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We review the recently constructed non-trivial fermionic representations of the

infinite-dimensional subalgebra K(e10) of the hyperbolic Kac–Moody algebra

e10. These representations are all unfaithful (and more specifically, of finite

dimension). In addition we present their decompositions under the various

finite-dimensional subgroups associated with some maximal supergravities in

dimensions D ≤ 11, and the projectors for ‘spin- 7
2
’ which have not been given

before. Those representations that have not been derived from supergravity

still have to find a role and a proper physical interpretation in the conjectured

correspondence between E10 and M-theory. Nevertheless, they provide novel

mathematical structures that could shed some light on fundamental questions

in supergravity and on the possible role of K(E10) as an ‘R-symmetry’ of M-

theory, and perhaps also on the algebra e10 itself.
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1 Introduction

The hyperbolic Kac–Moody algebra e10 has been conjectured to generate an underlying sym-

metry of M-theory [1, 2] and its (maximal compact) subalgebra K(e10) (fixed by the Chevalley

involution) plays the role of the generalised R-symmetry transformations [3–7]. In the e10 con-

jecture the constrained null motion of a spinning particle on the symmetric space E10/K(E10)

is equivalent to the dynamics of supergravity or even M-theory. This conjecture thus far has

only been verified for a finite set of generators of the infinite-dimensional algebra e10 both in the

bosonic and fermionic sector [2, 4, 5, 8–10]. However, it has thus far proved impossible to con-

struct a spinning particle action on E10/K(E10) that has one-dimensional local supersymmetry,

as was explained at length in Ref. [11].

One major obstacle when constructing a supersymmetric E10-model is the disparity between

the bosonic and fermionic degrees of freedom that are used: The bosons are associated with

the infinitely many directions of the symmetric space E10/K(E10) whereas the fermions used

in Refs. [4, 5] were constructed out of a finite-dimensional (hence unfaithful) representation of

dimension 320 of the R-symmetry group K(E10). [12] It therefore appears necessary to construct

larger, preferably infinite-dimensional, fermionic representations of K(E10) and this is the topic

we will pursue in the present contribution that is partially based on our paper Ref. [13].

We develop a new formalism for constructing representations of K(e10) and exhibit new

irreducible examples of dimensions 1728 and 7040, respectively. We refer to them as ‘higher

spin representations’ although their spin is not necessarily higher from a space-time point of

view but rather when viewed from the (truncated) Wheeler–DeWitt superspace of metrics. This

point will be explained in more detail below. We will see that only the 7040 contains also

genuine higher spin fields from the space-time perspective. Our formalism gives the action of an

infinite number of K(e10) generators that are labelled by the positive real roots of e10. Since the

representations are finite-dimensional and therefore necessarily unfaithful, an infinite number of

these generators will be represented by the same operator on the representation space.

Let us emphasize that a proper understanding of the fermionic sector will be essential for

further progress with understanding the role of E10 in M-theory, something that is unlikely in

our opinion to be achievable if one restricts attention to the bosonic sector only. On top of the

(unknown) representation theory of K(E10) this might quite possibly require some novel type of

bosonisation, as is suggested by the fact that E10 seems to ‘know everything’ about the fermions

of maximal supergravity that we have learnt from supersymmetry (in particular, the structure

of the bosonic and fermionic multiplets). Equally important, the actual physics of the quantised

theory with fermions is likely to differ very much from that of the purely bosonic system, as is

obvious from the example of supersymmetric quantum cosmology investigated in Ref. [14].

2 e10 and K(e10)

The (split real) Lie algebra e10 is a hyperbolic Kac–Moody Lie algebra [15]. Its only known

definition is in terms of generators and relations. There are 30 generators (ei, fi, hi) for i =

1, . . . , 10 and each triple generates an sl(2,R) subalgebra of e10. The full set of defining relations
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Figure 1: The Dynkin diagram of e10 with labelling of nodes.

is given by

[hi, hj ] = 0, [hi, ej ] = Aijej , [hi, fj ] = −Aijfj,

[ei, fj] = δijhi, (ad ei)
1−Aijej = 0, (ad fi)

1−Aijfj = 0. (1)

Here, Aij are the elements of the symmetric Cartan matrix associated with the e10 Dynkin

diagram shown in figure 1. The Cartan matrix is of Lorentzian signature and there are roots α

of the algebra with norms α2 = 2− 2k for k ∈ N0. The roots with α2 = 2 are called real roots

and they have multiplicity one; all others are imaginary and have higher multiplicity.

The subalgebra K(e10) is generated by the ‘compact’ combinations

xi = ei − fi (2)

which are invariant under the Cartan-Chevalley involution

ω(ei) = −fi , ω(fi) = −ei , ω(hi) = −hi (3)

The relations satisfied by these elements are in general not homogeneous (unlike the standard

relations in the Chevalley–Serre presentation for the ei and fi above). Depending on whether

two nodes i and j are connected by a line in the Dynkin diagram or not one has two cases

[xi, xj ] = 0 if i and j are not connected

[xi, [xi, xj ]] + xj = 0 if i and j are connected (4)

We will refer to these as the Berman–Serre relations; these relations were studied in a more

general context in Ref. [16]. The algebra K(e10) is then defined as the free Lie algebra over the

generators {xi} subject to the relations (4). The task of finding representations of K(e10) is

tantamount to finding matrices or operators that satisfy these relations.

Since all simple generators xi are associated with real simple roots (of multiplicity one) one

can also rephrase these relations more generally for any real roots by considering a generator

J(α) for any (positive) real root α. Using a basis of simple roots αi of the root lattice one then

has xi = J(αi) as particular case. The relations (4) are then equivalent for real roots α and β

obeying α · β ∈ {−1, 0, 1}

[J(α), J(β)] = ǫα,βJ(α + β), if α · β = −1,

[J(α), J(β)] = −ǫα,−βJ(α− β), if α · β = +1,

[J(α), J(β)] = 0, if α · β = 0, (5)
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and ǫα,β ∈ {−1, 1} is a certain cocycle on the e10 root lattice that satisfies

ǫα,β = −ǫβ,α = −ǫ−α,−β, ǫα+β,−β = ǫα,β. (6)

The restriction on the inner product in the commutation is to make sure that α ∓ β is a real

root or no root at all, such that one does not have to worry about multiplicities from imaginary

roots on the right-hand side. By contrast ǫα,β can be defined for any pair of elements (α, β) of

the root lattice.

To the root lattice of e10 one can also associate elements Γ(α) of the so(10) Clifford algebra

of real (32× 32) matrices such that [13]

Γ(α)Γ(β) = ǫα,βΓ(α+ β) = −ǫα,−βΓ(α− β). (7)

With these rules it is then not hard to verify that

J(α) =
1

2
Γ(α) (8)

provides a representation of K(e10) for all real roots α. This 32-dimensional representation is

known as the Dirac-spinor of K(e10). By choosing a particular basis of the root lattice, called

wall basis, one could exhibit [13] that the xi for i = 1, . . . , 9 are just the usual spin representation

xi =
1
2Γ

i i+1 of so(10) but we will not use this here.

3 Tensors and spinors on Wheeler–DeWitt mini-superspace

The space of diagonal spatial metrics in 11 space-time dimensions is a Lorentzian ten-dimensional

space in the Hamiltonian treatment of general relativity. This space is actually a finite-dimensional

truncation of the full Wheeler–DeWitt ‘superspace’ (alias the ‘moduli space of 10-geometries’)

to the finite-dimensional subspace of diagonal scale factors (the negative direction that renders

this metric indefinite is associated with the scaling mode of the metric). We choose a basis ea
for this ten-dimensional space (a, b, . . . = 1, . . . , 10) with inner products

ea · eb = Gab (9)

where Gab is the Lorentzian DeWitt superspace metric restricted to the space of metric scale

factors; more explicitly, it follows from the Einstein–Hilbert action that

Gab = δab − 1 ⇒ Gab = δab −
1

9
(10)

This Lorentzian space can be identified with the Lorentzian space spanned by the roots of e10.

In the remainder we do not require the explicit form of Gab of (10).

Our ansatz for fermionic representations of K(e10) then consists in considering tensor-spinors

φa1...anA = φ
(a1...an)
A that are completely symmetric in their n tensor indices and also carry a spinor

index A = 1, . . . , 32 of so(10). The Dirac-spinor discussed in the preceding section then simply

corresponds to n = 0. We will also consider the case when φa1...anA is traceless in its tensor indices.
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Since the tensor indices are those of a Lorentzian so(1, 9) space while the spinor index belongs

to the Euclidean so(10) subalgebra of K(e10) our approach could be termed hybrid. Certainly

one cannot take simple Γ-traces of φa1...anA because a, b, . . . are not SO(10) indices, so the only

option to render the tensor-spinor irreducible is to make it traceless in its indices a1, a2, . . . .

The generators J(α) of K(e10) are then given by combinations of an object acting on the

tensor indices and gamma matrices acting on the spinor index. More precisely, we make the

ansatz

J(α)φa1 ...anA = −2X(α)a1...anb1...bnΓ(α)ABφ
b1...bn
B . (11)

Due to the known properties (5) of the Γ(α) under commutation, checking the consistency

relations (7) then can be reduced to checking the following conditions on the tensors X(α) for

real roots [13]

{X(α) , X(β)} =
1

2
X(α ± β), if α · β = ∓1,

[X(α) , X(β)] = 0, if α · β = 0. (12)

Note that there is no ǫα,β in these relations as it is already taken care of by the Γ(α). The

Dirac-spinor corresponds to the solution X(α) = 1
4 to these equations.

Another K(e10) representation that has been known from supergravity considerations is the

case n = 1 that corresponds to the D = 11 gravitino and has dimension 320 [4–6]. In our

language it corresponds to the solution

X(α)ab = −1

2
αaαb +

1

4
δa
b
, (13)

where αa are the components of the root α with respect to the basis ea, i.e., α =
∑

a
αaea.

‘Typewriter font’ indices are raised and lowered with the Lorentzian Gab.

For the gravitino (or vector-spinor) one can find a rewriting in terms of pure so(10) repre-

sentation by letting [17]

ψa
A =

∑

B

Γa
ABφ

a
B (no sum on a). (14)

The object on the left is then a standard vector-spinor of so(10). A similar simple and explicit

rewriting into so(10) representations is not known for the new representations we discuss below.

We also note that due to the unfaithfulness of the representations, one obtains (infinite-

dimensional) ideals in K(e10), leading to the result that K(e10) is not a simple Lie algebra. The

quotient Lie algebras q of K(e10) by the ideals of the 32 and 320 have been analysed and are

given by q32 ∼= so(32) and q320 ∼= so(288, 32). It may seem surprising that the ‘compact’ K(e10)

admits a non-compact quotient in the 320 representation but this is not a contradiction due to

the infinite-dimensionality of K(e10). For the higher spin representations below, the quotients

have not been worked out.
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4 Higher spin representations

In Ref. [13] two further solutions to (12) were found that correspond to the values n = 2 and

n = 3 (corresponding to spin s = 5
2 and s = 7

2 , respectively [18]). These representations go

beyond supergravity as there appears to be no supergravity model from which they would be

derivable. For spin s = 5
2 (n = 2) the corresponding tensors are given by

X(α)a1a2b1b2 =
1

2
αa1αa2αb1αb2 − α

(a1δ
a2)
(b1
α
b2)

+
1

4
δ
(a1
b1
δ
a2)
b2

(15)

and for n = 3 (spin-72) by

X(α)a1a2a3b1b2b3 = −1

3
αa1αa2αa3αb1αb2αb3 +

3

2
α(a1αa2δ

a3)
(b1
αb2αb3) −

3

2
α(a1δa2(b1δ

a3)
b2
α
b3)

+
1

4
δ
(a1
(b1
δ
a2

b2
δ
a3)
b3)

+
1

12
(2−

√
3)α(a1Ga2a3)G(b1b2αb3) (16)

+
1

12
(−1 +

√
3)
(

α(a1αa2αa3)G(b1b2αb3) + α(a1Ga2a3)α(b1αb2αb3)

)

.

These expressions can be found and verified analytically. We have also extended the search

for solutions of this type for n ≤ 10 with the ansatz above but have not found any additional

solutions so far.

The spin-52 solution as given is of dimension 10×11
2 ×32 = 1760. It turns out that this represen-

tation is reducible since the subspace spanned by the trace Gabφ
ab

A is invariant. This trace trans-

forms in the spin-12 representation of dimension 32, leaving an irreducible 1728-dimensional rep-

resentation of K(e10). By contrast, the spin-72 representation of dimension 10×11×12
6 ×32 = 7040

is irreducible as given.

In the next two sections, we investigate further properties of the new higher spin represen-

tations.

5 Projectors and Weyl group action

The K(e10) generators J(α) are defined for all positive roots α of e10. As the roots α are space-

like elements in a Lorentzian ten-dimensional space, they have a stabiliser of type so(1, 8) ⊂
so(1, 9). This stability algebra can be used to decompose the ‘polarisation tensor’ X(α) into

irreducible pieces for a fixed α. The irreducible so(1, 8) terms are given by projectors Π(j)(α),

such that tensor X(α) can be expressed in terms of these projectors. [19] This rewriting greatly

facilitates the exponentiation of the corresponding matrices, and will make it easy to work out

the exponentiated (Weyl) group actions.

5.1 Projectors for spin-5
2

For n = 2, the polarisation tensor X(α)a1a2b1b2 lies in the reducible 55 of so(1, 9), where we

work for simplicity with the reducible representation of dimension 1760 given in (15). The

decomposition of X(α) under the regularly embedded so(1, 8) is

55 → 54⊕ 1 → (44⊕ 9⊕ 1
′)⊕ 1. (17)
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The splitting of the singlets here has been done in such a way that 1 corresponds to the so(1, 9)

singlet corresponding to the trace with Gab. One can check that the following are complete

orthonormal projectors on the various pieces

Π(44)(α)a1a2b1b2 =
2

9
αa1αa2αb1αb2 − α(a1δ

a2)
(b1
αb2) + δ

(a1
b1
δ
a2)
b2

+
1

18
(αa1αa2Gb1b2

+Ga1a2αb1αb2)−
1

9
Ga1a2Gb1b2

,

Π(9)(α)a1a2b1b2 = −1

2
αa1αa2αb1αb2 + α(a1δ

a2)
(b1
αb2), (18)

Π̃(1)(α)a1a2b1b2 =
1

10
Ga1a2Gb1b2

,

Π̃(1′)(α)a1a2b1b2 =
5

18
αa1αa2αb1αb2 −

1

18
(αa1αa2Gb1b2

+Ga1a2αb1αb2)

+
1

90
Ga1a2Gb1b2

.

In terms of these, the tensor X(α) takes the form

X(α)a1a2b1b2 =

(

1

4
Π̃(1)(α) +

1

4
Π̃(1′)(α) − 3

4
Π(9)(α) +

1

4
Π(44)(α)

)

a1a2
b1b2

. (19)

What is important here is that the coefficients of all projectors are of the form 2k+1
4 with k ∈ Z.

This implies that when one constructs the ‘Weyl group’ generator

wα = e
π
2
J(α) (20)

acting in the representation is idempotent in the eighth power. Weyl group has been put into

inverted commas above because this is more correctly an element of a covering of the Weyl group

that has been dubbed the spin-extended Weyl group [17,20]. Acting on spinor representations,

the characteristic feature is that only the eighth power w8
α = 11 whereas one normally has the

fourth power for the covering of the Weyl on bosonic representations [15].

5.2 Projectors for spin-7
2

In this case, the polarisation tensor X(α)a1a2a3b1b2b3 is in the (reducible) totally symmetric 220

of so(1, 9). This decomposes under so(1, 8) as

220 → 210⊕ 10 → (156⊕ 44⊕ 9⊕ 1)⊕ (9⊕ 1) . (21)

There are two singlets and two vectors of so(1, 8) appearing in the decomposition and some asso-

ciated freedom in constructing the orthonormal projectors. We choose a particular combination
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of these representations as follows [21]

Π(156)(α)a1a2a3b1b2b3 = − 1

11
αa1αa2αa3αb1αb2αb3 +

15

22
α(a1αa2δ

a3)
(b1
αb2αb3)

− 3

2
α(a1δa2(b1δ

a3)
b2
αb3) + δ

(a1
(b1
δa2
b2
δ
a3)
b3)

− 3

44

(

αa1αa2αa3α(b1Gb2b3) + α(a1Ga2a3)αb1αb2αb3

)

+
3

22

(

α(a1αa2δ
a3)
(b1
Gb2b3) +G(a1a2δ

a3)
(b1
αb2αb3)

)

− 3

11
G(a1a2δ

a3)
(b1
Gb2b3) +

3

22
α(a1Ga2a3)G(b1b2αb3)

Π(44)(α)a1a2a3b1b2b3 =
1

3
αa1αa2αa2αb1αb2αb3 −

3

2
α(a1αa2δ

a3)
(b1
αb2αb3)

+
3

2
α(a1δa2(b1δ

a3)
b2
αb3) −

1

6
α(a1Ga2a3)G(b1b2αb3)

+
1

12

(

αa1αa2αa3α(b1Gb2b3) + α(a1Ga2a3)αb1αb2αb3

)

(22)

for the (unique) two biggest representations,

Π(9)(α)a1a2a3b1b2b3 = − 9

22
αa1αa2αa3αb1αb2αb3 +

9

11
α(a1αa2δ

a3)
(b1
αb2αb3)

+
3

44

(

αa1αa2αa3α(b1Gb2b3) + α(a1Ga2a3)αb1αb2αb3

)

− 3

22

(

α(a1αa2δ
a3)
(b1
Gb2b3) +G(a1a2δ

a3)
(b1
αb2αb3)

)

+
1

44
G(a1a2δ

a3)
(b1
Gb2b3) −

1

88
α(a1Ga2a3)G(b1b2αb3)

Π(9′)(α)a1a2a3b1b2b3 =
1

4
G(a1a2δ

a3)
(b1
Gb2b3) −

1

8
α(a1Ga2a3)G(b1b2αb3) (23)

for the vectors and finally for the singlets

Π(1)(α)a1a2a3b1b2b3 =
1

12
αa1αa2αa3αb1αb2αb3

+
1

24
(−1−

√
3)
(

αa1αa2αa3α(b1Gb2b3) + α(a1Ga2a3)αb1αb2αb3

)

+
1

24
(2 +

√
3)α(a1Ga2a3)G(b1b2αb3)

Π(1′)(α)a1a2a3b1b2b3 =
1

12
αa1αa2αa3αb1αb2αb3

+
1

24
(−1 +

√
3)
(

αa1αa2αa3α(b1Gb2b3) + α(a1Ga2a3)αb1αb2αb3

)

+
1

24
(2−

√
3)α(a1Ga2a3)G(b1b2αb3) (24)
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The tensor X(α) reads as follows in this basis

X(α)a1a2a3b1b2b3 =

(

5

4
Π(1)(α)− 3

4
Π(1′)(α) +

1

4
Π(9)(α) +

1

4
Π(9′)(α)

− 3

4
Π(44)(α) +

1

4
Π(156)(α)

)

a1a2a3
b1b2b3

. (25)

Again, it is important that the coefficients of all the orthonormal projectors are of the form 2k+1
4

such that we are dealing with a genuine fermionic representation of K(E10).

6 Branching under subalgebras

The infinite-dimensional Lie algebra K(e10) has infinitely many finite-dimensional subalgebras.

[22] Of these are of particular interest to us the following, all of which can be obtained by

deleting a single node from the e10 Dynkin diagram:

(a) so(10) deleting node 10 SUGRA in D = 11

(b) so(2)⊕ so(16) deleting node 2 SUGRA in D = 3

(c) so(9)⊕ so(2) deleting node 8 IIB SUGRA in D = 10

(d) so(9)⊕ so(9) deleting node 9 Doubled SUGRA in D = 10

The last case requires some explanation. In Ref. [8] the decomposition of e10 under its so(9, 9)

subalgebra was studied and shown to correspond to both type IIA and type IIB theory since

the Ramond–Ramond potentials occurred in a spinor representation of so(9, 9) that can be read

either as all even or all odd forms; similarly, the fermions arrange themselves correctly for the

two theories [24]. In investigations of double field theory the same structure appears [25] and

we have therefore dubbed this T-duality agnostic decomposition as ‘doubled SUGRA.’

There are some additional subtleties associated with the global assignment of fermionic and

bosonic representations at the group level. More precisely, the so(16) is the Lie algebra of

Spin(16)/Z2. The Z2 is not diagonally embedded in the center Z2×Z2 but as one of the factors;

this entails that the representations 16v and 128c are spinorial (that is, they transform with a

factor (−1) upon rotation by 2π), whereas the 128s is tensorial [26]. Moreover, the 16 spinor

of Spin(9) = [Spin(9) × Spin(9)]diag is identified with the (spinorial) 16v of Spin(16). The

diagonal Spin(9) also lies as a regular subgroup in Spin(9) as it corresponds to the dimensional

reduction from D = 11 to D = 10 (over a spatial direction).

The decompositions of the spin-12 and spin-32 representations were already given in Ref. [24],

while the decompositions of the new higher spin representations under the various subalgebras

have not been given previously. To find the relevant decompositions for spin-52 and spin-72
is actually rather involved, and can only be done on a computer. The main problem here

is that the K(E10) representations are not highest or lowest weight representations (it is not

even clear whether K(E10) admits any analog of such representations), so the customary tools

of representation theory cannot be applied. However, the subrepresentations obtained after

descending to any finite-dimensional subgroup are highest or lowest weight representations, so
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given any of the above subgroups, one must first identify the corresponding highest or lowest

weights. For instance, for the spin-72 representation this requires (amongst other things) the

(simultaneous) diagonalisation of various 7040 × 7040 matrices. It seems clear that for yet

higher dimensional realisations such a procedure would become impractical very quickly unless

better methods are developed.

6.1 Branching the spin s = 1
2
and s = 3

2
representations

These were already understood in previous work [24]. The fractions 1
2 and 3

2 in the decom-

positions (b) and (c) below correspond to the so(2) ∼= u(1) charges. In these cases all the

representations form doublets of so(2) that can also be thought of as complex one-dimensional

representations of u(1). This has to be taken into account when checking the dimension count

of the decompositions.

32
a−→ 32

b−→
(

1

2
,16v

)

c−→
(

16,
1

2

)

d−→ (16,1)⊕ (1,16) (26)

and

320
a−→ 288⊕ 32

b−→
(

1

2
,128c

)

⊕
(

1

2
,16v

)

⊕
(

3

2
,16v

)

c−→
(

16,
3

2

)

⊕
(

128,
1

2

)

⊕
(

16,
1

2

)

d−→ (9,16)⊕ (16,9)⊕ (1,16)⊕ (16,1) (27)

Since these are the ‘physical’ fermions of maximal supergravity, let us briefly comment on their

interpretation.

The 32 representation of K(e10) corresponds to the 32 supersymmetry generators of maximal

supergravity. We see that in the decomposition (a) relevant for D = 11 supergravity one obtains

a single generator consistent with N = 1 supersymmetry. In the decomposition (b) one obtains

an so(2) doublet of sixteen generators (in the vector of so(16); the so(2) corresponds to the

spatial part of the so(1, 2) Lorentz symmetry of which the doublet is the irreducible spinor and

the sixteen components correspond to so(16) R-symmetry of maximal N = 16 supersymmetry

in D = 3 dimensions. The decomposition (c) gives an so(2) R-symmetry doublet of spinors of

the spatial so(9) Lorentz symmetry in D = 10 in agreement with the supersymmetry generators
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of chiral type IIB supergravity. More specifically, the appearance of this U(1) effectively ‘com-

plexifies’ the SO(9) representation, in line with the chirality of the type IIB fermions. The last

decomposition (d) is consistent with a type IIA formulation of doubled supergravity [8, 25].

The decompositions of the 320 representation of K(e10) can be interpreted similarly [24].

For example, the decomposition (b) gives the 128 physical fermions in D = 3 together with

components associated with the non-propagating gravitino that is needed when formulating

N = 16 supergravity in D = 3. We also note again that in the type IIB decomposition (c) one

always obtains doublets of the R-symmetry so(2), in accord with the chirality of the underlying

fermionic multiplets.

6.2 Branching of the spin-5
2
representation

The decomposition under the various subalgebras is

1728
a−→ 1120 ⊕ 2× 288 ⊕ 32

b−→
(

1

2
,560v

)

⊕
(

1

2
,128c

)

⊕ 2×
(

1

2
,16v

)

⊕
(

3

2
,128c,

)

⊕
(

3

2
,16v

)

c−→
(

432,
1

2

)

⊕ 2×
(

128,
1

2

)

⊕ 2×
(

16,
1

2

)

⊕
(

128,
3

2

)

⊕
(

16,
3

2

)

d−→ (36,16) ⊕ (16,36) ⊕ (9,16) ⊕ (16,9)⊕

⊕ (128,1) ⊕ (1,128) ⊕ (1,16) ⊕ (16,1) (28)

From the so(10) decomposition we see that the space-time spin of this K(e10) representation

is not really higher than 3/2 since the 1120 corresponds to an anti-symmetric tensor-spinor of

so(10) with two tensor indices. The 560v of so(16) that arises is the anti-symmetric three-form.

Similar to the 16v discussed above, this is actually a spinorial representation with the correct

assignment when lifted to the group Spin(16)/Z2. The 432 of so(9) that arises in case (c) is

the tensor-spinor with two antisymmetric indices.

6.3 Branching of the spin-7
2
representation

Under the subalgebras listed above, the K(e10) spin-
7
2 representation of dimension 7040 decom-

poses as

7040
a−→ 2400⊕ 1440⊕ 2× 1120⊕ 3× 288⊕ 3× 32

b−→
(

1

2
,1920s

)

⊕
(

3

2
,560v

)

⊕
(

1

2
,560v

)

⊕
(

3

2
,128c

)

⊕ 2×
(

1

2
,128c

)

⊕
(

5

2
,16v

)

⊕ 2×
(

3

2
,16v

)

⊕ 3×
(

1

2
,16v

)

c−→
(

768,
1

2

)

⊕
(

576,
1

2

)

⊕
(

432,
3

2

)

⊕ 2×
(

432,
1

2

)
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⊕ 2×
(

128,
3

2

)

⊕ 4×
(

128,
1

2

)

⊕
(

16,
5

2

)

⊕ 2×
(

16,
3

2

)

⊕ 4×
(

16,
1

2

)

d−→ (128,9)⊕ (128,1) ⊕ (16,84)⊕ (16,36)⊕ 2× (16,9)⊕ 2× (16,1)

⊕ (9,128)⊕ (1,128)⊕ (84,16)⊕ (36,16)⊕ 2× (9,16)⊕ 2× (1,16) (29)

As already mentioned, it is a non-trivial task to work out these decompositions in practice. As

a further test we have also checked that the further decompositions of the so(2) ⊕ so(16) and

so(10) representations under their common so(8) subalgebra coincide (for so(16) this subalgebra

is obtained after descending first to the diagonal subalgebra [so(8)⊕ so(8)]diag). Similarly, there

is another so(8) that is common to the so(10) decomposition (a), to the type IIB decomposition

(c) and to the so(9) ⊕ so(9) decomposition in (d) and that corresponds to the spatial rotations

of maximal D = 9 supergravity. The further branching of (a), (c) and (d) to this common

subgroup has been checked to be consistent. Moreover, we have verified that the common so(9)

of the type IIB decomposition (c) and the T-duality agnostic decomposition (d) gives the same

representations.

Let us finally highlight some new features arising here, that have no analog for spin s ≤ 5
2 .

• In the so(10) decomposition (a) one sees the 2400 that corresponds to a tensor-spinor that

is antisymmetric in three tensor indices. The 1440 is a tensor-spinor with two symmetric

tensor indices; since the so(10) is the spatial rotation group of D = 11 supergravity, this

means that the spin-72 of K(e10) contains genuinely higher spin representations also from

a space-time perspective!

• Under the so(2)⊕ so(16) decomposition (b) one finds the vector-spinor of so(16) with 1920

components. Note that consistent with the spinorial nature of the K(E10) representation

it is the 1920s where the spinorial double-valued aspect of Spin(16)/Z2 is carried by the

vector index and not by the s-type spinor index.

• The 768 appearing in the so(9)⊕so(2) decomposition (c) is the anti-symmetric three-form

tensor-spinor of so(9). By contrast the 576 is a tensor-spinor with two symmetric tensor

indices and therefore this K(e10) representation also contains fermionic higher spin fields

from the type IIB perspective.

• The 84 in the so(9) ⊕ so(9) decomposition (d) is the anti-symmetric three-form of so(9);

the 36 is the anti-symmetric two-form already encountered above.

We also note that the so(2) eigenvalues can become larger and larger the bigger the K(e10)

representation becomes.

7 Outlook

There are two pressing questions arising out of our work. The first concerns the possible physical

role of the new K(E10) representations. In particular, one may wonder whether they are of

12



relevance to overcoming the difficulties in constructing a supersymmetric E10 model that were

encountered in Ref. [11]. It is conceivable that in order to make progress both the supersymmetry

constraint and the propagating fermions will have to be assigned to representations of K(E10)

different from the ones used so far (and in particular incorporate spatial gradients in one form

or another). Let us also note that one can easily couple the new fermion representations to

the bosonic E10/K(E10) sigma model, namely by adding a Dirac-like term ∝ ΨDtΨ to the

bosonic action, where Dt ≡ ∂t+
∑

α,rQ
r(α)Jr(α) is the K(E10) covariant derivative, and Q

r(α)

the K(e10)-connection as computed from the bosonic sigma model in the standard way. Of

course, there remains the question whether one can define a new supersymmetry that makes the

combined action supersymmetric at least at low levels.

Secondly, the very existence of the two new higher spin representations for s = 5
2 and s = 7

2

which cannot be explained from maximal supergravity, strongly suggests that these constitute

only the tip of the iceberg of the unexplored representation theory of K(e10). Although our

(limited) search for new examples has not been successful so far, we expect there to exist an

infinite tower of such realisations of higher and higher spin, which are less and less unfaithful

with increasing spin, but which can occur only at ‘sporadic’ values of the spin, because the

simultaneous decomposability under all the subgroups analysed in the foregoing section puts

very tight constraints on such new representations. [27] We reiterate that working out these

decompositions is currently a tedious task due to the lack of general methods for studying

the representation theory of K(e10). An explicit construction of further examples and, more

ambitiously, a systematic understanding of their structure would afford an entirely new method

to explore the root spaces associated with timelike imaginary roots, and thus one of the main

obstacles towards a better understanding of e10. One step forward might be the understanding

of the decomposition of tensor products of K(e10) representations. We thus hope that our

investigations help to clarify the structure of this enigmatic object and maybe also the elusive

Kac–Moody algebra e10 itself.
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