Table 2). This was confirmed by three similarity
measures (Pearson correlation sP = 0.9991, cosine measure
sC = 0.9992 and Jaccard similarity sJ = 0.9985) and ANOVA
(intercept = 2.14 · 10−5, slope = 0.9948 and P < 2 · 10−16).
PLSC-RP was, however, remarkably faster than PLSC, reducing
runtime from 2.4 h to 13.4 s.

3.2. PLSC-RP for High-Dimensional
SNPs—Count Data
Next we illustrated the performance of PLSC-RP for association
analysis of a data set containing genome-wide SNPs as genotypes
together with candidate phenotype measures. In contrast to the
brain imaging data in Section 3.1, which was scaled metrically,
SNP information statistically represents count data, since SNPs
were recoded by counting the number of minor alleles per
person.

We observed that both PLSC and PLSC-RP revealed a
two component solution. In the first component of the
phenotype weight profile, serum vaspin level was highly weighted
(|wvaspin| = 0.7068 for both PLSC and PLSC-RP). Body height
was most contributing to the second component (|wheight| =

0.9994 for PLSC and |wheight| = 0.9996 for PLSC-RP). Both
components were significant by permutation testing (Edgington,
1980) (Pvaspin < 2.2×10−16 and Pheight = 0.02 for both PLSC and
PLSC-RP). Since the out-of-sample covariance (Le Floch et al.,
2012) was much higher for the first component (covvaspin =

6.69 and covheight = 0.89), we restricted our interpretation to
associations with serum vaspin.The overall runtime for PLSC was
36.4 h. PLSC-RP reduced it to 4.8 min.

An illustration of the SNPs, which were associated with serum
vaspin concentrations in the Sorbs, is provided in Figure 3.
Using bootstrapping (Tibshirani and Efron, 1993), we showed
that exactly the same SNPs on chromosome 14 that were
reported in the original publication (Breitfeld et al., 2013) were
reliable, including rs11160190, rs6575436, rs4905203, rs1956713,
and rs11621467. We did not find an association for rs1956721
because we had to exclude this SNP due to its low call rate. The
SNP weight profiles of PLSC and PLSC-RP were highly similar
(Pearson correlation sP = 0.9999, cosine measure sC = 0.9999,
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TABLE 1 | PLSC and PLSC-RP results for high-dimensional neuroimaging data.

Type of Dimensionality Dimensionality Causal
P-value

Processing
Ratio

PLS analysis of fMRI data of SNP data component time

PLSC 1000
50 1

0.0024** 199.325 s

PLSC-RP 100 0.0012** 34.163 s

PLSC 10,000
50 1

0.0133* 1738.054 s

PLSC-RP 100 0.0125* 37.207 s

PLSC 20,000
50 1

0.0002*** 3958.958 s

PLSC-RP 100 0.0002*** 31.708 s

PLSC 30,000
50 1

0.0114* 5949.062 s

PLSC-RP 100 0.0106* 32.225 s

PLSC 40,000
50 1

0.0116* 7595.316 s

PLSC-RP 100 0.0784* 33.495s

PLSC 50,000
50 1

0.0006*** 8735.047 s

PLSC-RP 100 0.0002*** 33.495 s

PLSC 70,000
50 1

0.0040** 11671.470 s

PLSC-RP 100 0.0084** 35.421 s

PLSC 90,000
50 1

0.0132* 15112.120 s

PLSC-RP 100 0.0118* 35.767 s

The dimensionality of the simulated fMRI data was increased stepwise from 1000 to 90,000 voxels. The number of SNPs was constant. The table contrasts the results of traditional
PLSC (top row) and PLSC after dimensionality reduction of the fMRI data set to 100 dimensions using RP (bottom row) with regard to the component representing the causal pattern,
the P-value of permutation testing for the causal component, and total processing time for performing 5000 permutations (in seconds). The last column illustrates the proportion of
processing times of PLSC-RP (black) compared to traditional PLSC (gray). *P < 0.05, **P < 0.01, ***P < 0.001.

Jaccard similarity sJ = 0.9999, ANOVA intercept = −1.95 ·10−8,
slope = 0.9999993 and P < 2 · 10−16, Supplementary Table 3).

3.3. PLSC-RP for High-Dimensional
Neuroimaging Measures and
High-Dimensional SNPs—Continuous and
Count Data
According to our results presented in Section 3.1 and 3.2, PLSC-
RP provides statistically the same results as PLSC when we
perform dimensionality reduction of either one of the two data
sets searched for association. However, PLSC-RP would be of
universal application if it could address both at the same time.
Therefore, we compared the results of PLSC-RP to the results
obtained using traditional PLSC for simulation data containing
high-dimensional fMRI measures and high-dimensional SNPs.

As for our simulation results on high-dimensional
neuroimaging data (Section 3.1), causal voxels and SNPs
were represented in the first component for all dimensionality
combinations and for both PLSC and PLSC-RP (Table 3). The
covariances between latent variables were non-significant, since
chance correlations have a considerable effect in multivariate
models such as PLSC if variable numbers in both data sets are
excessively high compared to sample size. In terms of runtime,
PLSC-RP was remarkably faster than traditional PLSC. At
maximum, runtime was reduced from ca. 3757 h to 1.2min.

Sample illustrations of voxel and SNP weights for 1000 voxels
and 50,000 SNPs (dimensionality combination 6) are provided
in Figure 4. In general, using both PLSC and PLSC-RP, causal
voxels and SNPs got the highest weights. Weight profiles of
PLSC and PLSC-RP were comparably similar (Supplementary
Table 4 and Table 4). However, compared to our applications of
RP for dimensionality reduction of high-dimensional continuous
or high-dimensional count data, the degree of similarity was
reduced, on average, from 0.99 to 0.94. The two approaches,
PLSC and PLSC-RP, mainly differed in terms of weights
provided for non-causal voxels and SNPs, whereas the weights
for causal variables were approximately equal. Note that in
Figure 4 the magnitude of PLSC and PLSC-RP voxel and SNP
weights is comparably similar (especially for causal variables),
whereas the direction of weights is reversed. However, the
direction of weights is irrelevant, as long as the sign of both
voxel and SNP weights is reversed for PLSC-RP compared
to PLSC.

In addition to our causal SNPs highlighted in Figure 4, several
other SNPs were provided with high weights by PLSC and
PLSC-RP, including e.g., SNP 14,891, SNP 20,330, SNP 22,630,
SNP 23,349, and SNP 49,279 in the case of dimensionality
combination 6. All of these SNPs were actually linked to
the causal voxel, as revealed by means of Pearson correlation
(rSNP 14,891 = −0.3857, rSNP 20,330 = −0.3471, rSNP 22,630 = −

0.3230, rSNP 23,349 = −0.3293 and rSNP 49,279 = 0.3825).
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FIGURE 1 | PLSC and PLSC-RP weights for high-dimensional neuroimaging data. (A) Voxel weight profile and (C) SNP weight profile of the causal PLSC

component for 90,000 simulated voxels. (B) Voxel weight profile and (D) SNP weight profile of the causal PLSC-RP component after dimensionality reduction of the

fMRI data set to 100 dimensions. PLSC and PLSC-RP provide a weight for each voxel and each SNP. The causal voxel and causal SNPs (red), and voxels in

collinearity with the causal voxel (yellow), receive higher weights than non-causal voxels and SNPs (blue). For visualization purpose, the voxel weight profiles of PLSC

and PLSC-RP (A,B) are zoomed in on a range of 100 voxels around the causal voxel.

TABLE 2 | Similarity of PLSC and PLSC-RP weights for high-dimensional neuroimaging data.

Dimensionality
Similarity coefficients for fMRI data ANOVA for fMRI data Similarity coefficients for SNP data ANOVA for SNP data

Pearson’s r Cosine Ext. Jaccard Intercept Slope Pearson’s r Cosine Ext. Jaccard Intercept Slope

1000 0.9998 0.9998 0.9997 0.0007 0.9823 0.9979 0.9978 0.9957 −0.0015 0.9980

10,000 0.9966 0.9979 0.9958 −0.0002 1.0078 0.9883 0.9887 0.9777 0.0023 0.9853

20,000 0.9935 0.9961 0.9922 −0.0001 0.9834 0.9805 0.9806 0.9620 0.0023 0.9829

30,000 0.9948 0.9972 0.9944 −0.0001 0.9822 0.9819 0.9824 0.9654 −0.0006 0.9817

40,000 0.9869 0.9912 0.9826 −0.0004 0.9409 0.9727 0.9723 0.9460 0.0047 0.9754

50,000 0.9982 0.9993 0.9986 −0.0001 0.9797 0.9906 0.9908 0.9818 0.0022 0.9940

70,000 0.9800 0.9935 0.9872 −0.0003 1.0707 0.9741 0.9743 0.9499 −0.0038 0.9791

90,000 0.9974 0.9990 0.9980 −9.11 · 10−5 0.9768 0.9914 0.9910 0.9821 −0.0041 0.9906

We evaluated the performance of PLSC-RP by comparing its weight profiles to the weight profiles of PLSC. We applied three similarity measures, Pearson correlation, the cosine
measure and the extended Jaccard similarity. In addition, we used ANOVA for comparison. The ANOVA model represents a perfect linear relationship between the weights of PLSC
and PLSC-RP, in case the intercept equals 0 and the slope equals 1.
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FIGURE 2 | Voxels associated to the SNPs rs10014254, rs11722038, and rs17529323 during fMRI face-matching task. (A) Voxel weight profile of PLSC

considering whole-brain. (B) Voxel weight profile of PLSC-RP after dimensionality reduction of the fMRI data set to 208 dimensions. Only voxels with top 50% weights

are shown. We found an association with fMRI activity in bilateral amygdala (x = −22, y = −4, z = −12; x = 18, y = −4, z = −12), bilateral cerebellum (x = −28,

y = −54, z = −20; x = 22, y = −54, z = −16), left hippocampus (x = −32, y = −10, z = −14), left lingual gyrus (x = −20, y = −46, z = −4), right putamen (x = 28,

y = 4, z = −2), and left lateral occipital cortex (x = −30, y = −66, z = 28).

FIGURE 3 | SNPs associated with serum vaspin concentration in the Sorbs. (A) SNP weight profile of PLSC applied to the original data set consisting of

359,845 SNPs. (B) SNP weight profile of PLSC-RP after dimensionality reduction of the SNP data set to 865 dimensions. Reliable SNPs according to bootstrapping

are plotted in red. For visualization purpose, the SNP weight profiles are zoomed in on a range representing causal variants.

3.4. Comparison of PLSC-RP With and
Without Gram–Schmidt Orthogonalization
For dimensionality reduction using RP, random matrices need
to be orthogonalized in order to preserve distances between
the original points in the low-dimensional space. Unfortunately,
Gram–Schmidt orthogonalization is computationally expensive.

However, it has been shown by Hecht-Nielsen (1994) that in

high-dimensional spaces, there already exists a large number
of nearly orthogonal vectors, such that high-dimensional

random matrices are sufficiently close to orthogonal and

orthogonalization using the Gram–Schmidt algorithm can

be omitted. In order to quantify whether Gram–Schmidt
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TABLE 3 | PLSC and PLSC-RP results for high-dimensional neuroimaging and high-dimensional SNP data.

Type of Dimensionality Dimensionality Causal P-value Processing Ratio

PLS analysis of fMRI data of SNP data component time

PLSC 1000 1000
1

0.2116 5.3 h

PLSC-RP 100 100 0.1440 1.11 min

PLSC 10,000 10,000
1

0.3182 652.6 h

PLSC-RP 100 100 0.4582 1.07 min

PLSC 20,000 20,000
1

0.4554 1184.7 h

PLSC-RP 100 100 0.5322 1.15 min

PLSC 40,000 40,000
1

0.333 3756.6 h

PLSC-RP 100 100 0.5184 1.17 min

PLSC 50,000 1000
1

0.1951 149.2 h

PLSC-RP 100 100 0.2344 1.28 min

PLSC 1000 50,000
1

0.3358 184.8 h

PLSC-RP 100 100 0.1586 1.09 min

We generated simulated fMRI and SNP data of six different dimensionality combinations. The table contrasts the results of traditional PLSC on the raw data (top row) and PLSC-RP for
reduced voxel and SNP data sets of 100 dimensions, respectively (bottom row). Results are compared with regard to the component representing the causal pattern, the P-value of
permutation testing for the causal component, and total processing time for performing 5000 permutations (1000 permutations for 10,000 simulated voxel and SNPs, 250 permutations
for 20,000 simulated voxels and SNPs, and 100 permutations for 40,000 simulated voxels and SNPs due to runtime). The last column illustrates the proportion of processing times of
PLSC-RP (black) compared to traditional PLSC (gray). *P < 0.05, **P < 0.01, ***P < 0.001.

orthogonalization is necessary in high-dimensional genetic
neuroimaging data sets, we reran the analyses from Section
3.1 once using the Gram–Schmidt algorithm to orthogonalize
random matrices and once without orthogonalization. Random
matrices for the analyses with and without Gram–Schmidt
orthogonalization were the same but differed from the random
matrices in Section 3.1. We compared

1. the weights of traditional PLSC and of PLSC-RP using
random matrices that were orthogonalized using Gram–
Schmidt algorithm,

2. the weights of traditional PLSC and of PLSC-RP when we
omitted Gram–Schmidt orthogonalization,

3. the weights of PLSC-RP using random matrices with and
without Gram–Schmidt orthogonalization,

using the similarity measures Pearson correlation, cosine
measure and extended Jaccard similarity as well as ANOVA.
Results are illustrated in Table 5. It shows that the similarity
between the weights of traditional PLSC and PLSC-RP using
Gram–Schmidt algorithm for orthogonalization was only slightly
higher as (for 1000, 10,000, and 40,000 voxels) or close to
identical to (for 20,000, 30,000, 50,000, 70,000, and 90,000 voxels)
the similarity between the weights of traditional PLSC and
PLSC-RP when we omitted Gram–Schmidt orthogonalization.
Furthermore, the similarity between the weights of PLSC-RP
with and without Gram–Schmidt orthogonalization was higher
than the similarity between the weights of either method and
traditional PLSC.More specifically, the higher the dimensionality
of the simulated fMRI data and therefore the higher the number
of rows of the random matrices, the higher was the similarity

between the weights of PLSC-RP with and without Gram–
Schmidt orthogonalization (e.g., Pearson correlation for 1000
voxels sPMRI = 0.9998 and sPSNP = 0.9923, Pearson correlation
for 10,000 voxels sPMRI = 0.9998 and sPSNP = 0.9996, Pearson
correlation for 20,000 voxels or more sPMRI = 0.9999 and sPSNP =

0.9999).

3.5. Variability of PLSC-RP Results
Since for PLSC-RP dimensionality is reduced using RP, the results
will vary slightly in every run of the algorithm due to the random
draw of the random matrices R in Equation (4) or R1 and R2

in Equation (8). In order to quantify this variability, we reran
the analyses from the previous sections 10 times each using
different random matrices in every run of PLSC-RP. The results
are illustrated in Table 6. It shows that the variability of PLSC-
RP weights was very small in general. For simulated fMRI data
of 90,000 voxels and 50 candidate SNPs (Figure 1), it averaged
7.93 · 10−8 ± 5.58 · 10−8 for voxel weights and 7.77 · 10−4 ±

3.84 · 10−4 for SNP weights. For simulated high-dimensional
fMRI and high-dimensional SNP data (Figure 4), it accounted
for, on average, 5.05·10−5±3.27·10−5 for voxel weights and 1.13·
10−6 ± 9.19 · 10−7 for SNP weights. For experimental genotype-
phenotype data, the variability of PLSC-RP results was even
smaller. In the fMRI face-matching task (Figure 2), it averaged
4.10 · 10−9 ± 5.15 · 10−9 for voxel weights and 7.38 · 10−4 ±

1.09 ·10−3 for SNP weights. However, the variability of the causal
SNPs rs10014254, rs11722038 and rs17529323 was very low with
5.92 · 10−7± 1.72 · 10−9 on average. The variability of non-causal
SNPs was considerably higher and accounted for, on average,
2.41 · 10−3 ± 8.03 · 10−4. For the SNPs associated with serum
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FIGURE 4 | PLSC and PLSC-RP weights for high-dimensional neuroimaging and high-dimensional SNP data. (A) Voxel weight profile and (C) SNP weight

profiles of the causal PLSC component for 1000 simulated voxels and 50,000 simulated SNPs. (B) Voxel weight profile and (D) SNP weight profiles of the causal

PLSC-RP component after dimensionality reduction of both data sets to 100 dimensions. The causal voxel and causal SNPs (red), and voxels in collinearity with the

causal voxel (yellow), receive higher weights than non-causal voxels and SNPs (blue). In addition to the causal SNPs, several other SNPs were found to be highly

weighted, such as SNP 49,279 (bottom row, highlighted in yellow). For visualization purpose, the voxel weight profiles (A,B) and the SNP weight profiles (C,D) are

zoomed in on a range representing causal variants.

vaspin concentration in the Sorbs (Figure 3), we determined
similar variability results. For phenotype weights, we determined
an average variance of 3.69 · 10−4 ± 4.63 · 10−4 and for SNP

weights 1.29·10−9±1.84·10−9. The variability of the causal SNPs
rs11621467, rs4905203, rs1956713, rs6575436, and rs11160190
was even smaller with 1.02 · 10−9 ± 6.73 · 10−10 on average.
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TABLE 4 | Comparison of PLSC and PLSC-RP weights for high-dimensional neuroimaging and high-dimensional SNP data.

Dimensionality Dimensionality Similarity coefficients for fMRI data ANOVA for fMRI data Similarity coefficients for SNP data ANOVA for SNP data

of fMRI data of SNP data Pearson’s r Cosine Ext. Jaccard Intercept Slope Pearson’s r Cosine Ext. Jaccard Intercept Slope

1000 1000 0.9378 0.9890 0.9782 0.0039 0.8771 0.9886 0.9886 0.9774 −0.0002 0.9887

10,000 10,000 0.9691 0.9829 0.9664 0.0008 0.9260 0.9845 0.9845 0.9695 3.61 · 10−5 0.9846

20,000 20,000 0.8816 0.9150 0.8432 −0.0019 0.7638 0.9402 0.9402 0.8872 −4.58 · 10−5 0.9402

40,000 40,000 0.8252 0.8945 0.8092 0.0004 0.8373 0.9306 0.9307 0.8704 −5.77 · 10−6 0.9306

50,000 1000 0.8865 0.9618 0.9265 −0.0012 0.7378 0.9522 0.9928 0.9857 0.0004 0.9525

1000 50,000 0.9554 0.9928 0.9857 −0.0001 0.9888 0.9895 0.9895 0.9793 −1.03 · 10−5 0.9895

The table summarizes the results of the comparison of PLSC and PLSC-RP weight profiles. We applied three different similarity measures, Pearson correlation, the cosine measure,
and the extended Jaccard similarity. In addition, we used ANOVA for comparison.

4. DISCUSSION

4.1. Accuracy of PLSC-RP Results
Depending on the Number of Original
Variables
Here we report a new method for efficiently performing
multivariate analysis of high-dimensional genotype-phenotype
association data, which we termed PLSC-RP. In a simulation
series containing high-dimensional brain imaging measures
of increasing voxel numbers as phenotypes and candidate
SNPs as genotypes, we compared PLSC-RP to traditional
PLSC and demonstrated that they provide statistically highly
similar results, independent of the number of simulated
voxels. Importantly, the higher the dimensionality, the more
the processing time was reduced using PLSC-RP instead
of PLSC.

PLSC-RP is independent of the original dimensionality,
because dimensionality reduction is performed according to
the Johnson-Lindenstrauss lemma (Johnson and Lindenstrauss,
1984). The Johnson-Lindenstrauss lemma states that if we
pick a random subspace with reduced dimension k of an
originally high-dimensional data, the pairwise distances between
the original data points are preserved relative to an error ǫ, which
we are willing to accept. Thereby, the reduced dimension k is
logarithmic in the sample size N, which implies that random
projections, and thus PLSC-RP, are independent of the original
dimensionality. Since a reasonably high sample sizeN is sufficient
to ensure the accuracy of results, regardless of the number of
original variables, PLSC-RP is optimal in large scale settings. This
includes genetic neuroimaging studies, where the high number
of variants in the human genome and the high number of
voxels in the brain complicate the identification of variations
that are causally related to a particular disease (Schork et al.,
2007).

In order to verify our simulation results, we applied traditional
PLSC and PLSC-RP to an experimental genetic neuroimaging
data set that has been published previously (Ousdal et al.,
2012). We were able to replicate literature findings using both
PLSC and PLSC-RP, with PLSC-RP being again significantly
faster than PLSC. Specifically, we found three SNPs in high
LD, rs10014254, rs11722038, and rs17529323, to be significantly
associated to amygdala activity. These SNPs are located upstream

of the Paired-like homeobox 2b (PHOX2B) gene, which is
known to regulate the expression of enzymes necessary for the
biosynthesis of monoamines (Brunet and Pattyn, 2002). Thus,
we verified the authors hypothesis (Ousdal et al., 2012) that
the monoaminergic signaling pathway plays a central role in
the regulation of amygdala activity. In contrast to Ousdal et al.
(2012), who only considered the amygdala peak voxels to search
for influencing SNPs, we considered whole brain measures.
Therefore, we also found some other brain regions to be involved
during the emotional face-matching task, including cerebellum,
left hippocampus, left lingual gyrus and right putamen. All
these brain regions have been shown to be increasingly activated
during processing of negative emotional faces (Fusar-Poli et al.,
2009; Surguladze et al., 2010; Benedetti et al., 2011; Schraa-Tam
et al., 2012; Demenescu et al., 2013). To date, it is not confirmed
by the literature that individual differences in activation of these
brain regions might be explained by variation of PHOX2B SNPs.
However, we found evidence for an association of hippocampus
with another gene influencing the monoaminergic signaling
pathway, the gene that encodes the enzyme MAOA (Lee and
Ham, 2008).

4.2. Accuracy of PLSC-RP Results
Depending on the Data Type
We compared PLSC-RP to traditional PLSC on a data set
containing genome-wide SNPs as genotypes together with
candidate phenotype measures (body height and serum vaspin
concentration extracted from blood, specifically). In contrast
to the brain imaging measures, which we selected as high-
dimensional phenotypes in the first application and which were
scaled metrically, SNP information statistically represents count
data, since PLSC was performed under the assumption of an
additive genetic model. We showed that PLSC-RP provides
statistically equivalent results to PLSC, despite significant savings
in runtime. Therefore, dimensionality reduction using RP is
data type independent. Using both PLSC and PLSC-RP, we
were further able to replicate literature findings (Breitfeld et al.,
2013). In the original publication, six SNPs on chromosome
14, mapping between serpinA1 and serpinA4, were shown to
be significantly associated to serum vaspin measures. With the
exception of one SNP that we had to exclude due to its low call
rate, we verified these findings. We did not find any additional
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TABLE 5 | Similarity of weights of traditional PLSC and of PLSC-RP using random matrices with and without Gram–Schmidt orthogonalization.

Dim. Comp.
Similarity coefficients for fMRI data ANOVA for fMRI data Similarity coefficients for SNP data ANOVA for SNP data

Pearson’s r Cosine Ext. Jaccard Intercept Slope Pearson’s r Cosine Ext. Jaccard Intercept Slope

1000 A 0.9954 0.9977 0.9954 0.0019 0.9505 0.9891 0.9890 0.9783 0.0012 0.9891

1000 B 0.9940 0.9969 0.9939 0.0022 0.9421 0.9861 0.9861 0.9725 0.0009 0.9861

1000 C 0.9998 0.9999 0.9998 −0.0003 0.9923 0.9994 0.9994 0.9988 0.0003 0.9994

10,000 A 0.9981 0.9987 0.9975 −0.0002 1.0147 0.9919 0.9920 0.9841 0.0034 0.9872

10,000 B 0.9976 0.9983 0.9966 −0.0003 1.0201 0.9905 0.9905 0.9812 0.0044 0.9846

10,000 C 0.9998 0.9998 0.9997 0.0001 1.0056 0.9996 0.9996 0.9992 −0.0009 0.9984

20,000 A 0.9965 0.9979 0.9959 6.22 · 10−5 1.0037 0.9914 0.9915 0.9832 −0.0008 0.9909

20,000 B 0.9967 0.9981 0.9961 4.55 · 10−5 1.0023 0.9918 0.9919 0.9840 −0.0011 0.9910

20,000 C 0.9999 0.9999 0.9999 −1.74 · 10−5 0.9984 0.9999 0.9999 0.9999 −0.0003 0.9997

30,000 A 0.9932 0.9972 0.9944 −1.32 · 10−4 0.9807 0.9800 0.9806 0.9619 0.0002 0.9809

30,000 B 0.9930 0.9972 0.9944 −1.39 · 10−4 0.9799 0.9794 0.9800 0.9608 0.0004 0.9805

30,000 C 0.9999 0.9999 0.9999 5.60 · 10−6 0.9993 0.9999 0.9999 0.9999 −0.0002 1.0002

40,000 A 0.9855 0.9896 0.9793 −4.75 · 10−4 0.9295 0.9666 0.9667 0.9356 −7.68 · 10−4 0.9665

40,000 B 0.9860 0.9900 0.9802 −4.63 · 10−4 0.9313 0.9682 0.9683 0.9385 −8.41 · 10−4 0.9680

40,000 C 0.9999 0.9999 0.9999 1.03 · 10−5 1.0013 0.9999 0.9999 0.9998 −8.85 · 10−5 0.9999

50,000 A 0.9942 0.9977 0.9955 −2.17 · 10−4 0.9584 0.9831 0.9821 0.9648 −0.0078 0.9750

50,000 B 0.9940 0.9977 0.9954 −2.24 · 10−4 0.9571 0.9826 0.9816 0.9639 −0.0080 0.9744

50,000 C 0.9999 0.9999 0.9999 6.70 · 10−6 0.9988 0.9999 0.9999 0.9999 0.0001 0.9998

70,000 A 0.9944 0.9984 0.9967 9.79 · 10−5 0.9765 0.9896 0.9894 0.9791 −0.0039 0.9943

70,000 B 0.9943 0.9983 0.9967 9.47 · 10−5 0.9772 0.9894 0.9892 0.9787 −0.0040 0.9943

70,000 C 0.9999 0.9999 0.9999 3.67 · 10−6 1.0008 0.9999 0.9999 0.9999 0.0002 1.0002

90,000 A 0.9935 0.9977 0.9955 −1.07 · 10−4 0.9718 0.9858 0.9858 0.9720 −8.68 · 10−4 0.9856

90,000 B 0.9934 0.9977 0.9954 −1.07 · 10−4 0.9716 0.9856 0.9856 0.9716 −9.41 · 10−4 0.9853

90,000 C 0.9999 0.9999 0.9999 −4.33 · 10−7 0.9999 0.9999 0.9999 0.9999 −7.29 · 10−5 0.9999

We compared the weights of traditional PLSC and of PLSC-RP with and without Gram–Schmidt orthogonalization using three similarity measures, Pearson correlation, the cosine
measure and the extended Jaccard similarity. Furthermore, we applied ANOVA for comparison. (A) Comparison of weights of traditional PLSC and of PLSC-RP using random matrices
that were orthogonalized using Gram–Schmidt algorithm. (B) Comparison of weights of traditional PLSC and of PLSC-RP when we omitted Gram–Schmidt orthogonalization. (C)
Comparison of weights of PLSC-RP using random matrices with and without Gram–Schmidt orthogonalization.

SNPs, since the authors in the original publication (Breitfeld et al.,
2013) already performed a genome-wide screening.

4.3. Accuracy of PLSC-RP Results for Both
High-Dimensional Neuroimaging and SNP
Data
Finally, we applied PLSC-RP on a simulated data set containing
both high-dimensional brain imaging and high-dimensional
SNP measures of different dimensionality combinations. We
showed that PLSC-RP was able to detect causal voxels and
SNPs with high accuracy, despite slightly reduced similarity to
the results provided by PLSC compared to the applications of
PLSC-RP and PLSC for either high-dimensional neuroimaging
measures or high-dimensional SNPs. Again, PLSC-RP was
significantly faster than PLSC. At maximum, runtime was
reduced from 22 weeks to 1.2 min. Thus, we strongly

recommend the use of PLSC-RP even if both data sets are
high-dimensional.

4.4. Comparison of PLSC-RP With and
Without Gram–Schmidt Orthogonalization
For dimensionality reduction using RP, random matrices
need to be orthogonal. To quantify whether Gram–Schmidt
orthogonalization is necessary or whether high-dimensional
random matrices are sufficiently close to orthogonal without
orthogonalization, we repeated our analyses from Section 3.1
once using the Gram–Schmidt algorithm to orthogonalize
random matrices and once without orthogonalization. We
showed that the weights of PLSC-RP using Gram–Schmidt
algorithm and the weights of PLSC-RP when we omitted
orthogonalization were close to identical for all simulated fMRI
data sets. Thus, the quality of PLSC-RP results is not depended
on the Gram-Schmidt algorithm in high-dimensional association
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TABLE 6 | Variability of PLSC-RP phenotype and genotype weights.

High-dimensional neuroimaging data: voxel weight variance = 7.93 · 10−8
± 5.58 · 10−8, SNP weight variance = 7.77 · 10−4

± 3.84 · 10−4

Voxel-No./SNP-No. Voxel weight/SNP weight Variance of weights Average percentage deviation of weights(%)

Low Voxel 69,627 −0.0053647 2.42 · 10−9 4.02
.
.
. Voxel 52,777 (causal) −0.0064222 6.45 · 10−8 4.41

High Voxel 2481 0.0001969 5.11 · 10−7 72.22

Low SNP 8 0.1002331 1.77 · 10−4 5.16
.
.
. Causal SNPs −0.2771739 9.72 · 10−4 ± 4.51 · 10−4 6.52

High SNP 24 0.0196767 1.95 · 10−3 37.52

Functional MRI face-matching task: voxel weight variance = 4.10 · 10−9
± 5.15 · 10−9, SNP weight variance = 7.38 · 10−4

± 1.09 · 10−3

Voxel-No./SNP-No. Voxel weight/SNP weight Variance of weights Average percentage deviation of weights(%)

Low Voxel 77,179 −0.0010709 1.17 · 10−13 0.04
.
.
. Causal voxels −0.0059789 2.85 · 10−9 ± 2.67 · 10−9 0.50

High Voxel 98,449 −0.0006442 8.75 · 10−8 28.80

Low SNP 1, 2, and 3 (causal) −0.5757151 5.92 · 10−7 ± 1.72 · 10−9 0.15

High SNP 4 and 5 0.0426746 2.41 · 10−3 ± 8.03 · 10−4 12.14

Serum vaspin concentration: phenotype weight variance = 3.69 · 10−4
± 4.63 · 10−4, SNP weight variance = 1.29 · 10−9

± 1.84 · 10−9

Phenotype/SNP-No. Phenotype weight/SNP weight Variance of weights Average percentage deviation of weights(%)

Low Vaspin 0.7067676 1.02 · 10−4 0.87

High Height 0.0294468 9.04 · 10−4 10.27

Low rs16960334 −0.0002319 1.82 · 10−15 0.02
.
.
. Causal SNPs 0.0092556 1.02 · 10−9 ± 6.73 · 10−10 0.18

High rs16824418 −0.0004946 7.51 · 10−8 5.59

High-dimensional neuroimaging and SNP data: voxel weight variance = 5.05 · 10−5
± 3.27 · 10−5, SNP weight variance = 1.13 · 10−6

± 9.19 · 10−7

Voxel-No./SNP-No. Voxel weight/SNP weight Variance of weights Average percentage deviation of weights(%)

Low Voxel 792 0.0419922 3.89 · 10−6 4.80
.
.
. Voxel 793 (causal) 0.0408320 1.22 · 10−5 11.09

High Voxel 516 0.0003213 1.70 · 10−4 78.17

Low SNP 10,840 0.0045882 2.76 · 10−8 4.33
.
.
. Causal SNPs 0.0142486 6.49 · 10−7 ± 2.33 · 10−7 4.62

High SNP 49,164 0.0006524 1.08 · 10−5 88.81

We assessed the variability of PLSC-RP phenotype and genotype weights by performing 10 runs of PLSC-RP with different choices of random matrices on the same data sets. The table
illustrates the exact weight, the variability and the average percentage deviation of weights for selected phenotype variables and SNPs, respectively. Weights and variability estimates of
phenotypes and SNPs with minimum variability are shown in the top row, followed by weights and variability estimates of causal phenotypes and SNPs, and finally weights and variability
estimates of phenotypes and SNPs with maximum variability.

analyses, such that a preceding orthogonalization of random
matrices can be safely omitted. This is also suggested, since
the Gram-Schmidt algorithm is computationally expensive. We
further observed that the similarity was slightly higher, the
higher the dimensionality of the simulated fMRI data. Therefore,
an orthogonalization becomes less necessary, the more voxels
and/or SNPs are considered. In genetic neuroimaging, where the
data sets usually capture the whole brain or the whole genome,
respectively, the Gram-Schmidt algorithm can be omitted.

However, for smaller data sets, we recommend to orthogonalize
random matrices.

4.5. Variability of PLSC-RP Results
Since the dimensionality reduction in PLSC-RP depends on
the choice of random matrices, the algorithm produces slightly
different results in every run. To quantify this variability, we
repeated our analyses 10 times each, using different random
matrices in every run of PLSC-RP.We showed that the variability
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TABLE 7 | Accuracy of the distance preservation ǫ depending on sample size N and reduced dimension k for a given probability of success 1 −N−β in

PLSC-RP.

N 100 200 208 500 865 1000 2000 5000 8000 10,000

k 100 200 208 500 865 1000 2000 5000 8000 10,000

1 − N−β 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95

ǫ 0.9882 0.7374 0.7251 0.4968 0.3909 0.3667 0.2698 0.1790 0.1448 0.1309

We determined the accuracy of the distance preservation ǫ according to the Menon theorem in Equation (5) for a fixed probability of success 1 − N−β =0.95 and a fixed reduced
dimension k similar to sample size. Accordingly, the higher the sample size, the higher also the accuracy of distance preservation. Bold values represent sample sizes of data sets
introduced in this study.

of PLSC-RP results was very small in general. The highest
variability we determined for a single genotypic or phenotypic
variable was 0.0025. On average, however, variability was much
lower. Thus, PLSC-RP is appropriate for both exploratory
analyses, in order to detect causal SNPs and phenotypes
maximizing the joint covariance in an association study, and
replication analyses, when multiple runs of the algorithm are
performed. Repeatability of PLSC-RP results is assured even
if different random matrices are selected for dimensionality
reduction in every run of the algorithm.

We further observed that variability of PLSC-RP results was
smaller the higher the sample size of our data sets. For our
simulation experiments, the sample size was chosen to be 100,
and the variability of PLSC-RP weights including all voxels and
SNPs was between 1.95 · 10−3 and 2.42 · 10−9. In contrast, when
we used PLSC-RP to search for genome-wide SNPs associated
with serum vaspin concentration, sample size was equal to 865,
and the variability of PLSC-RP weights including the phenotypes
serum vaspin concentration and body height as well as all SNPs
was between 9.04·10−4 and 1.82·10−15. Dimensionality reduction
in PLSC-RP depends on the sample size N, and, according to
the Johnson-Lindenstrauss lemma, it assures to preserve the
distances between the original data points when N is logarithmic
in the reduced dimension k (Johnson and Lindenstrauss, 1984).
We reduced the dimensionality of the fMRI and/or SNPmatrices
to sample size in all applications. Thus, the higher the sample
size, the higher was also the accuracy of distance preservation
for a given probability of success (Table 7). The higher the
accuracy of the distance preservation, the higher the degree of
similarity between the results of PLSC-RP and traditional PLSC,
and likewise, the higher also the degree of similarity between
the results of multiple runs of PLSC-RP using different random
matrices.

4.6. PLSC-RP in Comparison to Other
Dimensionality Reduction Methods in
Genetic Neuroimaging
With combining PLSC and RP, we made two major contributions
to the analysis of genetic neuroimaging data. First, in genetic
neuroimaging studies, the number of variables usually exceeds
the number of observations, such that multivariate methods
encounter critical over-fitting issues (Le Floch et al., 2012).
Our new technique uses RP for dimensionality reduction in
order to circumvent this problem. Previous studies (Hibar et al.,
2011a,b; Le Floch et al., 2012; Hua et al., 2015) also contributed

to this end by implementing univariate filters or PCA as
pre-processing step. However, they performed dimensionality
reduction on either the genetic or the neuroimaging data
set. In contrast, to illustrate the PLSC-RP methodology, we
systematically used a two-stepped approach. First, we applied
PLSC-RP for multivariate analysis of data sets containing either
high-dimensional neuroimaging measures or high-dimensional
SNPs. Neuroimaging measures are scaled metrically, but SNPs
are counts. Therefore, we demonstrated that PLSC-RP is data-
type independent. Then, we considered data sets containing
a combination of high-dimensional neuroimaging measures
and high-dimensional SNPs, and performed dimensionality
reduction on both domains. This has not been done
before.

Our second and most important contribution is related to
computational efficiency. Previous studies (Hibar et al., 2011a,b;
Le Floch et al., 2012; Hua et al., 2015) implemented univariate
filters or PCA as pre-processing step, which are computationally
very expensive procedures. In contrast, PLSC-RP is able to
dramatically reduce runtime and enables researchers to analyze
truly high-dimensional data sets, even if there is no powerful
compute server available in the lab. Hence, our study is the
first of its kind that implements dimensionality reduction
both to overcome critical over-fitting issues and to reduce
runtime.

4.7. Potential Applications
In this study, we applied PLSC-RP to efficiently assess genome-
wide and whole-brain associations. Combining neuroimaging
data with genetic information is a rapidly growing research
approach, enabling the integration of information from two
of the major methodological advances introduced in the past
30 years, namely sequencing of the entire human genome and
fMRI in humans. However, the application of PLSC-RP is
not limited to the combined analysis of genotypes and brain
imaging phenotypes. It opens up a wide range of possible uses
far beyond imaging genetics. PLSC-RP might be considered
for fusion of several brain imaging techniques, such as MRI,
positron emission tomography (PET), diffusion tensor imaging
(DTI), or magnetoencephalography (MEG) in order to profit
from the benefits of each modality (Sui et al., 2012). It is
suitable for the integrated analysis of disease status and multiple
types of “omics” data, such as genomics, epigenomics, and
transcriptomics, aiming to understand signs of malfunction that
cause diseases. Furthermore, it can be applied to investigate how
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concentrations of biomolecules in different tissues or different
species, such as mice and humans, are associated to each other.
To summarize, PLSC-RP is appropriate for any integrative
analysis which combines information from multiple sources
and has therefore a multitude of potential applications. Since
PLSC-RP depends on sample size only and is independent of
the number of variables, it is especially attractive for large-
scale multicenter association studies or other data sharing
projects.
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