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Chromosome segregation and mitotic exit are initiated by the
1.2-MDa ubiquitin ligase APC/C (anaphase-promoting complex/cyclo-
some) and its coactivator CDC20 (cell division cycle 20). To avoid chro-
mosome missegregation, APC/CCDC20 activation is tightly controlled.
CDC20 only associates with APC/C in mitosis when APC/C has become
phosphorylated and is further inhibited by a mitotic checkpoint com-
plex until all chromosomes are bioriented on the spindle. APC/C con-
tains 14 different types of subunits, most of which are phosphorylated
in mitosis on multiple sites. However, it is unknown which of these
phospho-sites enable APC/CCDC20 activation and by which mechanism.
Here we have identified 68 evolutionarily conserved mitotic phospho-
sites on human APC/C bound to CDC20 and have used the biGBac
technique to generate 47 APC/C mutants in which either all 68 sites
or subsets of them were replaced by nonphosphorylatable or phos-
pho-mimicking residues. The characterization of these complexes in
substrate ubiquitination and degradation assays indicates that phos-
phorylation of an N-terminal loop region in APC1 is sufficient for bind-
ing and activation of APC/C by CDC20. Deletion of the N-terminal APC1
loop enables APC/CCDC20 activation in the absence of mitotic phosphor-
ylation or phospho-mimicking mutations. These results indicate that
binding of CDC20 to APC/C is normally prevented by an autoinhibitory
loop in APC1 and that its mitotic phosphorylation relieves this inhibi-
tion. The predicted location of the N-terminal APC1 loop implies that
this loop controls interactions between the N-terminal domain of
CDC20 and APC1 and APC8. These results reveal how APC/C phosphor-
ylation enables CDC20 to bind and activate the APC/C in mitosis.
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Eukaryotic cells pass their genomes from one cell generation to
the next by first replicating DNA and simultaneously connecting

the nascent sister chromatids during S-phase to allow their
biorientation on the spindle later in mitosis. Once all chromosomes
have become bioriented, the cohesion that holds sister chromatids
together is destroyed, enabling chromosome segregation in ana-
phase and the formation of daughter cells with correct ploidy. A key
step in this “chromosome cycle” is initiated by a ubiquitin ligase
complex, called the anaphase-promoting complex/cyclosome (APC/C)
(1–5). The APC/C initiates sister chromatid separation by assembling
chains of the small protein ubiquitin on B-type cyclins, the activating
subunits of cyclin-dependent kinase 1 (CDK1), and on securin,
an inhibitor of the protease separase (reviewed in ref. 6). The
subsequent degradation of these proteins by the 26S proteasome
activates separase, which separates sister chromatids by cleaving
cohesin, a complex that mediates sister chromatid cohesion.
APC/C is composed of 14 types of subunits (five are present in

two copies each) (7–9), which assemble into a 1.2-MDa complex
composed of two major structural parts, called the “platform” and
the “arc lamp” (9). APC/C recognizes B-type cyclins and securin in
metaphase with help of a coactivator protein called CDC20, which
associates with APC/C specifically in mitosis, resulting in formation

of APC/CCDC20. A related coactivator, CDH1, binds APC/C during
mitotic exit to form APC/CCDH1, which remains active throughout
the G1-phase and in postmitotic cells (reviewed in ref. 10). Both
CDC20 and CDH1 interact with APC/C via a C-terminal “IR tail”
(11) and an N-terminal “C-box” (12), which associate with the
APC/C subunits APC3 and APC8, respectively (13–15). Once bound
to APC/C, the coactivators enable substrate recruitment via their
WD40 “propeller” domains, which recognize “degron” sequences in
APC/C substrates, such as the destruction (D) box (14, 16). Covalent
attachment of ubiquitin to lysine residues in substrates is mediated
by the ubiquitin-conjugating (E2) enzymes UBE2D (also known as
UBCH5), UBE2C (also known as UBCH10 and UBCx), and
UBE2S, with the latter two having specific roles in the initiation and
elongation of ubiquitin chain formation on APC/C substrates, re-
spectively (2, 7, 17–20).
The activity of APC/C is tightly controlled to ensure that specific

substrates are targeted for degradation only at the appropri-
ate time during the cell cycle. This regulation occurs on at
least two levels. The formation of APC/CCDC20 and APC/CCDH1

is regulated by mitotic protein kinases, with phosphorylation
of APC/C by CDK1 and to a lesser extent by Polo-like kinase 1
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(PLK1) increasing CDC20 binding and APC/CCDC20 activity
(2–4, 21–27) and phosphorylation of CDH1 by CDK1 having the
opposite effect, preventing binding and activation of APC/C by CDH1
(23, 28–31). The opposing effect of phosphorylation on APC/CCDC20

and APC/CCDH1 ensures that the former can only be active in
mitosis when CDK1 activity is high, whereas the latter can only be
active after mitotic exit when CDK1 activity is low, as a result of
cyclin degradation mediated by APC/CCDC20 (10). CDC20 phos-
phorylation has also been found to inhibit binding of CDC20 to
APC/C and recruitment of UBE2S, and dephosphorylation of
CDC20 by protein phosphatase 2A has been proposed to enable
APC/CCDC20 activation (32–35).
A second level of APC/C regulation is provided by specific inhib-

itors of CDC20 and CDH1, called the mitotic checkpoint com-
plex (MCC) (36, 37) and EMI1 (38). Whereas EMI1 contributes to
APC/CCDH1 inhibition throughout the S- and G2-phase, MCC is
assembled only during prometaphase at kinetochores of chromo-
somes that have not been properly bioriented on the mitotic spindle
yet (reviewed in ref. 39). MCC is composed of CDC20 and three
other subunits (MAD2, BUBR1, and BUB3) (36, 37), associates with
APC/CCDC20 to form APC/CMCC (40), and prevents recruitment and
ubiquitination of B-type cyclins and securin (41). By doing so, MCC
delays separase activation until chromosome biorientation has been
completed and thereby prevents precocious sister chromatid separa-
tion. This surveillance mechanism, called the spindle assembly
checkpoint (SAC), is important for avoiding the formation of aneu-
ploid daughter cells.
Although it is well known that APC/C phosphorylation is re-

quired for activation of APC/CCDC20 (2, 3, 21–27) and that this
process is essential for proper cell division, the precise role of
APC/C phosphorylation in APC/CCDC20 activation remains unknown.
Mitotic APC/C phosphorylation promotes CDC20 binding (22, 23,
26), but it is unknown how phosphorylation causes this effect, which
phospho-sites are responsible for APC/C activation, and if CDC20
recruitment is the only function of APC/C phosphorylation.
To be able to address these and other questions, we have de-

veloped a method, called biGBac, to rapidly assemble expression
constructs containing all 14 human APC/C cDNAs (42). Here we
have used mass spectrometry to identify 68 evolutionarily conserved
phosphorylation sites that are present on mitotic APC/C in its
CDC20-bound form, and we have used the biGBac technique in
combination with site-directed mutagenesis to generate 47 forms of
recombinant APC/C in which we systematically changed either all or
various subsets of the 68 sites to nonphosphorylatable or phospho-
mimicking residues. We characterized the ability of CDC20 to acti-
vate these APC/C mutants to mediate the ubiquitination and sub-
sequent proteasomal degradation of cyclin B1 and securin. Our
results show that the presence of phospho-mimicking residues in a
single loop in APC1 (consisting of residues 296–401) enables CDC20
to bind and activate APC/C in the absence of mitotic APC/C phos-
phorylation. Importantly, deletion of this loop also allows APC/C
activation by CDC20. We therefore propose that this loop nor-
mally prevents access of CDC20 to one of its binding sites,
presumably formed by APC1 and APC8 with which the C-box
containing N-terminal domain (NTD) of CDC20 interacts, and that
phosphorylation of the APC1 loop alleviates this inhibitory effect.
These results reveal how APC/C phosphorylation enables CDC20
to bind and activate the APC/C in mitosis.

Results
Identification of Phosphorylation Sites on Mitotic APC/C Associated
with CDC20. Previous studies identified numerous phosphoryla-
tion sites on APC/C isolated from human mitotic cells (22, 43–
45), but these contain various forms of APC/C (41), APC/CMCC,
and apo-APC/C in prometaphase and APC/CCDC20 and apo-
APC/C in metaphase (apo-APC/C is a form of APC/C not bound
to MCC, CDC20, or CDH1). To identify phospho-sites that
might be required for CDC20 binding, we first analyzed which

phospho-sites are present on APC/C in its CDC20-bound forms
(APC/CCDC20 and APC/CMCC). For this purpose, we synchronized
HeLa cells in mitosis by four different cell-cycle synchronization
procedures (Fig. 1A), purified APC/C via immunoprecipitation
(IP) with antibodies to APC3 (also known as CDC27), isolated
APC/C bound to CDC20 from these samples by re-IP with CDC20
antibodies, and analyzed phospho-sites by in-solution digest–mass
spectrometry (44). We enriched cells either in prometaphase,
where the SAC is active by treatment with the spindle poisons
nocodazole or taxol, or in a metaphase-like state by treatment with
taxol and the Aurora B inhibitor hesperadin, which inactivates the
SAC (41, 46), or in various stages of mitosis without drug treat-
ments (which have been reported to modulate APC/C phosphor-
ylation) (45) by double-thymidine arrest–release and mitotic
“shake-off.” To prevent mitotic exit, which is normally caused by
SAC inactivation, cells exposed to taxol with or without hesperadin
were also treated with the proteasome inhibitor MG132, as de-
scribed (41). For comparison, we also analyzed phospho-sites on
interphase APC/C isolated by APC3 IP from cells arrested at the
onset of S-phase (Fig. S1A). SDS/PAGE followed by silver staining
(Fig. 1 B and C) or immunoblotting (Fig. 1D) revealed that re-IP
with CDC20 antibodies specifically enriched phosphorylated
APC/C from mitotic cells, as could be seen by electrophoretic
mobility shifts of APC1, APC3, APC6 (also known as CDC16), and
APC8 (CDC23) and by using antibodies specific to phospho-sites on
these subunits (22), consistent with the notion that APC/C phos-
phorylation is required for CDC20 binding (22, 23, 26).
Peptides representing 87% and 72% of the sequences of all APC/C

subunits were detected for interphase and mitotic APC/C, re-
spectively, allowing the identification of most, although possibly not
all, phospho-sites (Dataset S1). In total, we identified 120 phospho-
sites (Dataset S2; see Fig. S1 B–E for tandem mass spectra of a
representative phospho-peptide). Of these, we considered as poten-
tially being important for CDC20 binding those that could be found
in all four mitotic samples but not on interphase APC/C and that
were located on amino acid residues conserved among vertebrate
orthologs. These criteria were fulfilled by 68 phospho-sites on serine
and threonine residues, 58 of which had previously been reported in
the literature (22, 43–45). These 68 sites are located on 10 subunits
(APC1, APC2, APC3, APC4, APC5, APC6, APC7, APC8, APC10,
and APC12; Table S1). Because APC3, APC6, APC7, APC8, and
APC12 are present in two copies each per complex (7–9), the
68 phosphorylated residues identified by mass spectrometry may
correspond to up to 100 phospho-sites in APC/C (whether the phos-
pho-peptides measured in our experiments are derived from one or
both copies of APC3, APC6, APC7, APC8, and APC12 cannot be
concluded from our results). Of these 100 potential sites, 90 are not
visible in a known cryo-electron microscopy (cryo-EM) structure of
APC/C (Fig. S2) (13). This implies that these sites are present in
flexible regions such as loops, consistent with the previous notion that
protein kinases preferentially phosphorylate sites that are present in
regions that are predicted to be disordered (47).We also noticed some
differences in the phosphorylation of APC/C isolated from mitotic
cells with an active or an inactive SAC, possibly representing
differences between APC/CMCC and APC/CCDC20, but did not
analyze these further in this study (Fig. S1F and Dataset S3).

Generation of Nonphosphorylatable and Phospho-Mimicking APC/C
Mutants. To analyze the potential role of the conserved mitotic
phospho-sites in APC/CCDC20 activation, we mutated all 68
corresponding serine and threonine residues either to alanine (Ala, A)
or glutamate (Glu, E) to create mutants in which these sites are
nonphosphorylatable or phospho-mimicking, respectively, and used
the biGBac technique (42) and expression in baculovirus-infected
insect cells to generate recombinant forms of these mutants. We refer
to the mutant containing 68 substitutions to alanine and to the one
containing 68 substitutions to glutamate as APC/C-pA (poly-Ala)
and APC/C-pE (poly-Glu), respectively. Although these complexes
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contain 100 mutations each (because the subunits APC3, APC6,
APC7, APC8, and APC12 are present in two copies each; 7–9),
APC/C-pA and APC/C-pE resembled wild-type (WT) APC/C
with respect to subunit composition and stoichiometry, as de-
termined by SDS/PAGE and silver staining (Fig. 1E), and with re-
spect to their structure and ability to recruit CDH1 to its normal
binding site, as determined by single-particle EM reconstruction
(Fig. 1F; compare with WT APC/C in ref. 7). Notably, the electro-
phoretic mobility of the APC1, APC3, APC6, and APC8 subunits of
APC/C-pE was reduced compared with their WT counterparts,
which is reminiscent of the reduction in electrophoretic mobility
that is caused by mitotic phosphorylation of these subunits (3).

Nonphosphorylatable APC/C-pA Cannot Be Activated by CDC20, Whereas
Phospho-Mimicking APC/C-pE Can Be Activated by CDC20 in the Absence
of Mitotic Phosphorylation. To analyze the activity of APC/C-pA and
APC/C-pE, we first performed ubiquitination assays. As expected,
APC/C-pA behaved similarly as recombinant WT APC/C in that

neither complex could efficiently ubiquitinate an N-terminal frag-
ment of cyclin B1 (CycBNTD) in the presence of CDC20 (Fig. 1G,
Left). In contrast, both complexes could be activated to some ex-
tent by CDH1 in a manner that was sensitive to inhibition by EMI1
(Fig. 1G, Right), indicating that APC/C-pA is not generally de-
ficient in supporting ubiquitination reactions but cannot be acti-
vated by CDC20. Importantly, APC/C-pE behaved differently from
WT APC/C and APC/C-pA in that APC/C-pE could be activated
similarly well by CDC20 and CDH1 in manners that were sensitive
to inhibition by MCC and EMI1, respectively (Fig. 1G). The ob-
servation that mutation of 68 phospho-sites to glutamate residues
enables APC/C activation by CDC20 in the absence of mitotic
phosphorylation indicates that phosphorylation of these residues
(or of a subset of them) is sufficient for activation of APC/C by
CDC20, at least under the assay conditions used.
To analyze the effect of these mutations under more physiologi-

cal conditions, we analyzed the ability of WT APC/C and the pA
and pE variants to induce degradation of cyclin B1 and securin in
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Fig. 1. Immunopurification of mitotically phosphorylated APC/CCDC20 and purification and characterization of nonphosphorylatable and phospho-mimicking
human APC/C. (A) Schematic overview of the synchronization procedures to obtain mitotic HeLa S3 cells. To obtain prometaphase-arrested cells with active
SAC (SAC on), cells were synchronized using either the spindle poisons nocodazole or taxol. To obtain metaphase-arrested cells with inactive SAC (SAC off),
cells were synchronized using taxol and supplemented with the Aurora B inhibitor hesperadin. Cells exposed to taxol with or without hesperidin were also
treated with the proteasome inhibitor MG132 to prevent mitotic exit (41). To enrich for mitotic cells with unperturbed spindle checkpoint, cells were syn-
chronized using a double-thymidine arrest–release procedure (SAC on/off). Mitotic cells were harvested by mitotic shake-off. (B–D) APC/C was immuno-
precipitated from extracts of asynchronous (Asyn) or nocodazole-arrested (Noc) HeLa cells using APC3 antibody beads, re-immunoprecipitated using CDC20
antibody beads, and subjected to SDS/PAGE and silver staining (B and C) or Western blotting (D). Positions of subunits that display a mitotic phosphorylation
electrophoretic mobility shift are indicated (pAPC1, pAPC3, and pAPC8). Note that in the CDC20 re-IP only the slowly migrating forms of APC1, APC3, and
ACP8 were detected and that these three all cross-reacted with phospho-specific antibodies to these subunits. (E) Silver-stained SDS/PAGE gel of purified
recombinant WT, nonphosphorylatable (pA), and phospho-mimicking (pE) APC/C. (F) Single-particle reconstruction by negative stain EM of recombinant
APC/Ccoactivator

–UBCH10–Ub–substrate complexes: APC/CCDH1 (gray, 20 Å resolution) (7), APC/C-pACDH1 (pink, 16 Å resolution), APC/C-pECDH1 (blue, 16 Å res-
olution), and APC/C-pECDC20 (green, 19 Å resolution). pA and pE maintain APC/C structural integrity. (G) Ubiquitination reactions, carried out in the presence of
recombinant APC/C-WT, pA or pE, and fluorescein-labeled substrate N-terminal fragment of cyclin B (CycBNTD*), were analyzed by SDS/PAGE and fluorescence
scanning. The reactions with CDC20 with or without MCC are in the Left panel, and the ones with CDH1 with or without EMI1 (EMI1-SKP1) are in the Right panel.
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interphase and mitotic Xenopus egg extracts. These extracts re-
capitulate cell-cycle regulation of APC/CCDC20 activity—that is,
mediate ubiquitination and degradation of APC/C substrates in
mitosis but not in interphase (16, 48, 49). CDH1 is not present in
these extracts (23) but can induce degradation of APC/C substrates
if added (14, 50, 51) (Fig. S3A). First, we tested if the 68 mitotic
phospho-sites mutated in APC/C-pA are required for mitotic
APC/C activation or if phosphorylation of other nonmutated sites
might also be sufficient. For this purpose, we immunodepleted en-
dogenous APC/C from mitotic Xenopus extract and replaced it with
either recombinant humanWTAPC/C or APC/C-pA. Whereas WT
APC/C could restore degradation of securin and CycBNTD, APC/C-
pA could not (Fig. 2A). Similar to the results obtained in ubiquiti-
nation assays (Fig. 1G), this was not due to a more general defect of
this APC/C mutant, as APC/C-pA was able to induce securin and
CycBNTD degradation in interphase extracts if these were also
supplemented with CDH1 (Fig. 2B). This indicates that the 68
phospho-sites mutated in APC/C-pA, or a subset of them, are re-
quired for mitotic APC/CCDC20 activation.
To test if mutation of these 68 sites to glutamate is sufficient for

APC/CCDC20 activation, we replaced endogenous APC/C with WT
APC/C or APC/C-pE in interphase extracts. In these extracts,
securin was degraded much more slowly than in mitotic extracts in
the presence of endogenous or recombinant WTAPC/C (Fig. S3B).
However, in the presence of APC/C-pE, interphase extracts de-
graded securin with kinetics that were similar to the rapid kinetics
normally only seen in mitotic extracts (Fig. 2C). The ability of APC/
C-pE to induce securin degradation in interphase, where CDC20 is
not normally active, was delayed by depletion of endogenous
CDC20 and restored by adding back recombinant human CDC20
(Fig. 2D). This implies that APC/C-pE induced securin degradation
because this APC/C mutant could be activated by CDC20 in the
absence of mitotic phosphorylation, rather than by gaining some

other property. Importantly, also when analyzed at higher temporal
resolution, the rate of securin degradation in interphase extracts
containing APC/C-pE was indistinguishable from the rate of securin
degradation in mitotic extracts containing APC/C-WT, indicating
that APC/C-pE can be activated to a similar extent by CDC20 as
mitotically phosphorylated APC/C (Fig. 2E and Fig. S3C). These
results imply that phosphorylation of the 68 sites mutated in APC/
C-pE, or phosphorylation of a subset of these, is sufficient for ac-
tivation of APC/C by CDC20.

Glutamate Substitutions at Mitotic APC/C Phosphorylation Sites
Increase CDC20 and Substrate Binding and the Maximal Velocity of
Ubiquitination Reactions. Because previous experiments indicated
that mitotic APC/C phosphorylation is required for CDC20 binding
(22, 23, 26), we tested if CDC20 can bind to WT APC/C or the pA
and pE mutants. Because CDC20 helps to recruit substrates to the
APC/C, we also analyzed securin binding to APC/C in these assays.
Immunoblotting experiments revealed that more CDC20 and
securin bound to APC/C-pE than to WT APC/C and APC/C-pA
(Fig. 3A), correlating well with the ability of these complexes to
mediate securin ubiquitination and degradation (Fig. 2). The low
amount of CDC20 that was retained on WT APC/C and to a lesser
degree on APC/C-pA could either represent nonspecific or phos-
phorylation-independent low-affinity interactions or could have
been caused by the presence of some phospho-sites that we de-
tected at low levels on WT APC/C by mass spectrometry (Dataset
S4) and that were presumably generated in the insect cells used for
APC/C expression and assembly. Similar results were obtained
when WT APC/C and the pA and pE mutants were incubated in
Xenopus interphase egg extracts, reisolated by IP, and analyzed for
the presence of CDC20 by immunoblotting. Also under these
conditions, CDC20 bound preferentially to APC/C-pE (Fig. 3B).
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Glutamate substitutions at mitotic phosphorylation sites also
made significant contributions to the CDC20-dependent stimulation
of APC/C-mediated substrate ubiquitination, as examined by kinetic
analyses. WT APC/C and phospho-site variants were analyzed for
coactivator-dependent activation over a range of CDC20 or CDH1
concentrations. Although the phospho-site mutants exhibited only
small effects on CDH1-dependent activation of APC/C (Fig. S4 A
and B), APC/C-pE displayed enhanced catalytic efficiency of sub-
strate (Ub-securin) ubiquitination by 13–24-fold compared with WT
levels with either UBE2C or UBE2S, respectively (Fig. 3 C and D
and Fig. S4B). Both a decrease in the concentration required for
half-maximal activation (2–4-fold) and an increase in the maximum
velocity (6–7-fold) were observed in reactions with APC/C-pE and
its respective E2s (Fig. 3 C and D and Fig. S4B). In contrast, acti-
vation of APC/C-pA by CDC20 was further reduced compared with
WT APC/C levels. The simplest interpretation for the decrease in
the concentration required for half-maximal activation of APC/C-
pE by CDC20 compared with WT APC/C is that CDC20 binding to
APC/C-pE is increased, consistent with the results obtained in
CDC20 binding experiments (Fig. 3 A and B). This increase in
coactivator binding may also enhance E2 catalytic efficiency, as
observed in previous studies (7, 8, 19, 20, 52), which could explain
the unexpected increase in the maximum velocity of APC/C-pE.
These results indicate that phosphorylation of the 68 sites mutated
in APC/C-pE, or phosphorylation of a subset of these, increases
binding of CDC20 to APC/C, thereby enables substrate recruitment,
and in addition increases APC/C’s maximal velocity, possibly by
enhancing the catalytic efficiency of the UBE2C and UBE2S.

Phosphorylation of an N-Terminal Loop Region in APC1 (Residues 296–
401) Is Sufficient for Activation of APC/CCDC20. To analyze which
phospho-sites control APC/CCDC20 activation, we generated 45
additional APC/C variants in which only subsets of the 68 phospho-
sites mutated in APC/C-pE were substituted by glutamate residues.
Tables S2 and S3 list these complexes and summarize results
obtained with them in ubiquitination assays.
First, we tested if the presence of phospho-mimicking mutations

is required in all 10 APC/C subunits mutated in APC/C-pE to en-
able activation by CDC20. For this purpose, we generated APC/C
variants in which mitotic phospho-sites were mutated to glutamate
in 9 out of the 10 subunits but the remaining subunit was present in
its WT form. Unexpectedly, of the resulting 10 complexes, all could
be activated by CDC20 in ubiquitination assays, except APC/C in
which WT APC1 was present (Fig. 4A, pE_APC1wt). In parallel,
we identified five phospho-sites in the APC/C structure (Fig. S2)
(13) that are located in the vicinity of predicted CDC20 interaction
sites (APC1S1347, APC6S112, APC8S542,T562, and APC10T3)
and mutated these to glutamate residues, but this “best guess” APC/C
mutant could not be activated by CDC20 (Fig. 4A, APC/C-5E).
Furthermore, we generated and tested complexes that contain
phospho-mimicking mutations only in the platform (Plat_pE-Arc_wt)
or the arc lamp domain (Plat_wt-Arc_pE) and found that glutamate
substitutions in platform subunits (APC1, APC2, APC4, and APC5)
were sufficient for APC/CCDC20 activation, whereas phospho-mim-
icking mutations in arc lamp subunits (APC3, APC6, APC7, APC8,
APC10, and APC12) were not (Fig. 4A). These results implied that
phosphorylation sites in APC1 are required for APC/CCDC20

activation, that phosphorylation of other APC/C subunits is ei-
ther not required or that there is redundancy between them, and
that substitutions of phospho-sites in APC1, APC2, APC4, and
APC5 are sufficient for this process.
Together, these observations raised the possibility that phos-

phorylation of APC1 might be sufficient for APC/CCDC20 acti-
vation. To test this, we analyzed a complex in which all 21
phospho-sites in APC1 were mutated to glutamate residues but all
other subunits were present in their WT form. Remarkably, this
complex (wt_APC1pE) could be activated by CDC20 similarly well
as APC/C-pE (Fig. 4B), indicating that APC1 phosphorylation may
indeed be sufficient for APC/CCDC20 activation. To determine
which APC1 sites control APC/CCDC20 activation, we grouped the
21 phospho-sites into nine clusters (Fig. 4C) and analyzed most of
these clusters individually (some of these cluster mutants could not
be generated for technical reasons; Table S3). Phospho-mimicking
mutations were not required in any of the tested individual clus-
ters, either in the absence or presence of phospho-mimicking
mutations in other subunits, provided that phospho-mimicking
mutations were present in other APC1 phospho-site clusters
(Fig. S5 A and B). This indicates that there is redundancy between
different phospho-sites within APC1. In contrast, glutamate sub-
stitutions only in clusters 3, 4, or 5 of APC1 were sufficient for
activation of APC/C by CDC20 to an intermediate level, despite
the fact that only three (clusters 3 and 4) or four residues (cluster
5) were mutated. Remarkably, this was the case not only in the
presence of phospho-mimicking mutations in other APC/C sub-
units (Fig. S5C) but also if all other subunits were present in their
WT form (Fig. 4D). Also, when tested in Xenopus interphase ex-
tracts, APC/C-containing glutamate substitutions only in clusters 3,
4, or 5 mediated securin degradation more rapidly thanWTAPC/C,
although it occurred less rapidly than APC/C in which all phos-
pho-sites in APC1 had been mutated to glutamate (wt_APC1pE;
Fig. S3D). An APC/C variant in which the phospho-site mutations in
clusters 3, 4, and 5 were combined (wt_APC1cl3-5pE) supported
degradation of securin and CycBNTD similarly well as wt_APC1pE
and APC/C-pE (see Fig. 5D). Interestingly, the phospho-site clusters
3, 4, and 5 are all located next to each other in an N-terminal region
of APC1 comprising residues 296–401. This region is not visible in
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existing APC/C structures (13) and is thus predicted to form
a flexible loop.
These results suggest that phosphorylation of a flexible N-terminal

loop in APC1 is sufficient for activation of APC/C by CDC20.
However, our results do not rule out the possibility that phosphor-
ylation of other sites on APC/C can also contribute to the rate or
efficiency of APC/CCDC20 activation. Consistent with this possibility,
we observed that glutamate substitutions in APC1 clusters 6, 7, or 8
slightly increased APC/CCDC20 activity in the presence of phospho-
mimicking mutations in other subunits (Fig. S5C) but not in their
absence (Fig. 4D), implying that phosphorylation of other APC/C
subunits might be able to contribute to APC/CCDC20 activation.

Deletion of an N-Terminal Loop Region of APC1 Enables Activation of
APC/CCDC20 in the Absence of Mitotic Phosphorylation. The observa-
tion that only three to four glutamate substitutions in an N-terminal
loop region of APC1 are sufficient for APC/CCDC20 partial acti-
vation could be explained by several different possibilities. The
simplest of these would be that phosphorylation of this loop would
create a binding site that is required for functional interactions
between APC/C and CDC20, although in this case it would be
unusual that glutamate substitutions of various subsets of phospho-
sites would be able to create such a binding site. Alternatively,
phosphorylation of this loop could cause structural changes that
would enable access of CDC20 to a preexisting binding site. To
distinguish between these possibilities, we generated an APC/C
variant in which we deleted the N-terminal loop from APC1,

whereas all other subunits were present in their WT form (Fig. 5A).
Remarkably, this APC/C variant (wt_APC1Δloop), which does not
contain any glutamate substitutions, was activated by CDC20 in
ubiquitination assays as well as APC/C-pE (Fig. 5B) and also bound
CDC20 and securin similarly well as APC/C-pE (Fig. 5C). Also, in
interphase Xenopus egg extracts, the wt_APC1Δloop complex
supported degradation of securin and CycBNTD similarly well as
APC/C-pE and APC/C variants in which either all phospho-sites in
the platform domain or in APC1 or the phospho-sites in clusters 3,
4, and 5 had been substituted by glutamate (Fig. 5D). These results
imply that the N-terminal APC1 loop has an autoinhibitory function
and that its phosphorylation enables binding of CDC20 to a site on
APC/C that otherwise is not accessible.

Discussion
Although ubiquitin-dependent proteolysis mediated by APC/CCDC20

is essential for sister chromatid separation, mitotic exit, and proper
cell division in presumably all eukaryotes, it is not well understood
how APC/C is activated by CDC20 in mitosis. Inactivation of the
SAC following biorientation of all chromosomes on the mitotic
spindle is required for APC/CCDC20 activation but is not sufficient,
as previous observations indicated that phosphorylation of the APC/C
is also needed for binding of CDC20 to APC/C and APC/C ac-
tivation (2–4, 21–27). However, the role of mitotic phosphorylation in
formation and activation of APC/CCDC20 has remained unknown so
far, in part because methods for the generation of recombinant hu-
man APC/C complexes have been developed only recently (53, 54)
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and because more than 100 different phospho-sites have been
identified on the 14 different types of APC/C subunits (refs. 22, 43–45
and this study). The latter situation implied that mutagenic ap-
proaches to study APC/C phospho-regulation would be labor in-
tensive, that numerous different combinations of phospho-sites
mutations might have to be tested to identify the functionally relevant
ones, and that simultaneous mutation of multiple sites could in-
activate APC/C by means other than making it nonphosphorylatable.
To overcome the first two limitations, we developed a method

(biGBac) for the rapid assembly of multiple cDNAs or genes into
baculoviral genomes (42). Here, we used this method to generate
and functionally characterize 47 different recombinant versions
of the APC/C in which we simultaneously changed up to 68
phospho-site amino acid residues at once. Importantly, the non-
phosphorylatable APC/C-pA mutant that we have generated as
part of this series lost ubiquitination activity specifically in the
presence of CDC20 but not in the presence of CDH1, whereas
several phospho-mimicking mutants that we generated, such as
APC/C-pE, gained CDC20-dependent activity in the absence of
mitotic phosphorylation. These findings eliminate the possibility
that the simultaneous mutation of multiple residues (possibly up to

100 sites in APC/C-pA and APC/C-pE given that some APC/C
subunits are present in two copies per complex) might have altered
APC/C through more general structural defects, a possibility that
could not be excluded in a previous study in which mutagenesis of
12 CDK1 consensus recognition sites in budding yeast Cdc27
(orthologous to APC3), Cdc16 (APC6), and Cdc23 (APC8) caused
a delay in APC/CCDC20 activation (55).
Our functional analyses of these APC/C variants revealed sev-

eral important results. Two of these were very unexpected—
namely, that mutation of only three to four phospho-sites in an
N-terminal loop of APC1 is sufficient for partial activation of
APC/C by CDC20, whereas mutation of 10 sites in this loop created
a form of APC/C that supported substrate degradation in in-
terphase Xenopus egg extracts as well as APC/C-pE did. Even more
strikingly, we found that deletion of this loop enables APC/CCDC20

activation also in the absence of mitotic APC/C phosphorylation. If
so, why is APC/C phosphorylated during mitosis on so many other
sites, which are present on at least another nine subunits?
Interestingly, in Xenopus egg extracts, phosphorylation and ac-

tivation of APC/CCDC20 occur with ultrasensitive kinetics; that is,
APC/CCDC20 does not respond with Michaelis–Menten kinetics
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but instead responds in an all-or-none “switch-like” fashion to an
increasing level of CDK1 activity (56). This unusual behavior re-
sults in a delay between CDK1 and APC/CCDC20 activation (56,
57), which might be required to allow sufficient time for spindle
assembly in early Xenopus embryos where APC/CCDC20 activity is
not tightly controlled by the SAC (58). It is possible that mitotic
multisite phosphorylation of the APC/C on subunits other than
APC1 is required for the ultrasensitivity or other kinetic proper-
ties of APC/CCDC20 activation, for example if phospho-sites on
other subunits increased the affinity for mitotic kinases, which
then subsequently could phosphorylate APC1. Consistent with this
possibility, CDK1 contains a phospho-site binding subunit, called
CKS1 (also known as p9 in Xenopus and Suc1 in fission yeast),
which is required for efficient binding and phosphorylation of
APC/C by CDK1, activation of APC/CCDC20, and cyclin B deg-
radation (25, 59–61). Likewise, PLK1 contains a phospho-site
binding domain, the Polo-box, which enables the kinase to bind
and phosphorylate preferentially substrates (including APC/C)
(62) that have been “primed” for recognition by prior phosphor-
ylation (63). Consistent with the possibility that phosphorylation
of APC/C subunits other than APC1 affects the interaction of
APC/C with mitotic kinases and alters the kinetics of APC/CCDC20

activation, we observed previously that deletion of a loop region
in APC3 containing most of its phospho-sites delayed but did
not abolish APC/CCDC20 activation in Xenopus egg extracts
(64). In addition, mitotic phosphorylation could control APC/CCDC20

by other mechanisms. Support for this possibility comes from the
observation that CDC20 phosphorylation inhibits APC/CCDC20 ac-
tivation and UBE2S recruitment (32–35, 65, 66). Furthermore, it has
been reported that the ability of APC/C to bind the D-box becomes
activated in mitosis in a CDC20-independent manner, raising the
possibility that APC/C phosphorylation could increase APC/C–
substrate interactions by means other than promoting binding of
CDC20 to the APC/C (67).
Our findings also raise the important question of how phos-

phorylation of the N-terminal loop region of APC1 allows
APC/CCDC20 activation. Our finding that deletion of this loop
enables binding and activation of APC/C by CDC20 in the absence
of mitotic phosphorylation suggests that these modifications expose

a CDC20 binding site on the APC/C that is not accessible if APC1
is not phosphorylated. What could this binding site be? The
autoinhibitory loop of APC1 is located close to the C-box binding
site and also close to contacts between APC1 and the NTD of
CDC20 (Fig. S6). It is therefore possible that APC1 phosphoryla-
tion controls the access of CDC20’s NTD to these binding sites,
possibly by steric hindrance, which is only relieved if APC1’s
N-terminal loop region becomes phosphorylated (Fig. 5E). If so, it
will be interesting to test why phosphorylation of APC1’s auto-
inhibitory loop is required for binding of CDC20, but not binding
of CDH1, and if this differential behavior is determined by struc-
tural differences in their NTDs.

Materials and Methods
Antibodies against pApc1 (phosphorylated S355), APC1, APC3, pAPC3, pAPC8,
CDH1, and CDC20 have been previously described (22, 68). Polyclonal SMC3
antibodies were generated by Eurogenetec against a synthetic peptide
CEMAKDFVEDDTTHG. Polyclonal securin antibodies were generated by Gramsch
Laboratories against full-length recombinant protein. In addition, the following
commercial antibodies were used: APC8 (1:200, A301-181A; Bethyl Laboratories),
Xenopus laevis CDC20 (1:1,000, ab18217; Abcam), and cyclin B1 (1:1,000, MS-
868-PABX; Thermo Scientific). Recombinant APC/C, CDH1, CDC20, and E1 were
expressed in insect cells. Baculoviral APC/C expression vectors were generated
using biGBac (42). All other recombinant proteins were produced in Escherichia
coli as previously described (7, 19, 64). Details of ubiquitination reactions, cryo-
EM, and substrate degradation assays in Xenopus egg extracts can be found in SI
Materials and Methods.
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