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1 Introduction

The stability of black holes in anti-de Sitter space has been widely studied in the context of

the AdS/CFT correspondence [1][2][3][4], where they are dual to finite temperature states.

Dynamical and thermodynamical stability properties provide a novel window on the phase

structure of the dual CFTs. In holographic approaches to condensed matter physics the
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instability of a black hole to the condensation of scalar hair is dual to a superconducting

phase transition [5][6].

We will focus on the instability of hyperbolic AdS black holes and finally comment

on holographic Renyi entropy. There are many hyperbolic AdS black holes, which were

constructed in [7][8][9][10][11][12]. In [13], it was shown that static black holes with hy-

perbolic horizons can become unstable to the formation of uncharged scalar hair on the

horizon of the black hole due to the presence of an extremal limit with near-horizon ge-

ometry AdS2 ×H3 [14][15][16][17]. Further, authors of [18] introduced a topological black

hole with a minimal coupled scalar field of negative mass-square and showed this new sta-

bility appeared. In [19], they mapped the instability of this gravity solution to the phase

transition happened in dual CFTs by holographic Renyi entropy. In [20], they investi-

gated charged hyperbolic black holes, which became unstable to presence of scalar hair

at sufficiently low temperature. Such kind of instability is the same as the holographic

superconducting instability in boundary hyperbolic space. In summary, scalar fields with

masses below the effective Breitenlohner-Freedman bound for the near-horizon AdS2 will

become unstable at sufficient low temperatures. This happens for charged and uncharged

black holes; for AdS black holes with spherical horizons, such instabilities occur at finite

chemical potential. When the mass of scalar field is below this bound, the black hole be-

comes unstable and will decay to a hairy black hole solution. The corresponding boundary

operator acquires a non-zero expectation value.

In this paper, we have constructed a series of generic hyperbolic AdS black holes with

neutral self interaction scalar. More precisely, in this system, we introduce series of specific

powers of scalar in scalar potential. In [19], the authors showed that there was an instability

in massive scalar hariy hyperbolic AdS black hole. The instability would induce a phase

transition and entanglement Renyi entropy (ERE) also confirmed the phase transition.

In our setup, we introduce higher powers of scalar self-interactions which correspond to

deformation of CFTs. We start with the generic gravity setup and see what will happen.

Firstly, we work out these gravity solution in UV region which will be useful to extract

UV asymptotic AdS boundary condition. Finally, we can find hyperbolic AdS black hole

solution numerically in various scalar potentials. In terms of that the EE for the spherical

region of CFT is equivalent to the thermal entropy of the CFTs on the hyperbolic cylinder.

This thermal entropy can be translated to the horizon entropy of an appropriate black hole

with hyperbolic boundary. Basing on these hyperbolic AdS hairy black holes, we can make

use of this dictionary to obtain the ERE in dual deformed CFTs. ERE obtained in our

setup show that there are instabilities inducing phase transitions in dual CFTs. We also

extract the condensation of dual operator with respect to temperature in each solution. The

condensation of dual operator confirms that the phase transition might happen. To make

sure of the phase transitions, we compare the free energy between the hyperbolic scalar

hairy AdS black hole solutions (HSHAdS) and hyperbolic AdS-SW black hole to reveal

the transition. Further, we turn on the in-homogenous linear perturbation to test the

stability of HSHAdS and the stability condition highly constrains the potential parameters

presented in the massive and massless scalar potential. We will give some explicit examples

to show what kinds of scalar potential will give stable HSHAdS. Finally, one can make use
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of the stability to obtain the phase structure of these theories roughly. In terms of that

EE for the spherical region of CFT can be calculated by thermal entropy of HSHAdS, the

ERE also implies the phase transition.

An overview of the remainder of the paper is as follows: in section 2, we firstly set

up the gravity which is our starting point. In section 3, we will list the asymptotic AdS

boundary behavior which is controlled by Einstein equations for massless and massive

scalar respectively. These UV behaviors are useful to obtain the numerical solutions. In

section 4, we show various new hyperbolic scalar hairy AdS black hole solutions. In section

5, we study the boundary energy momentum tensor of these solutions with introducing

various of boundary counter terms in massless and massive scalars respectively. Further,

we evaluate the free energy of these solutions. In section 6, through above numerical

analysis, we found that there are interesting phase transitions in deformed CFTs. We

make use of condensation of dual operators and free energy of each solution to confirm

phase transition will really happen in deformed CFTs. In section 6, we have demonstrated

that the hyperbolic black holes are unstable and Renyi entropies show a phase transition.

Therefore, in section 7, we turn to the physical case of these models which are normalizable

on hyperboloid. In section 8, we will devote to conclusions and discussions.

2 Gravity Setup

The gravity action in 5D spacetime in Einstein frame is

S5D =
1

16πG5

∫

d5x
√−g

(

R− 4

3
∂µφ∂

µφ− V (φ)

)

. (2.1)

Here G5 is the 5D Newton constant, g is the 5D metric determinant and φ, V are the scalar

field and the corresponding potential. The equations of motion are

Eµν +
1

2
gµν

(

4

3
∂µφ∂

µφ+ V (φ)

)

− 4

3
∂µφ∂νφ = 0, (2.2)

where Eµν = Rµν − 1
2Rgµν is Einstein tensor.

We would like to choose the following ansatz to solve the Einstein equations of motion,

ds2 = −L
2e2Ae(z)

z2

(

−f(z)dt2 + 1

f(z)
dz2 +

(

dψ2 + sinh2(ψ)dθ2 + sin2(θ) sinh2(ψ)dϕ2
)

)

= −L
2e2Ae(z)

z2

(

−f(z)dt2 + 1

f(z)
dz2 + dH3)

)

, (2.3)

where H3 is 3 dimensional hyperbolic space and L is AdS radius. In terms of the above

ansatz, one can obtain equations,

A′′
e(z)−A′

e(z)
2 +

2A′
e(z)

z
+

4

9
φ′(z)2 = 0,

f ′′(z) + f ′(z)

(

3A′
e(z)−

3

z

)

− 4

L2
= 0,

φ′′(z) +

(

3A′
e(z) +

f ′(z)

f(z)
− 3

z

)

φ′(z)− 3L2e2Ae(z)V ′(φ(z))

8z2f(z)
= 0. (2.4)
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One more constrain equation is

6A′
e(z)

2 +

(

3f ′(z)

2f(z)
− 12

z

)

A′
e(z) +

L2e2Ae(z)V (φ(z))

2z2f(z)
− 3f ′(z)

2zf(z)
+

3

L2f(z)
+

6

z2
− 2

3
φ′(z)2 = 0

(2.5)

(2.5) is not independent on the other three equations in (2.4). Once the gravity solution is

obtained from (2.4), one could use (2.5) to check the solution.

Here, we note that (2.4) would impose a natural boundary condition near horizon. If

one collects all the terms with a denominator f(z), the results are as following

Q(z)

8z2f(z)
(2.6)

with Q(z) ≡ 8z2f
′

φ
′ − 3L2e2AeV

′

(φ). Since the horizon is not a real singularity, the

apparent singularity f(zh) = 0 in Eq.(2.4) should be canceled by requiring Q(zh) = 0.

Later, we will try to solve this boundary value problem using numerical method developed

in Ref.[21].

3 Asymptotic AdS Solutions

Based on the set up in previous sections, we pay attention to how to solve the whole system

in the UV region z ∼ 0 in this section. Near the UV region, we can use series expansion

to find the solution of unknown function in metric ansatz (2.3). These expansions will be

helpful to the later numerically computation to show the full numerical solutions.

3.1 Massless Scalar Cases

In this section, we will try to find the UV expansion of gravity solution with massless scalar

with potential like

V =
1

L2

(

− 12 + v3φ
3 + v4φ

4 + v6φ
6
)

(3.1)

In this potential, we set the mass of the scalar to be zero and call this case by massless

scalar case for convenience in this paper.

Firstly, the UV behavior of the black hole should be asymptotical AdS and there is a

horizon parameterized by zh in the IR region. We find an algorithm to get the numerical

solution consistently. Roughly speaking, we try to expand in power series all unknown

functions as positive powers of z. The UV solution can be expressed by following form

φ(z) = p4z
4 +

2p4z
6

3L2
+
z8
(

p4 − f4L
4p4
)

2L4
− 2p4z

10
(

2f4L
4 − 1

)

5L6

+
z12
(

1728f24L
8p4 − 5184f4L

4p4 + 81L8p34v4 + 512L8p34 + 1728p4
)

5184L8

+
z14

997920L10

(

855360f24L
8p4 − 1140480f4L

4p4 + 34749L8p34v4

+ 217600L8p34 + 285120p4

)

+O(z16) (3.2)
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Ae(z) =
1

81
(−8)p24z

8 − 64p24z
10

495L2
+

64p24z
14
(

3f4L
4 − 2

)

945L6
+

16z12
(

2f4L
4p24 − 3p24

)

351L4

+
z16
(

−69984f24L
8p24 + 279936f4L

4p24 − 2187L8p44v4 − 11776L8p44 − 116640p24
)

892296L8

− 2z18
(

285120f24L
8p24 − 475200f4L

4p24 + 8019L8p44v4 + 43520L8p44 + 142560p24
)

2285415L10
+O(z20)

(3.3)

f(z) = 1− z2

L2
+

32p24z
14
(

74f4L
4 − 33

)

15015L6
+ f4z

4 − 32p24z
10

405L2

+
8z12

(

11f4L
4p24 − 9p24

)

891L4
− 8z16

(

15f24L
8p24 − 42f4L

4p24 + 13p24
)

1755L8

+
z18
(

−645408f24L
8p24 + 819072f4L

4p24 − 3645L8p44v4 − 48640L8p44 − 194400p24
)

3903795L10
+O(z20)

(3.4)

One can find the black hole solution in the UV region can be expressed in series of

powers of z. In principle, one can obtain more higher powers of z to get the full expression

of black hole background. Unfortunately, we can not obtain closed form of the black hole

solution. The main reason is that we do not find simple recurrence relation among the

coefficients of each power of z, as explained in [21]. In terms of AdS/CFT dictionary, the

massless neutral scalar in the bulk will dual to ∆ = 4 operator in field theory side. p4 is

the expectation value of dual operator. It is easy to see that the black hole solution with

asymptotical AdS can be controlled by integral constants p4, f4 in (3.2)(3.3)(3.4). p4, f4
are determined by boundary condition in IR region. Here we choose parameters p4, f4 to

show one black hole solution numerically. Here p4, f4 are not independent and they are

related to the horizon position zh such that Q(zh) = 0. We impose φ(zh) to be regular,

which could be guaranteed by requiring Q(zh) = 0.

3.2 Massive Scalar Cases

Firstly, we try to figure out asymptotic AdS solution of our setup with potential like

V =
1

L2

(

− 12− 16φ2

3
+ v3φ

3 + v4φ
4 + v6φ

6
)

(3.5)

In this potential, we have introduced a mass term of scalar field and we will call this case

by massive scalar case. With above potential, we can find the solution near the UV region

analytically. As shown in massless case, the UV behavior of the black hole should be

asymptotical AdS and there is a horizon in the IR region which is parameterized by zh.
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The asymptotic solution is following

φ(z) = p2z
2 + p22z

2 log(z) +
1

64
z4
(

18p22v3 − 36p22p2v3 + 27p222v3 + 32p22
)

+
9

32
p222v3z

4 log2(z)

+
9

16
z4
(

p2p22v3 − p222v3
)

log(z) +O(z6 log(z))

− z6

18432000L4

(

4608000f4L
4p2 + 2304000f4L

4p22 − 729000L4p32v
2
3

+ 1366875L4p322v
2
3 − 3371625L4p2p

2
22v

2
3 + 2551500L4p22p22v

2
3 − 1728000L4p32v4

+ 648000L4p322v4 − 1944000L4p2p
2
22v4 + 2592000L4p22p22v4 − 3276800L4p32

+ 595968L4p322 − 2043904L4p2p
2
22 + 2129920L4p22p22 − 2592000L2p22v3

− 1620000L2p222v3 + 2592000L2p2p22v3 − 4608000p22

)

+O(z8) (3.6)

Ae(z) =
z6
(

−74088p32v3 + 142884p22p
2
2v3 − 96390p222p2v3 − 14013p322v3 − 131712p22p2 − 25088p222

)

1555848

− 1

21
p322v3z

6 log3(z) +
1

98
z6
(

9p322v3 − 14p2p
2
22v3

)

log2(z)

+
z6
(

−2295p322v3 + 6804p2p
2
22v3 − 5292p22p22v3 − 3136p222

)

log(z)

37044

+

(

−200p22 − 20p22p2 − 21p222
)

z4

2250
− 4

45
p222z

4 log2(z)− 2

225

(

p222 + 20p2p22
)

z4 log(z) +O(z6)

(3.7)

f(z) = 1− z2f4z
4 − 2

(

900p22 − 660p22p2 + 407p222
)

z6

10125

− 1

45
8p222z

6 log2(z)− 8

675

(

30p2p22 − 11p222
)

z6 log(z) +O(z8) (3.8)

It is easy to see that the black hole solution with asymptotical AdS can be controlled

by three integral constants p2, p22, f4. p2, p22, f4 are determined by boundary condition in

IR region. In this case, p2, p22, f4 are not independent and they are determined by the black

hole horizon zh. We still impose φ(zh) to be regular which is horizon boundary condition.

The temperature is also defined by T = f ′(z)
4π |z=zh .

4 New Hyperbolic Black Hole Solutions

In this paper, we focus on the scalar potential with polynomial form of scalar with highest

sextic self-interaction. We explore a systematic way to generate fully backreaction gravity

solutions and investigate corresponding phase structure. In the following subsections, we

will show two examples to demonstrate these configurations of fields.

4.1 Massless Scalar Cases

In this subsection, we numerically solve the gravity setup with generic potential like V (φ) =
1
L2

(

−12 + v4φ
4
)

. Here we just set the mass term of scalar to be vanishing. In this case, the
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dual operator O1 is relate to dimension 4 glueball operator. One can check that the solution

satisfies asymptotical AdS UV boundary condition. In Fig.1(a)(b)(c), the UV behavior of

these fields has been shown respectively. We just solve these solutions from UV to IR. In

the IR, we should impose regular boundary conditions to all these fields. Especially, we

have shown f(zh) = 0 numerically in Fig. 1(c), where Q(z) has been defined in Sec.2 to

check IR boundary condition. In this example shown in Fig.1(a)(b)(c), we can turn off

the potential parameter v4 and reproduce the case studied in [19]. For case v4 = 0, the

condensation of dual operator and free energy will be also studied in section 6.1.1 which is

consistent with studies in [19].

( a ) ( b ) ( c )

Figure 1. Characteristic solutions when V (φ) = − 12

L2 +
ν4φ

4

L2 with ν4 = −8. To get these solutions,

we have taken f4 = 0.2445, p2 = 0.36734.... In Panel.(a) and Panel.(b), the solutions of φ and Ae

are given. In Panel.(c), the solutions of f is shown in red solid line, while the corresponding Q(z)

is shown in blue dashed line(Here, in order to put the two in the same figures, we plot Q(z)/50,

which is zero at the same z as Q(z)).

4.2 Massive Scalar Cases

In this subsection, we numerically solve the gravity setup with potential like V (φ) =
1
L2

(

−12− 16
3 φ

2 + v4φ
4
)

. Here we set the mass of scalar to be m2 = − 16
3L2 which corre-

sponds to dimension-2 operators in 4D. In terms of AdS dictionary, the dual operator O2

is related to meson operator In this case, one have set p22 = 0 to find solution and the p22
corresponds to source of dual operator O2 in terms of AdS/CFT. In Fig. 2(a)(b)(c), we

show the expected IR and UV behaviors of all related fields in Einstein equations. Once

we obtain these non trivial configurations, we can go further to study their stability and

ERE in dual field theories.

5 Energy Momentum Tensor and Free energy

In this section, we turn to study the stability of hyperbolic AdS black hole solutions. Firstly,

to obtain well defined energy momentum tensor on the boundary, one should introduce the

suitable counter terms. For later use, we will work out a well defined counter term for these

– 7 –



( a ) ( b ) ( c )

Figure 2. Characteristic solutions when V (φ) = − 12

L2 − 16φ2

3L2 + ν4φ
4

L2 with ν4 = −8. To get these

solutions, we have taken p22 = 0, f4 = −0.001, p2 = 0.0203818.... In Panel.(a) and Panel.(b), the

solutions of φ and Ae are given. In Panel.(c), the solutions of f is shown in red solid line, while the

corresponding Q(z) is shown in blue dashed line.

gravity solutions and these terms will be also used in studying free energy and spherical

Renyi entropy of dual CFTs.

5.1 Energy Momentum Tensor

In this subsection, we would like to introduce the counter terms to cancel the UV di-

vergences of the action and make the energy momentum tensor of dual field theory well

defined. We just introduce generic gauge invariant counter terms with undetermined coef-

ficients in our system. Finally, we can solve these coefficients to cancel the divergences in

massless and massive cases respectively in this paper.

5.1.1 Massless Scalar Cases

For massless scalar case, the total action now becomes

Iren = S5D + SGH + Scount

=
1

16πG5

∫

M
d5x

√−g
(

R− 4

3
∂µφ∂

µφ− VE(φ)

)

− 1

16πG5

∫

∂M
d4x

√−γ
[

2K − 6

L
+ λ1R+ λ2RabRab + λ3R2 + ...

]

,

(5.1)

with λ1, λ2, λ3 undermined coefficients of counter terms [22] [23][24][25][26][27]R, RabRab,R2

to be worked out later. The first term of the last line in (5.1) is Gibbons-Hawking term SGH

and the remain terms are Scount related to cosmological constant and scalar field. These

coefficients can be fixed by canceling the divergences of boundary momentum tensor. Here

Kij and K are respectively the extrinsic curvature and its trace of the boundary ∂M , γij
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is the induced metric on the boundary ∂M . These quantities are defined as follows

γµν = gµν + nµnν , (5.2)

Kµν = hλνDλnµ, (5.3)

γ = det(γµν), (5.4)

K = gµνKµν , (5.5)

where γµν denotes the induced metric, nµ stands for the normal direction to the boundary

surface ∂M as well as Dλ stands for covariant derivative. Finally, R and Rab are the

Ricci scalar and Ricci tensor for the boundary metric respectively. In generic cases, one

should introduce higher powers of R and various combination of Rab to cancel the total

UV divergence. For massive and massless cases in this paper, we just only introduce R to

cancel all the UV divergence. That means we can set λ2, λ3 to be vanishing.

In the asymptotical AdS hyperbolic black hole, the boundary surface locates at z = 0

surface, and usually one has to regularized it to a finite z = ǫ surface. So we have the

normalized normal vector nµ = δµz√
gzz

.

To regulate the theory, we restrict to the region z ≥ ǫ and the surface term is evaluated

at z = ǫ. The induced metric is γij = L̃2

ǫ2
gij(x, ǫ), where the leading term of expansion of

gij(x, ǫ) with respect to ǫ is the flat metric gij(0). Then the one point function of stress-energy

tensor of the dual CFT is given by [28][29][30][31]

Tij =
2

√

− det g(0)

δIren

δgij(0)
= lim

ǫ→0

(L2

ǫ2
2√−γ

δIren
δγij

)

. (5.6)

The finite part of boundary energy-stress tensor is from the O(ǫ2) of the Brown-York tensor

Tij on the boundary z = ǫ, with

Tij = − 1

16πG5

[

Kij −
(

(K +
d− 2

L
)gij − λ1Rij − 2λ2RikRjk +

λ1
2
gijR− 2λ3RijR

+
1

2
λ3gijR2 − 2λ2RklRikjl + λ2Rk

jRkl
il + λ2Rk

iRkl
jl +

λ2
2
gijRkm

kl Rmn
ln

+ (2λ3 + λ2)∇j∇iR− λ2R;k
ij;k − (2λ3 +

1

2
λ2)gijRkl;m

kl;m

)]

, (5.7)

In the massless scalar hair hyperbolic AdS black hole, the coefficients of counter terms

can be following

λ1 =
1

2
,

λ2 = 0,

λ3 = 0, (5.8)

where we have fixed these coefficients by removing the UV divergence z → 0 appeared in

on-shell action of massless scalar. Directly evaluate (5.7) using (5.6), we get

Ttt =
1

16πG

(3L

8
− 3f4L

2

)

. (5.9)
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5.1.2 Massive Scalar Cases

For massive scalar, the total action will be different from massless cases. The main reason is

that the UV behavior of massive scalar is different from the massless cases. The divergences

in the UV region are very sensitive to UV behavior. In massive case, we will introduce

following counter term to cook up well defined on-shell action.

Iren = S5D + SGH + Scount

=
1

16πG5

∫

M
d5x

√−g
(

R− 4

3
∂µφ∂

µφ− VE(φ)

)

− 1

16πG5

∫

∂M
d4x

√−γ
[

2K − 6

L
+ λm1R+ λm2φ

2 + λm3φR+ ...
]

,

(5.10)

In terms of (5.6), the boundary energy momentum tensor would be

Tij =
1

16πG

[

Kij − (K +
d− 2

2
− λm2φ

2)gij + (λm3φ+ λm1)(Rij −
1

2
gijR)

]

(5.11)

In the massive scalar hair hyperbolic AdS black hole, the coefficients of count terms can

be following

λm1 =
1

2
,

λm2 =
8

3
,

λm3 =
2〈O2〉
9

, (5.12)

where 〈O2〉 corresponds to expectation value of dual operator O2 of massive scalar φ. We

have fixed these coefficients by removing the UV divergence z → 0 appearing in on-shell

action of massive scalar.

Directly evaluate (5.7) using (5.6), we get

Ttt =
1

16πG

(

− 3f4L

2L2
− 〈O2〉2L

6
+

3L

8

)

. (5.13)

5.2 The Difference of Free Energy

After introducing the counter term to remove the divergence of the action, we can work out

the on shell action which will be helpful to test the holographic phase structures. Later, we

will also make use of condensation of dual operator to get the flavor of phase transitions.

For massless scalar case, the on shell action can be

S5D-BH =
1

16πG

(3

4
− f4

)

(5.14)

For massive scalar case, the on shell action can be

S5D-BH =
1

16πG

(3

4
− f4 −

1

45
8p22 −

28p22p2
75

− 416p222
1125

)

(5.15)

where we have to turn off the the source p22 to obtain the expectation value of dual operator

in vacuum for later use.
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6 Phase Transitions

In the proceeding section, we would like to study the stability of these hyperbolic AdS

black hole solutions by calculating condensation of dual operator and free energy. We

will show temperature dependence behaviors of condensation of operators O1, O2 dual to

massless and massive scalar respectively. Firstly, we will make use of free energy to study

the stability of these new hyperbolic black hole solutions. In this section, we mainly focus

on the constant modes in which we do not turn on the in-homogenous perturbation of

these solutions. The constant mode means that the field configurations only depend on

holographic direction z. We should say this analysis is not so solid and later we will turn

to go further to check the stability of these solutions. In section 7, we will go back to the

phase structures in these theories studied in this section in terms of linear perturbation.

6.1 Condensation

In this subsection, we will figure out all fields configurations and extract the condensation

of dual operator O of scalar field to see what will happen with changing related parameters,

for example, temperature and coupling constant of scalar self-interaction. Basically, one

can extract the condensation of dual operator by UV expansion of massless and massive

scalar shown in Eq.(3.2) Eq.(3.6) in terms of AdS/CFT dictionary. The condensation will

imply whether there is phase transition or not. Later, we will use free energy to confirm

these phase transitions and determine the transition temperature.

6.1.1 Massless Cases

We would like to introduce several deformations in massless scalar potential, for example,

adding φ3, φ4, φ6 terms to the potential. We mainly focus on obtaining condensation of the

dual ∆ = 4 glueball operator O1 with respect to temperature. We will see there exist phase

transition in various deformations and how these deformations affect the phase transition

in details.

Firstly, we would like to calculate the condensation in massless scalar with potential

like V (φ) = − 12
L2 + ν4φ4

L2 . In fig.3(a), we have shown the condensation as a function of

temperature. The different colored curves correspond to choose model parameter ν4. With

increasing ν4, the condensation at same temperature will increase gradually. There is a

transition temperature which is determined by that the condensation goes to zero. For each

colored curve, the condensation is double valued function with respect to temperature from

zero temperature to maximal temperature Tmax. In fig.3(b), we calculate free energy with

respect to temperature and it shows that the dashed line part is unstable comparing with

solid curve. That means the Tmax is phase transition temperature Tc in terms of free

energy. Below the transition temperature Tc, the condensation is a monodrome function

of temperature. At the transition temperature, the condensation will jump from finite

positive value to zero and the massless hairy black hole solution is unstable comparing

with hyperbolic AdS-SW black hole. That is to say hyperbolic AdS-SW black hole is

favored when T ≥ Tc. Up to this stage, we find the instability exists in this case.
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( a ) ( b )

Figure 3. The condensation is as a function of temperature in massless scalar case with potential

V (φ) = − 12

L2 + ν4φ
4

L2 .

Secondly, we would like to calculate the condensation O1 in massless scalar with po-

tential like V (φ) = − 12
L2 + ν4φ4

L2 + ν6φ6

L2 . In fig.4(a), we have shown the condensation as a

function of temperature. The different colored curves correspond to choose different model

parameter ν6 with fixing ν4. With increasing ν6, the condensation at same temperature

will decrease gradually. There is a transition temperature which is determined by that the

condensation goes to zero. For each colored curve, the condensation is double valued func-

tion with respect to temperature from zero temperature to maximal temperature Tmax. In

fig.4(b), we calculate free energy with respect to temperature and it shows that the dashed

line part is unstable comparing with solid curve in T < Tmax. That means the Tmax is

phase transition temperature Tc. Below the transition temperature Tc, the condensation

is a monodrome function of temperature. At the transition temperature, the condensation

will jump from finite positive value to zero and the massless hairy black hole solution is

unstable comparing with hyperbolic AdS-SW black hole in T > Tmax. That is also to say

hyperbolic AdS-SW black hole is favored when T ≥ Tc. Below the transition temperature,

the condensation is a monodrome function of temperature. At the transition temperature,

the condensation will jump from finite positive value to zero. We can see that ν6φ6

L2 does

not change the type of phase transition induced by ν4φ4

L2 .

Finally, we would like to calculate the condensation in massless scalar with potential

like V (φ) = − 12
L2 + ν3φ3

L2 + ν4φ4

L2 . In fig.5(a), the condensation as a function of temperature

has been presented. The different colored curves correspond to choose model parameter

ν3 with fixing ν4. With increasing ν3, the condensation at same temperature will decrease

gradually. For each colored curve, the condensation is double valued function with respect

to temperature from zero temperature to maximal temperature Tmax. In fig.5(b), we also

calculate free energy with respect to temperature and it shows that the dashed line part

is unstable comparing with solid curve. That means the Tmax is still phase transition

temperature Tc in this case. Below the transition temperature Tc, the condensation is a

– 12 –



( a ) ( b )

Figure 4. The condensation is as a function of temperature in massless scalar case with potential

V (φ) = − 12

L2 + ν6φ
6

L2 .

monodrome function of temperature. At the transition temperature, the condensation will

jump from finite positive value to zero and the massless hairy black hole solution is unstable

comparing with hyperbolic AdS-SW black hole. That is to say hyperbolic AdS-SW black

hole is favored when T ≥ Tc. Below the transition temperature, the condensation is a

monodrome function of temperature. At the transition temperature, the condensation will

jump from finite positive value to zero. The deformation from ν3φ3

L2 does not change the

type of phase transition induced by ν4φ4

L2 qualitatively.

( a ) ( b )

Figure 5. The condensation is as a function of temperature in massless scalar case with potential

V (φ) = − 12

L2 + ν3φ
3

L2 + ν4φ
4

L2 .

In summary, we introduce three types special deformations like φ3, φ4, φ6 in massless

neutral scalar potential in the bulk. We calculate the condensation of dual operator of the

scalar with respect to temperature. We find that there are phase transitions in deformed
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theories. We calculate the condensation as a function of temperature numerically and find

the transition temperature. Further, we calculate the free energy to confirm the phase

transitions. Finally, these phase transitions induced by three kinds of deformation are

the same type qualitatively. Therefore, one can naturally expect that there are still same

types of phase transitions in those cases with deformation like superposition of these three

kinds of deformations. We will turn to be more rigid in section 7 to check the stability of

these solutions in the low temperature region T < Tc. In section 7, one can find that all

these massless hyperbolic hairy AdS black hole are not stable. There exist more stabler

solutions, which are in-homogenous solutions. Therefore, the phase transition mentioned

in this section will break down and new phase structures will emerge.

6.1.2 Massive Cases

In this subsection, we would like to deform massive scalar potential by adding φ3, φ4, φ6

terms. We mainly focus on obtaining condensation of the dual ∆ = 2 operator O2 with

respect to temperature. We expect that the phase structures may be changed due to choose

different operator as an order parameter. We will see there exist phase transition in various

deformations and how these deformations affect the phase transition order in details.

Firstly, we will turn to study the condensation in massive scalar with potential like

V (φ) = − 12
L2 − 16φ2

3L2 + ν4φ4

L2 . In Fig.6(a), we have shown the condensation of dual operator

as a function of temperature in several cases. Each case corresponds to set different values

of self-interaction coupling constants ν4. In each case, there is a transition point when

the condensation goes to vanishing. That means the mass hair AdS hyperbolic black hole

is more stable than vanishing condensation solution which is hyperbolic AdS-SW black

hole in low temperature region. It implies that there should be a phase transition with

increasing temperature in this system. Furthermore, the types of phase transition will be

changed with increasing ν4, which shows that the ν4φ4

L2 deformation will play an important

role to determine the transition types. In Fig.6, we increase ν4 = −0.2, 0.0, 1.0 gradually

and find that transition temperature is independent on ν4. Furthermore, there exists a

critical value for ν4c between ν4 = −1 and ν4 = −0.2 . Crossing this critical point, the

phase transition order will be changed in ν4 < ν4c. In fig. 6(b), the free energy will increase

with temperature. All colored curves will converge to a one point which corresponds to

transition temperature in ν4 > ν4c. The transition temperature is the same as transition

temperature given by fig. 6(a). The black dashed line in Fig. 6(b) corresponds to free energy

in hyperbolic AdS-SW black hole. In Fig. 6(b), the dominate phase should be hyperbolic

AdS-SW black hole above the transition temperature. The free energy can continuously

converge to the transition point in Fig. 6(b) with ν4 > ν4c. But free energy will jump to

the transition point with ν4 < ν4c. That is also means the order of phase transition should

change suddenly and the transition temperature will be Tmax, for example, curves shown

in ν4 = −1.4,−1.2,−1.0. This phenomenon is also consistent with a condensation jump

from finite value to vanishing in Fig. 6(a).

Now we will turn to study the condensation in massive scalar with potential like

V (φ) = − 12
L2 − 16φ2

3L2 + ν6φ6

L2 . We introduce ν6φ6

L2 deformation and to see what will happen for

phase transition. In Fig. 7(a), one can see the condensation with respect to temperature
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( a ) ( b )

Figure 6. The condensation is as a function of temperature in massive scalar case with potential

V (φ) = − 12

L2 − 16φ2

3L2 + ν4φ
4

L2 .

with choosing different values of coupling constant ν6. With increasing ν6 = 0.0, 2.0, the

condensation will monotonically decrease from positive finite value to vanishing. In ν6 < 0.0

region, the condensation is multiple valued function of temperature as shown in Fig. 7(a)

and there is a local maximal temperature Tmax and minimal temperature Tmin in each

curve. For ν6 = −0.1, the condensation will decrease from T = 0 to T = Tmin and it will

jump to less finite positive value at Tmin. From Tmin < T < Tmax, the condensation will

become multivalued function of temperature. For T ≥ Tmax, the condensation will decrease

to zero continuously in Fig. 7(a). In Fig. 7(b), we have shown various free energy with

respect to temperature with gradually changing the ν6. We also find that free energy with

ν6 = 0, 2 is monotonically increasing with temperature. They always continuously converge

to the transition point Tc. The transition point is defined by vanishing of condensation.

But in cases with ν6 = −0.1, the free energy is multiple valued function of temperature.

For these cases, there are minimal temperatures Tmini and local maximal temperature

Tmax. For T > Tc, hyperbolic AdS-SW black hole should be stable and there is no massive

scalar hair black hole solution. In Tmax < T < Tc and 0 < T < Tmin, massive scalar

hair black hole is more stable than hyperbolic AdS-SW black hole. In Tmin < T < Tmax,

the condensation of dual operator is a multiple valued function and the stable solution is

marked by solid curve in Fig. 7(a)(b) in terms of comparing free energy. There is critical

value ν6c such that Tmin = Tmax. Therefore, there are two types of phase transitions for

ν6 = −0.5. The first one happens at Tmax and the condensation is not continuous function

of temperature at Tmax with ν6 < ν6c. The other one happens at Tc and condensation goes

to zero with ν6 > ν6c.

In the third case, we will focus on the condensation with potential V (φ) = − 12
L2 − 16φ2

3L2 +
ν3φ3

L2 . In Fig. 8(a), we can find that the condensation will decrease from positive finite value

to vanishing in ν3 > ν3c region. In our setup, ν3c = 0. In ν3 < 0 region, the condensation

will be multiple valued function of temperature. This case is much similar to first massive
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( a ) ( b )

Figure 7. The condensation O is as a function of temperature T in massive scalar case with

potential V (φ) = − 12

L2 − 16φ2

3L2 + ν6φ
6

L2 .

case. In this region, the transition order will be change. Because the condensation can

not continuously decrease to zero at transition temperature and it will suddenly jump

from positive finite value to zero. In 8(b), we have shown the free energy as function of

temperature. In ν3 > 0 region, free energy is monotonically increasing with temperature,

while free energy is multiple valued function of temperature in ν3 < 0. That means the

free energy can not converge to the transition temperature continuously, while massive hair

black hole will jump to hyperbolic AdS-SW black hole at transition temperature. Roughly

speaking, the phase transitions induced by ν3φ3

L2 is almost similar to ones induced by ν4φ4

L2 .

( a ) ( b )

Figure 8. The condensation O is as a function of temperature T in massive scalar case with

potential V (φ) = − 12

L2 − 16φ2

3L2 + ν3φ
3

L2 .

Finally, we would like to focus on the condensation in massive scalar with potential

V (φ) = − 12
L2− 16φ2

3L2 +
ν4φ4

L2 + ν6φ6

L2 . The main motivation to study this case is that we expect to
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find competitive mechanism between ν4φ4

L2 deformation and ν6φ6

L2 deformation. In Fig. 9(a),

one can vary ν6 with fixing ν4 = 1.0 to see that the condensation will monotonically decrease

to zero from low temperature to high temperature for ν6 > ν6c. In ν4 = 1 case, ν6c = 0.0

such that Tmin = Tmax. For fixing ν4, one can tune ν6 = ν6c to be a solution in which Tmax

will coincide with Tmin. One can vary ν4 to find corresponding ν6c. While in Fig. 9(b),

we confirm that the hairy black hole solution is much stable than hyperbolic AdS-SW in

Tmax < T < Tc and 0 < T < Tmin with ν6 < ν6c, ν4 = 1. Where Tc is defined by the point

where the condensation is vanishing in Fig. 9(a) and Tmin, Tmax are marked in Fig. 9(a).

In T > Tc, there is no stable hairy black hole solution for ν6 > ν6c and hyperbolic AdS-SW

solution is stable one. In ν6 < ν6c, the condensation will become multivalued function of

temperature from Tmin < T < Tmax,. For ν6 = −0.5 example, the stable configuration

in 0 < T < Tmin is the hairy black hole solution, while in T > Tc > Tmin is hyperbolic

AdS-SW black solution. When Tmin < T < Tc < Tmax as shown in Fig. 9, there is a

phase transition between two hairy AdS black holes and the condensation will jump from

positive finite value to less positive finite value. Especially at Tc, there is phase transition

between hairy black hole and hyperbolic AdS-SW black hole due to condensation goes to

vanishing. These numerical studies show that there is competitive mechanism between
ν4φ4

L2 deformation and ν6φ6

L2 deformation. One can tune ν4, ν6 to see which phase is stable

and what type of phase transition happens. One can set ν4 = 0 and this numerical result

will reproduce one in second massive case.

( a ) ( b )

Figure 9. The condensation O is as a function of temperature T in massive scalar case with

potential V (φ) = − 12

L2 − 16φ2

3L2 + ν4φ
4

L2 + ν6φ
6

L2 .

To close this subsection, we would like to give a short summary. Here we have intro-

duced various deformations in massive scalar potential and study these deformations effects

on stability of hairy AdS hyperbolic black holes case by case. In each case, the conden-

sation as a function of temperature implies that there exist phase transitions in deformed

theories. The behavior of condensation and free energy with respect to temperature in

φ3 and φ4 deformed theories will be similar to ones in the massless cases with φ3, φ4, φ6
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deformation. Comparing with Fig.10 Fig.11 Fig.12, it has exotic behavior with respect to

temperature in φ6 deformed theories shown in Fig.7 Fig.9. The exotic behavior is induced

by φ6 deformation essentially. All these behaviors imply that there may exist phase tran-

sitions. Essentially, all these phase transitions mainly originate from the effective mass of

scalar below the effective BF bound for the near horizon AdS2. However, it is not enough

to confirm the phase transitions by analyzing the condensation of dual operator and free

energy. In section 7, we will see the hyperbolic hairy AdS black hole solutions will be

stable in low temperature region T < Tc when coupling constants live in specific regions.

Otherwise, these solutions will not be stable anymore and there exist much more stabler

in-homogenous solutions. We will see details in section 7.

7 Instability for the Normalizable Mode

Previous discussions on the stability of different phases are mainly based on thermodynam-

ical analysis with comparing free energy. Comparing free energy between constant solution

and hyperbolic AdS-SW is not enough to make sure these new hyperbolic solutions are sta-

ble or not. To be more rigorous, in this section we will investigate the instability of these

solutions under scalar perturbation δΦ(t, z, ψ, θ, ϕ). The wave function of δΦ(t, z, ψ, θ, ϕ)

could be decomposed as

δΦ(t, z, ψ, θ, ϕ) = eωtδφ(z)Y (ψ, θ, ϕ),∇2
H3
Y (ψ, θ, ϕ) = −λY (ψ, θ, ϕ), (7.1)

with Y the eigenfunction of Laplacian in certain manifold Σ and λ the corresponding

eigenvalues. When Σ is just the hyperboloid Hd−2, λ has the lower bound λ > (d−3)2

4 .

Here, we will consider the 5D case, so d = 5 and λ > 1. More generally, when Σ is a

non-trivial quotient of hyperboloid, then the lower bound of λ would be extended to 0.

Thus, below we will only consider λ > 0 and ω2(λ = 0) for simplicity [18] [19].

Under the ansatz Eq.(7.1), the equation of motion for δφ could be derived as follows

δφ
′′

+ (−3

z
+ 3A

′

e +
f

′

f
)δφ

′

+ (
3e2Ae

8z2f
V

′′

(φ)− ω2

f2
+
λ

f
)δφ = 0, (7.2)

where Ae, f, φ are associated with background solutions. In our ansatz Eq.(7.1), the time

related part behaves as eωt. The black hole will be unstable if (7.2) has a solution with real

and positive ω2 with the field satisfying specific boundary conditions at infinity and the

horizon. Therefore, if there exist solutions with positive ω2 in certain background solutions,

then the background solutions are unstable. This unstability is induced by inhomogenous

perturbation in boundary special direction. If one can not find such perturbative modes

with positive ω2, then the background solutions are stable at the level of linear perturbation.

This is the key criterion to test the stability of these solutions. In principle, one should

construct hairy black holes at the non-linear level which is considerably more difficult. In

this paper, it is sufficient to demonstrate that an instability exists by linear perturbation.

The leading expansion of δφ near the horizon z = zh could be derived from Eq.(7.2)

as following
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δφ(z) = δph1(zh − z)
ω

4πT (1 + ...) + δph2(zh − z)−
ω

4πT (1 + ...), (7.3)

with δp1, δp2 the two integral constants of the second order derivative equation Eq.(7.2).

Without loss of generality, we assume ω =
√
ω2 > 0, then the δph1 mode tends to 0 when

z approaches zh, while the δph2 mode is divergent near horizon. Thus, the near horizon

boundary condition is easy to be set as δφ(zh) = 0.

For the UV boundary condition, again, we could calculate the near boundary expansion

of δφ from Eq.(7.2). It depends on the dimension of φ. For ∆ = 2 as example, the leading

expansion is of the form

δφ(z) = δp201z
2 log(z) + ...+ δp

(2)
02 z

2 + .... (7.4)

As in the background solutions, we will require the coefficient of z2 log(z) to be 0. For

∆ = 4, one can obtain the UV boundary condition as

δφ(z) = δp
(0)
0 + δp

(4)
0 z4 + .... (7.5)

In general, only for certain groups of (λ, ω2) the solutions of δφ could satisfy both the

UV and IR boundary conditions simultaneously. We will try to find such kind of solutions

under the background solutions solved in previous sections, and to see whether it is stable

or not under the linear perturbation.

7.1 Massless Scalar Cases

Firstly, we focus on the stability in the massless cases. In terms of previous arguments in

last section, one just only studies the sign of ω2(λ = 0) and we can test stability of these

solutions solved in previous several sections.

In Fig.10 Fig.11 Fig.12, we show the ω2(λ = 0) as a function of temperature numerically

with turning on the linear perturbation of hyperbolic black hole solution with V (φ) =

− 12
L2 + ν4φ4

L2 ,V (φ) = − 12
L2 + ν4φ4

L2 + ν6φ6

L2 and V (φ) = − 12
L2 + ν3φ3

L2 + ν4φ4

L2 respectively. In

all these cases, one can see that ω2(λ = 0) always positive from low to high temperature

region. These solutions shown in Fig.3 Fig.4 Fig.5 should be unstable configurations,

although these configurations are much more stable than hyperbolic AdS-SW black hole

with comparing free energy. One can see that there should exist in-homogenous black hole

solutions which break the hyperbolic symmetry.

7.2 Massive Scalar Cases

In this subsection, we turn to focus on the stability of new hyperbolic black hole solutions

with massive scalar potentials. Here we have studied four cases which are shown in Fig.13

Fig.14 Fig.15 Fig.16. Here we summarize final results in the following. In Fig.13 Fig.14

Fig.15 Fig.16, we show the ω2(λ = 0) as a function of temperature numerically with turning

on the linear perturbation of hyperbolic black hole solution with V (φ) = − 12
L2 − 16φ2

3L2 + ν4φ4

L2

,V (φ) = − 12
L2 − 16φ2

3L2 + ν6φ6

L2 , V (φ) = − 12
L2 − 16φ2

3L2 + ν3φ3

L2 and V (φ) = − 12
L2 − 16φ2

3L2 + ν4φ4

L2 + ν6φ6

L2
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Figure 10. ω2(λ = 0) as a function of temperature in massless scalar case with potential V (φ) =

− 12

L2 + ν4φ
4

L2 at the same parameter values as in Fig.3.

Figure 11. ω2(λ = 0) as a function of temperature in massless scalar case with potential V (φ) =

− 12

L2 + ν4φ
4

L2 + ν6φ
6

L2 at the same parameter values as in Fig.4.

respectively. For massive scalar cases, there are something new presented. Up to linear

perturbative analysis, some solutions are stable. For example, as shown in Fig.13, we can

tune v4 gradually and then we can find a critical value of v4 = 0. Once v4 > 0, ω2(λ = 0)

are always negative definite function of temperature and which also means v4 > 0 these

solutions found in Fig.6 might be stable at level of linear perturbation analysis. The phase

transition shown in Fig.14 might truly happen. Such kind of phenomenon also happens in

Fig.14. One can also tune the v6 gradually to find the critical value of v6 = 0. When v6
becomes positive, one can not find positive definite ω2(λ = 0) which implies that solutions

with positive v6 might be also stable and phase transition might happen in Fig.7. In Fig.15,

one can also tune the v3 gradually to find critical value v3 = 0 and similar story will happen

as shown in Fig.13 Fig.14. Finally, we consider more complicated situation with potential

V (φ) = − 12
L2 − 16φ2

3L2 + ν4φ4

L2 + ν6φ6

L2 . For simplifying our study, we just fix v4 = 1 and gradually
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Figure 12. ω2(λ = 0) as a function of temperature in massless scalar case with potential V (φ) =

− 12

L2 + ν3φ
3

L2 + ν4φ
4

L2 at the same parameter values as in Fig.5.

tune v6 to obtain the critical value v6 = 0 such that there is no positive ω2(λ = 0) existing

in the black hole solution. We expect that the solutions found in Fig.9 with positive v6 are

stable and the phase transition might really happen.

Figure 13. ω2(λ = 0) as a function of temperature in massive scalar case with potential V (φ) =

− 12

L2 − 16φ2

3L2 + ν4φ
4

L2 at the same parameter values as in Fig.6. When v4 = 0, 1, we did not find

positive ω2 at λ = 0.

8 Comments on Renyi Entropy in CFTs

In this section, we would like to connect the instability of hyperbolic AdS black hole

with holographic Renyi Entropy. Before we comment on this connection, we would like

to brief review the replica trick in various aspects as a starting point of this section. In

the recent literature, many progresses of calculation of Renyi Entropy have been achieved.

Especially, Renyi entropy of a spherical entangling surface in field theories can be evaluated
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Figure 14. ω2(λ = 0) as a function of temperature in massive scalar case with potential V (φ) =

− 12

L2 − 16φ2

3L2 + ν6φ
6

L2 at the same parameter values as in Fig.7. When v6 = 0, 2, we did not find

positive ω2 at λ = 0.

Figure 15. ω2(λ = 0) as a function of temperature in massive scalar case with potential V (φ) =

− 12

L2 − 16φ2

3L2 + ν3φ
3

L2 at the same parameter values as in Fig.8. When v3 = 0, 1, we did not find

positive ω2 at λ = 0.

the thermal entropy on dual hyperbolic AdS black holes. Finally, we comment on how the

instability of hyperbolic AdS black holes will induce a phase transition in dual field theory

by holographic Renyi Entropy.

8.1 Replica and Renyi Entropy

Entanglement entropy (EE) and the entanglement Rényi entropy (ERE) are very helpful

quantities to study phase transitions in QFTs. The standard approach to calculate entan-

glement entropy in field theory is called replica trick [32][33][34]. Recently, this approach

has been widely used in field theory and holography[35][36][37][38]. The ERE for vacuum

in various situations [39][40][41][43][44] has been studied . More recently, the ERE for local

excited states in CFTs have been extensively investigated in [45][46] [47][48][50][51][52]. In
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Figure 16. ω2(λ = 0) as a function of temperature in massive scalar case with potential V (φ) =

− 12

L2 − 16φ2

3L2 + ν4φ
4

L2 + ν6φ
6

L2 at the same parameter values as in Fig.9. When v6 = 0, 0.5, we did not

find positive ω2 at λ = 0.

string theory, [53] tried to use replica trick to calculate entanglement entropy associated

to black hole entropy in string theory.

In holography, the replica approach should start with calculating the partition function

on n-fold cover of the background geometry. If one want to construct the structure for

boundary CFT in terms of holography, it is inevitable to produce a conical singularity

in the bulk. It is hard to resolve the bulk singularity without completely understanding

the string theory or quantum gravity in the AdS bulk. In [54][55], authors have given a

preliminary derivation of holographic Renyi entropy and [56] clarify this construction and

extend this to more general spherical entangling surfaces in boundary CFT which is put

on R× Sd−1. These pioneer studies allow us to calculate the Renyi entropy of a spherical

entangling surface by evaluating the thermal entropy on the hyperbolic cylinder R×Hd−1.

The essential new ingredient is that we should know hyperbolic AdS black hole solutions.

Applying this approach, there are many extending studies [57][20][58].

8.2 Spherical Renyi Entropy as Thermal Entropy

A holographic calculation of Renyi entropy for a spherical entangling surface is derived

in [56][54][55]. Following the this construction, the density matrix is thermal and we can

write the q’th power of ρ as following

ρq = U−1 exp [−qH/T0]
Z(T0)q

U where Z(T0) ≡ tr
[

e−H/T0

]

. (8.1)

where q is integer number. The unitary transformation U and its inverse will be canceled

with taking the trace of this expression. Hence the trace of q th power of density matrix is

tr [ ρ q] =
Z(T0/q)

Z(T0)q
. (8.2)
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With using the definition of the free energy of dual black hole, i.e. F (T ) = −T logZ(T ),

the corresponding Renyi entropy becomes

Sq =
q

(1− q)T0
(F (T0)− F (T0/q)) . (8.3)

in terms of derivation[56][54][55]. Further using S = −∂F/∂T , this expression can be

rewritten as

Sq =
q

q − 1

1

T0

∫ T0

T0/q
Stherm(T ) dT , (8.4)

where Sq is the Renyi entropy while Sthermal(T ) denotes the thermal entropy of the CFT

on R×Hd−1. The entanglement entropy can be

SEE = lim
q→1

Sq = Sthermal(T0) . (8.5)

with T0 given by 1
2πR . R is the curvature scale on the hyperbolic spatial slices Hd−1

matching the radius of the original spherical entangle surface, R.

We can compute the Rényi entropy from these thermal entropies, via (8.4)

Sn =
n

n− 1

1

T0

(

∫ Tcri

T0/n
SEh
thermal(T )dT +

∫ T0

Tcri

SE
thermal(T )dT

)

, (8.6)

where SEh
thermal(T ) is the entropy of the hairy black hole and SE

thermal(T ) is the entropy of

the Einstein black hole. In terms of above formula, the Rényi entropy as a function of

n. Because the derivative of the thermal entropy with respect to the temperature is dis-

continuous, the second derivative with respect to n of the Rényi entropy is discontinuous.

Such kind of discontinuous is closely related to instability of hyperbolic AdS black hole.

Such instability has been carefully studied in section 6 and section 7. Therefore, the dis-

continuous of Rényi entropy implies a phase transition in dual field theory by holography.

In order to determine the precise value of nc at which this transition occurs, one should

study numerically the scalar wave equation within the black hole background as shown in

[57][20]. The critical temperature is defined by Tcri =
1

2ncπR
. Up to now, we completely

get the hairy hyperbolic AdS black holes. Due to presence of condensation dual to scalar,

the conformal transformation will break down in the whole background and one may not

identify the Rényi entropy as the thermal entropy of hyperbolic AdS black hole generally.

However, one can perturbatively extract Rényi entropy near transition point from hyper-

bolic AdS-SW black hole to hairy hyperbolic AdS black holes. Our studies will give us

some insights on the Rényi entropy in dual field theory.

9 Conclusions and Discussions

In this paper, we have constructed various new hyperbolic asymptotic AdS gravity solutions

in ED system numerically. Motivated by studying ERE with spherical entangling surface

in deformed CFTs, we work out the background with introducing series powers of neutral
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scalar in scalar potential. In this paper, we just focus on potential with φ3, φ4, φ6 or some

superpositions of them. Especially, we only focus on two kinds of special scalar potentials.

The one is massless scalar with higher powers of scalar self interaction and the other is

that we choose square of the scalar mass to be −3. In terms of AdS/CFT, the first kind of

scalar corresponds to gluon sector in gauge field theory side and the other scalar is dual to

chiral condensation in field theory side. In general, to calculate the ERE with complicated

entanglement surface is very hard. For spherical entanglement surface, one can make use

of proposals [56][54][55] to relate the ERE to the thermal entropy in hyperbolic space.

That means once you know the hyperbolic asymptotic AdS solutions, you can obtain the

ERE with spherical entangling surface in dual CFTs. We have shown the configuration of

these new hyperbolic AdS solutions and also extract the condensation of operators which

dual to massless and massive scalars respectively. Through studying condensation with

respect to temperature, they give us insight that there exist phase transitions. We list the

well defined boundary energy momentum tensor by introducing proper boundary counter

terms in each solution. With these counter terms, the finite free energy can be achieved.

We just compare free energy between the new hyperbolic AdS solutions and hyperbolic

AdS-SW solution to check the stability of these solutions. And then, to be more rigid, we

turn on in-homogenous perturbation on these new hyperbolic AdS black holes to study the

stability. We tune the potential parameters to figure out the stable region for potential

parameters in these solutions, for example, the coefficients of the cubic, quartic and sextic

scalar interactions v3, v4, v6. For massless scalar cases, we can not find stable solutions

with turning on φ3, φ4, φ6 in scalar potential respectively. Therefore, we can not safely

say phase transition shown in Fig.3 Fig.4 Fig.5 really happens. There must exist stable

solution with in-homogenous structure. For massive scalar cases with positive potential

parameters v3, v4, v6 respectively, φ3, φ4 will induce similar phase transition qualitatively

shown in Fig.6 Fig.8, while φ6 term in scalar potential will induce different kind phase

transition in Fig.7. If one turns on superposition of φ3, φ4 and φ6 in scalar potential,

there exists competitive mechanism between phase transitions induced by φ3, φ4 and φ6

in Fig.9. However, when we choose negative potential parameters v3, v4, v6 respectively,

our studies show that all these black hole solutions are not stable ones. With negative

potential parameters v3, v4, v6, there may exist in-homogenous solutions which much more

stable than corresponding hyperbolic AdS black hole solutions. Finally, the ERE can also

be obtained in terms of proposals [56][54][55]. Further, we comment on ERE also implies

phase transitions which has something do with instability of these new hyperbolic AdS

solutions. Once we know the phase structures of various black hole solutions, we make use

of [56][54][55] to comment on the spherical entanglement entropy in the dual field theory.

In this sense, the stability of these black hole solutions is closely related to the spherical

ERE in holographic dual CFTs and it gives some insight of phase transitions in dual field

theory.

In this paper, we just focus on massless and massive scalar cases with higher powers

of self interaction in potentials. In general, such kinds of deformation will lead to various

types of phase transitions which are highly sensitive to the operators chosen and types of

deformations. ERE can be also regarded as an order parameter to give some insight on
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phase transitions in dual field theories.
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