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1 Introduction

We consider conformal field theories in d-dimensional Minkowski space M
d. A central

feature of conformal field theories is the existence of a symmetric, traceless and conserved

energy-momentum tensor T ab

T ab = T ba , ηabT
ab = 0 , ∂bT

ab = 0 , (1.1)

with ηab the Minkowski metric (of mostly plus signature). Let ξ = ξa∂a be a conformal

Killing vector field of Md,

∂aξb + ∂bξa =
2

d
ηab∂cξ

c . (1.2)

As is well-known, for every conformal Killing vector ξ one can construct a conserved current

V a as

V a = T abξb . (1.3)

Conservation of V a,

∂aV
a = 0 (1.4)

is a consequence of the conservation and tracelessness of T ab (which hold on-shell).
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In this note, we generalise the above construction, (T ab, ξa) → V a, to the case of

superconformal field theories in diverse dimensions in a manifestly supersymmetric way.

In the supersymmetric generalisation the traceless energy momentum tensor T ab will be

embedded in the conformal supercurrent multiplet while the conserved conformal current

V a will turn into the conserved superconformal current embedded in a supermultiplet.

A supersymmetric analogue of the energy-momentum tensor is the supercurrent multi-

plet introduced by Ferrara and Zumino [1] in the framework of four-dimensional (4D)N = 1

Poincaré supersymmetry. A supersymmetric extension of the notion of conserved current

is the conserved current multiplet introduced by Ferrara, Wess and Zumino [2] in the 4D

N = 1 super-Poincaré case. The concepts of supercurrent and conserved current multiplet

also exist for different types of supersymmetry and in spacetimes of dimension d 6= 4. By

definition, the supercurrent is a supermultiplet containing the energy-momentum tensor

and the supersymmetry current(s), along with some additional components such as the

R-symmetry current. In this note, we define the conserved current multiplet to be a super-

multiplet containing a single conserved vector current (equivalently, a closed (d−1)-form),

along with some other scalar and spinor components.

Unlike the energy-momentum tensor, the functional structure of the supercurrent and

the corresponding conservation equation depend on the dimension and supersymmetry

type. As an example we recall the N = 1 and N = 2 supersymmetric extensions of

the conformal energy-momentum tensor (1.1) in four dimensions. The N = 1 conformal

supercurrent [1] is a real vector superfield Jαα̇ constrained by

DαJαα̇ = 0 ⇐⇒ D̄α̇Jαα̇ = 0 . (1.5)

The N = 2 conformal supercurrent [3] is a real scalar superfield J constrained by

DijJ = 0 ⇐⇒ D̄ijJ = 0 , (1.6)

where Dij = DαiDj
α = Dji, D̄ij = D̄i

α̇D̄
jα̇ = D̄ji. It is also pertinent to recall the

N = 1 and N = 2 supersymmetric extensions of the conservation equation (1.4) in four

dimensions. The N = 1 conserved current multiplet is described by a real linear superfield

L [2] constrained by

D2L = 0 ⇐⇒ D̄2L = 0 . (1.7)

In the N = 2 case, the conserved current multiplet is described by a real linear superfield

Lij [4], which is defined to be a real SU(2) triplet Lij = Lji, Lij = Lij = εikεjlL
kl,

constrained by

D(i
αL

jk) = 0 ⇐⇒ D̄
(i
α̇L

jk) = 0 . (1.8)

In order to introduce a supersymmetric analogue of the construction, (T ab, ξa) → V a,

we also need a supersymmetric counterpart of the notion of conformal Killing vector. It

was originally given by Sohnius [5] in the case of 4D N -extended Poincaré supersymmetry

and further developed in four [6–12] and other [13–17] dimensions.

In the next section we review the definition of conformal Killing supervector fields. This

is further elaborated in appendix A. Sections 3 to 5 are devoted to superconformal theories
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in three, four, five and six dimensions, respectively. In each of these sections we first review

known results about the superconformal currents. We also state the general properties

of conserved current multiplets and their conservation laws. We then construct these

conserved currents in terms of the supercurrents and the conformal Killing supervector

fields, generalising eq. (1.3). Section 6 discusses modifications that occur for non-conformal

supercurrents and in the case of curved backgrounds.

2 Conformal Killing supervector fields

According to Nahm’s classification [18], superconformal algebras exist in spacetime di-

mensions d ≤ 6. In superspace, the superconformal transformations are generated by the

so-called conformal Killing supervector fields. The latter can be defined in several different

but equivalent ways. We first recall the least orthodox but, probably, most useful definition.

We then present the more standard definition.

Let Md|δ be a Minkowski superspace with d ≤ 6 spacetime dimensions and δ fermionic

dimensions. We denote by zA = (xa, θα̂) the bosonic (xa) and fermionic (θα̂) coordinates

for Md|δ. The index α̂ of the Grassmann variable is, in general, composite; it is comprised

of a spinor index α and an R-symmetry index I. The superspace covariant derivatives are

DA = (∂a, Dα̂) = eA
M∂M such that {Dα̂, Dβ̂

} = T
α̂β̂

c∂c and [Dα̂, ∂b] = 0, where T
α̂β̂

c is

the flat-superspace torsion tensor, which is constant.

A real even supervector field1 over Md|δ, ξ = ξ̄ = ξADA = ξa∂a + ξα̂Dα̂, is said to be

conformal Killing if the following condition holds

[ξ,Dα̂] ∝ D
β̂

⇐⇒ [ξ,Dα̂] = −(Dα̂ξ
β̂)D

β̂
. (2.1)

This condition implies that the only independent components of ξ are the vector ones, ξa.

The set of all conformal Killing supervector fields forms a superalgebra (with respect to

the standard Lie bracket) which is isomorphic to the superconformal algebra.

The above definition was used to introduce the conformal Killing supervector fields in

the 5D [16] and 3D N -extended [17] cases. However, it differs somewhat from that used

in [12] in the 4D N -extended case, as a generalisation of the 4D N = 1 analysis in [9]. Let

us show that the definition used in [12] follows from the one above.

The coordinates of 4D N -extended Minkowski superspace M4|4N are zA = (xa, θαi , θ̄
i
α̇),

where α and α̇ are two-component spinor indices, and i = 1, . . . ,N is an R-symmetry

index.2 The spinor covariant derivatives obey the anti-commutation relations

{Di
α, D

j
β} = 0 , {D̄α̇i, D̄β̇j} = 0 , {Di

α, D̄β̇j} = −2i δij∂αβ̇ , (2.2)

where ∂αβ̇ = (σc)αβ̇∂c. Given a supervector field ξ = ξa∂a + ξαi D
i
α + ξ̄iα̇D̄

α̇
i , the condi-

tion (2.1) implies

D̄α̇iξ
β̇β = 4i δβ̇α̇ξ

β
i . (2.3)

1A supervector field ξ is real and even if ξΦ is real and even for every real bosonic superfield Φ. In what

follows, all supervector fields will be real and even.
2Our 4D notation and conventions follow [9, 19].
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Making use of this result, a short calculation gives

D̄α̇iD̄β̇jξ
γ̇γ = 0 ⇐⇒ D̄α̇iξ

β
j = 0 . (2.4)

Equation (2.1) is thus equivalent to

[ξ,Di
α] ∝ Dj

β , (2.5)

which is the definition of the conformal Killing supervector fields used in [12].

Eq. (2.3) is equivalent to the relations

ξαi = −
i

8
D̄α̇iξ

α̇α ⇐⇒ ξ̄iα̇ = −
i

8
Dαiξαα̇ , (2.6a)

Di
(αξβ)β̇ = 0 ⇐⇒ D̄

(α̇
i ξβ̇)β = 0 . (2.6b)

Relations (2.6a) express the spinor components of ξA in terms of the vector one. Eq. (2.6b)

is the 4D N -extended superconformal Killing equation, which is a supersymmetric coun-

terpart of (1.2). In conjunction with the definition (2.6a), it proves to contain all the infor-

mation about the conformal Killing supervector fields. An obvious consequence of (2.6b)

is that the vector superfield parameter ξββ̇ = (σa)ββ̇ ξ
a(x, θ, θ̄) obeys the equation

∂(α(α̇ξβ)β̇) = 0 . (2.7)

Switching off the Grassmann variables gives the vector field ξa| := ξa(x, θ, θ̄)|θ=θ̄=0, which is

an ordinary conformal Killing vector field. Indeed, (2.7) coincides with the d = 4 conformal

Killing equation (1.2) rewritten in the two-component spinor notation.

The traditional definition of superconformal transformations in superspace was origi-

nally given by Sohnius [5] in the 4D N -extended case.3 Park used this definition to intro-

duce the superconformal transformations in the 6D N = (p, 0) and N = (0, q) [14] and 3D

N -extended [15] Minkowski superspaces. According to this definition, an infinitesimal co-

ordinate transformation δzA = ξA(z) generated by a supervector field ξA on M
d|δ, is called

superconformal if it at most scales the supersymmetric interval ds2 = ηabe
aeb. Here the su-

persymmetric one-forms [20, 21] eA = dzMeM
A constitute the dual basis for DA defined by

d = dzA∂A = eADA. Using this definition, Park showed [14] that in six dimensions super-

conformal transformations and hence superconformal algebras exist only for the supersym-

metry types N = (p, 0) and N = (0, q). While one can define N = (p, q) Poincaré super-

symmetry for any non-negative integers p and q, in the mixed case with p, q 6= 0, the most

general conformal Killing supervector field describes only super-Poincaré, R-symmetry and

scale transformations. Analogous considerations may be used to show that in five dimen-

sions, where one can introduce N -extended Poincaré supersymmetry (with 8N super-

charges), superconformal algebras exists only for N = 1; see [22] for a recent derivation.

It is an instructive exercise to show that invariance of ds2 leads to (2.1) which in turn

allows to express ξâ in terms of ξa which itself satisfies the conformal Killing equation.

Equivalence of the two definitions of conformal Killing supervector fields may also be

established using a more general (third) definition, which is reviewed in appendix A.

3Sohnius simply generalised the standard definition of infinitesimal conformal transformations of Md as

those transformations which at most scale the interval ds2 = ηabdx
adxb, where ηab is the Minkowski metric.
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3 Superconformal theories in three dimensions

In this section we consider superconformal field theories in three dimensions. The 3D N -

extended conformal supercurrents have been described in [23] using the conformal super-

space formulation for N -extended conformal supergravity, which was developed in [24].

In the locally supersymmetric case, the supercurrent of a superconformal field theory

coupled to conformal supergravity is characterised by the same superfield type and the

differential constraints as the super-Cotton tensor, which is the only independent cur-

vature tensor of N -extended conformal superspace [24]. Upon freezing the conformal

superspace to N -extended Minkowski superspace M
3|2N , we end up with the conformal

supercurrents which were discussed in detail in [25, 26] and which we are going to re-

view. Here we parametrise M
3|2N by real Cartesian coordinates zA = (xa, θαI ), where

I = 1, . . . ,N . The spinor covariant derivatives DI
α on M

3|2N satisfy the anti-commutation

relation {DI
α, D

J
β} = 2iδIJγmαβ∂m; see [17] for further details.

For every N = 1, 2 . . . , the conformal supercurrent is a primary real tensor super-

field in the sense of the superconformal transformation law (5.1) in [25]. The conformal

supercurrents4 for N ≤ 4 are specified by the following properties:

SUSY Type Supercurrent Dimension Conservation Equation

N = 1 Jαβγ 5/2 DαJαβγ = 0

N = 2 Jαβ 2 DIαJαβ = 0

N = 3 Jα 3/2 DIαJα = 0

N = 4 J 1 (DIαDJ
α − 1

4δ
IJDLαDL

α)J = 0

(3.1)

For N > 4, the conformal supercurrent is a completely antisymmetric dimension-1 super-

field, JIJKL = J [IJKL], subject to the conservation equation

DI
αJ

JKLP = D[I
α J

JKLP ] −
4

N − 3
DQ

α J
Q[JKLδP ]I . (3.2)

In the N = 4 case, this equation is identically satisfied for JIJKL = εIJKLJ . That is why

the N = 4 supercurrent J obeys the second-order conservation equation given in (3.1).

In three dimensions, one may think of a conserved current V a, eq. (1.4), as the Hodge

dual of the gauge-invariant field strength F = dA of a gauge one-form A. For this reason an

N -extended conserved current multiplet may be characterised by the same superfield type

and the differential constraints as the field strength of an N -extended Abelian vector multi-

plet [29–33]. The conserved current multiplets with N ≤ 4 were reviewed in [25, 26]. In the

N = 1 case, the conserved current multiplet is a real spinor superfield Lα constrained by

DαLα = 0 . (3.3)

For N > 1, it is a real antisymmetric superfield, LIJ = −LJI , constrained by

DI
αL

JK = D[I
αL

JK] −
2

N − 1
DL

αL
L[JδK]I . (3.4)

4The N = 2 (non-)conformal supercurrents were studied in [27, 28].

– 5 –



J
H
E
P
0
5
(
2
0
1
6
)
1
3
4

This equation is identically satisfied in the N = 2 case for which LIJ = εIJL. For N = 2

the conserved current multiplet obeys instead the conservation equation
(

DαIDJ
α −

1

2
δIJDKαDK

α

)

L = 0 . (3.5)

When N = 3, it is more convenient to work with the Hodge dual of LIJ , which is

LI = 1
2ε

IJKLJK . The latter obeys the constraint

D(I
α LJ) −

1

3
δIJDK

α LK = 0 , (3.6)

which is equivalent to (3.4) with N = 3.

The N = 4 case is very special. Given an N = 4 conserved current multiplet LIJ ,

it can be uniquely represented as LIJ = LIJ
+ + LIJ

− , where LIJ
+ and LIJ

− are self-dual and

anti-self-dual, respectively,
1

2
εIJKLLKL

± = ±LIJ
± . (3.7)

It turns out that each of LIJ
+ and LIJ

− obeys the conservation equation (3.4) with N = 4.

Thus there are two inequivalent current multiplets in the N = 4 case. This is in accord with

the fact that the N = 4 R-symmetry group factorises, due to the isomorphism SO(4) ∼=
(

SU(2)L × SU(2)R
)

/Z2.

For N > 4, it turns out that the off-shell multiplet defined by (3.4) possesses more

than one conserved current at the component level. Moreover, it also contains higher spin

conserved currents for N > 5 [34, 35]. Therefore, there is no conserved current multiplet

for N > 4 in the sense of the definition given in section 1.

In the cases N = 2, 3, 4, it is often convenient to switch from the real basis for the

Grassmann variables θαI to a complex one in accordance with the rules described in [17].

Schematically, this amounts to replacements: (i) DI
α → (Dα , D̄α) for N = 2; (ii) DI

α →

Dij
α = Dji

α for N = 3, where i, j = 1, 2; (ii) DI
α → Dīi

α for N = 4, where i, ī = 1, 2. We will

use such types of parametrisation in the remainder of this section, where we discuss the

conserved currents for N = 1, 2, 3, 4 in turn.

3.1 N = 1 superconformal symmetry

Any supervector field ξ on N = 1 Minkowski superspace M
3|2 has the expansion

ξ = ξADA = ξa∂a + ξαDα , (3.8)

with the vector ξa and spinor ξα components being real. Requiring ξ to be conformal

Killing, eq. (2.1), leads to the following conditions:

ξα =
i

6
Dβξ

βα , (3.9a)

D(γξαβ) = 0 , (3.9b)

of which (3.9b) is the N = 1 superconformal Killing equation. With the help of the

conformal supercurrent Jαβγ , which satisfies the conservation equation

DγJ
αβγ = 0 =⇒ ∂βγJ

αβγ = 0 . (3.10)

– 6 –
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we construct the following spinor superfield:

Lα = −
1

2
ξβγJ

αβγ . (3.11)

It follows from (3.9b) and (3.10) that Lα obeys equation (3.3), which defines a conserved

current multiplet.

A few words are in order about the component structure of Jαβγ and Lα. As follows

from (3.9b), the supercurrent has two independent real component fields, which are:

Sαβγ := Jαβγ | , Tαβγδ := DδJαβγ | = T (αβγδ) , (3.12)

where the bar-projection means, as usual, that the Grassmann variables must be switched

off. Here Sαβγ is the supersymmetry current, and Tαβγδ the energy-momentum tensor.

Both currents are conserved,

∂αβS
αβγ = 0 , ∂αβT

αβγδ = 0 . (3.13)

Switching to the three-vector notation, Tαβγδ → T ab = 1
4(γ

a)αβ(g
b)γδT

αβγδ = T ba and

Sαβγ → Saγ = −1
2(γ

a)αβS
αβγ , the energy-momentum is automatically traceless, ηabT

ab =

0, and so is the supersymmetry current, γaS
a = 0.

Given a conserved current multiplet Lα constrained by (3.3), it has two independent

real component fields, which can be chosen as

λα := Lα| , V αβ := DβLα| = V βα . (3.14)

The vector field is conserved,

∂αβV
αβ = 0 . (3.15)

To compute the conserved current contained in (3.11), one needs the explicit expression

for an arbitrary N = 1 conformal Killing supervector field. The most general N -extended

conformal Killing supervector field is given by eq. (4.4) in [25].

3.2 N = 2 superconformal symmetry

Any supervector field ξ on N = 2 Minkowski superspace M
3|4 has the form

ξ = ξADA = ξa∂a + ξαDα + ξ̄αD̄
α , (3.16)

where ξa is real, and ξ̄α is the complex conjugate of ξα. Requiring ξ to be conformal

Killing, eq. (2.1), gives

ξα = −
i

6
D̄βξ

βα , (3.17a)

D(γξαβ) = D̄(γξαβ) = 0 =⇒ D2ξαβ = D̄2ξαβ = 0 . (3.17b)

Here (3.17b) is the N = 2 superconformal Killing equation. Together with the N = 2

conformal supercurrent Jαβ, which satisfies

DβJ
αβ = D̄βJ

αβ = 0 =⇒ ∂αβJ
αβ = 0 , (3.18)

– 7 –
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we construct the scalar superfield

L = −
1

2
ξαβJ

αβ = ξaJ
a . (3.19)

It follows from (3.17b) and (3.18) that L is a linear superfield,

D2L = D̄2L = 0 , (3.20)

and therefore L contains a conserved current.

Because of the constraints (3.18), the supercurrent has four independent component

fields, which are

jαβ := Jαβ | , Sαβγ := DγJαβ| = S(αβγ) , Tαβγδ := [D(γ , D̄δ]Jαβ)| , (3.21)

as well as S̄αβγ , the complex conjugate of Sαβγ . Here jαβ is the R-symmetry current, Sαβγ

and S̄αβγ the supersymmetry currents, and Tαβγδ the energy-momentum tensor. All these

currents are conserved, as a consequence of the constraints (3.18).

Given a conserved current multiplet L = L̄ constrained by (3.20), it has five indepen-

dent components, which can be identified with

l := L| , λα := DαL| U := iDαD̄αL| , V αβ := [D(α, D̄β)]L| , (3.22)

as well as λ̄α, the complex conjugate of λα. The vector field is conserved, ∂αβV
αβ = 0, as

a consequence of the identity

[D2, D̄2] = −4i∂αβ[D
α, D̄β] . (3.23)

To compute the conserved current contained in (3.19), one has to make use of the explicit

expression for the most general N = conformal Killing supervector field given in [25].

3.3 N = 3 superconformal symmetry

Any supervector field ξ on N = 3 Minkowski superspace M
3|6 has the form

ξ = ξADA = ξa∂a + ξαijD
ij
α , ξαij = ξαji , (3.24)

where i, j are SU(2) R-symmetry indices. Requiring ξ to be conformal Killing, eq. (2.1), and

making use of the anti-commutation relation {Dij
α , Dkl

β } = −2iεi(kεl)j∂αβ, we deduce that

ξijα = −
i

6
Dβijξαβ , (3.25a)

Dij

(αξβγ) = 0 . (3.25b)

Here (3.25b) is the N = 3 superconformal Killing equation. An important consequence

one may derive from (3.25) is the identity

D(ij
α ξ

kl)
β = 0 . (3.26)

– 8 –
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The N = 3 conformal supercurrent Jα satisfies

Dij
α J

α = 0 . (3.27)

Let us define a real SU(2) triplet Lij = Lji associated with Jα and ξA by the rule:

Lij = i ξijα J
α +

1

4
ξαβDij

α Jβ . (3.28)

The properties of Jα and ξA imply that Lij is a linear multiplet,

D(ij
α Lkl) = 0 , (3.29)

and therefore Lij contains a conserved current.

Here we do not discuss the component content of Jα and Lij . It can be readily

determined, e.g., by making use of the N = 3 → N = 2 superfield reduction of the N = 3

supercurrent and conserved current multiplets described in [25]. We only point out that

the conserved current, which is contained in Lij , is given by

Vαβ = iεklD
ik
α Djl

β Lij | = Vβα . (3.30)

3.4 N = 4 superconformal symmetry

Given an N = 4 conformal Killing supervector field

ξ = ξADA = ξa∂a + ξαīiD
īi
α , (3.31)

it follow from (2.1) that

ξαīi =
i

6
Dīi

β ξ
βα , (3.32a)

Dīi
(αξβγ) = 0 . (3.32b)

HereDīi
α is theN = 4 spinor covariant derivative defined as in [17], with the two-component

indices i and ī corresponding to the left and right subgroups of the R-symmetry group

SU(2)L × SU(2)R, respectively. Eq. (3.32b) is the N = 3 superconformal Killing equation.

The N = 4 conformal supercurrent J satisfies the conservation equation

εαβD(i(̄i
α D

j)j̄)
β J = 0 . (3.33)

Associated with ξA and J is a left SU(2) triplet Lij = Lji defined by

Lij =
i

4
ξαβDik̄

α Dj
βk̄J + ξα(ik̄Dj)

α k̄J + ΛijJ , (3.34)

where we have introduced [17]

Λij =
1

4
Dα(i

k̄ξ
j)k̄
α , D(īi

α Λjk) = 0 . (3.35)

The properties of ξA and J imply that Lij is a left linear multiplet,

D(īi
α Ljk) = 0 , (3.36)

– 9 –
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and therefore Lij contains a conserved current.

In complete analogy with Lij , one can also introduce a right SU(2) triplet Līj̄ = Lj̄ī;

it also contains a conserved current.

Here we do not discuss the component content of J and Lij . It can be readily deter-

mined, e.g., by making use of the N = 4 → N = 3 superfield reduction of the N = 4

supercurrent and conserved current multiplets described in [25, 26]. We only point out

that the conserved current, which is contained in Lij , is given by

Vαβ = iεīj̄D
īi
αD

jj̄
β Lij | = Vβα . (3.37)

4 Superconformal theories in four dimensions

In four dimensions, we consider only the N = 1 and N = 2 superconformal theories,

because these cases allow the existence of conserved current multiplets without higher spin

fields [37].

4.1 N = 1 superconformal symmetry

Consider an arbitrary N = 1 conformal Killing supervector field,

ξ = ξa∂a + ξαDα + ξ̄α̇D̄
α̇ . (4.1)

Its components are constrained according to (2.6). Let Jαα̇ be the N = 1 conformal

supercurrent. It is a primary real vector superfield of dimension +3, as discussed, e.g.,

in [36]. The supercurrent conservation equation is given by eq. (1.5). Then the real scalar

L = −
1

2
ξα̇αJαα̇ (4.2)

is a conserved current multiplet,

D2L = 0 ⇐⇒ D̄2L = 0 . (4.3)

It follows from (1.5) that the conformal supercurrent has four independent components,

which can be chosen as follows:

jαα̇ := Jαα̇| , Sαβα̇ := DβJαα̇| = S(αβ)α̇ , Tαβα̇β̇ := [D(β, D̄(β̇]Jα)α̇)| , (4.4)

as well as the complex conjugate of Sαβα̇, S̄αα̇β̇ . Here jαα̇ is the R-symmetry current,

Sαβα̇ and S̄αα̇β̇ the supersymmetry currents, and Tαβα̇β̇ = T(αβ)(α̇β̇) the energy-momentum

tensor.5 All these currents are conserved,

∂α̇αjαα̇ = 0 , ∂α̇αSαβα̇ = 0 , ∂α̇αTαβα̇β̇ = 0 , (4.5)

as a consequence of (1.5). We point out that the energy-momentum T ab is automatically

traceless and the four-component Majorana supersymmetry current is γ-traceless.

5The definition of the energy-momentum tensor given in section 5.7.3 of [9] contains an error.
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Here we do not list all the component fields of L. We only point out that the conserved

current contained in L is given by

Vαα̇ := [Dα, D̄α̇]L| . (4.6)

In order to compute the conserved current contained in (4.2), it is necessary to make use

of the explicit expression for the most general N = 1 conformal Killing supervector field,

which is given, e.g., in [9, 36].

4.2 N = 2 superconformal symmetry

Consider an arbitrary N = 2 conformal Killing supervector field,

ξ = ξa∂a + ξαi D
i
α + ξ̄iα̇D̄

α̇
i . (4.7)

Its components are constrained according to (2.6). Let J be the N = 2 conformal super-

current. As discussed in [12], J is a primary real scalar superfield of dimension +2 and

obeys the conservation equation (1.6). We introduce the following real SU(2) triplet

Lij =
i

8
ξα̇α[D(i

α , D̄
j)
α̇ ]J − ΛijJ +

(

ξα(iDj)
α + ξ̄α̇(iD̄

j)
α̇

)

J . (4.8)

Here the real SU(2) triplet Λij is defined as

Λij = −
i

32
[D(i

α , D̄
j)
α̇ ]ξαα̇ (4.9)

and has the properties [12]

D(i
αΛ

jk) = 0 ⇐⇒ D̄
(i
α̇Λ

jk) = 0 . (4.10)

One can check that Lij is a linear multiplet,

D(i
αL

jk) = D̄
(i
α̇L

jk) = 0 , (4.11)

and therefore it contains a conserved current.

The component content of J and Lij is discussed, e.g., in [12].

5 Superconformal theories in five and six dimensions

The unique feature of five spacetime dimensions is that there is only one superconformal

algebra [18], which is isomorphic to the exceptional superalgebra F2(4) and corresponds

to the supersymmetry type N = 1 with eight supercharges. Our 5D superspace notation

and conventions correspond to [38] with one exception. Instead of using Greek letters with

a hat, such as α̂, β̂, for the four-component spinor indices [38], here such indices will be

denoted by ordinary Greek letters.

Any real supervector field ξ on 5D N = 1 Minkowski superspace M
5|8 has the form

ξ = ξADA = ξa∂a + ξαi D
i
α , i = 1, 2 , (5.1)
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where ξa is real and ξαi obeys the pseudo-Majorana condition defined in appendix A of [38].

Requiring ξ to be conformal Killing, eq. (2.1), one obtains [16] (see also [39])

ξiα =
i

10
Dβiξβα , (5.2a)

Di
(αξβ)γ = −

1

5
Dδi ξδ(α εβ)γ , (5.2b)

where the traceless antisymmetric rank-two spinor ξαβ is obtained from ξa by the stan-

dard rule ξαβ = (Γc)αβξ
c, with the Γ-matrices defined as in [38]. Eq. (5.2b) is the 5D

superconformal Killing equation. One can deduce from (5.2) the following identities:

D(i
α ξ

j)
β =

1

4
εαβD

γ(iξj)γ =⇒ D(i
αD

j
βξ

k)
γ = 0 , (Γb)αβ D

αiξβi = 0 . (5.3)

The N = 1 and N = 2 supercurrents in five dimensions were introduced by Howe

and Lindström [40]. The conformal supercurrent, J , is a primary real scalar superfield of

dimension +3, which obeys the conservation equation [39]

Dα(iDj)
α J = 0 =⇒ D(i

αD
j
βD

k)
γ J = 0 . (5.4)

Given a conformal Killing supervector field ξA, we consider the following descendant of the

supercurrent:

Lij =
i

8
ξαβD(i

αD
j)
β J − ξα(iDj)

α J + ΛijJ , (5.5)

where Λij is defined by

Λij =
1

4
D(i

α ξ
j)α (5.6)

and obeys the constraint

D(i
αΛ

jk) = 0 . (5.7)

Making use of the identities (5.2) and (5.3) and the conservation equation (5.4), one may

check that Lij is a linear multiplet,

D(i
αL

jk) = 0 , (5.8)

and therefore it contains a conserved current.

The expressions (4.8) and (5.5) look very similar. This feature is not accidental and ac-

tually it follows from the fact that the 4D N = 2 and 5D N = 1 supersymmetries describe

eight supercharges. Another case with eight supercharges is the 6D N = (1, 0) supersym-

metry, to which the above 5D analysis extends almost without changes. The only difference

between the 5D and 6D cases is that the 6D N = (1, 0) conformal supercurrent, J , is a

primary real scalar superfield of dimension +4, which obeys the conservation equation [41]

D(i
αD

j
βD

k)
γ J = 0 , (5.9)

which differs from the 5D conservation equation (5.4). However, the only property of the

5D supercurrent, which was crucial in order to establish (5.8), was the relation on the right

hand side of (5.4). The latter is the 5D counterpart of the 6D conservation equation (5.9).
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6 Non-conformal supercurrents, curved backgrounds

In this paper, we have presented the supersymmetric extensions of the construction

(T ab, ξa) → V a, where T ab is the conserved and traceless energy-momentum tensor, ξa

is an arbitrary conformal Killing vector field, and V a is the conserved current defined

by (1.3). As is well known, the field-theoretic construction has a simple modification to

the non-conformal case when T ab is no longer traceless,

T ab = T ba , ∂bT
ab = 0 . (6.1)

The vector field V a defined by (1.3) is still conserved provided ξa is a Killing vector field,

∂aξb + ∂bξa = 0 . (6.2)

This non-conformal construction also admits a supersymmetric generalisation. We will

describe it only in the 4D case. To start with, we will briefly recall the structure of N = 1

and N = 2 non-conformal supercurrents.

A general non-conformal N = 1 supercurrent is naturally associated with the non-

minimal off-shell formulation [42, 43] for N = 1 supergravity. The supercurrent conserva-

tion equation (see, e.g., [44]) is

D̄α̇Jαα̇ = aD̄2ζα − bDαD̄β̇ ζ̄
β̇ , D(αζβ) = 0 , (6.3)

with a, b real parameters. Setting ζα = DαZ leads to the supercurrent multiplet derived

in [45] using a version of the superfield Noether procedure elaborated in [36].

An alternative form for the general N = 1 supercurrent, which is simply related

to (6.3), was presented in [46]. It naturally follows from the classification of the linearised

N = 1 supergravity actions given in [47] and is described by the conservation equation

D̄α̇Jαα̇ = χα + i ηα +DαX , (6.4a)

D̄α̇χα = D̄α̇ηα = D̄α̇X = 0 , Dαχα − D̄α̇χ̄
α̇ = Dαηα − D̄α̇η̄

α̇ = 0 . (6.4b)

The chiral superfields χα, ηα and X constitute the so-called multiplet of anomalies. In

principle, one may always solve the constraints imposed on χα, ηα and X in terms of

unconstrained potentials as follows

χα = −
1

4
D̄2DαV , ηα = −

1

4
D̄2DαU , X = −

1

4
D̄2Z , (6.5)

where V and U are real. However, in some cases this is accompanied by the loss of locality

(that is, some of the potentials are not well-defined local operators) and gauge invariance.

This point of view was advocated in [48]. The supercurrent (6.4) with χα = ηα = 0

was introduced by Ferrara and Zumino [1], and it is associated with the old minimal

formulation [49–51] for N = 1 supergravity. The supercurrent (6.4) with ηα = 0 and X = 0

corresponds to the new minimal formulation [52] for N = 1 supergravity. Sometimes it is

called the R-multiplet [48]. The supercurrent (6.4) with χα = 0 and X = 0 corresponds to

the exotic minimal supergravity formulation [53], which is known only at the linearised level.
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This supercurrent is sometimes called the virial multiplet [54, 55]. The supercurrent (6.4)

with ηα = 0 is known as the S-multiplet [48]. It does not correspond to any irreducible

supergravity theory, although it was argued [48] to be universal in the case of N = 1

Poincaré supersymmetry.6

Let us also reproduce a non-conformal deformation of the N = 2 supercurrent mul-

tiplet (1.6) that supports a large family of N = 2 supersymmetric field theories. The

corresponding conservation equation [56, 57] is

1

4
DijJ = wT ij − gijY , (6.6a)

where T ij and Y are the trace multiplets constrained by

D(i
αT

jk) = D̄
(i
α̇T

jk) = 0 , T ij = Tij , (6.6b)

D̄i
α̇Y = 0 , DijY = D̄ij Ȳ , (6.6c)

The right-hand side of (6.6a) involves two constant parameters, complex w and real SU(2)

triplet gij , which may be thought of as expectation values of the two conformal compen-

sators in the off-shell formulations for N = 2 supergravity developed by de Wit, Philippe

and Van Proeyen [59]. The supercurrent multiplet with gij = 0 is equivalent to the one

discovered originally by Sohnius [5].

In the remainder of this section, our analysis will be restricted to the N = 1 case and

only the Ferrara-Zumino supercurrent [1] will be studied (all technical steps are analogous

for the other supercurrents). The corresponding conservation equation is

D̄α̇Jαα̇ = DαX , D̄α̇X = 0 , (6.7)

with X the chiral trace multiplet.7 If X 6= 0, the real scalar L defined by (4.2) is no longer

a linear superfield. Conservation equation (4.3) turns into

D̄2L = 2iξX = 2i(ξa∂a + ξαDα)X . (6.8)

Here the right-hand side is chiral, because ξX is the variation of the chiral superfield X

generated by the conformal Killing supervector field ξ = ξADA. If ξ is a Killing supervector

field, then it obeys the additional constraint [9]

Dαξ
α = D̄α̇ξ̄

α̇ = 0 =⇒ ∂aξ
a = 0 . (6.9)

In the case that ξ is Killing, the relation (6.8) is equivalent to

D̄2L = 2iξX = 2i
{

∂a(ξ
aX)−Dα(ξ

αX)
}

. (6.10)

6The S-multiplet does not exist in the case of N = 1 anti-de Sitter supersymmetry [56], for which the

Ferrara-Zumino supercurrent is universal.
7Since D2X − D̄2X̄ = −2i∂αα̇J

α̇α, the chiral trace X in (6.7) is in fact an example of the three-form

multiplet [44, 58].
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Since D̄(α̇ξβ̇)β = 0, eq. (2.6b), we can represent

ξαα̇ = −2iD̄α̇Υα =⇒ ξα = −
1

4
D̄2Υα , (6.11)

for some spinor Υα. Making use of this representation, eq. (6.10) may be rewritten in the

form

D̄2L̃ = 0 , L̃ := L+
i

2

{

Dα(ΥαX)− D̄α̇(Ῡ
α̇X̄)

}

. (6.12)

We conclude that L̃ contains a conserved current.

So far, our discussion in this paper has been restricted to theories in flat superspace.

However, practically all considerations and conclusions may be extended to supersymmetric

field theories defined on curved superspace backgrounds with symmetries. As an exam-

ple, let us consider a curved superspace background M4|4 of the 4D N = 1 old minimal

supergravity.8 Let Jαα̇ be the conformal supercurrent,

DαJαα̇ = 0 =⇒ (D2 − 6R̄)Jαα̇ = 0 . (6.13)

Let ξ = ξAEA be a conformal Killing supervector field of M4|4. As demonstrated in section

6.4 of [9], its explicit form is

ξA =
(

ξa, ξα, ξ̄α̇

)

=

(

ξa,−
i

8
D̄β̇ξ

β̇α,−
i

8
Dβξβα̇

)

(6.14)

where the vector component ξαα̇ is real and obeys the equation

D(αξβ)β̇ = 0 =⇒ (D2 + 2R̄)ξαα̇ = 0 . (6.15)

Then the real scalar L := −1
2ξ

αα̇Jαα̇ is a conserved current multiplet,

(D2 − 4R̄)L = 0 . (6.16)
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A Conformal symmetries of curved superspace

The material in this section is taken almost verbatim from [60].

Let Md|δ be a curved superspace, with d spacetime and δ fermionic dimensions, chosen

to describe a given supergravity theory. We denote by zM = (xm, θµ̂) the local coordinates

for Md|δ. Without loss of generality, we assume that the zero section of Md|δ defined by

θµ̂ = 0 corresponds to the spacetime manifold Md.

8Our supergravity conventions follow [9] and slightly differ from those used in [19].
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The differential geometry of curved superspace Md|δ may be realised in terms of co-

variant derivatives of the form

DA = (Da,Dα̂) = EA +ΩA +ΦA . (A.1)

Here EA = EA
M (z)∂/∂zM denotes the inverse superspace vielbein, ΩA = 1

2ΩA
bc(z)Mbc is

the Lorentz connection, and Φ = ΦA
I(z)JI the R-symmetry connection.9 The index α̂ of

the fermionic operator Dα̂ is, in general, composite; it is comprised of a spinor index α and

an R-symmetry index.

The covariant derivatives obey the (anti-)commutation relations of the form

[DA,DB} = TAB
CDC +

1

2
RAB

cdMcd +RAB
IJI , (A.2)

where TAB
C(z) is the torsion tensor, RAB

cd(z) and RAB
I(z) are the Lorentz and R-

symmetry curvature tensors, respectively. In order to describe conformal supergravity,

the superspace torsion TAB
C has to obey certain algebraic constraints.

The supergravity gauge group includes a subgroup generated by local transformations

δKDA = [K,DA] , K := ξB(z)DB +
1

2
Kbc(z)Mbc +KI(z)JI , (A.3)

where the gauge parameters ξB, Kbc = −Kcb and KI obey standard reality conditions but

are otherwise arbitrary.

In order to describe conformal supergravity, the constraints imposed on the superspace

torsion should be invariant under super-Weyl transformations [61] of the form

δσDa = σDa + · · · , δσDα̂ =
1

2
σDα̂ + · · · , (A.4)

where the scale parameter σ is an arbitrary real superfield. The ellipsis in the expression

for δσDa includes, in general, a linear combination of the spinor covariant derivatives D
β̂

and the structure group generators Mcd and JK . The ellipsis in δσDα̂ stands for a linear

combination of the generators of the structure group. Consider the superspace vielbein

EA = dzMEM
A(z) to which EA is dual. The specific feature of the super-Weyl transfor-

mation is that the vector one-form Ea transforms homogeneously,

δσE
a = −σEa . (A.5)

This implies that every super-Weyl transformation at most scales the superspace interval

defined by ds2 := ηabE
aEb. The Lorentz and R-symmetry transformations preserve the

interval.

Let us now fix a background superspace. A supervector field ξ = ξBEB on (Md|δ,D)

is called conformal Killing if

(δK + δσ)DA = 0 , (A.6)

9The superspace structure group, Spin(d− 1, 1)×GR, is a subgroup of the isometry group of Minkowski

superspace M
d|δ. This subgroup is the isotropy group of the origin in M

d|δ.
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for some Lorentz Kbc, R-symmetry KI and super-Weyl σ parameters. For any dimension

d ≤ 6 and any conformal supergravity with up to eight supercharges, the following proper-

ties hold: (i) all parameters Kbc, KI and σ are uniquely determined in terms of ξB, which

allows us to write Kbc = Kbc[ξ], KI = KI [ξ] and σ = σ[ξ]; (ii) the spinor component ξβ̂ is

uniquely determined in terms of ξb; (iii) the vector component ξb obeys a superconformal

Killing equation, which contains all the information about the conformal Killing vector

field and, in particular, implies the ordinary conformal Killing equation

Daξb +Dbξa =
2

d
ηabDcξ

c . (A.7)

Unlike (A.7), the explicit form of the superconformal Killing equation depends on the

spacetime dimension and supersymmetry type chosen. For instance, in the case of 4D

N = 1 supergravity this equation [9] is given by (6.15).
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supersymmetry, Commun. Math. Phys. 108 (1987) 535 [INSPIRE].

– 18 –

http://dx.doi.org/10.1088/0264-9381/17/3/307
http://arxiv.org/abs/hep-th/9907107
http://inspirehep.net/search?p=find+EPRINT+hep-th/9907107
http://dx.doi.org/10.1088/0264-9381/15/11/007
http://arxiv.org/abs/hep-th/9807055
http://inspirehep.net/search?p=find+EPRINT+hep-th/9807055
http://dx.doi.org/10.1016/S0550-3213(98)00720-2
http://arxiv.org/abs/hep-th/9807186
http://inspirehep.net/search?p=find+EPRINT+hep-th/9807186
http://dx.doi.org/10.1063/1.1290056
http://arxiv.org/abs/hep-th/9910199
http://inspirehep.net/search?p=find+EPRINT+hep-th/9910199
http://dx.doi.org/10.1016/j.nuclphysb.2006.03.019
http://arxiv.org/abs/hep-th/0601177
http://inspirehep.net/search?p=find+EPRINT+hep-th/0601177
http://dx.doi.org/10.1007/JHEP01(2011)146
http://arxiv.org/abs/1011.5727
http://inspirehep.net/search?p=find+EPRINT+arXiv:1011.5727
http://dx.doi.org/10.1016/0550-3213(78)90218-3
http://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B135,149%22
http://inspirehep.net/record/350988
http://dx.doi.org/10.1016/0370-2693(73)90490-5
http://inspirehep.net/search?p=find+J+%22Phys.Lett.,B46,109%22
http://dx.doi.org/10.1007/BF01036922
http://inspirehep.net/search?p=find+J+%22Theor.Math.Phys.,18,28%22
http://dx.doi.org/10.1007/JHEP03(2016)078
http://arxiv.org/abs/1511.04575
http://inspirehep.net/search?p=find+EPRINT+arXiv:1511.04575
http://dx.doi.org/10.1007/JHEP01(2014)121
http://arxiv.org/abs/1308.5552
http://inspirehep.net/search?p=find+EPRINT+arXiv:1308.5552
http://dx.doi.org/10.1007/JHEP09(2013)072
http://arxiv.org/abs/1305.3132
http://inspirehep.net/search?p=find+EPRINT+arXiv:1305.3132
http://dx.doi.org/10.1007/JHEP06(2015)138
http://arxiv.org/abs/1503.04961
http://inspirehep.net/search?p=find+EPRINT+arXiv:1503.04961
http://dx.doi.org/10.1007/JHEP08(2015)125
http://arxiv.org/abs/1507.00221
http://inspirehep.net/search?p=find+EPRINT+arXiv:1507.00221
http://dx.doi.org/10.1007/JHEP07(2011)095
http://arxiv.org/abs/1106.0031
http://inspirehep.net/search?p=find+EPRINT+arXiv:1106.0031
http://dx.doi.org/10.1007/JHEP12(2011)052
http://arxiv.org/abs/1109.0496
http://inspirehep.net/search?p=find+EPRINT+arXiv:1109.0496
http://dx.doi.org/10.1016/0550-3213(79)90498-X
http://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B156,135%22
http://dx.doi.org/10.1007/BF01214418
http://inspirehep.net/search?p=find+J+%22Comm.Math.Phys.,108,535%22


J
H
E
P
0
5
(
2
0
1
6
)
1
3
4

[31] B.M. Zupnik and D.G. Pak, Superfield formulation of the simplest three-dimensional gauge

theories and conformal supergravities, Theor. Math. Phys. 77 (1988) 1070 [Teor. Mat. Fiz.

77 (1988) 97] [INSPIRE].

[32] B.M. Zupnik and D.V. Khetselius, Three-dimensional extended supersymmetry in the

harmonic superspace (in Russian), Sov. J. Nucl. Phys. 47 (1988) 730 [Yad. Fiz. 47 (1988)

1147] [INSPIRE].

[33] S.M. Kuzenko, U. Lindström and G. Tartaglino-Mazzucchelli, Off-shell supergravity-matter

couplings in three dimensions, JHEP 03 (2011) 120 [arXiv:1101.4013] [INSPIRE].

[34] U. Gran, J. Greitz, P.S. Howe and B.E.W. Nilsson, Topologically gauged superconformal

Chern-Simons matter theories, JHEP 12 (2012) 046 [arXiv:1204.2521] [INSPIRE].

[35] S.M. Kuzenko and J. Novak, Supergravity-matter actions in three dimensions and

Chern-Simons terms, JHEP 05 (2014) 093 [arXiv:1401.2307] [INSPIRE].

[36] H. Osborn, N = 1 superconformal symmetry in four-dimensional quantum field theory,

Annals Phys. 272 (1999) 243 [hep-th/9808041] [INSPIRE].

[37] P.S. Howe, K.S. Stelle and P.K. Townsend, Supercurrents, Nucl. Phys. B 192 (1981) 332

[INSPIRE].

[38] S.M. Kuzenko and W.D. Linch, III, On five-dimensional superspaces, JHEP 02 (2006) 038

[hep-th/0507176] [INSPIRE].

[39] S.M. Kuzenko, J. Novak and G. Tartaglino-Mazzucchelli, Symmetries of curved superspace in

five dimensions, JHEP 10 (2014) 175 [arXiv:1406.0727] [INSPIRE].

[40] P.S. Howe and U. Lindström, The supercurrent in five-dimensions,

Phys. Lett. B 103 (1981) 422 [INSPIRE].

[41] P.S. Howe, G. Sierra and P.K. Townsend, Supersymmetry in six-dimensions,

Nucl. Phys. B 221 (1983) 331 [INSPIRE].

[42] P. Breitenlohner, Some invariant Lagrangians for local supersymmetry,

Nucl. Phys. B 124 (1977) 500 [INSPIRE].

[43] W. Siegel and S.J. Gates, Jr., Superfield supergravity, Nucl. Phys. B 147 (1979) 77

[INSPIRE].

[44] S.J. Gates, M.T. Grisaru, M. Roček and W. Siegel, Superspace or one thousand and one

lessons in supersymmetry, Front. Phys. 58 (1983) 1 [hep-th/0108200] [INSPIRE].

[45] M. Magro, I. Sachs and S. Wolf, Superfield Noether procedure, Annals Phys. 298 (2002) 123

[hep-th/0110131] [INSPIRE].

[46] S.M. Kuzenko, Variant supercurrent multiplets, JHEP 04 (2010) 022 [arXiv:1002.4932]

[INSPIRE].

[47] S.J. Gates Jr., S.M. Kuzenko and J. Phillips, The off-shell (3/2, 2) supermultiplets revisited,

Phys. Lett. B 576 (2003) 97 [hep-th/0306288] [INSPIRE].

[48] Z. Komargodski and N. Seiberg, Comments on supercurrent multiplets, supersymmetric field

theories and supergravity, JHEP 07 (2010) 017 [arXiv:1002.2228] [INSPIRE].

[49] J. Wess and B. Zumino, Superfield Lagrangian for supergravity, Phys. Lett. B 74 (1978) 51

[INSPIRE].

– 19 –

http://dx.doi.org/10.1007/BF01028682
http://inspirehep.net/search?p=find+J+%22Theor.Math.Phys.,77,1070%22
http://inspirehep.net/search?p=find+J+%22Sov.J.Nucl.Phys.,47,730%22
http://dx.doi.org/10.1007/JHEP03(2011)120
http://arxiv.org/abs/1101.4013
http://inspirehep.net/search?p=find+EPRINT+arXiv:1101.4013
http://dx.doi.org/10.1007/JHEP12(2012)046
http://arxiv.org/abs/1204.2521
http://inspirehep.net/search?p=find+EPRINT+arXiv:1204.2521
http://dx.doi.org/10.1007/JHEP05(2014)093
http://arxiv.org/abs/1401.2307
http://inspirehep.net/search?p=find+EPRINT+arXiv:1401.2307
http://dx.doi.org/10.1006/aphy.1998.5893
http://arxiv.org/abs/hep-th/9808041
http://inspirehep.net/search?p=find+EPRINT+hep-th/9808041
http://dx.doi.org/10.1016/0550-3213(81)90429-6
http://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B192,332%22
http://dx.doi.org/10.1088/1126-6708/2006/02/038
http://arxiv.org/abs/hep-th/0507176
http://inspirehep.net/search?p=find+EPRINT+hep-th/0507176
http://dx.doi.org/10.1007/JHEP10(2014)175
http://arxiv.org/abs/1406.0727
http://inspirehep.net/search?p=find+EPRINT+arXiv:1406.0727
http://dx.doi.org/10.1016/0370-2693(81)90074-5
http://inspirehep.net/search?p=find+J+%22Phys.Lett.,B103,422%22
http://dx.doi.org/10.1016/0550-3213(83)90582-5
http://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B221,331%22
http://dx.doi.org/10.1016/0550-3213(77)90417-5
http://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B124,500%22
http://dx.doi.org/10.1016/0550-3213(79)90416-4
http://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B147,77%22
http://arxiv.org/abs/hep-th/0108200
http://inspirehep.net/search?p=find+EPRINT+hep-th/0108200
http://dx.doi.org/10.1006/aphy.2002.6239
http://arxiv.org/abs/hep-th/0110131
http://inspirehep.net/search?p=find+EPRINT+hep-th/0110131
http://dx.doi.org/10.1007/JHEP04(2010)022
http://arxiv.org/abs/1002.4932
http://inspirehep.net/search?p=find+EPRINT+arXiv:1002.4932
http://dx.doi.org/10.1016/j.physletb.2003.09.085
http://arxiv.org/abs/hep-th/0306288
http://inspirehep.net/search?p=find+EPRINT+hep-th/0306288
http://dx.doi.org/10.1007/JHEP07(2010)017
http://arxiv.org/abs/1002.2228
http://inspirehep.net/search?p=find+EPRINT+arXiv:1002.2228
http://dx.doi.org/10.1016/0370-2693(78)90057-6
http://inspirehep.net/search?p=find+J+%22Phys.Lett.,B74,51%22


J
H
E
P
0
5
(
2
0
1
6
)
1
3
4

[50] K.S. Stelle and P.C. West, Minimal auxiliary fields for supergravity,

Phys. Lett. B 74 (1978) 330 [INSPIRE].

[51] S. Ferrara and P. van Nieuwenhuizen, The auxiliary fields of supergravity,

Phys. Lett. B 74 (1978) 333 [INSPIRE].

[52] M.F. Sohnius and P.C. West, An alternative minimal off-shell version of N = 1 supergravity,

Phys. Lett. B 105 (1981) 353 [INSPIRE].

[53] I.L. Buchbinder, S.J. Gates, Jr., W.D. Linch, III and J. Phillips, New 4D, N = 1 superfield

theory: model of free massive superspin 3/2 multiplet, Phys. Lett. B 535 (2002) 280

[hep-th/0201096] [INSPIRE].

[54] Y. Nakayama, Supercurrent, supervirial and superimprovement,

Phys. Rev. D 87 (2013) 085005 [arXiv:1208.4726] [INSPIRE].

[55] Y. Nakayama, Imaginary supergravity or virial supergravity?, Nucl. Phys. B 892 (2015) 288

[arXiv:1411.1057] [INSPIRE].

[56] D. Butter and S.M. Kuzenko, N = 2 AdS supergravity and supercurrents,

JHEP 07 (2011) 081 [arXiv:1104.2153] [INSPIRE].

[57] D. Butter and S.M. Kuzenko, N = 2 supergravity and supercurrents, JHEP 12 (2010) 080

[arXiv:1011.0339] [INSPIRE].

[58] S.J. Gates, Jr., Super p-form gauge superfields, Nucl. Phys. B 184 (1981) 381 [INSPIRE].

[59] B. de Wit, R. Philippe and A. Van Proeyen, The improved tensor multiplet in N = 2

supergravity, Nucl. Phys. B 219 (1983) 143 [INSPIRE].

[60] S.M. Kuzenko, Supersymmetric spacetimes from curved superspace, PoS(CORFU2014)140

[arXiv:1504.08114] [INSPIRE].

[61] P.S. Howe and R.W. Tucker, Scale invariance in superspace, Phys. Lett. B 80 (1978) 138

[INSPIRE].

– 20 –

http://dx.doi.org/10.1016/0370-2693(78)90669-X
http://inspirehep.net/search?p=find+J+%22Phys.Lett.,B74,330%22
http://dx.doi.org/10.1016/0370-2693(78)90670-6
http://inspirehep.net/search?p=find+J+%22Phys.Lett.,B74,333%22
http://dx.doi.org/10.1016/0370-2693(81)90778-4
http://inspirehep.net/search?p=find+J+%22Phys.Lett.,B105,353%22
http://dx.doi.org/10.1016/S0370-2693(02)01772-0
http://arxiv.org/abs/hep-th/0201096
http://inspirehep.net/search?p=find+EPRINT+hep-th/0201096
http://dx.doi.org/10.1103/PhysRevD.87.085005
http://arxiv.org/abs/1208.4726
http://inspirehep.net/search?p=find+EPRINT+arXiv:1208.4726
http://dx.doi.org/10.1016/j.nuclphysb.2015.01.012
http://arxiv.org/abs/1411.1057
http://inspirehep.net/search?p=find+EPRINT+arXiv:1411.1057
http://dx.doi.org/10.1007/JHEP07(2011)081
http://arxiv.org/abs/1104.2153
http://inspirehep.net/search?p=find+EPRINT+arXiv:1104.2153
http://dx.doi.org/10.1007/JHEP12(2010)080
http://arxiv.org/abs/1011.0339
http://inspirehep.net/search?p=find+EPRINT+arXiv:1011.0339
http://dx.doi.org/10.1016/0550-3213(81)90225-X
http://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B184,381%22
http://dx.doi.org/10.1016/0550-3213(83)90432-7
http://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B219,143%22
http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(CORFU2014)140
http://arxiv.org/abs/1504.08114
http://inspirehep.net/search?p=find+EPRINT+arXiv:1504.08114
http://dx.doi.org/10.1016/0370-2693(78)90327-1
http://inspirehep.net/search?p=find+J+%22Phys.Lett.,B80,138%22

	Introduction
	Conformal Killing supervector fields
	Superconformal theories in three dimensions
	N=1 superconformal symmetry
	N=2 superconformal symmetry
	N=3 superconformal symmetry
	N=4 superconformal symmetry

	Superconformal theories in four dimensions
	N=1 superconformal symmetry
	N=2 superconformal symmetry

	Superconformal theories in five and six dimensions
	Non-conformal supercurrents, curved backgrounds
	Conformal symmetries of curved superspace

