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Abstract 

During conversation, spoken utterances occur in rich acoustic 
contexts, including speech produced by our interlocutor(s) and 
speech we produced ourselves. Prosodic characteristics of the 
acoustic context have been known to influence speech 
perception in a contrastive fashion: for instance, a vowel 
presented in a fast context is perceived to have a longer 
duration than the same vowel in a slow context. Given the 
ubiquity of the sound of our own voice, it may be that our own 
speech rate - a common source of acoustic context - also 
influences our perception of the speech of others. Two 
experiments were designed to test this hypothesis. Experiment 
1 replicated earlier contextual rate effects by showing that 
hearing pre-recorded fast or slow context sentences alters the 
perception of ambiguous Dutch target words. Experiment 2 
then extended this finding by showing that talking at a fast or 
slow rate prior to the presentation of the target words also 
altered the perception of those words. These results suggest 
that between-talker variation in speech rate production may 
induce between-talker variation in speech perception, thus 
potentially explaining why interlocutors tend to converge on 
speech rate in dialogue settings. 

Index Terms: speech rate; rate normalization; self-
monitoring; phonetic convergence 

1. Introduction 

Speech perception typically takes place in a rich acoustic 
context. Words, uttered by our interlocutor, are heard in the 
context of earlier speech from that same person (e.g., sentence 
context), speech we produced ourselves moments earlier (e.g., 
a question that elicited our interlocutors’ utterance), and other 
non-speech acoustic signals. It has long been recognized that 
prosodic properties of the acoustic context do not merely serve 
as background noise, but rather influence subsequent speech 
perception [1, 2]. For instance, the perception of an ambiguous 
Dutch vowel midway between short /ɑ/ and long /a:/ may be 
shifted towards the perception of long /a:/ by presenting it in a 
context sentence with a fast speech rate [3]. 

The contrastive influence of contextual speech rate, known 
as rate normalization, is taken to be a general auditory process 
[4]. Rate normalization takes place as soon as the target sound 
is heard [5], may be elicited by non-speech contexts (e.g., tone 
sequences; [6]), operates independent of cognitive load [7], 
and interestingly also generalizes across talkers. That is, the 
perception of talker A is influenced by the speech rate 
produced by talker B [8, 9]. 

Given that rate normalization occurs across talker-
incongruent speech streams, one may consider yet another 
source of prosodic context influencing speech perception, 
namely the sound of our own voice. In typical conversations, 
our own utterances and those of others follow each other in 
rapid succession. Cross-linguistic research shows that 
interlocutors universally try to minimize the silence between 
conversational turns, with a median turn transition duration of 
approximately 100 ms [10]. As such, the immediate acoustic 
context of an utterance spoken by our conversational partner 
includes speech that we produced ourselves some moments 
earlier, potentially allowing for contextual effects of our own 
voice on the way we perceive others. 

Previous research has tried to find effects of our own 
habitual speech rate on the way we evaluate speech rates 
produced by other talkers, but the evidence remains tenuous. 
For instance, Koreman [11] failed to find any effect of 
listeners’ own habitual speech rates on speech rate evaluation. 
Schwab [12] did show that habitually slow talkers judge 
speech as faster than listeners with a relatively fast habitual 
speech rate, but the effect was only observed with slow and 
neutral rates, not with fast speech. Also, note that both these 
studies used explicit judgments of perceived speech rate, 
which do not always reflect the acoustic speech rate: acoustic 
measures of speed of articulation have been found to only 
explain 53% of the variance of perceived speed judgments 
[13]. Therefore, the present study targets more local effects of 
self-produced speech rate on implicit rate normalization. That 
is, does talking at a fast (or slow) speech rate change one’s 
perception of a subsequent utterance, spoken by someone else? 

Given the findings on talker-independent rate 
normalization [8, 9], one may expect a positive answer to this 
question. However, perception of our own voice differs from 
perception of other talkers in the fact that self-perception takes 
place during the execution of a simultaneous task, namely 
speech production. Neurocognitive studies report differences 
between perception-during-production and perception-
without-production. For instance, activity in the auditory 
cortex in response to self-produced speech is attenuated 
relative to hearing tape-recorded speech [speaking-induced 
suppression; 14]. This attenuation has been attributed to 
internal forward models that internally simulate the sensory 
consequences of speech motor actions [15]. Moreover, 
auditory responses during speech production are not only 
significantly inhibited, but they have also been found to be 
slightly delayed [16]. The attenuation and temporal disruption 
of speech processing during speech production may, in turn, 
potentially reduce any context effects elicited by our own 
voice. 



In fact, if our own speech rate would influence our 
perception of others, this would introduce considerable 
variation to the speech perception system. Communication 
between two interlocutors, with talker A speaking fast and 
talker B speaking slow, would suffer substantially: speaker A 
would interpret the slow speech of speaker B relative to 
his/her own fast speech rate (and vice versa). Speech rate 
varies considerably both between individuals [17, 18] and 
within a given speaker; for instance, depending on 
conversational register, emotions, the length of utterances 
[18], age [19], etc. Thus, if our own speech rate production 
would influence our speech perception, it would be a 
substantial source of variation in speech comprehension. 

The present study reports two experiments that targeted 
effects of preceding slow or fast speech rate on the perception 
of the Dutch minimal vowel contrast /ɑ/ - /a:/. Experiment 1 
aimed to replicate the standard finding of rate normalization. 
Participants heard manipulated target words, with vowels 
ambiguous between /ɑ/ and /a:/, embedded in fast or slow pre-
recorded context sentences. Fast context sentences were 
expected to bias perception of the target vowel towards /a:/, 
and slow context sentences towards /ɑ/. 

In Experiment 2, instead of playing pre-recorded context 
sentences, participants were instructed to produce the context 
sentences themselves, both at a fast and a slow rate, after 
which the same manipulated target words from Experiment 1 
were played. If self-produced speech serves as acoustic 
context to the speech of others, the perception of target words 
may be influenced by the rate at which the participants 
produced the context sentences themselves. However, as 
discussed, the effect of self-produced speech rate on the 
perception of others may also be modulated by speaking-
induced suppression of speech perception processes during 
production. 

2. Method 

2.1. Experiment 1 

2.1.1. Participants 

In order to allow for within-subject analyses, the same sample 
of 45 native Dutch participants with normal hearing was tested 
in both experiments. 

2.1.2. Design and materials 

A female native speaker of Dutch was recorded producing the 
sentence: Freek ging het hok eerst in en toen weer uit en zei 
dus het woord... [target]; “Freek first went into the hut and 
then out again and therefore said the word... [target]”. The 
sentence did not favor any of the target words semantically 
and did not contain any /ɑ/ or /a:/ vowels. The sentence ended 
in one of several monosyllabic target words that either had the 
short vowel /ɑ/ or the long vowel /a:/. Targets were selected 
from six minimal word pairs: zat-zaad (sat-seed), Stan-staan 
(Stan-stand), dat-daad (that-deed), stad-staat (city-state), staf-
staaf (staff-bar), and zak-zaak (bag-shop). 

From these recordings, context sentences were excised (all 
speech up to target onset). One token near the speaker’s 
median rate was linearly compressed/expanded into a slow 

version (ratio = 1.33; total duration 4055 ms) and a fast 
version (ratio = 0.75; total duration 2512 ms) using PSOLA in 
Praat [20]. 

From the same recordings, target words were also excised. 
One long vowel /a:/ was selected for manipulation. Since the 
Dutch /ɑ/ - /a:/ vowels are contrastive in both spectral and 
temporal characteristics, a two-dimensional continuum was 
created from this one vowel token, comprising 7 duration 
values and 7 F2 values, all falling within the speaker's natural 
range. Spectral manipulations were based on Burg's LPC 
method (implemented in Praat), with the source and filter 
models estimated automatically from the selected vowel. Filter 
models were adjusted to have a constant F1 value (739 Hz, 
ambiguous between /ɑ/ and /a:/) and one of seven desired F2 
values (1300 - 1600 Hz in steps of 50 Hz). Source and filter 
models were then recombined and the new vowels were 
adjusted to have their original overall amplitude. Based on 
these spectrally manipulated vowels, duration continua (110 - 
170 ms in steps of 10 ms) were created using PSOLA. Finally, 
the resulting 49 vowel tokens were spliced into the 
consonantal frames from the six target pairs. 

A categorization (2AFC) pretest was run with 26 native 
Dutch listeners, who categorized the manipulated target words 
in isolation (i.e., without any preceding context) as containing 
either the short vowel /ɑ/ or the long vowel /a:/. Based on this 
pretest, three vowel tokens with different F2 values but 
identical duration (140 ms) were selected for the following 
experiments, each sampling a different point from the 
categorization curve: token 1, F2 = 1300 Hz, 27% long vowel 
categorization; token 2, F2 = 1450 Hz, 48% long vowel 
categorization; and token 3, F2 = 1550 Hz, 67% long vowel 
categorization. Finally, all target words were combined with 
the two (fast and slow) context sentences, adding up to a total 
of 108 items (2 context rates × 6 target pairs × 3 vowel tokens, 
all repeated 3 times). 

2.1.3. Procedure 

Speech stimuli were presented in a fixed random order, with 
the reversed order presented to half of the participants. 

For purposes of comparability across the two experiments, 
visual displays were identical across both experiments (see 
Figure 1). Each trial started with a screen showing a 
(horizontal) hourglass running empty in 5 seconds (from right 
to left). Above the hourglass, the rate of the context sentence 
was displayed (SNEL "FAST" vs. TRAAG "SLOW"). A mark 
on the hourglass indicated the time point of context sentence 
onset: early in the case of slow contexts (945 ms after 
hourglass onset), late in the case of fast contexts (2488 ms 
after hourglass onset). The hourglass always ran empty at 
context sentence offset, after which the target word was 
played. The screen was replaced by two response options after 
target offset and participants were instructed to indicate what 
sentence-final target word they had heard: dat or daad, zak or 
zaak, etc. The position of words (left or right) was counter-
balanced across participants, who gave their response by 
pressing “1” for the left word or “0” for the right word. If 
participants did not respond within 5 seconds, a missing 
response was recorded and the next trial was presented. 
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4. Discussion 

This study compared the contextual effect of hearing vs. 
producing a fast or slow speech rate on the perception of a 
Dutch vowel contrast. Experiment 1 replicated earlier studies 
on rate normalization showing that hearing a fast speech rate 
changes the perception of a subsequent ambiguous vowel. 
Experiment 2 extends our understanding of contextual rate 
effects by showing that producing a fast speech rate ourselves 
changes our perception of vowels produced by someone else. 

The effect of self-produced speech rate (Experiment 2) 
was found to be reduced relative to the effect of perceived 
speech rate (Experiment 1). This reduction may be explained 
by two accounts. First, there may have been more variability 
in the elicited speech rates produced by participants 
themselves, than in the categorically fast and slow speech 
materials used in Experiment 1. As such, the acoustic 
difference between the two rate conditions in Experiment 2 
may have been smaller, thus reducing the rate effect. Further 
analysis of the speech produced by participants in Experiment 
2 may reveal whether this account can be corroborated. 

Alternatively, the reduction of the rate effect in 
Experiment 2 may be explained by the different task demands. 
The rate effect in Experiment 1 was elicited by listening to 
speech produced by someone else, whereas the rate effect in 
Experiment 2 was elicited by perception of one’s own voice 
during speech production. Neurocognitive literature suggests 
that the processes involved in perception-during-production 
are attenuated relative to those involved in perception-without-
production (speaking-induced suppression; [14-16]). Thus, the 
dual task of perceiving during speech production may have 
attenuated the perception of the self-produced speech rate, 
which in turn led to a reduced contextual rate effect. New 
experiments are currently ongoing to distinguish between 
different explanations of the smaller contextual rate effect 
during production. 

The ubiquity of the sound of our own voice implies that it 
forms a great part of the acoustic context in which speech from 
other speakers occurs. It is therefore not surprising that earlier 
studies have already targeted influences of listeners’ own 
habitual speech rate on explicit rate evaluation judgments, but 
unfortunately with equivocal results [11, 12]. By testing more 
local effects of self-produced fast and slow context sentences, 
the present study is the first to reveal direct effects of talking 
at a fast or slow rate on the way we perceive others. However, 
since only local effects of self-produced speech rate were 
tested, the current data do not tell us whether habitually slow 
speakers will perceive the same speech signal differently from 
habitually fast speakers. This remains an open, and intriguing, 
question for further investigation. 

Nevertheless, the finding that talking at a fast pace 
changes our perception of a subsequent utterance already 
carries strong implications for our understanding of speech 
perception and communication in dialogue in general. The 
extensive variation in speech rate both between and within 
individuals, combined with the ever-present sound of our own 
voice, would be expected to induce variation in speech 
perception, and hence be a source of miscommunication in 
many dialogue situations. This is where the present study may 
provide a novel rationale behind the phenomenon of phonetic 
convergence. 

When interlocutors engage in spoken communication, they 
tend to converge on phonetic/prosodic features of their speech, 

such as pitch [24], intensity [25], voice onset time [26], and 
also speech rate [27-30]. Different accounts have been 
proposed for how phonetic convergence arises (self-regulatory 
convergence dependent on social-motivational factors [31, 
32]; brain-to-brain coupling [33]; automatic convergence 
based on priming [34]), but the purpose of convergence has 
consistently been sought in the social domain. That is, people 
tend to converge phonetically in order to reduce social 
distance and facilitate social integration, approval, and 
conformity [30, 35, 36]. 

The present study proposes a novel purpose of phonetic 
convergence, namely to serve speech comprehension. Given 
the current findings that one’s own speech rate influences the 
perception of the other speaker, communication between 
speakers with highly divergent speech rates would be 
predicted to suffer from these cross-talker context effects. Of 
course, top down information, such as semantic context, may 
help to avoid misinterpretation of the spoken signal. However, 
in the absence of such information, comprehension, and hence 
communication, would be facilitated if interlocutors would try 
to converge their speech rates, thus minimizing the 
interference from their own speech rate (in line with findings 
that phonetic convergence promotes comprehensibility; [37, 
38]). Therefore, phonetic convergence on speech rate may not 
only provide social advantages but may also reduce adverse 
effects of one’s own (divergent) speech rate on the 
comprehension of the other talker. 
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