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ABSTRACT: We construct a series of new hyperbolic black hole solutions in Einstein-Scalar
system and we apply holographic approach to investigate the spherical Renyi entropy in
various deformations. Especially, we introduce various powers in the scalar potential for
massive and massless scalar cases. These scalar potentials correspond to deformation of
dual CFTs. We make use of a systematic way to generate numerical hyperbolic AdS black
hole solutions. Based on these solutions, we study the temperature dependent condensation
of dual operator of massive and massless scalar respectively. These condensations show
that there might be phase transitions in deformed CFTs. We also compare free energy
between hyperbolic black hole solutions and hyperbolic AdS-SW black hole to judge phase
transitions. In order to confirm the existence of phase transitions, we turn on linear in-
homogenous perturbation to test stability of these hyperbolic AdS black holes. In this
paper, we show how potential parameters affect the stability of hyperbolic black holes in
several specific examples. For generic value of potential parameters, it needs further study
to see how the transition happens. Finally, we comment on these instabilities associated
with spherical Renyi entropy in dual deformed CFTs.
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1 Introduction

The stability of black holes in anti-de Sitter space has been widely studied in the context of
the AdS/CFT correspondence [1][2][3][4], where they are dual to finite temperature states.
Dynamical and thermodynamical stability properties provide a novel window on the phase

structure of the dual CFTs. In holographic approaches to condensed matter physics the



instability of a black hole to the condensation of scalar hair is dual to a superconducting
phase transition [5][6].

We will focus on the instability of hyperbolic AdS black holes and finally comment
on holographic Renyi entropy. There are many hyperbolic AdS black holes, which were
constructed in [7][8][9][10][11][12]. In [13], it was shown that static black holes with hy-
perbolic horizons can become unstable to the formation of uncharged scalar hair on the
horizon of the black hole due to the presence of an extremal limit with near-horizon ge-
ometry AdSs x H? [14][15][16][17]. Further, authors of [18] introduced a topological black
hole with a minimal coupled scalar field of negative mass-square and showed this new sta-
bility appeared. In [19], they mapped the instability of this gravity solution to the phase
transition happened in dual CFTs by holographic Renyi entropy. In [20], they investi-
gated charged hyperbolic black holes, which became unstable to presence of scalar hair
at sufficiently low temperature. Such kind of instability is the same as the holographic
superconducting instability in boundary hyperbolic space. In summary, scalar fields with
masses below the effective Breitenlohner-Freedman bound for the near-horizon AdSy will
become unstable at sufficient low temperatures. This happens for charged and uncharged
black holes; for AdS black holes with spherical horizons, such instabilities occur at finite
chemical potential. When the mass of scalar field is below this bound, the black hole be-
comes unstable and will decay to a hairy black hole solution. The corresponding boundary
operator acquires a non-zero expectation value.

In this paper, we have constructed a series of generic hyperbolic AdS black holes with
neutral self interaction scalar. More precisely, in this system, we introduce series of specific
powers of scalar in scalar potential. In [19], the authors showed that there was an instability
in massive scalar hariy hyperbolic AdS black hole. The instability would induce a phase
transition and entanglement Renyi entropy (ERE) also confirmed the phase transition.
In our setup, we introduce higher powers of scalar self-interactions which correspond to
deformation of CFTs. We start with the generic gravity setup and see what will happen.
Firstly, we work out these gravity solution in UV region which will be useful to extract
UV asymptotic AdS boundary condition. Finally, we can find hyperbolic AdS black hole
solution numerically in various scalar potentials. In terms of that the EE for the spherical
region of CFT is equivalent to the thermal entropy of the CFTs on the hyperbolic cylinder.
This thermal entropy can be translated to the horizon entropy of an appropriate black hole
with hyperbolic boundary. Basing on these hyperbolic AdS hairy black holes, we can make
use of this dictionary to obtain the ERE in dual deformed CFTs. ERE obtained in our
setup show that there are instabilities inducing phase transitions in dual CFTs. We also
extract the condensation of dual operator with respect to temperature in each solution. The
condensation of dual operator confirms that the phase transition might happen. To make
sure of the phase transitions, we compare the free energy between the hyperbolic scalar
hairy AdS black hole solutions (HSHAdAS) and hyperbolic AdS-SW black hole to reveal
the transition. Further, we turn on the in-homogenous linear perturbation to test the
stability of HSHAdS and the stability condition highly constrains the potential parameters
presented in the massive and massless scalar potential. We will give some explicit examples
to show what kinds of scalar potential will give stable HSHAdS. Finally, one can make use



of the stability to obtain the phase structure of these theories roughly. In terms of that
EE for the spherical region of CFT can be calculated by thermal entropy of HSHAdS, the
ERE also implies the phase transition.

An overview of the remainder of the paper is as follows: in section 2, we firstly set
up the gravity which is our starting point. In section 3, we will list the asymptotic AdS
boundary behavior which is controlled by Einstein equations for massless and massive
scalar respectively. These UV behaviors are useful to obtain the numerical solutions. In
section 4, we show various new hyperbolic scalar hairy AdS black hole solutions. In section
5, we study the boundary energy momentum tensor of these solutions with introducing
various of boundary counter terms in massless and massive scalars respectively. Further,
we evaluate the free energy of these solutions. In section 6, through above numerical
analysis, we found that there are interesting phase transitions in deformed CFTs. We
make use of condensation of dual operators and free energy of each solution to confirm
phase transition will really happen in deformed CFTs. In section 6, we have demonstrated
that the hyperbolic black holes are unstable and Renyi entropies show a phase transition.
Therefore, in section 7, we turn to the physical case of these models which are normalizable
on hyperboloid. In section 8, we will devote to conclusions and discussions.

2 Gravity Setup

The gravity action in 5D spacetime in Einstein frame is

1 4
S0 = 1oag | PV (R 30,000~ V(9). 21)

Here G5 is the 5D Newton constant, g is the 5D metric determinant and ¢, V' are the scalar
field and the corresponding potential. The equations of motion are

1 4 4
By + 59 (gama% + v<¢)> — 30400,6 =0, (2:2)

where E,,, = R, — %Rg,w is Einstein tensor.
We would like to choose the following ansatz to solve the Einstein equations of motion,

L262Ae(z) 1
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L2 2Ae(2) 1
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where H? is 3 dimensional hyperbolic space and L is AdS radius. In terms of the above
ansatz, one can obtain equations,
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One more constrain equation is
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(2.5) is not independent on the other three equations in (2.4). Once the gravity solution is
obtained from (2.4), one could use (2.5) to check the solution.

Here, we note that (2.4) would impose a natural boundary condition near horizon. If
one collects all the terms with a denominator f(z), the results are as following

Q(2)
S (2.6)

with Q(z) = 822f ¢ — 3L262A€V/(¢). Since the horizon is not a real singularity, the
apparent singularity f(z,) = 0 in Eq.(2.4) should be canceled by requiring Q(z) = 0.
Later, we will try to solve this boundary value problem using numerical method developed
in Ref.[21].

3 Asymptotic AdS Solutions

Based on the set up in previous sections, we pay attention to how to solve the whole system
in the UV region z ~ 0 in this section. Near the UV region, we can use series expansion
to find the solution of unknown function in metric ansatz (2.3). These expansions will be
helpful to the later numerically computation to show the full numerical solutions.

3.1 Massless Scalar Cases

In this section, we will try to find the UV expansion of gravity solution with massless scalar

with potential like

V= %( — 12 + v36® + vagt + v6¢6> (3.1)

In this potential, we set the mass of the scalar to be zero and call this case by massless
scalar case for convenience in this paper.

Firstly, the UV behavior of the black hole should be asymptotical AdS and there is a
horizon parameterized by zp in the IR region. We find an algorithm to get the numerical
solution consistently. Roughly speaking, we try to expand in power series all unknown
functions as positive powers of z. The UV solution can be expressed by following form
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3L2 2L4 5L6
212 (1728 {7 L¥ps — 5184 f4L*ps + 81L3pivg + 512L8p} 4 1728py)
* 518418

14

997920210 (
+ 217600L%p3 + 285120p4> +0(219) (3.2)

+ 855360 f7 L3py — 1140480 f4 L*py + 34749 L3 p3v,



1 64p2210  64p22tt (3f4 L% —2) 16212 (2f4L4p7 — 3p3
Ac(z) = =(-8)pizs - 20 ' ) (2/sL 5~ 57

81 49512 945L6 351 L4

210 (—69984 f7 L8p3 + 279936 f4L*p] — 2187L3pjvs — 11776 L8p] — 116640p7)
892296 L8

B 2218 (285120 f7 L8pF — 475200 f4L*p3 + 8019L3pjuy + 43520L8p} + 142560p3 ) Lo
2285415 L10
f0) = 1 oy PPN 5) |0 e
8212 (11f4L*p] —9p3) 826 (157 L%p] — 42f4L*p] + 13p])
891L4 B 1755L8
N 218 (—645408 f7 L®p3 + 819072 f4 L*p] — 3645L3pivs — 48640L5p; — 194400p3) N
390379510

One can find the black hole solution in the UV region can be expressed in series of
powers of z. In principle, one can obtain more higher powers of z to get the full expression
of black hole background. Unfortunately, we can not obtain closed form of the black hole
solution. The main reason is that we do not find simple recurrence relation among the
coefficients of each power of z, as explained in [21]. In terms of AdS/CFT dictionary, the
massless neutral scalar in the bulk will dual to A = 4 operator in field theory side. py4 is
the expectation value of dual operator. It is easy to see that the black hole solution with
asymptotical AdS can be controlled by integral constants py4, f1 in (3.2)(3.3)(3.4). p4, fa
are determined by boundary condition in IR region. Here we choose parameters py, f4 to
show one black hole solution numerically. Here py4, f4 are not independent and they are
related to the horizon position zj, such that Q(z,) = 0. We impose ¢(zp) to be regular,
which could be guaranteed by requiring Q(z) = 0.

3.2 Massive Scalar Cases

Firstly, we try to figure out asymptotic AdS solution of our setup with potential like

2
1 <_12_16¢

V=12 3

+ 030" + it + v (3.5)

In this potential, we have introduced a mass term of scalar field and we will call this case
by massive scalar case. With above potential, we can find the solution near the UV region
analytically. As shown in massless case, the UV behavior of the black hole should be
asymptotical AdS and there is a horizon in the IR region which is parameterized by zj.



The asymptotic solution is following
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It is easy to see that the black hole solution with asymptotical AdS can be controlled
by three integral constants po, poso, f4. P2, P22, f4 are determined by boundary condition in
IR region. In this case, pa, p22, f4 are not independent and they are determined by the black
hole horizon z;,. We still impose ¢(z) to be regular which is horizon boundary condition.

The temperature is also defined by T = f;t(ﬂz) 2=z, -

4 New Hyperbolic Black Hole Solutions

In this paper, we focus on the scalar potential with polynomial form of scalar with highest
sextic self-interaction. We explore a systematic way to generate fully backreaction gravity
solutions and investigate corresponding phase structure. In the following subsections, we
will show two examples to demonstrate these configurations of fields.

4.1 Massless Scalar Cases

In this subsection, we numerically solve the gravity setup with generic potential like V' (¢) =
% (—12 + v4¢4). Here we just set the mass term of scalar to be vanishing. In this case, the

2
— —p3yztlog?(2) — 295 (P%z + 20p2p22) Z*log(z) + O(2°)

(3.7)



dual operator O is relate to dimension 4 glueball operator. One can check that the solution
satisfies asymptotical AdS UV boundary condition. In Fig.1(a)(b)(c), the UV behavior of
these fields has been shown respectively. We just solve these solutions from UV to IR. In
the IR, we should impose regular boundary conditions to all these fields. Especially, we
have shown f(z;) = 0 numerically in Fig. 1(c), where Q(z) has been defined in Sec.2 to
check IR boundary condition. In this example shown in Fig.1(a)(b)(c), we can turn off
the potential parameter vy and reproduce the case studied in [19]. For case vs = 0, the
condensation of dual operator and free energy will be also studied in section 6.1.1 which is

consistent with studies in [19].
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Figure 1. Characteristic solutions when V(¢) = — 13 + ”2‘24 with v4 = —8. To get these solutions,

we have taken f; = 0.2445, p; = 0.36734.... In Panel.(a) and Panel.(b), the solutions of ¢ and A,
are given. In Panel.(c), the solutions of f is shown in red solid line, while the corresponding Q(z)
is shown in blue dashed line(Here, in order to put the two in the same figures, we plot Q(z)/50,
which is zero at the same z as Q(z)).

4.2 Massive Scalar Cases

In this subsection, we numerically solve the gravity setup with potential like V(¢) =
% (—12 — 13—6¢2 + v4¢4). Here we set the mass of scalar to be m? = —31% which corre-
sponds to dimension-2 operators in 4D. In terms of AdS dictionary, the dual operator Og
is related to meson operator In this case, one have set pos = 0 to find solution and the pog
corresponds to source of dual operator Oz in terms of AdS/CFT. In Fig. 2(a)(b)(c), we
show the expected IR and UV behaviors of all related fields in Einstein equations. Once
we obtain these non trivial configurations, we can go further to study their stability and

ERE in dual field theories.

5 Energy Momentum Tensor and Free energy

In this section, we turn to study the stability of hyperbolic AdS black hole solutions. Firstly,
to obtain well defined energy momentum tensor on the boundary, one should introduce the
suitable counter terms. For later use, we will work out a well defined counter term for these
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Figure 2. Characteristic solutions when V(¢) = —% — 13(1‘1’22 + "4L¢2’4 with vy = —8. To get these

solutions, we have taken pss = 0, f4 = —0.001, p» = 0.0203818.... In Panel.(a) and Panel.(b), the
solutions of ¢ and A, are given. In Panel.(c), the solutions of f is shown in red solid line, while the
corresponding ((z) is shown in blue dashed line.

gravity solutions and these terms will be also used in studying free energy and spherical
Renyi entropy of dual CF'Ts.
5.1 Energy Momentum Tensor

In this subsection, we would like to introduce the counter terms to cancel the UV di-
vergences of the action and make the energy momentum tensor of dual field theory well
defined. We just introduce generic gauge invariant counter terms with undetermined coef-
ficients in our system. Finally, we can solve these coefficients to cancel the divergences in
massless and massive cases respectively in this paper.

5.1.1 Massless Scalar Cases

For massless scalar case, the total action now becomes

Iren - SSD + SGH + Scount

1 4
= AP /= _ = o
g L oV (R - 3o00ms - vilo))
1
- / d4m\/—fy{2K _ S MR AMRLR™ + ARE 4
167TG5 OM L

(5.1)

with A1, A2, A3 undermined coefficients of counter terms [22] [23][24][25][26][27] R, Ry R, R?
to be worked out later. The first term of the last line in (5.1) is Gibbons-Hawking term Sy
and the remain terms are Scount related to cosmological constant and scalar field. These
coefficients can be fixed by canceling the divergences of boundary momentum tensor. Here
K;; and K are respectively the extrinsic curvature and its trace of the boundary oM, ~;;



is the induced metric on the boundary M. These quantities are defined as follows

Vov = G + Ny, (5.2)
K, = hyDyn,,, (5.3)
v = det(yu), (5.4)
K = g"K,, (5.5)

where 7, denotes the induced metric, n,, stands for the normal direction to the boundary
surface OM as well as D) stands for covariant derivative. Finally, R and R, are the
Ricci scalar and Ricci tensor for the boundary metric respectively. In generic cases, one
should introduce higher powers of R and various combination of R, to cancel the total
UV divergence. For massive and massless cases in this paper, we just only introduce R to
cancel all the UV divergence. That means we can set s, A3 to be vanishing.

In the asymptotical AdS hyperbolic black hole, the boundary surface locates at z =0

surface, and usually one has to regularized it to a finite z = € surface. So we have the
oF
VGzz"

To regulate the theory, we restrict to the region z > € and the surface term is evaluated

normalized normal vector n, =

at z = €. The induced metric is ;; = 6—22 gij(x, €), where the leading term of expansion of
gij(x, €) with respect to e is the flat metric glé . Then the one point function of stress-energy
tensor of the dual CFT is given by [28][29][30][31]

T, =

61ren L2 2 blyey
— 1 < ) (5.6)
e—0

2
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The finite part of boundary energy-stress tensor is from the O(€?) of the Brown-York tensor
T;; on the boundary z = €, with
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In the massless scalar hair hyperbolic AdS black hole, the coefficients of counter terms
can be following

1
>\1 = 55
Xy = 0,
As = 0, (5.8)

where we have fixed these coefficients by removing the UV divergence z — 0 appeared in
on-shell action of massless scalar. Directly evaluate (5.7) using (5.6), we get

~ (5 2 )

Ty (5.9)



5.1.2 Massive Scalar Cases

For massive scalar, the total action will be different from massless cases. The main reason is
that the UV behavior of massive scalar is different from the massless cases. The divergences
in the UV region are very sensitive to UV behavior. In massive case, we will introduce
following counter term to cook up well defined on-shell action.

Iren - S5D + SGH + Scount

— 1 5 é -

- e /Md =g <R S0,00" VE(¢)>

S / d4x\/—7[2K—§+)\ 1R+ Am2d?® + AmzdR + ]
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(5.10)
In terms of (5.6), the boundary energy momentum tensor would be
1 d—2
T-»:—{K‘-—K -
0= Toag B~ B3

In the massive scalar hair hyperbolic AdS black hole, the coefficients of count terms can

1
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be following

N Wl oM~

—~ -
S
DO
~

>
3
)

|

5 (5.12)

where (Os) corresponds to expectation value of dual operator Os of massive scalar ¢. We
have fixed these coefficients by removing the UV divergence z — 0 appearing in on-shell
action of massive scalar.

Directly evaluate (5.7) using (5.6), we get

1 3fsL  (02)°L 3L
_167TG(_ B + )

T
. 202 6 8
5.2 The Difference of Free Energy

(5.13)

After introducing the counter term to remove the divergence of the action, we can work out

the on shell action which will be helpful to test the holographic phase structures. Later, we

will also make use of condensation of dual operator to get the flavor of phase transitions.
For massless scalar case, the on shell action can be

1 3
S5p-BH = e <Z - f4> (5.14)

For massive scalar case, the on shell action can be

2 _ 28p22p2 416])%2) (5 15)

1 /3 1
Ssp-BH = 1657 <Z —Jam 58 75 1125

where we have to turn off the the source pyo to obtain the expectation value of dual operator

in vacuum for later use.

,10,



6 Phase Transitions

In the proceeding section, we would like to study the stability of these hyperbolic AdS
black hole solutions by calculating condensation of dual operator and free energy. We
will show temperature dependence behaviors of condensation of operators O7, Oy dual to
massless and massive scalar respectively. Firstly, we will make use of free energy to study
the stability of these new hyperbolic black hole solutions. In this section, we mainly focus
on the constant modes in which we do not turn on the in-homogenous perturbation of
these solutions. The constant mode means that the field configurations only depend on
holographic direction z. We should say this analysis is not so solid and later we will turn
to go further to check the stability of these solutions. In section 7, we will go back to the
phase structures in these theories studied in this section in terms of linear perturbation.

6.1 Condensation

In this subsection, we will figure out all fields configurations and extract the condensation
of dual operator O of scalar field to see what will happen with changing related parameters,
for example, temperature and coupling constant of scalar self-interaction. Basically, one
can extract the condensation of dual operator by UV expansion of massless and massive
scalar shown in Eq.(3.2) Eq.(3.6) in terms of AdS/CFT dictionary. The condensation will
imply whether there is phase transition or not. Later, we will use free energy to confirm
these phase transitions and determine the transition temperature.

6.1.1 Massless Cases

We would like to introduce several deformations in massless scalar potential, for example,
adding ¢>, ¢*, ¢® terms to the potential. We mainly focus on obtaining condensation of the
dual A = 4 glueball operator O, with respect to temperature. We will see there exist phase
transition in various deformations and how these deformations affect the phase transition
in details.

Firstly, we would like to calculate the condensation in massless scalar with potential
like V(¢) = =35 + ”2—4254 In fig.3(a), we have shown the condensation as a function of
temperature. The different colored curves correspond to choose model parameter v4. With
increasing v4, the condensation at same temperature will increase gradually. There is a
transition temperature which is determined by that the condensation goes to zero. For each
colored curve, the condensation is double valued function with respect to temperature from
zero temperature to maximal temperature Tp,q,. In fig.3(b), we calculate free energy with
respect to temperature and it shows that the dashed line part is unstable comparing with
solid curve. That means the T,,,; is phase transition temperature 7. in terms of free
energy. Below the transition temperature T, the condensation is a monodrome function
of temperature. At the transition temperature, the condensation will jump from finite
positive value to zero and the massless hairy black hole solution is unstable comparing
with hyperbolic AdS-SW black hole. That is to say hyperbolic AdS-SW black hole is
favored when T' > T,.. Up to this stage, we find the instability exists in this case.

— 11 —
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Figure 3. The condensation is as a function of temperature in massless scalar case with potential
v 12 vagt
(¢) - L2 + 2

Secondly, we would like to calculate the condensation O; in massless scalar with po-

tential like V' (¢) = —% + Vi‘f + V%‘f. In fig.4(a), we have shown the condensation as a

function of temperature. The different colored curves correspond to choose different model

parameter vg with fixing 4. With increasing vg, the condensation at same temperature
will decrease gradually. There is a transition temperature which is determined by that the
condensation goes to zero. For each colored curve, the condensation is double valued func-
tion with respect to temperature from zero temperature to maximal temperature T;,q.. In
fig.4(b), we calculate free energy with respect to temperature and it shows that the dashed
line part is unstable comparing with solid curve in T' < T}, That means the 1,4, is
phase transition temperature 7.. Below the transition temperature T, the condensation
is a monodrome function of temperature. At the transition temperature, the condensation
will jump from finite positive value to zero and the massless hairy black hole solution is
unstable comparing with hyperbolic AdS-SW black hole in T' > T},,4,. That is also to say
hyperbolic AdS-SW black hole is favored when T' > T,.. Below the transition temperature,
the condensation is a monodrome function of temperature. At the transition temperature,

6
the condensation will jump from finite positive value to zero. We can see that “ 2‘2 does
vag?
Z
Finally, we would like to calculate the condensation in massless scalar with potential

like V(¢) = —% + ”2—2?3 + Vi—fl. In fig.5(a), the condensation as a function of temperature

not change the type of phase transition induced by

has been presented. The different colored curves correspond to choose model parameter
vg with fixing v4. With increasing v3, the condensation at same temperature will decrease
gradually. For each colored curve, the condensation is double valued function with respect
to temperature from zero temperature to maximal temperature T),,,. In fig.5(b), we also
calculate free energy with respect to temperature and it shows that the dashed line part
is unstable comparing with solid curve. That means the 7)., is still phase transition
temperature 7, in this case. Below the transition temperature 7., the condensation is a
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Figure 4. The condensation is as a function of temperature in massless scalar case with potential

6
V(g) = —22 + 15

monodrome function of temperature. At the transition temperature, the condensation will
jump from finite positive value to zero and the massless hairy black hole solution is unstable
comparing with hyperbolic AdS-SW black hole. That is to say hyperbolic AdS-SW black
hole is favored when T > T,.. Below the transition temperature, the condensation is a

monodrome function of temperature. At the transition temperature, the condensation will
3
jump from finite positive value to zero. The deformation from ”22 does not change the

4
.. . 1/4(;5 . .
type of phase transition induced by =5 qualitatively.
o F
8- 5. i
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Figure 5. The condensation is as a function of temperature in massless scalar case with potential

vid?

43
V(9) = =75 + 45 + 4

In summary, we introduce three types special deformations like ¢3, ¢*, % in massless
neutral scalar potential in the bulk. We calculate the condensation of dual operator of the
scalar with respect to temperature. We find that there are phase transitions in deformed
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theories. We calculate the condensation as a function of temperature numerically and find
the transition temperature. Further, we calculate the free energy to confirm the phase
transitions. Finally, these phase transitions induced by three kinds of deformation are
the same type qualitatively. Therefore, one can naturally expect that there are still same
types of phase transitions in those cases with deformation like superposition of these three
kinds of deformations. We will turn to be more rigid in section 7 to check the stability of
these solutions in the low temperature region 7' < T,.. In section 7, one can find that all
these massless hyperbolic hairy AdS black hole are not stable. There exist more stabler
solutions, which are in-homogenous solutions. Therefore, the phase transition mentioned
in this section will break down and new phase structures will emerge.

6.1.2 Massive Cases

In this subsection, we would like to deform massive scalar potential by adding ¢, ¢*, #°
terms. We mainly focus on obtaining condensation of the dual A = 2 operator Oy with
respect to temperature. We expect that the phase structures may be changed due to choose
different operator as an order parameter. We will see there exist phase transition in various
deformations and how these deformations affect the phase transition order in details.
Firstly, we will turn to study the condensation in massive scalar with potential like
V(g)=—-15 — 13?22 + ”2‘34. In Fig.6(a), we have shown the condensation of dual operator
as a function of temperature in several cases. Each case corresponds to set different values

of self-interaction coupling constants r4. In each case, there is a transition point when
the condensation goes to vanishing. That means the mass hair AdS hyperbolic black hole
is more stable than vanishing condensation solution which is hyperbolic AdS-SW black
hole in low temperature region. It implies that there should be a phase transition with

increasing temperature in this system. Furthermore, the types of phase transition will be
4

|2

L2

role to determine the transition types. In Fig.6, we increase vy = —0.2,0.0,1.0 gradually

changed with increasing v, which shows that the deformation will play an important
and find that transition temperature is independent on v4. Furthermore, there exists a
critical value for v4. between vy, = —1 and vy = —0.2 . Crossing this critical point, the
phase transition order will be changed in vy < vy4.. In fig. 6(b), the free energy will increase
with temperature. All colored curves will converge to a one point which corresponds to
transition temperature in v4 > v4.. The transition temperature is the same as transition
temperature given by fig. 6(a). The black dashed line in Fig. 6(b) corresponds to free energy
in hyperbolic AdS-SW black hole. In Fig. 6(b), the dominate phase should be hyperbolic
AdS-SW black hole above the transition temperature. The free energy can continuously
converge to the transition point in Fig. 6(b) with v4 > v4.. But free energy will jump to
the transition point with v4 < v4.. That is also means the order of phase transition should
change suddenly and the transition temperature will be T},4., for example, curves shown
in vy = —1.4,—-1.2,—1.0. This phenomenon is also consistent with a condensation jump
from finite value to vanishing in Fig. 6(a).

Now we will turn to study the condensation in massive scalar with potential like
Vig) = —% — %65522 + "E(QG. We introduce ”gqf deformation and to see what will happen for
phase transition. In Fig. 7(a), one can see the condensation with respect to temperature

— 14 —
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Figure 6. The condensation is as a function of temperature in massive scalar case with potential
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with choosing different values of coupling constant 4. With increasing vg = 0.0,2.0, the
condensation will monotonically decrease from positive finite value to vanishing. In g < 0.0
region, the condensation is multiple valued function of temperature as shown in Fig. 7(a)
and there is a local maximal temperature T},,, and minimal temperature 7,,;, in each
curve. For vg = —0.1, the condensation will decrease from T' = 0 to T' = T,,,;», and it will
jump to less finite positive value at Th,;n. From T < T < Tiae, the condensation will
become multivalued function of temperature. For T > T},,4., the condensation will decrease
to zero continuously in Fig. 7(a). In Fig. 7(b), we have shown various free energy with
respect to temperature with gradually changing the 5. We also find that free energy with
g = 0, 2 is monotonically increasing with temperature. They always continuously converge
to the transition point 7,.. The transition point is defined by vanishing of condensation.
But in cases with v = —0.1, the free energy is multiple valued function of temperature.
For these cases, there are minimal temperatures T},;,; and local maximal temperature
Tonaz- For T > T, hyperbolic AdS-SW black hole should be stable and there is no massive
scalar hair black hole solution. In Ty, < T < T, and 0 < T < T}, massive scalar
hair black hole is more stable than hyperbolic AdS-SW black hole. In Ty < T < Thaz,
the condensation of dual operator is a multiple valued function and the stable solution is
marked by solid curve in Fig. 7(a)(b) in terms of comparing free energy. There is critical
value vg. such that T},;, = Timaz- Therefore, there are two types of phase transitions for
vg = —0.5. The first one happens at T},,, and the condensation is not continuous function
of temperature at T},,,; with 4 < vg.. The other one happens at T, and condensation goes
to zero with vg > vge.

In the third case, we will focus on the condensation with potential V' (¢) = —% — %65522 +

3
"SL—‘?. In Fig. 8(a), we can find that the condensation will decrease from positive finite value
to vanishing in v3 > v, region. In our setup, v3. = 0. In v3 < 0 region, the condensation
will be multiple valued function of temperature. This case is much similar to first massive
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Figure 7. The condensation O is as a function of temperature 7" in massive scalar case with
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potential V' (¢) = 7% _ 136L¢2 + VE(Z '

case. In this region, the transition order will be change. Because the condensation can
not continuously decrease to zero at transition temperature and it will suddenly jump
from positive finite value to zero. In 8(b), we have shown the free energy as function of
temperature. In v3 > 0 region, free energy is monotonically increasing with temperature,
while free energy is multiple valued function of temperature in v3 < 0. That means the
free energy can not converge to the transition temperature continuously, while massive hair
black hole will jump to hyperbolic AdS-SW black hole at transition temperature. Roughly

. o, . . 3 . . . . 4
speaking, the phase transitions induced by "3L¢2’ is almost similar to ones induced by ”2—2
0, F
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Figure 8. The condensation O is as a function of temperature 7T in massive scalar case with
2 3
potential V' (¢) = 7% _ 136L¢2 + uzﬁ '

Finally, we would like to focus on the condensation in massive scalar with potential

2
V((b) = _%_ 1£’>6L¢2

4 6
+ "z‘é’ + ”GL%’ . The main motivation to study this case is that we expect to
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one can vary vg with fixing 4 = 1.0 to see that the condensation will monotonically decrease

find competitive mechanism between 24 deformation and deformation. In Fig. 9(a),
to zero from low temperature to high temperature for vg > vg.. In v4 = 1 case, vg. = 0.0
such that T}, = Tinaee. For fixing vy, one can tune vg = v to be a solution in which 15,4,
will coincide with T},;,. One can vary vy to find corresponding vg.. While in Fig. 9(b),
we confirm that the hairy black hole solution is much stable than hyperbolic AdS-SW in
Tonae <T < T and 0 < T < Typip with vg < vge,v4 = 1. Where T, is defined by the point
where the condensation is vanishing in Fig. 9(a) and Tynin, Tinas are marked in Fig. 9(a).
In T > T,, there is no stable hairy black hole solution for v > 4. and hyperbolic AdS-SW
solution is stable one. In vg < g, the condensation will become multivalued function of
temperature from Ty < T < Thaz,- For vg = —0.5 example, the stable configuration
in 0 < T < Ty is the hairy black hole solution, while in T > T,. > T}, is hyperbolic
AdS-SW black solution. When T}, < T < T. < Tjae as shown in Fig. 9, there is a
phase transition between two hairy AdS black holes and the condensation will jump from
positive finite value to less positive finite value. Especially at T, there is phase transition
between hairy black hole and hyperbolic AdS-SW black hole due to condensation goes to
vanishing. These numerical studies show that there is competitive mechanism between
“e o

and what type of phase transition happens. One can set v4 = 0 and this numerical result

deformation and deformation. One can tune vy, vg to see which phase is stable

will reproduce one in second massive case.
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Figure 9. The condensation O is as a function of temperature 7" in massive scalar case with

2 4 6
potential V' (¢) = 7% _ 136L¢>2 + u4L<§ n VE(Z '

To close this subsection, we would like to give a short summary. Here we have intro-
duced various deformations in massive scalar potential and study these deformations effects
on stability of hairy AdS hyperbolic black holes case by case. In each case, the conden-
sation as a function of temperature implies that there exist phase transitions in deformed
theories. The behavior of condensation and free energy with respect to temperature in
¢> and ¢* deformed theories will be similar to ones in the massless cases with ¢3, ¢, ¢°
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deformation. Comparing with Fig.10 Fig.11 Fig.12, it has exotic behavior with respect to
temperature in ¢ deformed theories shown in Fig.7 Fig.9. The exotic behavior is induced
by ¢® deformation essentially. All these behaviors imply that there may exist phase tran-
sitions. Essentially, all these phase transitions mainly originate from the effective mass of
scalar below the effective BF bound for the near horizon AdSs;. However, it is not enough
to confirm the phase transitions by analyzing the condensation of dual operator and free
energy. In section 7, we will see the hyperbolic hairy AdS black hole solutions will be
stable in low temperature region 7" < T, when coupling constants live in specific regions.
Otherwise, these solutions will not be stable anymore and there exist much more stabler
in-homogenous solutions. We will see details in section 7.

7 Instability for the Normalizable Mode

Previous discussions on the stability of different phases are mainly based on thermodynam-
ical analysis with comparing free energy. Comparing free energy between constant solution
and hyperbolic AdS-SW is not enough to make sure these new hyperbolic solutions are sta-
ble or not. To be more rigorous, in this section we will investigate the instability of these
solutions under scalar perturbation 09 (¢, z,v,0, ). The wave function of §®(t, z,1, 6, )
could be decomposed as

5D(t, 2,9,0,¢) = €16 (2)Y (1,0, ¢), Vir,Y (v, 0, 0) = =AY (4,0, p), (7.1)

with Y the eigenfunction of Laplacian in certain manifold > and A the corresponding
(d—3)

T
Here, we will consider the 5D case, so d = 5 and A > 1. More generally, when 3 is a

eigenvalues. When ¥ is just the hyperboloid Hy 5, A has the lower bound \ >

non-trivial quotient of hyperboloid, then the lower bound of A would be extended to 0.
Thus, below we will only consider A > 0 and w?(A = 0) for simplicity [18] [19].

Under the ansatz Eq.(7.1), the equation of motion for d¢ could be derived as follows

" 3 ’ fl ’ 3€2A6 " w2 A

0 —— 434, + =)d ——V - —+=

o+ (=23 Ds - (Y 0 - 54 5

where A, f, ¢ are associated with background solutions. In our ansatz Eq.(7.1), the time

related part behaves as e!. The black hole will be unstable if (7.2) has a solution with real

and positive w? with the field satisfying specific boundary conditions at infinity and the
2

)36 = 0, (7.2)

horizon. Therefore, if there exist solutions with positive w® in certain background solutions,
then the background solutions are unstable. This unstability is induced by inhomogenous
perturbation in boundary special direction. If one can not find such perturbative modes
with positive w?, then the background solutions are stable at the level of linear perturbation.
This is the key criterion to test the stability of these solutions. In principle, one should
construct hairy black holes at the non-linear level which is considerably more difficult. In
this paper, it is sufficient to demonstrate that an instability exists by linear perturbation.

The leading expansion of d¢ near the horizon z = z, could be derived from Eq.(7.2)

as following
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56(2) = 6pp1(zn — 2)TT (1 4 ...) + Oppa(zn — 2)" =7 (14 ...), (7.3)

with dp1,dpy the two integral constants of the second order derivative equation Eq.(7.2).
Without loss of generality, we assume w = Vw? > 0, then the dpp; mode tends to 0 when
z approaches zp, while the dpps mode is divergent near horizon. Thus, the near horizon
boundary condition is easy to be set as d¢(zp) = 0.

For the UV boundary condition, again, we could calculate the near boundary expansion
of ¢ from Eq.(7.2). It depends on the dimension of ¢. For A = 2 as example, the leading

expansion is of the form

5 (2) = opt2°log(2) + ... + 6p((]22) 24 (7.4)
As in the background solutions, we will require the coefficient of 22log(z) to be 0. For
A =4, one can obtain the UV boundary condition as

56(2) = 6pl” + op{ 2t + ... (7.5)

In general, only for certain groups of (\,w?) the solutions of §¢ could satisfy both the
UV and IR boundary conditions simultaneously. We will try to find such kind of solutions
under the background solutions solved in previous sections, and to see whether it is stable
or not under the linear perturbation.

7.1 Massless Scalar Cases

Firstly, we focus on the stability in the massless cases. In terms of previous arguments in
last section, one just only studies the sign of w?(A = 0) and we can test stability of these
solutions solved in previous several sections.

In Fig.10 Fig.11 Fig.12, we show the w?(\ = 0) as a function of temperature numerically
with turning on the linear perturbation of hyperbolic black hole solution with V(¢) =
_% + ”i‘f Vip) = —% + sz + ”gdf and V(¢) = —% + ”?’L%S ”zd;l respectively. In
all these cases, one can see that w?(\ = 0) always positive from low to high temperature

region. These solutions shown in Fig.3 Fig.4 Fig.5 should be unstable configurations,
although these configurations are much more stable than hyperbolic AdS-SW black hole
with comparing free energy. One can see that there should exist in-homogenous black hole
solutions which break the hyperbolic symmetry.

7.2 Massive Scalar Cases

In this subsection, we turn to focus on the stability of new hyperbolic black hole solutions
with massive scalar potentials. Here we have studied four cases which are shown in Fig.13
Fig.14 Fig.15 Fig.16. Here we summarize final results in the following. In Fig.13 Fig.14
Fig.15 Fig.16, we show the w?(\ = 0) as a function of temperature numerically with turning

on the linear perturbation of hyperbolic black hole solution with V(¢) = —% — 1365’22 + ”2‘34

2 6 2 3 2 4 6
V() =-F -3 +95. V() =~ -3 + 45 and V(9) =~ — g + 4 + 45
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Figure 10. w?(\ = 0) as a function of temperature in massless scalar case with potential V(¢) =

4
— i% + ”2‘2 at the same parameter values as in Fig.3.
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Figure 11. w?(\ = 0) as a function of temperature in massless scalar case with potential V (¢) =

4 .46 . .
-5+ ”2‘2 ”2‘2 at the same parameter values as in Fig.4.

respectively. For massive scalar cases, there are something new presented. Up to linear
perturbative analysis, some solutions are stable. For example, as shown in Fig.13, we can
tune vy gradually and then we can find a critical value of v4 = 0. Once vg > 0, w?(\ = 0)
are always negative definite function of temperature and which also means vy > 0 these
solutions found in Fig.6 might be stable at level of linear perturbation analysis. The phase
transition shown in Fig.14 might truly happen. Such kind of phenomenon also happens in
Fig.14. One can also tune the vg gradually to find the critical value of vg = 0. When vg
becomes positive, one can not find positive definite w?(\ = 0) which implies that solutions
with positive vg might be also stable and phase transition might happen in Fig.7. In Fig.15,
one can also tune the vy gradually to find critical value vs = 0 and similar story will happen
as shown in Fig.13 Fig.14. Finally, we consider more complicated situation with potential

Vig) = —% - 136L¢22 + "2‘24 + V%‘f. For simplifying our study, we just fix vy = 1 and gradually
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Figure 12. w?(\ = 0) as a function of temperature in massless scalar case with potential V(¢) =

12 v3 > vig?
—12t+ Iz L2

at the same parameter values as in Fig.5.

tune vg to obtain the critical value vg = 0 such that there is no positive w?(\ = 0) existing
in the black hole solution. We expect that the solutions found in Fig.9 with positive vg are
stable and the phase transition might really happen.

7-
—y=-14
Ll ———

— =-1.0

Vvy=-0.2

1 1 L 1 L L 1 L
0.10 0.15 0.20 0.25

Figure 13. w?(\ = 0) as a function of temperature in massive scalar case with potential V(¢) =
2 4
—% — 1365)2 + ”4L‘§ at the same parameter values as in Fig.6. When vy = 0,1, we did not find

positive w? at A = 0.

8 Comments on Renyi Entropy in CFTs

In this section, we would like to connect the instability of hyperbolic AdS black hole
with holographic Renyi Entropy. Before we comment on this connection, we would like
to brief review the replica trick in various aspects as a starting point of this section. In
the recent literature, many progresses of calculation of Renyi Entropy have been achieved.
Especially, Renyi entropy of a spherical entangling surface in field theories can be evaluated
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Figure 14. w?(\ = 0) as a function of temperature in massive scalar case with potential V (¢) =
2 6
f% — 13?2 + ”z‘g at the same parameter values as in Fig.7. When vg = 0,2, we did not find

positive w? at A = 0.
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Figure 15. w?(\ = 0) as a function of temperature in massive scalar case with potential V(¢) =

—% - 1365)22 + VSL(QS at the same parameter values as in Fig.8. When v3 = 0,1, we did not find

positive w? at A = 0.

the thermal entropy on dual hyperbolic AdS black holes. Finally, we comment on how the
instability of hyperbolic AdS black holes will induce a phase transition in dual field theory
by holographic Renyi Entropy.

8.1 Replica and Renyi Entropy

Entanglement entropy (EE) and the entanglement Rényi entropy (ERE) are very helpful
quantities to study phase transitions in QFTs. The standard approach to calculate entan-
glement entropy in field theory is called replica trick [32][33][34]. Recently, this approach
has been widely used in field theory and holography[35][36][37][38]. The ERE for vacuum
in various situations [39][40][41][43][44] has been studied . More recently, the ERE for local
excited states in CFTs have been extensively investigated in [45][46] [47][48][50][51][52]. In
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at the same parameter values as in Fig.9. When vg = 0, 0.5, we did not

string theory, [53] tried to use replica trick to calculate entanglement entropy associated
to black hole entropy in string theory.

In holography, the replica approach should start with calculating the partition function
on n-fold cover of the background geometry. If one want to construct the structure for
boundary CFT in terms of holography, it is inevitable to produce a conical singularity
in the bulk. It is hard to resolve the bulk singularity without completely understanding
the string theory or quantum gravity in the AdS bulk. In [54][55], authors have given a
preliminary derivation of holographic Renyi entropy and [56] clarify this construction and
extend this to more general spherical entangling surfaces in boundary CFT which is put
on R x S% 1. These pioneer studies allow us to calculate the Renyi entropy of a spherical
entangling surface by evaluating the thermal entropy on the hyperbolic cylinder R x H¢ 1,
The essential new ingredient is that we should know hyperbolic AdS black hole solutions.
Applying this approach, there are many extending studies [57][20][58].

8.2 Spherical Renyi Entropy as Thermal Entropy

A holographic calculation of Renyi entropy for a spherical entangling surface is derived
in [56][54][55]. Following the this construction, the density matrix is thermal and we can
write the ¢’th power of p as following

1 exp [—qH /Ty

a_ 77—
r=U Z(Ty)1

U where Z(Tp) =tr {e_H/TO} . (8.1)

where ¢ is integer number. The unitary transformation U and its inverse will be canceled
with taking the trace of this expression. Hence the trace of ¢ th power of density matrix is

tr[p7) = % (8.2)
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With using the definition of the free energy of dual black hole, i.e. F(T) = —Tlog Z(T),
the corresponding Renyi entropy becomes

q
S, = ——— (F(1y) — F(T{ . 8.3
in terms of derivation[56][54]|[55]. Further using S = —0F/JT, this expression can be
rewritten as
I
1 e (T) dT (8.4)

q_q_lTO To/q

where S, is the Renyi entropy while Sipermal(7') denotes the thermal entropy of the CFT
on R x H% ! The entanglement entropy can be

Spe = lim S; = Sthermal (10) - (8.5)
q—1

with Ty given by ﬁ R is the curvature scale on the hyperbolic spatial slices H%!
matching the radius of the original spherical entangle surface, R.
We can compute the Rényi entropy from these thermal entropies, via (8.4)

n 1 Teri To
Sn = T / Sglgrmal(T)dT + Sﬁlermal(T)dT ) (86)
n—1To \ J1y/n Tepi
where Sgl}elrmal(T) is the entropy of the hairy black hole and SE_ (T) is the entropy of

the Einstein black hole. In terms of above formula, the Rényi entropy as a function of
n. Because the derivative of the thermal entropy with respect to the temperature is dis-
continuous, the second derivative with respect to n of the Rényi entropy is discontinuous.
Such kind of discontinuous is closely related to instability of hyperbolic AdS black hole.
Such instability has been carefully studied in section 6 and section 7. Therefore, the dis-
continuous of Rényi entropy implies a phase transition in dual field theory by holography.
In order to determine the precise value of n. at which this transition occurs, one should
study numerically the scalar wave equation within the black hole background as shown in
[57][20]. The critical temperature is defined by T,.; = m.
get the hairy hyperbolic AdS black holes. Due to presence of condensation dual to scalar,

Up to now, we completely

the conformal transformation will break down in the whole background and one may not
identify the Rényi entropy as the thermal entropy of hyperbolic AdS black hole generally.
However, one can perturbatively extract Rényi entropy near transition point from hyper-
bolic AdS-SW black hole to hairy hyperbolic AdS black holes. Our studies will give us
some insights on the Rényi entropy in dual field theory.

9 Conclusions and Discussions

In this paper, we have constructed various new hyperbolic asymptotic AdS gravity solutions
in ED system numerically. Motivated by studying ERE with spherical entangling surface
in deformed CFTs, we work out the background with introducing series powers of neutral
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scalar in scalar potential. In this paper, we just focus on potential with ¢, ¢*, ¢ or some
superpositions of them. Especially, we only focus on two kinds of special scalar potentials.
The one is massless scalar with higher powers of scalar self interaction and the other is
that we choose square of the scalar mass to be —3. In terms of AdS/CFT, the first kind of
scalar corresponds to gluon sector in gauge field theory side and the other scalar is dual to
chiral condensation in field theory side. In general, to calculate the ERE with complicated
entanglement surface is very hard. For spherical entanglement surface, one can make use
of proposals [56][54][55] to relate the ERE to the thermal entropy in hyperbolic space.
That means once you know the hyperbolic asymptotic AdS solutions, you can obtain the
ERE with spherical entangling surface in dual CFTs. We have shown the configuration of
these new hyperbolic AdS solutions and also extract the condensation of operators which
dual to massless and massive scalars respectively. Through studying condensation with
respect to temperature, they give us insight that there exist phase transitions. We list the
well defined boundary energy momentum tensor by introducing proper boundary counter
terms in each solution. With these counter terms, the finite free energy can be achieved.
We just compare free energy between the new hyperbolic AdS solutions and hyperbolic
AdS-SW solution to check the stability of these solutions. And then, to be more rigid, we
turn on in-homogenous perturbation on these new hyperbolic AdS black holes to study the
stability. We tune the potential parameters to figure out the stable region for potential
parameters in these solutions, for example, the coefficients of the cubic, quartic and sextic
scalar interactions vz, vy4,vg. For massless scalar cases, we can not find stable solutions
with turning on ¢3,¢*, ¢% in scalar potential respectively. Therefore, we can not safely
say phase transition shown in Fig.3 Fig.4 Fig.5 really happens. There must exist stable
solution with in-homogenous structure. For massive scalar cases with positive potential
parameters vs, vy, vg respectively, ¢3, ¢* will induce similar phase transition qualitatively
shown in Fig.6 Fig.8, while ¢® term in scalar potential will induce different kind phase
transition in Fig.7. If one turns on superposition of ¢?,¢* and ¢® in scalar potential,
there exists competitive mechanism between phase transitions induced by ¢2,¢* and ¢°
in Fig.9. However, when we choose negative potential parameters vs, v4, vg respectively,
our studies show that all these black hole solutions are not stable ones. With negative
potential parameters vz, v4, vg, there may exist in-homogenous solutions which much more
stable than corresponding hyperbolic AdS black hole solutions. Finally, the ERE can also
be obtained in terms of proposals [56][54][55]. Further, we comment on ERE also implies
phase transitions which has something do with instability of these new hyperbolic AdS
solutions. Once we know the phase structures of various black hole solutions, we make use
of [56][54][55] to comment on the spherical entanglement entropy in the dual field theory.
In this sense, the stability of these black hole solutions is closely related to the spherical
ERE in holographic dual CFTs and it gives some insight of phase transitions in dual field
theory.

In this paper, we just focus on massless and massive scalar cases with higher powers
of self interaction in potentials. In general, such kinds of deformation will lead to various
types of phase transitions which are highly sensitive to the operators chosen and types of
deformations. ERE can be also regarded as an order parameter to give some insight on
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phase transitions in dual field theories.
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