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1 Introduction and summary

Consider Poincaré-invariant Quantum Field Theories in d space-time dimensions. A special

class of such theories contains the theories that have no intrinsic mass scale. In other words,

(at least intuitively) the correlation functions can be chosen to behave homogeneously if

we rescale all the distances. The symmetry group in this case contains

ISO(d− 1, 1) oR+ , (1.1)

where ISO(d− 1, 1) is the Poincaré group (in Minkowski space) and R+ is generated by di-

latations, D̂. Lorentz transformations are invariant under dilatations, while the momentum

generators carry charge 1. Surprisingly, in most of the studied examples, the symmetry

group (1.1) is in fact enhanced to the conformal group

SO(d, 2) . (1.2)

The additional generators in (1.2) compared with (1.1) lead to numerous constraints on

the critical exponents and impose important restrictions on general n-point correlation
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functions.1 For instance, conformal symmetry fixes the correlation function of any three

local operators up to finitely many real numbers, while scale invariance alone allows for

undetermined functions.

We will refer to the models that are invariant under (1.1) as scale-invariant field theories

(SFTs) while the models invariant under (1.2) will be called conformal field theories (CFTs).

Of course, conformal theories are scale invariant. The converse statement is the subject of

this paper.2

Let us define the problem more precisely. We start from the class of theories which

have a conserved, symmetric, local energy momentum tensor

Tµν = Tνµ , ∂µTµν = 0 . (1.3)

If there exists a local operator Vν (referred to as the “virial current”) such that

Tµµ = ∂νVν , (1.4)

one can construct a conserved scale (or dilatation) current

Sµ = xνTµν − Vµ , ∂µSµ = 0 , (1.5)

and a dilatation charge D̂ =
∫
dd−1xS0. The converse is also true: if there exists a local

conserved scale current then it takes the form (1.5) (see [15–17] for general background on

the subject). If, furthermore, there exists a local operator Lµν such that Vµ = ∂νLνµ and

correspondingly

Tµµ = ∂ρ∂σLρσ , (1.6)

one can construct the conserved conformal currents

Kµν = (2xν xρ − x2δνρ)T ρµ − 2xν V µ + 2Lµν , ∂µK
µν = 0 , (1.7)

and the theory is invariant under the full conformal group (1.2). Equivalently, one notices

that if (1.6) is satisfied then there exists an “improved” symmetric, conserved, and traceless

Tµν which is constructed of the original stress-energy tensor appropriately shifted by two-

derivative terms acting on Lµν .3

In four dimensions, if a SFT is unitary, the condition that the theory is conformal (1.6)

can be simplified (this follows from the unitarity bound on operator dimensions [19], see

appendix A) to Vµ = ∂µL, i.e.,

Tµµ = �L . (1.8)

Equation (1.8) is a necessary and sufficient condition for a unitary scale invariant theory

to be conformal. The goal of this paper is to argue that unitarity and scale invariance

1Recently, there has been a spur of activity analyzing the constraints of SO(d, 2) via the bootstrap

equations [1–3] with new analytic and numerical tools, see e.g. [4–13].
2The reader interested in the history of this problem can consult, for instance, [14].
3Another equivalent description of the conditions for scale vs. conformal invariance can be given by

coupling the theory to curved space and demanding Weyl invariance, see, for example, [18].
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imply (1.8) in four dimensions (under some additional assumptions and caveats that will

be specified in the following).

In d = 2 the situation is conceptually simpler. A hypothetical L must have dimension 0

and under some technical assumptions it can be ruled out, therefore, leaving Tµµ = 0 as the

only possible condition satisfied by a stress-energy tensor in a conformal theory. In other

words, roughly speaking, the origin of the relative simplicity of the problem in d = 2 is

that no improvements of the energy-momentum tensor are possible. It was shown in [20]

that the traceless-ness of the stress-energy tensor follows in d = 2 from scale invariance

and unitarity (again, under some technical assumptions). The argument revolves around

the two-point function of the energy momentum tensor, and is reminiscent of the proof of

the c-theorem [21]. By manipulating the two-point function one can show that, assuming

scale invariance, one obtains 〈Tµµ (x)T νν (0)〉 = 0 thus proving Tµµ = 0.

One cannot hope to repeat an argument of this type in higher dimensions simply

because there are nontrivial improvements of the stress-energy tensor in d > 2 CFTs.

More concretely, it is not true that scale invariance implies (even when combined with

unitarity) Tµµ = 0. Instead, one must show that the theory has a local operator Lµν such

that (1.6) is satisfied (for unitary theories we need to show (1.8) instead). It could be that

Lµν = 0, but it is not necessarily the case.

In perturbation theory around some Gaussian point, the set of local operators is well

understood and one can check explicitly whether there is or there is not an obstruction for

solving (1.6) in any given model. However, to venture into the non-perturbative regime

one would have to construct the operator Lµν (or L) formally.

Recently, there has been progress on the problem of scale versus conformal invariance

in d > 2. Using tools similar to the derivation of the a-theorem in d = 4 [22, 23], Luty,

Polchinski, and Rattazzi [24] have provided an argument that unitary four-dimensional

scale-invariant models defined in the vicinity of a CFT must be conformal. This is consistent

with a very detailed study of a large class of perturbative models [20, 25–27]. We would also

like to note that recently several authors have proposed arguments that are particular to

supersymmetric theories [28–31] and to theories with weakly-coupled holographic duals [32].

Further references on the subject can be found in [25, 33, 34].

Let us describe the main idea of this paper and defer for a while the discussion of some

crucial technical details. Suppose we have an operator O and we want to prove that there

exists a local operator L such that O = �L. Of course we can always solve for L formally

in terms of a nonlocal integral over space-time, but we want to understand under which

conditions L would be local. A natural way to tackle this problem is as follows. We can

deform the action by coupling O to a classical source δS =
∫
ddxJ(x)O(x)+O(J2). We can

then consider the generating functional of connected diagrams W [J(x)], and its Fourier-

transformed version W [J(p)]. Now let us study W [J(p)] with null momenta (i.e. zero

momenta squared) for the source (one may need to regulate the theory in the infrared to

make sure this object exists):

δmW [J(p)]

δJ(p1)δJ(p2) . . . δJ(pm)

∣∣∣∣
J=0; p21=p22=···=p2m=0

≡ Am(p1, . . . , pm) . (1.9)
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Suppose that the theory is unitary and that we managed to show that for all m > 2,

Am(p1, . . . , pm) = 0. Then from unitarity it follows that all the “on-shell” matrix elements

connecting insertions of J to the physical theory vanish. So, on the one hand, all the matrix

elements interpolating between J (with null momenta) and our theory vanish, but, on the

other hand, the coupling
∫
ddxJ(x)O(x) +O(J2) seems nontrivial. This can be consistent

if the coupling
∫
ddxJ(x)O(x) +O(J2) is trivial on-shell, i.e. O = �L for some local L (in

particular, L may vanish).4

Clearly, O = �L is a sufficient condition for the vanishing of the above-mentioned

matrix elements, but is it necessary? The following argument suggests that the answer is

affirmative, at least in a class of sufficiently well-behaved QFTs.

Let us think of J(x) as a dynamical field associated with a massless elementary par-

ticle very weakly coupled to the original theory via
∫
ddxJ(x)O(x) (one can include an

arbitrarily small coupling constant in front of this term in the action). Then, the ampli-

tudes (1.9) can be interpreted as the S-matrix elements describing scattering of on-shell J

quanta. This interpretation is correct to leading order in the coupling between J(x) and

O(x) since internal lines of the J particle need not be included at the leading order.

Now, a familiar observation in the theory of the S-matrix is that it is invariant under

changes of variables, and moreover, the S-matrix is trivial only if the theory is free after

some change of variables. Here we have a variant of this situation: all the matrix elements

interpolating between insertions of J (with null momenta) and our theory vanish. It is then

expected that to leading order we can remove the interaction
∫
ddxJ(x)O(x) + O(J2).

This can be done only if O = �L for some local L. In this case we can redefine our

dynamical field J by shifting it by L, thereby removing the small coupling between our

fiducial propagating particle and the theory.5

While this property of the S-matrix is very intuitive, we are not aware of a general

proof. Since this argument plays an important role in our construction, our paper should

only be viewed as a physical explanation of why unitary scale invariant field theories are

conformal, but perhaps not as a mathematical theorem.

In fact, in section 4 we will see that the example of the free two-form theory with

noncompact gauge symmetry in four dimensions is inconsistent with this intuitive-sounding

assertion about the S-matrix. (However, the free two-form theory with compact gauge

symmetry is perfectly consistent with our assertions.) The key is that, in flat space, the

free two-form theory is utterly indistinguishable from the ordinary non-compact scalar,

which is of course conformal. The Hilbert spaces of these theories agree.

The free two-form theory with non-compact gauge symmetry can be thought of as the

ordinary non-compact free scalar theory from which we remove some of the local operators,

4Another option is that there are no connected diagrams whatsoever (aside from the two-point function),

i.e., O is a generalized free field. We will comment on this unlikely possibility in the main text, although

we will not be able to rule it out. For simplicity, we ignore this possibility in this section.
5In detail, if we have the action

∫
ddx (J�J + J(x)O(x) + · · · ) , and if O = �L then we can redefine

J ′ = J + 1
2
L + · · · and remove the coupling of J to the composite operator in the theory. We will see in

examples that, in the process of doing such field redefinitions, the seagull terms O(J2) disappear as well

(as they should) to the required order in the coupling between J and the original theory.
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while not modifying other correlation functions and not modifying the Hilbert space. This

is the source of the obstruction preventing the free two-form theory from being confor-

mal. For nontrivial interacting QFTs, we do not expect that one can have two completely

equivalent and consistent theories in flat space, differing in their content of local operators.

In general, if one tries to remove some set of operators from the theory without modify-

ing anything else, the theory becomes inconsistent (this can be seen explicitly in many

two-dimensional examples).

To investigate scale invariance in this vein it is natural to couple a source, Ψ(x), to

the trace of the energy momentum tensor δS ∼
∫
ddx Ψ(x)Tµµ (x) + · · · , where the · · ·

stand for various seagull terms — higher order terms in Ψ which ensure diffeomorphism

invariance beyond linear level. (We think of 1+Ψ(x) as the scale factor of a conformally flat

background metric field. There are several different definitions in the literature of the trace

of the energy momentum tensor. The difference is just in the structure of contact terms.

The convention we follow is explained in section 3.) We will show that in d = 4, assuming

unitarity, all the amplitudes (1.9) for m > 2 vanish in the scale invariant theory. We utilize

the power of anomalies and the particular structure of counter-terms in four dimensions

to establish this vanishing theorem. This means (with the qualification mentioned above)

that the trace of the stress-energy tensor is Tµµ = �L for some local L (which could be

zero). Hence, our unitary SFT is in fact a CFT.

The analysis of the case of m = 4 in (1.9), i.e. 2→ 2 scattering of the external sources,

was conducted in [24], where the triviality of this amplitude was shown. It was then argued

that A4 = 0 implies that unitary SFTs which are perturbatively close to CFTs must, in

fact, be conformal. (Loosely speaking, when one stays perturbatively close to a CFT,

the flow can be described using the leading-order β-functions that appear in conformal

perturbation theory. The vanishing of A4 implies that these β-functions vanish, hence,

the nearby theory is conformal.) Our extension of this analysis to arbitrary scattering

processes involving the external source Ψ(x) allows us to explore the problem beyond the

perturbative regime.

This paper is organized as follows. In section 2 we discuss in detail the definition

of scale invariance and also review various issues related to improvement terms and the

current algebra in such theories. In section 3 we present the main argument relating scale

invariance and conformal invariance. In section 4 we discuss several simple examples,

and one subtle example. A technical discussion of the case of non-diagonal action of the

dilatation operator D̂ is given in appendix A, where we also justify (1.8) in the most general

setting. In appendix B we present new sum rules for RG flows between CFTs. We apply

those to flows of the type CFT-SFT-CFT, which can spend arbitrarily long RG time near

the SFT.

2 A closer look at scale invariance

In this section we discuss in detail the definition of scale invariance. Unless specified

otherwise, our discussion is general, i.e., it does not assume d = 4 or unitarity.

– 5 –
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2.1 Aspects of current algebra

To begin, we would like to investigate how the scaling charge D̂ =
∫
dd−1xS0 acts on local

operators such as the stress-energy tensor and the virial current. (In fact, for many of

the results in this subsection we do not need to assume the existence of the scale current,

but just of the scale charge.) The most general algebra consistent with conservation and

symmetry of the stress-energy tensor is (see for instance [20])

i[D̂, Tµν ] = xρ∂ρTµν + d Tµν + ∂ρ∂σYρµ;σν . (2.1)

The operator Yρµ;σν has the same symmetries as the Riemann tensor, i.e. it is anti-

symmetric in ρµ, anti-symmetric in σν, and symmetric under the exchange of the two

pairs. The coefficient in front of the second term is fixed to be d by requiring i[D̂,H ] = H.

The formula (2.1) holds even if D̂ is spontaneously broken in the vacuum state. Suppose

for a moment that D̂ is a symmetry of the vacuum. Then, in the absence of the operator

Y on the right hand side of (2.1), the Ward identities are the naive ones expected in scale

invariant QFTs, so that correlation functions obey homogenous scaling relations. We call

the current algebra without the operator Y “canonical.” In the presence of the operator Y ,

dilatations are realized nontrivially, mixing correlation functions of the energy-momentum

tensor with other correlation functions containing the operator Y .

From (1.4) and [D̂, D̂] = 0 we deduce the current algebra of the virial current

i[D̂, Vµ] = xρ∂ρVµ + (d− 1)Vµ + ∂νYµν + Cµ . (2.2)

In the above, Yµν = ηρσYρµ;σν and Cµ is a conserved current that further satisfies∫
dd−1x C0 = 0.

We denote all the operators in the theory of the type appearing in (2.1) by Y I
ρµ;σν .

They necessarily satisfy a current algebra of the following form:

i[D̂, Y I
ρµ;σν ] = xλ∂λY

I
ρµ;σν + ΓIJY

J
ρµ;σν . (2.3)

By convention, the specific operator appearing in (2.1) is denoted Yρµ;σν ≡ yIY I
ρµ;σν .

The matrix ΓIJ can always be brought to its canonical Jordan form. The diagonal

elements of the Jordan form of ΓIJ are the generalized dimensions. If we further assume that

all the correlation functions in the theory decay at long distances, then all the generalized

dimensions must be positive, except for the unit operator which has dimension zero.

Since the energy-momentum tensor is not unique, we can try to remove the offensive

term on the right hand side of (2.1) by an improvement transformation. The most general

possible improvement transformation is

Tµν → Tµν + wI∂
ρ∂σY I

ρµ;σν , (2.4)

where the wI are arbitrary coefficients. The new Tµν will satisfy the current algebra (2.1)

with y′I = yI + (ΓJI + (2 − d)δJI )wJ . We can therefore transform (2.1) to the canonical

current algebra (i.e. y′I = 0) unless there are operators Y I with generalized dimension

d − 2. (The positivity of generalized dimensions rules out such a possibility in d = 2, but

– 6 –
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in d > 2 the action of dilatation may not be canonical if such operators with generalized

dimension d− 2 exist.6)

Consider the space of local operators at the origin. D̂ provides a natural linear map

on this space · → [D̂, ·]. We see that if the last term in (2.1) is not removable, then D̂ is

non-diagonalizable.

Let us briefly comment on the current algebra in unitary theories. In four dimensions,

if our SFT is unitary one can show (see appendix A) that the only allowed Y I
ρµ;σν of

generalized dimension 2 must be a scalar Yρµ;σν = (ηρσηµν − ηρνηµσ)Y or a conserved

tensor. Thus, the most general current algebra for the trace of the energy-momentum

tensor in unitary scale-invariant four-dimensional theories takes the form

i[D̂, T µµ ] = xρ∂ρT
µ
µ + d Tµµ + �Y . (2.5)

We will henceforth make the assumption (this assumption is implicit in most of the

literature on the subject) that D̂ is diagonalizable, and in particular, the current algebra

can be chosen to be canonical. As we explain in appendix A, this assumption is not

necessary to derive our main results. However, making this assumption somewhat simplifies

the presentation.

2.2 The background functional and SFT anomalies

An alternative language to the current algebra is the background functional method. This

has the advantage of allowing to classify the anomalies easily. Let us imagine coupling our

scale invariant theory to a background metric gµν and a vector field Cµ, such that under

an infinitesimal deformation of gµν and Cµ

δS =

∫
ddx
√
g

(
1

2
Tµνδgµν + V µδCµ

)
. (2.6)

As long as our current algebra is canonical ((2.1), (2.2) without the Y and Cµ terms),

the generating functional W [gµν , Cµ] is invariant (up to anomalies) under

δgµν = 2σgµν , δCµ = ∂µσ . (2.7)

(If the current algebra is non-canonical, to realize Weyl invariance, the generating functional

W must also depend on additional background fields that couple to the operators Y . The

modified transformation rules in the presence of such background fields can be worked out

as in [35, 36].)

We can now classify c-number anomalies (for simplicity, we ignore parity-violating

anomalies). We are looking for local functionals A(gµν , Cµ) obeying the Wess-Zumino

consistency condition. From the definition of A(gµν , Cµ)

δσ(x)W [gµν , Cµ] =

∫
ddx
√
g σ(x)A(gµν , Cµ) , (2.8)

6We thank Y. Nakayama for a discussion on this issue.
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SFT

Gapped

Figure 1. We consider a renormalization group flow from some SFT to a gapped theory.

we get a nontrivial constraint on A(gµν , Cµ) by imposing [δσ1 , δσ2 ] = 0. One finds that in

four dimensions there are four anomalies in total [24]:

A(gµν , Cµ) = aE4 + cW 2 + b
(
R+ 6∇ · C − 6C2

)2
+ γ∂[µCν]∂

[µCν] . (2.9)

The a and c anomalies satisfy the Wess-Zumino consistency condition in the same way as

for the usual trace anomaly. The anomalies proportional to b, γ are particular to SFTs.

The anomalies b, γ are both “type-B” in the sense that they satisfy the Wess-Zumino

consistency condition trivially, because they are Weyl invariant. All the anomalies in (2.9)

are genuine, i.e. they cannot be removed by adding a local (diffeomorphism-invariant) term

to W [gµν , Cµ].

3 Probing SFTs with renormalization group flows

3.1 Convergent dispersion relations

Imagine any RG flow of the type depicted in figure 1. In the UV the theory is some SFT

(which could be a CFT) and we flow to a gapped phase.7 The crossover scale is denoted

by M . We can couple the theory to a background metric gµν in a coordinate-invariant

fashion. Since the theory in the infrared is gapped (it could have some topological degrees

of freedom but those are inconsequential for our discussion) the low energy effective action

is a local functional of the background metric. This local functional can be expanded in

derivatives. Up to four derivatives, discarding total derivative terms, we find

SIR[gµν ] =

∫
d4x
√
g
(
Λ + aR+ bR2 + cW 2 +O(∂6)

)
. (3.1)

Here W is the Weyl tensor. The two remaining contractions with four derivatives, one

parity even and one parity odd, are “total derivatives” corresponding to the Euler and

Pontryagin topological invariants.

7The main argument can be extended to the case when the infrared is a CFT.
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All the coefficients in the effective action (3.1), Λ, a, b, c are renormalization scheme

dependent. For example, the value of the cosmological constant in the infrared is famously

incalculable in quantum field theory. These low energy coefficients do not have a universal

meaning precisely because the corresponding local terms (3.1) (they all have dimensions

≤ 4) can be added as counterterms in the UV.

Now let us consider metrics of the type gµν = (1 + Ψ)2ηµν such that �Ψ = 0. The

UV counter-term corresponding to the coefficient c disappears because such metrics are

conformally flat. In addition, the structures
∫
d4x
√
gR2,

∫
d4x
√
gR do not play a role

because R[(1 + Ψ2)ηµν ] ∼ �Ψ = 0. However, the cosmological constant term remains.

Therefore, if we consider the low energy action as a functional of Ψ and denote the

fourth derivative with respect to Ψ (always evaluating the derivatives at Ψ = 0) by A4, then

we get an object in which the only allowed scheme ambiguity does not carry momentum

dependence (since it comes from the cosmological constant). Therefore, if we take any

derivative of A4 with respect to momentum we get a perfectly well-defined observable in

Quantum Field Theory. Note that derivatives with respect to Ψ are very closely related

to the usual definition of correlators of the trace of the energy-momentum tensor. The

difference from other conventions is at most by the choice of contact terms. Here the

definition of 〈Tµµ T νν · · · 〉 that follows from taking derivatives with respect to Ψ is the most

convenient one for our purposes.

We refer to A4 as the 2 → 2 dilaton scattering amplitude for the following reason:

we can introduce a kinetic term for Ψ with a very large coefficient, and tune the infrared

cosmological constant to zero. Then A4 becomes a genuine 2→ 2 scattering amplitude of

a massless particle Ψ. The fact that the kinetic term has a very large coefficient guarantees

that we can ignore diagrams where Ψ appears in internal legs.

Similarly, we can define An as the n-th derivative of the generating functional with

respect to Ψ. This is again guaranteed to be free of renormalization scheme ambiguities up

to a momentum-independent constant. Upon tuning the infrared cosmological constant to

zero, An can be interpreted as a massless n-dilaton scattering amplitude.

We can use this understanding of the structure of counter-terms to place bounds on

the imaginary part of our scattering processes. Let us begin with A4 in the “on-shell”

kinematics p2
i = 0 and further restrict to the forward limit, p1 = −p3, p2 = −p4 and denote

s = (p1 + p2)2 (we are using the mostly minus signature). In the forward kinematics the

amplitude depends only on the variable s.

Then we have the usual dispersion relation between the amplitude and its imagi-

nary part

A4(s) =
1

π

∫ ∞
−∞

ds′
=A4(s′)

s− s′
+ subtractions , (3.2)

where =A4(s) = −=A4(−s) on the real axis. Since the only allowed divergent subtraction

is momentum independent (cosmological constant), the second derivative of (3.2) should

be convergent, hence, we infer that

lim
s→∞

=A4(s) < s2 . (3.3)

– 9 –
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So far, we have only used the fact that divergent counter-terms for A4 are absent and this

led to our bound (3.3). However, there may be finite counter-terms which are momentum

dependent. We would not need to discuss those in detail here.8

Note that a behavior at large s of the form =A4 ∼M εs2−ε with ε > 0 is allowed. (The

first derivative of
∫∞
−∞ ds

′ =A4(s′)
s−s′ at s = 0 automatically vanishes due to the fact that =A4

is odd. Hence, the first derivative does not place constraints on the large s behavior.) One

can interpret ε as being related to the dimension of the relevant operator starting the flow

of figure 1.

It is straightforward to repeat these ideas for all the A2n. Let us arrange on-shell p2
i = 0

forward kinematics p1 = −pn+1, p2 = −pn+2,. . . ,pn = −p2n and define sij = (pi + pj)
2. At

high energies the theory is arbitrarily close to the scale invariant UV fixed point. Then,

by dimensional analysis9

M2 � sij , λsij : =A2n(λsij) = λ2F2n(sij) . (3.4)

However, if the function F2n(sij) is non-vanishing, such a behavior leads to a contradiction

with the absence of counter-terms in the ultraviolet. Hence, the high-energy limit of A2n

is such that

F2n = 0 . (3.5)

This result will be crucial in what follows. (One can also derive (3.3) and (3.5) using the

classification of anomalies in subsection 2.2.)

The possible counter-terms (3.1) are limited only by diffeomorphism invariance and

power counting. Hence, had we been able to show that the amplitudes A2n exist in the SFT

itself (i.e. the forward limit is non-singular in the unregulated theory), then we would have

established (3.5) even in theories that do not admit an appropriate relevant perturbation.

In examples that we considered in detail, the forward limit exists even without an infrared

regulator. Hence, perhaps the assumption about the existence of the flow in figure 1 can

be relaxed. Hereafter, the assumption that the theory can be regulated in the infrared is

often implicit.

All the statements in this subsection hold in any renormalization group flow of the

type appearing in figure 1, regardless of unitarity.

8Such finite counter-terms may be associated to anomalies. To have an example in mind of how such finite

counter-terms arise, consider dimensional regularization (which although is defined only in perturbation

theory, serves us well to demonstrate how finite counter-terms can arise). Then we have a new counter-

term in 4− ε dimensions, which is essentially the dimensionally continued Euler density. This is multiplied

by 1
ε
, i.e. the usual logarithmic divergence. The integral of the Euler density vanishes as we take ε→ 0 but

this is compensated by 1
ε

to leave behind a finite counter-term which cannot be wrritten as a local functional

in four dimensions. See [37] for further details. A more detailed discussion of these finite counter-terms for

flows of the type CFT-SFT-CFT is given in appendix B, where we utilize the power of infinitely many new

sum rules for the difference between the a-anomalies of the UV and IR CFTs.
9Dimensional analysis holds because the dilation operator assigns the well-defined dimension d to the

energy-momentum tensor, as discussed in the previous section.
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3.2 Lessons for SFTs

The results of the previous subsection can be summarized by saying that the imaginary

parts of the on-shell, forward scattering amplitudes A2n at the SFT itself vanish. Using

unitarity, we will now show that the vanishing of the imaginary parts of the scattering

amplitudes leads to the fact that Ψ is entirely decoupled from the SFT. This is true in the

sense that all the connected matrix elements connecting m > 1 insertions of (on-shell) Ψ

and any state in our theory vanish.

First, we begin with the special case of 2-2 scattering. In the previous subsection we

have shown that the imaginary part of =A4 vanishes identically at the SFT. In unitary

theories we can employ the optical theorem which implies that the two-dilaton matrix

elements 〈Ψ(p1)Ψ(p2)|Anything〉 vanish for arbitrary null p1 and p2.10 This decoupling at

the level of 2→ 2 scattering is precisely the result of [24].

We can generalize the argument to any A2n. It is useful to start from A6, i.e. 3 → 3

scattering, see figure 2. In the previous subsection we have shown that the total imaginary

part of this amplitude vanishes in the SFT (i.e. F6 = 0, see (3.5)). A technical complication

is that unlike the case of 2 → 2 scattering, there exist non-manifestly positive unitarity

cuts (see [38] for a pedagogical exposition of these ideas11). For example, consider the

2 → 4 cut in figure 2. The crucial point is that since we have already shown that all the

two-particle cuts vanish, such cuts are absent from figure 2. Thus only the first diagram

on the right hand side of figure 2 is present. Using the fact that the first term on the

right hand side of figure 2 is positive, we conclude that in the SFT the matrix elements

〈Ψ(p1)Ψ(p2)Ψ(p3)|Anything〉 = 0 for arbitrary null p1, p2, p3.

Proceeding by induction, we find that in unitary scale invariant theories

〈Ψ(p1)Ψ(p2) . . . .Ψ(pn)|Anything〉 = 0 . (3.6)

(Remember that all p2
i = 0.)

We thus learn that the on-shell dilaton is completely decoupled from unitary SFTs in

the sense that all the on-shell scattering amplitudes (3.6) vanish.

3.3 An analogy with S-matrix theory

Finally, we will use a familiar observation about S-matrix theory to conclude that such

unitarity SFTs are actually CFTs.

The S-matrix is invariant under field redefinitions. It is obviously trivial in free-field

theory. In this subsection we will exploit the following assertion: if the S-matrix is trivial,

then one can remove all the interactions in the theory by some change of variables. More

precisely, we exploit the following claim: if the scattering of a certain one-particle state in

a unitary theory is trivial, then after a suitable field redefinition this particle is described

by a free field i.e. there is a kinetic term in the Lagrangian but no interactions whatsoever.

10While in non-unitarity theories it is still true that =A4 vanishes identically at the SFT, one cannot

conclude from this that the source Ψ(x) is decoupled. Some matrix elements with negative-norm states can

cancel against matrix elements with states of positive norm.
11The fact that there appear non-positive combinations of matrix elements in k → k scattering for k > 2

has also played a crucial role in the analysis of [39]
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Figure 2. The optical theorem for 3-3 scattering. The first diagram on the right hand side

corresponds to a three-particle cut and the second diagram to a two-particle cut. The latter is not

manifestly positive.

Since the S-matrix is supposed to characterize the physical theory, this assertion sounds

very plausible, but we do not know whether it can be established rigorously in general, and

if so, under what precise assumptions (see especially the last example in section 4).

The dilaton coupling to the SFT is via
∫
d4xΨ(x)Tµµ (x) + · · · . As we explained in

the introduction, we can imagine introducing a dilaton kinetic term f2
∫
d4x1

2Ψ�Ψ with a

very large dimensionful coefficient f (large compared to all the scales involved in the RG

flow). If the coefficient of the kinetic term for Ψ is very large, then the n → n scattering

amplitudes of Ψ quanta are given by A2n, all of which have vanishing imaginary parts.

Moreover, as our argument in the previous section has shown, due to unitarity, the transi-

tion amplitudes (3.6) vanish. Hence, we expect that the interaction
∫
d4xΨ(x)Tµµ (x) + · · ·

is removable by a field redefinition of Ψ. This can be done if there exists a local operator

L such that Tµµ = �L (L may vanish). In this case the unitary SFT is a CFT.

Another way for the S-matrix to be trivial is that Tµµ is a generalized free field of

dimension d (i.e. its n-point function is determined by Wick contractions) and thus there

are no connected diagrams with more than 2 insertions (the 2-point function is determined

by dimensional analysis to be p4 log p2). Although it sounds like a rather unlikely possibility

in a local field theory, we have not been able to rule it out.

To summarize: unitary scale-invariant field theories must be either conformal field

theories, or the trace of the energy-momentum tensor behaves like a generalized free field

of dimension d.

4 Simple examples

In this section the ideas of this paper are illustrated in very simple examples. In all of the

unitary theories discussed below, we indeed find that all the matrix elements (3.6) vanish,

as predicted. However, in the free two-form theory with non-compact gauge symmetry, we

will see that the vanishing of all the matrix elements (3.6) does not imply that the coupling
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to the dilaton can be removed by a change of variables (hence, this unitary theory is not

conformal). We will comment on why this theory may be exceptional in this regard. By

contrast, the free two-form theory with compact gauge symmetry is perfectly consistent

with our claims.

4.1 A free scalar field

Consider a free scalar field in four dimensions, ϕ. We can couple it to curved space in the

minimal fashion

S =
1

2

∫
d4x
√
ggµν∂µϕ∂νϕ . (4.1)

Let us specialize to metrics of the form gµν = (1 + Ψ)2ηµν . Then the above action becomes

S =
1

2

∫
d4x

(
∂µϕ∂

µϕ+ 2Ψ∂µϕ∂
µϕ+ Ψ2∂µϕ∂

µϕ
)
, (4.2)

where the indices are now contracted with the flat metric. It is straightforward to compute

the generating functional W [Ψ] using conventional Feynman diagram techniques. We can

further impose that �Ψ = 0, in which case the computation becomes identical to the

scattering of massless Ψ particles weakly coupled to the original theory. Let us prove that

for �Ψ = 0 the generating functional does not depend on Ψ, in accord with our general

claims in the previous section. Note that this is somewhat nontrivial to see in terms of the

Feynman diagrams generated by (4.2).

The leading interaction of Ψ is with the operator ∂µϕ∂
µϕ, which is equivalent on-

shell to 1
2�(ϕ2). The difference between ∂µϕ∂

µϕ and 1
2�(ϕ2), being zero on-shell, can

be absorbed by a redefinition of ϕ. This redefinition precisely cancels a piece from the

seagull term Ψ2(∂ϕ)2 such that W [Ψ] is Ψ-independent for �Ψ = 0. In more detail, we

rewrite (4.2) as

S =
1

2

∫
d4x

(
∂µϕ∂

µϕ+ �Ψϕ2 − 2Ψϕ�ϕ+ Ψ2∂µϕ∂
µϕ
)
, (4.3)

which can be further rewritten as

S =
1

2

∫
d4x

(
− (ϕ+ Ψϕ)� (ϕ+ Ψϕ) + �Ψϕ2 + Ψϕ�(Ψϕ) + Ψ2∂µϕ∂

µϕ
)

=
1

2

∫
d4x

(
− (ϕ+ Ψϕ)� (ϕ+ Ψϕ) + �Ψϕ2 + Ψ�Ψϕ2

)
, (4.4)

where we used only integration by parts in the last line. Every interaction vertex with

the source is now seen to contain an explicit �Ψ. Hence, we can change the path integral

variable to ϕ′ = ϕ+Ψϕ and we see that for �Ψ = 0 the amplitudes An (and all the matrix

elements (3.6)) vanish.

Furthermore, the coupling to the dilaton is through �Ψϕ2, which guarantees the theory

has a traceless energy-momentum tensor after an improvement. Of course, the fact that

this theory is conformal is well known, the energy momentum tensor derived from (4.1) is

improvable and one can write the following symmetric, conserved, traceless EM tensor (in

any d > 1):

Tµν = ∂µϕ∂νϕ−
1

2
ηµν∂

ρϕ∂ρϕ+
2− d

4(d− 1)

(
∂µ∂ν − ηµν∂2

)
ϕ2 . (4.5)
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4.2 A non-unitary vector field

Let us now present a simple example [40] which is scale invariant but it is not conformal

invariant (see also [41]). This example is non-unitary. Consider a massless vector field Aµ
in d dimensions (we do not impose gauge invariance). The most general Lorenz-invariant

quadratic action is

S =

∫
ddx (a ∂µAν∂

µAν + b ∂µAν∂
νAµ) . (4.6)

Of course, only the ratio of a and b matters for the results below.

It is easy to see that this theory always has a virial current

V µ = (a+ b)dAµ(∂νAν)− a(d− 4)AνF
µν . (4.7)

To check whether it is a conformally invariant theory we have to look for the cases in which

a local Lµν can solve V µ = ∂νL
νµ. One finds that a solution exists if and only if12

b = −4a/d . (4.8)

Therefore, for this choice of coefficients, the theory becomes conformal. The explicit ex-

pression for Lµν is

Lµν = (d− 4)a

(
−AνAµ +

1

2
gµνA2

)
. (4.9)

In the case (4.8) Tµν can be improved such that it is traceless. Note that (4.8) at d = 4

leads to the usual Maxwell action which can be further rendered unitary by restricting to

the gauge-invariant sector.

Let us remark that in the theories (4.6) our on-shell S-matrix elements An should

vanish identically for all n in d = 4, as we have proven on general grounds in subsec-

tion 3.1. But the transition amplitudes (3.6) may be nonzero because the underlying

theory is non-unitary.13

12In fact, there is also a solution for b = 0. One could simply write (compare with (4.5))

Tµν ∼ ∂µAρ∂νAρ −
1

2
ηµν∂σAρ∂

σAρ +
2− d

4(d− 1)
(∂µ∂ν − ηµν∂2)AρAρ

which is symmetric, conserved, and traceless. However, it leads to twisted Lorentz charges, which act on

Aµ as if these were d Lorentz scalars. This is why the traceless energy-momentum tensor above should be

disregarded. Thus, the special case b = 0 corresponds to a scale invariant but non-conformal theory.
13It is easy to prove the vanishing of An by a trick that we borrow from [24]. We start from a = −b, in

which case the coupling to curved space is classically Weyl invariant (since the action coincides with that

of the Maxwell theory). Thus for a = −b the scattering of Ψ quanta is clearly trivial. However, we can now

study the theory in the ξ-gauges and obtain any of the other choices of a, b in (4.6). Since the new EM

tensor only differs from the original one by δBRST -exact terms, and since the ghosts (being improvable) are

decoupled from Ψ, the scattering amplitudes An are independent of a, b and hence are trivial for any a, b

and for any n. Note that this does not imply anything about the complete set of matrix elements, since

the gauge fixing potentially introduces ξ dependence into the non-gauge invariant matrix elements.
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4.3 A free scalar field with discrete gauge symmetry

Here we discuss a compact scalar (one can think about it as a Nambu-Goldstone boson

of a spontaneously broken U(1)). This is equivalent to a (d − 2)-form gauge field with a

compact gauge symmetry. The Lagrangian of a free scalar field with gauged shift symmetry

is identical to the one of the usual non-compact free scalar field (4.1), only that ϕ and

ϕ+ 2πf are gauge equivalent, where f is some dimensionful scale.

The theory is unitary, and the Ψ scattering amplitudes and matrix elements are iden-

tical to those of an ordinary non-compact free scalar field. These were explained to be

trivial in subsection 4.1.

However, naively the theory is not conformal in d > 2 because the improvement term

in (4.5) is not invariant under the gauge symmetry ϕ → ϕ + 2πf . (In fact, for the same

reason, the theory does not have a well-defined local scale current in d > 2.14)

Our argument that theories which are unitary and scale invariant must be conformal

thus seems to be in tension with the apparent non-conformality of the Nambu-Goldstone

boson.15 While our theorem that all the matrix elements (3.6) vanish is satisfied, naively,

one cannot conclude that there is a local operator L such that Tµµ = �L.

The resolution is that f , which defines the radius of the Nambu-Goldstone model (and

has a positive mass dimension for d > 2), is an IR-irrelevant parameter — it effectively

goes to infinity at low energies. So, in the deep infrared, a Nambu-Goldstone is identical

to the ordinary non-compact free scalar fields and, in particular, the operator ϕ2 is a legal

operator when we expand around some superselection sector. Of course, improving the

energy momentum tensor by ϕ2 around some superselection sector breaks explicitly the

global shift symmetry (which is already broken spontaneously by the choice of vacuum)

but this is not forbidden.

There are several ways to see that in d > 2 the low energy limit of the compact scalar

is the ordinary non-compact scalar. We could study the theory on T d−1 × R. Then the

zero mode on T d−1 is a quantum mechanical degree of freedom with radius ∼ V ol(T d−1)f .

Localized wave functions on the circle look increasingly similar to those of the noncompact

free scalar as we take the infrared limit. A more sophisticated check of this idea [44] is

to study the entanglement entropy of the compact scalar across a large Sd−2. One finds

the familiar entanglement entropy of the ordinary non-compact massless scalar as the Sd−2

becomes very large.

To conclude, the compact scalar theory is not a counter-example to our claims because

in the infrared it does become conformal.

14Thus, the dual theory, a free gauge field in three dimensions has no local scale current. This has an

interesting spinoff. If there existed a local scale current, then by (1.4) we could have immediately concluded

that the S3 partition function is independent of the radius of the S3. However, an explicit computation

reveals a logarithmic dependence on the radius. If we now gap our free gauge field with a relevant Chern-

Simons term with level k, then the logarithmic dependence on the radius above is replaced for a large sphere

with a logarithm of ∼ e2k. This implies that the partition function must have a log k, which is the familiar

result for the partition function on S3 of the Abelian Chern-Simons theory at level k [42, 43].
15In d = 3, a compact scalar is dual to a free Maxwell field with compact gauge symmetry. That the

Maxwell field in d = 3 is naively not conformal is already discussed, for example, in [41]. Here we would

like to emphasize that there is a crucial difference between the gauge field with compact and non-compact

gauge symmetry. As we explain in the text, it is conformally invariant in the former case.
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4.4 A free scalar field with continuous gauge symmetry

Let us now consider the following situation: a free scalar from which we remove the zero

mode by introducing a continuous gauge symmetry ϕ→ ϕ+ c for any real c. This is dual

to a (d− 2)-form gauge field with non-compact gauge symmetry. (In particular, in d = 3 it

is dual to the Maxwell field with non-compact gauge symmetry and in d = 4 it is dual to

the free two-form gauge field with non-compact gauge symmetry. See, for instance, [45])

Here again we find trivial matrix elements (3.6), but since ϕ2 is not gauge invariant, the

theory is not conformal. Hence, even though all the matrix elements (3.6) are zero, the

interaction with the dilaton cannot be removed by a change of variables.

We repeat: in this unitary theory the S-matrix for dilaton scattering is trivial, however,

the interaction with the dilaton cannot be removed by a change of variables because the

change of variables necessarily involves ϕ2 which is not a well-defined local operator.

This may mean one of two things:

i. Our main claim, that the triviality of the scattering amplitudes of the Ψ-particle

(3.6) implies there are new variables such that the corresponding new field is free,

is generally correct. The precise formulation of this assertion may rely on some

additional assumptions satisfied by generic “good” QFTs.

ii. Our main claim, see above, is not necessarily satisfied by generic theories.

The second option is very implausible because, for sufficiently nice unitary QFTs, a

trivial S-matrix should mean that the theory is free in some variables. Let us explain why

the free two-form theory is likely a very special exception to this general rule, and therefore

the first option holds true.

In flat space, the free two-form is closely related to the massless non-compact scalar.

They have precisely the same Hilbert space. The difference is that to arrive at the free

two-form we project out all the local operators in the free scalar theory that do not have

derivatives acting on the scalar field. This projection out is of course the origin of the

obstruction to having conformal invariance in the free two-form theory. Since the Hilbert

space is identical to the free non-compact scalar, and since the operators that are not

projected out have precisely the same correlation functions as in the free noncompact

scalar theory, the S-matrices for dilaton scattering are identical (i.e. they are trivial in

both cases).

In general interacting QFT one should not be able to remove a subset of the local

operators while retaining consistency, not modifying the Hilbert space, and not modifying

the correlation functions of the operators that are not removed. Even if the remaining

set of operators is closed under the OPE, such a procedure generally leads to inconsistent

models. For example, in two dimensions this leads to models that cease to have a sensible

physical interpretation on various curved manifolds.

Therefore, the counter-example of the free two-form theory can be understood as being

related to the fact that in the case of a free massless scalar field in d dimensions one can

remove a subset of the local operators while not jeopardizing the consistency of the theory.

We do not expect this to be possible in general.
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A A non-diagonalizable dilatation operator

Let us reconsider the current algebra equation (2.1)

i[D̂, Tµν ] = xρ∂ρTµν + dTµν + ∂ρ∂σYρµ;σν . (A.1)

As discussed in section 2, the matrix ΓIJ in (2.3) can be brought to a Jordan normal form.

In the new basis a necessary condition for Yρµ;σν in four dimensions to be non-removable

from (A.1) is that its generalized eigenvalue is equal 2.

Below we will show that in a unitary SFT the trace Yµν = Yρµ;ρν of dimension 2 must

be a scalar Yµ;ν = ηµνY , and trace of (A.1) becomes

i[D̂, T µµ ] = xρ∂ρT
µ
µ + d Tµµ + �Y . (A.2)

In the theories with non-canonical current algebra, i.e. whenever Y are present, we

might not be able to use naive dimensional analysis to fix correlation functions (or their

imaginary parts). However, in case the current algebra is reduced to (A.2) the extra term

does not affect the on-shell dilaton scattering amplitudes. Indeed the dilaton couples to

the trace Tµµ , and the possible contribution of the term �Y vanishes on-shell. Therefore,

we can apply the dimensional analysis to the scattering amplitudes of Ψ and the main

argument of this paper holds i.e. Tµµ = �L for some local L, while L may mix with some

Y as the scale changes.

As a first step let us assume unitarity and re-derive the bound on the dimension of the

scalar operators in a SFT. We start with the most general current algebra

i[D̂,OI ] = xρ∂ρOI + ΓIJOJ , (A.3)
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and bring ΓIJ to a Jordan normal form. The diagonal elements which we call generalized

dimensions will be denoted by ∆i. For each ∆i there is at least one operator O which

sits at the bottom row of the ∆i Jordan block such that i[D̂,O] = xρ∂ρO + ∆iO i.e. it is

an ordinary eigenvector of the dilatation operator. Assuming vacuum is D̂-invariant, by

dimensional analysis the two-point function of the scalars O is fixed to be16

〈O(p)O(−p)〉 = Cp2(∆i−d/2) . (A.4)

The bound on the dimension ∆i comes from re-writing (A.4) using Källen-Lehman

representation

Cp2(∆i−d/2) =

∫ ∞
0

dµ2ρ(µ)2

p2 − µ2 + iε
, (A.5)

and requiring that ρ(µ2) is non-negative while the integral (A.5) converges in the IR [19,

46]. The dimensional analysis implies ρ(µ2) ∼ µ2(∆i−d/2) and hence ∆i ≥ (d−2)/2 for (A.5)

to converge. Of course one can try to define the integral (A.5) via analytic continuation

for ρ(µ2) ∼ µ2δ and δ < −1. The result rotated to the Euclidean space

〈Oi(x)Oi(0)〉 =
C̃

x2∆i
(A.6)

would look sensible except for the fact that positive ρ(µ2) would lead to a negative C̃ (for

−1 > δ > −2). This violation of reflection positivity is a sign of a sickness associated with

∆i that violates the unitarity bound.

A very similar line of reasoning works for non-scalar operators as well. The only

important distinction is that the two-point function of, say, vectors Oµ, might have a

term proportional to pµpνp
2(∆−d/2−1). Convergence of (A.5) would now imply a stronger

bound ∆ ≥ d/2. In general a two-point function of spin j operators might have the term

pµ1pν1 . . . pµjpνj which would result in the bound ∆ ≥ d/2 + j − 1 [19]. If the theory is

conformal this term in fact must be present (and the real bound is even stronger). But

if the theory is merely scale invariant not all of these terms might be present making the

bound weaker. For example the two-point function of traceless symmetric spin 2 operators

Oµν could be made exclusively out of ηµν and contain no “pµpν” terms:

〈Oµν(p)Oµ′ν′(−p)〉 ∼
(
ηµνηµ′ν′ −

d

2
(ηµµ′ηνν′ + ηµν′ηνµ′)

)
p2(∆−d/2) . (A.7)

In such a case convergence of (A.5) would imply the same bound as for the scalars ∆ ≥
(d− 2)/2. This is in fact too conservative, because the imaginary part of (A.7) is not sign

definite and is not consistent with unitarity. In a unitary theory (A.7) must include the

“pµpν” and “pµpνpαpβ” terms which would strengthen the bound to be ∆ > 2 in d = 4.

Hence the decomposition of Yµν into irreducible representations of Lorentz group can not

include traceless spin 2 component leaving the scalar one to be the only option.

16In case ∆i − d/2 is a non-negative integer (B.4) acquires an extra log p2.
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B More on finite counterterms

In this appendix we discuss a specialized class of renormalization group flows where more

detailed information than what we have used in section 3 can be provided. Another mo-

tivation for this appendix is to present infinitely many new sum rules for the difference

between the a-anomalies in RG flows connecting CFTs. We will emphasize an application

of these infinitely many new sum rules for the problem of SFT vs CFT.

We consider renormalization group flows between two conformal field theories, CFTuv

and CFTir. What we present in the following is a simple generalization of the ideas of [22].

We can couple the theory to a background metric in a diffeomorphism invariant fashion.

We can then take the metric to be conformally flat gµν = e−2τηµν . The effective action

for the external dilaton source τ(x) is constrained by symmetries. The low energy effective

action up to (and including) four derivatives is

SIR =

∫
d4x

(
1

2
f2e−2τ (∂τ)2 + κ

(
� τ − (∂τ)2

)2
+ (auv − air)

(
4(∂τ)2� τ − 2(∂τ)4

))
+ · · · , (B.1)

and the on-shell condition is �τ−(∂τ)2 = 0. The term proportional to κ does not contribute

at the level of four derivatives. Therefore, any process of dilaton scattering is universally

fixed at the level of four derivatives by the a-anomalies of the UV and IR CFTs. We can

calculate the low energy limit of the n− n scattering amplitude in the forward limit

A2n(sij) = 8
ãn
f2n

∑
1≤i<j≤n

s2
ij with ãn =

(2n− 1)!

3!
(auv − air) . (B.2)

Using these low energy scattering amplitudes we can write (convergent) sum rules.

The simplest sum rule is the one that corresponds to n = 2

auv − air =
f4

4π

∫
ds

s3
=A4(s) . (B.3)

Here we see that it admits a natural generalization to any forward n−n process of dilaton

scattering

ãn
∑
ij

s2
ij =

f2n

4π

∫
dλ

λ3
=A2n(λsij) . (B.4)

This result is applicable for any RG flow between two CFTs.

Let us explain how these sum rules can be applied for the problem of scale versus

conformal invariance. Imagine that during the flow we can pass very close to an SFT.

We imagine that there is a small parameter ε in the space of couplings such that we can

get arbitrarily close to an SFT as we take ε to zero. See figure 3. We also imagine, for

simplicity, that the infrared is gapped. The class of theories considered here includes many

interesting models, for example, any theory that can be reached by a deformation of the

Gaussian fixed point (and subsequently deformed to an empty theory).
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CFT

SFT

Gapped

Figure 3. We can probe potential SFTs by arranging a flow from a CFT that hovers near the SFT

point for arbitrarily long RG time.

Having the small parameter ε that allows to hover near an SFT as in figure 3 means

that in an energy range between µIR and µUV, µIR � µUV, the theory is approximately

scale invariant. Then, by dimensional analysis,

µ2
IR � sij � µ2

UV, µ
2
IR � λsij � µ2

UV : =An(λsij) = λ2Fn(sij) . (B.5)

If the function Fn(sij) is non-vanishing, such a behavior leads to a contradiction with

the sum rules (B.4) because the sum rules cease to converge as ε → 0. Therefore, the

imaginary part (B.5) vanishes for all n. For example, for A4(s) we might have expected

by dimensional analysis that A4(s) = κs2 log
(

s
µ2IR

)
in the SFT regime, but the coefficient

must necessarily vanish κ = 0.

Repeating the argument of section 3 we find that, imposing unitarity, all the matrix

elements (3.6) vanish in the SFT energy range between µIR and µUV. The coupling of

the dilaton to the SFT in this energy range can be consistent with the vanishing of all

the connected matrix elements if the theory is a CFT (in which case the dilaton decouples

on-shell), or if the trace of the energy-momentum tensor is a generalized free field (in which

case there are no connected diagrams).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] S. Ferrara, A.F. Grillo and R. Gatto, Tensor representations of conformal algebra and

conformally covariant operator product expansion, Annals Phys. 76 (1973) 161 [INSPIRE].

[2] A.M. Polyakov, Nonhamiltonian approach to conformal quantum field theory, Zh. Eksp. Teor.

Fiz. 66 (1974) 23 [INSPIRE].

– 20 –

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/0003-4916(73)90446-6
http://inspirehep.net/search?p=find+J+"AnnalsPhys.,76,161"
http://inspirehep.net/search?p=find+J+"Zh.Eksp.Teor.Fiz.,66,23"


J
H
E
P
1
0
(
2
0
1
5
)
1
7
1

[3] A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Infinite conformal symmetry in

two-dimensional quantum field theory, Nucl. Phys. B 241 (1984) 333 [INSPIRE].

[4] F.A. Dolan and H. Osborn, Conformal four point functions and the operator product

expansion, Nucl. Phys. B 599 (2001) 459 [hep-th/0011040] [INSPIRE].

[5] L.F. Alday and J.M. Maldacena, Comments on operators with large spin, JHEP 11 (2007)

019 [arXiv:0708.0672] [INSPIRE].

[6] R. Rattazzi, V.S. Rychkov, E. Tonni and A. Vichi, Bounding scalar operator dimensions in

4D CFT, JHEP 12 (2008) 031 [arXiv:0807.0004] [INSPIRE].

[7] S. Hellerman, A universal inequality for CFT and quantum gravity, JHEP 08 (2011) 130

[arXiv:0902.2790] [INSPIRE].

[8] I. Heemskerk, J. Penedones, J. Polchinski and J. Sully, Holography from conformal field

theory, JHEP 10 (2009) 079 [arXiv:0907.0151] [INSPIRE].

[9] S. El-Showk, M.F. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin and A. Vichi, Solving

the 3D Ising model with the conformal bootstrap, Phys. Rev. D 86 (2012) 025022

[arXiv:1203.6064] [INSPIRE].

[10] P. Liendo, L. Rastelli and B.C. van Rees, The bootstrap program for boundary CFTd, JHEP

07 (2013) 113 [arXiv:1210.4258] [INSPIRE].

[11] A.L. Fitzpatrick, J. Kaplan, D. Poland and D. Simmons-Duffin, The analytic bootstrap and

AdS superhorizon locality, JHEP 12 (2013) 004 [arXiv:1212.3616] [INSPIRE].

[12] Z. Komargodski and A. Zhiboedov, Convexity and liberation at large spin, JHEP 11 (2013)

140 [arXiv:1212.4103] [INSPIRE].

[13] C. Beem, L. Rastelli and B.C. van Rees, The N = 4 superconformal bootstrap, Phys. Rev.

Lett. 111 (2013) 071601 [arXiv:1304.1803] [INSPIRE].

[14] A. Migdal, Ancient history of CFT, talk given at the 12th Claude Itzykson Meeting, June

18–22, France (2007).

[15] J. Wess, The conformal invariance in quantum field theory, Nuovo Cim. 6 (1960) 1086.

[16] C.G. Callan Jr., S.R. Coleman and R. Jackiw, A new improved energy-momentum tensor,

Annals Phys. 59 (1970) 42 [INSPIRE].

[17] S.R. Coleman and R. Jackiw, Why dilatation generators do not generate dilatations?, Annals

Phys. 67 (1971) 552 [INSPIRE].

[18] A. Iorio, L. O’Raifeartaigh, I. Sachs and C. Wiesendanger, Weyl gauging and conformal

invariance, Nucl. Phys. B 495 (1997) 433 [hep-th/9607110] [INSPIRE].

[19] B. Grinstein, K.A. Intriligator and I.Z. Rothstein, Comments on unparticles, Phys. Lett. B

662 (2008) 367 [arXiv:0801.1140] [INSPIRE].

[20] J. Polchinski, Scale and conformal invariance in quantum field theory, Nucl. Phys. B 303

(1988) 226 [INSPIRE].

[21] A.B. Zamolodchikov, Irreversibility of the flux of the renormalization group in a 2D field

theory, JETP Lett. 43 (1986) 730 [INSPIRE].

[22] Z. Komargodski and A. Schwimmer, On renormalization group flows in four dimensions,

JHEP 12 (2011) 099 [arXiv:1107.3987] [INSPIRE].

– 21 –

http://dx.doi.org/10.1016/0550-3213(84)90052-X
http://inspirehep.net/search?p=find+J+"Nucl.Phys.,B241,333"
http://dx.doi.org/10.1016/S0550-3213(01)00013-X
http://arxiv.org/abs/hep-th/0011040
http://inspirehep.net/search?p=find+EPRINT+hep-th/0011040
http://dx.doi.org/10.1088/1126-6708/2007/11/019
http://dx.doi.org/10.1088/1126-6708/2007/11/019
http://arxiv.org/abs/0708.0672
http://inspirehep.net/search?p=find+EPRINT+arXiv:0708.0672
http://dx.doi.org/10.1088/1126-6708/2008/12/031
http://arxiv.org/abs/0807.0004
http://inspirehep.net/search?p=find+EPRINT+arXiv:0807.0004
http://dx.doi.org/10.1007/JHEP08(2011)130
http://arxiv.org/abs/0902.2790
http://inspirehep.net/search?p=find+EPRINT+arXiv:0902.2790
http://dx.doi.org/10.1088/1126-6708/2009/10/079
http://arxiv.org/abs/0907.0151
http://inspirehep.net/search?p=find+EPRINT+arXiv:0907.0151
http://dx.doi.org/10.1103/PhysRevD.86.025022
http://arxiv.org/abs/1203.6064
http://inspirehep.net/search?p=find+EPRINT+arXiv:1203.6064
http://dx.doi.org/10.1007/JHEP07(2013)113
http://dx.doi.org/10.1007/JHEP07(2013)113
http://arxiv.org/abs/1210.4258
http://inspirehep.net/search?p=find+EPRINT+arXiv:1210.4258
http://dx.doi.org/10.1007/JHEP12(2013)004
http://arxiv.org/abs/1212.3616
http://inspirehep.net/search?p=find+EPRINT+arXiv:1212.3616
http://dx.doi.org/10.1007/JHEP11(2013)140
http://dx.doi.org/10.1007/JHEP11(2013)140
http://arxiv.org/abs/1212.4103
http://inspirehep.net/search?p=find+EPRINT+arXiv:1212.4103
http://dx.doi.org/10.1103/PhysRevLett.111.071601
http://dx.doi.org/10.1103/PhysRevLett.111.071601
http://arxiv.org/abs/1304.1803
http://inspirehep.net/search?p=find+EPRINT+arXiv:1304.1803
http://dx.doi.org/10.1016/0003-4916(70)90394-5
http://inspirehep.net/search?p=find+J+"AnnalsPhys.,59,42"
http://dx.doi.org/10.1016/0003-4916(71)90153-9
http://dx.doi.org/10.1016/0003-4916(71)90153-9
http://inspirehep.net/search?p=find+J+"AnnalsPhys.,67,552"
http://dx.doi.org/10.1016/S0550-3213(97)00190-9
http://arxiv.org/abs/hep-th/9607110
http://inspirehep.net/search?p=find+EPRINT+hep-th/9607110
http://dx.doi.org/10.1016/j.physletb.2008.03.020
http://dx.doi.org/10.1016/j.physletb.2008.03.020
http://arxiv.org/abs/0801.1140
http://inspirehep.net/search?p=find+EPRINT+arXiv:0801.1140
http://dx.doi.org/10.1016/0550-3213(88)90179-4
http://dx.doi.org/10.1016/0550-3213(88)90179-4
http://inspirehep.net/search?p=find+J+"Nucl.Phys.,B303,226"
http://inspirehep.net/search?p=find+J+"JETPLett.,43,730"
http://dx.doi.org/10.1007/JHEP12(2011)099
http://arxiv.org/abs/1107.3987
http://inspirehep.net/search?p=find+EPRINT+arXiv:1107.3987


J
H
E
P
1
0
(
2
0
1
5
)
1
7
1

[23] Z. Komargodski, The constraints of conformal symmetry on RG flows, JHEP 07 (2012) 069

[arXiv:1112.4538] [INSPIRE].

[24] M.A. Luty, J. Polchinski and R. Rattazzi, The a-theorem and the asymptotics of 4D

quantum field theory, JHEP 01 (2013) 152 [arXiv:1204.5221] [INSPIRE].

[25] D. Dorigoni and V.S. Rychkov, Scale invariance + unitarity ⇒ conformal invariance?,

arXiv:0910.1087 [INSPIRE].

[26] J.-F. Fortin, B. Grinstein and A. Stergiou, Limit cycles in four dimensions, JHEP 12 (2012)

112 [arXiv:1206.2921] [INSPIRE].

[27] J.-F. Fortin, B. Grinstein and A. Stergiou, Limit cycles and conformal invariance, JHEP 01

(2013) 184 [arXiv:1208.3674] [INSPIRE].

[28] I. Antoniadis and M. Buican, On R-symmetric fixed points and superconformality, Phys. Rev.

D 83 (2011) 105011 [arXiv:1102.2294] [INSPIRE].

[29] S. Zheng, Is there scale invariance in N = 1 supersymmetric field theories?,

arXiv:1103.3948 [INSPIRE].

[30] Y. Nakayama, Comments on scale invariant but non-conformal supersymmetric field theories,

Int. J. Mod. Phys. A 27 (2012) 1250122 [arXiv:1109.5883] [INSPIRE].

[31] Y. Nakayama, Supercurrent, supervirial and superimprovement, Phys. Rev. D 87 (2013)

085005 [arXiv:1208.4726] [INSPIRE].

[32] Y. Nakayama, No forbidden landscape in string/M-theory, JHEP 01 (2010) 030

[arXiv:0909.4297] [INSPIRE].

[33] R. Jackiw and S.Y. Pi, Tutorial on scale and conformal symmetries in diverse dimensions, J.

Phys. A 44 (2011) 223001 [arXiv:1101.4886] [INSPIRE].

[34] Y. Nakayama, Scale invariance vs. conformal invariance, Phys. Rept. 569 (2015) 1

[arXiv:1302.0884] [INSPIRE].

[35] H. Osborn, Weyl consistency conditions and a local renormalization group equation for

general renormalizable field theories, Nucl. Phys. B 363 (1991) 486 [INSPIRE].

[36] F. Baume, B. Keren-Zur, R. Rattazzi and L. Vitale, The local Callan-Symanzik equation:

structure and applications, JHEP 08 (2014) 152 [arXiv:1401.5983] [INSPIRE].

[37] S. Deser and A. Schwimmer, Geometric classification of conformal anomalies in arbitrary

dimensions, Phys. Lett. B 309 (1993) 279 [hep-th/9302047] [INSPIRE].

[38] R.J. Eden, P.V. Landshoff, D.I. Olive and J.C. Polkinghorne, The analytic S-matrix,

Cambridge University Press, Cambridge U.K. (1966).

[39] H. Elvang, D.Z. Freedman, L.-Y. Hung, M. Kiermaier, R.C. Myers and S. Theisen, On

renormalization group flows and the a-theorem in 6D, JHEP 10 (2012) 011

[arXiv:1205.3994] [INSPIRE].

[40] V. Riva and J.L. Cardy, Scale and conformal invariance in field theory: a physical

counterexample, Phys. Lett. B 622 (2005) 339 [hep-th/0504197] [INSPIRE].

[41] S. El-Showk, Y. Nakayama and S. Rychkov, What Maxwell theory in D <> 4 teaches us

about scale and conformal invariance, Nucl. Phys. B 848 (2011) 578 [arXiv:1101.5385]

[INSPIRE].

– 22 –

http://dx.doi.org/10.1007/JHEP07(2012)069
http://arxiv.org/abs/1112.4538
http://inspirehep.net/search?p=find+EPRINT+arXiv:1112.4538
http://dx.doi.org/10.1007/JHEP01(2013)152
http://arxiv.org/abs/1204.5221
http://inspirehep.net/search?p=find+EPRINT+arXiv:1204.5221
http://arxiv.org/abs/0910.1087
http://inspirehep.net/search?p=find+EPRINT+arXiv:0910.1087
http://dx.doi.org/10.1007/JHEP12(2012)112
http://dx.doi.org/10.1007/JHEP12(2012)112
http://arxiv.org/abs/1206.2921
http://inspirehep.net/search?p=find+EPRINT+arXiv:1206.2921
http://dx.doi.org/10.1007/JHEP01(2013)184
http://dx.doi.org/10.1007/JHEP01(2013)184
http://arxiv.org/abs/1208.3674
http://inspirehep.net/search?p=find+EPRINT+arXiv:1208.3674
http://dx.doi.org/10.1103/PhysRevD.83.105011
http://dx.doi.org/10.1103/PhysRevD.83.105011
http://arxiv.org/abs/1102.2294
http://inspirehep.net/search?p=find+EPRINT+arXiv:1102.2294
http://arxiv.org/abs/1103.3948
http://inspirehep.net/search?p=find+EPRINT+arXiv:1103.3948
http://dx.doi.org/10.1142/S0217751X12501229
http://arxiv.org/abs/1109.5883
http://inspirehep.net/search?p=find+EPRINT+arXiv:1109.5883
http://dx.doi.org/10.1103/PhysRevD.87.085005
http://dx.doi.org/10.1103/PhysRevD.87.085005
http://arxiv.org/abs/1208.4726
http://inspirehep.net/search?p=find+EPRINT+arXiv:1208.4726
http://dx.doi.org/10.1007/JHEP01(2010)030
http://arxiv.org/abs/0909.4297
http://inspirehep.net/search?p=find+EPRINT+arXiv:0909.4297
http://dx.doi.org/10.1088/1751-8113/44/22/223001
http://dx.doi.org/10.1088/1751-8113/44/22/223001
http://arxiv.org/abs/1101.4886
http://inspirehep.net/search?p=find+EPRINT+arXiv:1101.4886
http://dx.doi.org/10.1016/j.physrep.2014.12.003
http://arxiv.org/abs/1302.0884
http://inspirehep.net/search?p=find+EPRINT+arXiv:1302.0884
http://dx.doi.org/10.1016/0550-3213(91)80030-P
http://inspirehep.net/search?p=find+J+"Nucl.Phys.,B363,486"
http://dx.doi.org/10.1007/JHEP08(2014)152
http://arxiv.org/abs/1401.5983
http://inspirehep.net/search?p=find+EPRINT+ARXIV:1401.5983
http://dx.doi.org/10.1016/0370-2693(93)90934-A
http://arxiv.org/abs/hep-th/9302047
http://inspirehep.net/search?p=find+EPRINT+hep-th/9302047
http://dx.doi.org/10.1007/JHEP10(2012)011
http://arxiv.org/abs/1205.3994
http://inspirehep.net/search?p=find+EPRINT+arXiv:1205.3994
http://dx.doi.org/10.1016/j.physletb.2005.07.010
http://arxiv.org/abs/hep-th/0504197
http://inspirehep.net/search?p=find+EPRINT+hep-th/0504197
http://dx.doi.org/10.1016/j.nuclphysb.2011.03.008
http://arxiv.org/abs/1101.5385
http://inspirehep.net/search?p=find+EPRINT+arXiv:1101.5385


J
H
E
P
1
0
(
2
0
1
5
)
1
7
1

[42] A.S. Schwarz, The partition function of degenerate quadratic functional and Ray-Singer

invariants, Lett. Math. Phys. 2 (1978) 247 [INSPIRE].

[43] E. Witten, Quantum field theory and the Jones polynomial, Commun. Math. Phys. 121

(1989) 351 [INSPIRE].

[44] C.A. Agon, M. Headrick, D. Jafferis and S. Kasko, Disk entanglement entropy for a Maxwell

field, Phys. Rev. D 89 (2014) 025018 [arXiv:1310.4886] [INSPIRE].

[45] E.S. Fradkin and A.A. Tseytlin, Quantum equivalence of dual field theories, Annals Phys.

162 (1985) 31 [INSPIRE].

[46] A. Cappelli, D. Friedan and J.I. Latorre, C theorem and spectral representation, Nucl. Phys.

B 352 (1991) 616 [INSPIRE].

– 23 –

http://dx.doi.org/10.1007/BF00406412
http://inspirehep.net/search?p=find+J+"Lett.Math.Phys.,2,247"
http://dx.doi.org/10.1007/BF01217730
http://dx.doi.org/10.1007/BF01217730
http://inspirehep.net/search?p=find+J+"Comm.Math.Phys.,121,351"
http://dx.doi.org/10.1103/PhysRevD.89.025018
http://arxiv.org/abs/1310.4886
http://inspirehep.net/search?p=find+EPRINT+ARXIV:1310.4886
http://dx.doi.org/10.1016/0003-4916(85)90225-8
http://dx.doi.org/10.1016/0003-4916(85)90225-8
http://inspirehep.net/search?p=find+J+"AnnalsPhys.,162,31"
http://dx.doi.org/10.1016/0550-3213(91)90102-4
http://dx.doi.org/10.1016/0550-3213(91)90102-4
http://inspirehep.net/search?p=find+J+"Nucl.Phys.,B352,616"

	Introduction and summary
	A closer look at scale invariance
	Aspects of current algebra
	The background functional and SFT anomalies

	Probing SFTs with renormalization group flows
	Convergent dispersion relations
	Lessons for SFTs
	An analogy with S-matrix theory

	Simple examples
	A free scalar field
	A non-unitary vector field
	A free scalar field with discrete gauge symmetry
	A free scalar field with continuous gauge symmetry

	A non-diagonalizable dilatation operator
	More on finite counterterms

