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We show that scattering amplitudes in magical, symmetric or homogeneous N = 2 Maxwell-
Einstein supergravities can be obtained as double copies of two gauge theories, using the framework
of color/kinematics duality. The left-hand-copy is N = 2 super-Yang-Mills theory coupled to a
hypermultiplet, whereas the right-hand-copy is a non-supersymmetric theory that can be identified
as the dimensional reduction of a D-dimensional Yang-Mills theory coupled to P fermions. For
generic D and P , the double copy gives homogeneous supergravities. For P = 1 and D = 7, 8, 10, 14,
it gives the magical supergravities. We compute explicit amplitudes, discuss their soft limit and
study the UV-behavior at one loop.
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Perturbative calculations in gravity and gauge the-
ory have long been considered to be on fundamentally
different footing. Gravity is characterized by a non-
polynomial, non-renormalizable action that produces an
infinite number of interaction vertices, whereas renormal-
izable gauge theories only have cubic and quartic inter-
actions. Despite these obvious differences, modern work
has clarified that the perturbative expansion of gravity is
directly related to that of a pair of gauge theories through
a double-copy structure.

It has long been known that the asymptotic states of
gravity can be obtained as tensor products of gauge-
theory states. That such a simple relationship can be
extended to certain interacting theories was first shown
30 years ago by Kawai, Lewellen and Tye [1] using string
theory. Modern understanding of this double-copy struc-
ture comes from work by Bern, Carrasco and one of the
current authors [2, 3], who found a framework that is ap-
plicable to loop-level amplitudes and to a broader range
of theories. The key observation is that gauge-theory
amplitudes can be organized to expose a kinematic Lie
algebra which mirrors the gauge-group color structure.
Once gauge-theory amplitudes exhibit this duality be-
tween color and kinematics, gravity amplitudes are ob-
tained by substituting the color factors with equivalent
kinematic objects. This procedure doubles the kinematic
structures and thus expresses spin-2 theories as double
copies of spin-1 theories [2].

The double copy construction has proven itself to be a
powerful computational tool. It fostered rapid progress
in ultraviolet (UV) studies up to four loops in maximal,
half-maximal and N = 5 supergravities [4–6]. Moreover,
a class of black-hole solutions has been shown to exhibit
a double-copy structure which relates them to solutions
of Maxwell’s equations with sources [7–9].

The double copy permits the construction of a broad
range of gravitational theories by varying the content
of matter (spin ≤ 1/2) fields and their representations
and interactions in the two gauge theories. Pure and
matter-coupled gravities, including examples of Maxwell-
Einstein and Yang-Mills-Einstein theories, are some of
the theories that admit an elegant perturbative formula-
tion in this framework [1–3, 10–16].
A systematic classification of N < 4 supergravities

that admit double-copy constructions has not yet been
obtained. There is a rich space of such theories, and it is
not a priori obvious that the double copy can reproduce
this abundance. Indeed, in this context it is natural to
ask whether the double-copy structure can be a general
property of gravitational theories.
In this letter we consider N = 2 Maxwell-Einstein su-

pergravity (MESG) theories dimensionally reduced from
five to four spacetime dimensions. These theories provide
a tractable arena in which ideas about scattering ampli-
tudes in generic gravitational theories can be tested. Un-
like more supersymmetric theories, they are not uniquely
specified by their matter content alone. However, due to
their five-dimensional origin, theories in this class can be
identified from their three-point interactions [17]. Using
this property, we shall provide a double-copy construc-
tion for three complete classes of N = 2 MESG theories:
magical, symmetric, and homogeneous theories (the lat-
ter class containing the former).

Homogeneous N =2 MESG theories. While we are
ultimately interested in MESG theories in four dimen-
sions, we shall begin our analysis in five dimensions. Un-
like 4D theories, the full U-duality groups of 5D, N = 2
MESG theories are symmetries of their Lagrangians.
Furthermore, N = 2 MESG theories that describe low-
energy effective theories of compactified M/superstring
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theory admit uplifts to five dimensions once quantum
corrections are neglected [18]. When coupled to n vector
multiplets, such five-dimensional theories contain (n+1)
abelian vector fields AI

µ (I, J = 0, . . . , n), n real scalar
fields φx (x, y = 1, . . . , n), and n symplectic-Majorana
spinors. Their Lagrangian is [17]:

e−1L = −1

2
R− 1

4

◦
aIJF

I
µνF

µνJ − 1

2
gxy(∂µφ

x)(∂µφy)

+
e−1

6
√
6
CIJKε

µνρσλF I
µνF

J
ρσA

K
λ + fermions , (1)

where F I
µν are abelian field-strengths. A remarkable

property of these theories is that the Lagrangian is
uniquely determined by the constant symmetric ten-
sor CIJK whose invariance group coincides with the U-
duality group. The scalar manifold of 5D MESG theories
can be interpreted as the hypersurface defined by V(ξ) ≡
(2/3)3/2CIJKξ

IξJξK = 1 in an (n+ 1)-dimensional am-
bient space with the metric

aIJ(ξ) ≡ −1

2

∂

∂ξI
∂

∂ξJ
lnV(ξ) . (2)

The matrix
◦
aIJ in the kinetic-energy term of the vector

fields is the restriction of the ambient-space metric to
the constraint surface, while the metric gxy of the scalar
manifold is the pullback of the ambient-space metric to
the constraint surface.

The given structure is sufficient to calculate the
bosonic part of the amplitudes we will discuss in this
letter. We refer the reader to [17] for further details
and for the fermionic terms. These terms involve a sym-
metric tensor Txyz which is the pullback of the C-tensor
to the constraint surface. The C-tensors of the theories
with covariantly-constant Txyz are defined by the cubic
norms of Euclidean Jordan algebras of degree three, and
their scalar manifolds are symmetric spaces [17]. The
four magical MESG theories are defined by simple Jor-
dan algebras of Hermitian 3 × 3 matrices over reals and
complex numbers, quaternions, and octonions and are
unified theories [19]. The generic Jordan theories are de-
fined by the infinite family of non-simple Jordan algebras
of degree three. These two classes exhaust the list of 5D
MESG theories with symmetric target spaces such that
the full isometry group is a symmetry of the Lagrangian.
In 4D there exists an additional family of homogeneous
theories whose target spaces are the complex projective
spaces SU(n, 1)/U(n) [20] and which can be obtained
from those defined by Jordan algebras of degree 3 by
truncation.

The most general form of the C-tensor consistent with
unitarity was given in [17] and depends on n(n2 − 1) pa-
rameters. The cubic norms V(ξ) of MESG theories with
homogeneous scalar manifolds and a transitive group of

isometries can be brought to the form [21]

V(ξ) =
√
2
(

ξ0(ξ1)2 − ξ0(ξi)2
)

+ ξ1(ξα)2 + Γ̃i
αβξ

iξαξβ ,
(3)

where i, j = 2, 3, . . . , q + 2 and α, β are indices with
range r. Γ̃i

αβ are symmetric gamma matrices forming
a real representation of the Clifford algebra C(q + 1, 0).
V(ξ) in eq. (3) are generically labeled by two integers
q ≥ −1 and P ≥ 0, except when q = 0, 4 (mod 8), in
which case the extra parameter Ṗ ≥ 0 is also present.
The corresponding MESG theories give the coupling of

(2+q+r) vector multiplets to the gravity multiplet in 5D,
with r = PDq or r = (P + Ṗ )Dq. The values for Dq are
listed in table I. The generic Jordan family corresponds
to q = Ṗ = 0 and P arbitrary and to P = Ṗ = 0 and
q arbitrary; the magical theories correspond to P = 1
and q = 1, 2, 4, 8, while the generic non-Jordan family
theories correspond to q = −1.
To obtain scattering amplitudes for the theories de-

fined by the C-tensors corresponding to eq. (3) it is con-
venient to first reduce their Lagrangian (1) to four di-
mensions. The bosonic spectrum of the resulting 4D
MESG theory contains the graviton, (n + 2) vectors
A−1

µ , A0
µ, . . . , A

n
µ and (n + 1) complex scalars z0, . . . , zn.

The 4D Lagrangian is associated to the following holo-
morphic prepotential in a symplectic formulation [22–24],

F (ZA) = − 2

3
√
3

CIJKZ
IZJZK

Z−1
, (4)

where ZA(z) are holomorphic functions of the scalars zI .
To carry out perturbation theory it is necessary to ex-

pand the Lagrangian around some base point, as well
as redefine (and dualize) fields to enlarge the manifest
symmetry and obtain canonically-normalized quadratic
terms. To this end we follow [16] and:

1. Choose the base point ZA =
(

1, i
2 ,

i√
2
, 0, . . . , 0),

which corresponds to ξI =
(

1√
2
, 1, 0, . . . , 0) in 5D.

2. Dualize the graviphoton field, A−1
µ .

3. Take linear combinations of the new vector fields,

A−1
µ → 1

4

(

A−1
µ −A0

µ −
√
2A1

µ

)

,

A0
µ → 1

2

(

−A−1
µ +A0

µ −
√
2A1

µ

)

,

A1
µ → − 1√

2

(

A−1
µ +A0

µ

)

. (5)

4. Dualize the new A1
µ field and redefine z1 → −iz1.

The resulting Lagrangian is used to construct amplitudes
which are compared with the ones from the double copy.

Double-copy construction. The m-point amplitudes
of YM theories are naturally represented by cubic graphs
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q Dq r(q, P ) conds flavor group C

−1 1 P R SO(P ) Cq

0 1 P+Ṗ RW SO(P )×SO(Ṗ ) CqP±

1 2 2P R SO(P ) Cq

2 4 4P R/W U(P ) Cq

3 8 8P PR USp(2P ) CqΩ

4 8 8P+8Ṗ PRW USp(2P )×USp(2Ṗ ) CqΩP±

5 16 16P PR USp(2P ) CqΩ

6 16 16P R/W U(P ) Cq

k+8 16Dk 16 r(k, P ) as for k as for k as for k

TABLE I: Parameters in the construction of homogeneous
MESGs as double copies. The second column gives the pa-
rameter Dq , the third column gives the number r of 4D irre-
ducible spinors in the N = 0 gauge theory, which can obey a
reality (R), pseudo-reality (PR) or Weyl (W) conditions. The
global flavor group and the matrix C in eqs. (13-14) are listed
in the last two columns. P± denote projectors restricting the
spinor representations to the desired chiralities.

labeled by their topology, gauge-group representations
of internal and external edges, and particle momenta.
The i-th graph is associated to the product of the corre-
sponding propagators, to a color factor ci constructed by
dressing each cubic vertex by the Clebsh-Gordan coef-
ficient of the representations of the three fields (struc-
ture constants or group generators), and to a kine-
matic numerator ni encoding the remaining state depen-
dence. To construct an amplitude which manifestly obeys
color/kinematics duality one must find kinematic numer-
ators with the same symmetries and algebraic identities
as the color factors. Schematically

ci + cj + ck = 0 ⇔ ni + nj + nk = 0 , (6)

where the color factor identities stem from the commuta-
tion/Jacobi relations of the gauge group and thus involve
three graphs.
The double-copy principle states that once duality-

satisfying numerators are found, the L-loop amplitudes
of a supergravity theory are given by

M(L)
m = iL+1

(κ

2

)2L+m−2∑

i∈cubic

∫

dLDℓ

(2π)LD

1

Si

niñi
∏

αi
sαi

,

(7)
where κ is the gravity coupling, Si are symmetry factors,
and 1/sαi

are propagator denominators. The ni, ñi may
be identical or distinct gauge-theory numerators. The
formula is valid if at least one of the two sets of numer-
ators satisfy manifestly the duality [3, 25].

The gauge-theory copies. The first (left) gauge the-
ory entering the construction is an N = 2 SYM the-
ory with a single half-hypermultiplet transforming in a
pseudo-real representation R, i.e. a representation such
that there exists a unitary matrix V obeying V T âV † =
−(T â)∗, V V ∗ = −1, where T â are the representation

matrices. This choice allows for double-copy construc-
tions for larger classes of supergravities than with a full
hypermultiplet, including in particular all the magical
supergravity theories. Amplitudes in this theory can be
organized as a superamplitude with manifest N = 2 su-
persymmetry. At three points, the (MHV) superampli-
tude has the expression

A(0)
3

(

1V â
−, 2Φ, 3Φ

)

= i
g

〈23〉δ
4
(

∑

ηAi |i〉
)

T â , (8)

where |i〉 are spinors and ηAi are Grassmann parameters
in the spinor-helicity notation (see e.g. ref. [26]). We
have organized the asymptotic states in the following on-
shell vector and hypermultiplets superfields:

V â
− = φ̄â+ηAψâ

−A+η
1η2Aâ

− , Φ = χ++η
AϕA+η

1η2χ− .

The second (right) gauge theory is a non-
supersymmetric YM theory with (q + 2) scalars
and r fermions. Its Lagrangian is

L = −1

4
F â
µνF

âµν +
1

2
(Dµφ

a)â(Dµφa)â +
i

2
λ
α
Dµγ

µλα

+
g

2
φaâΓa β

α λ
α
γ5T

âλβ − g2

4
f âb̂êf ĉd̂âφaâφbb̂φaĉφbd̂. (9)

The scalars transform in the adjoint representation, while
fermions transform in the pseudo-real representation R.
Dµ are covariant derivatives. α, β = 1, . . . , r and a, b =

1, . . . , q + 2 are global-symmetry indices, while â, b̂ are
adjoint gauge-group indices. Spacetime spinor indices
and indices associated to the representation R are not
displayed. Imposing color/kinematics duality on the nu-
merators of four-point amplitudes gives the following con-
straint in the two-scalar-two-fermion case:

ns + nt + nu = 0 → {Γa,Γb} = 2δab , (10)

i.e. that the constant matrices Γa appearing in the
Yukawa couplings form a (q+2)-dimensional Clifford al-
gebra. It is convenient to think of the theory above as
the dimensional reduction of a (q + 6)-dimensional YM
theory with matter fermions to four dimensions. From
a higher-dimensional perspective, the spinor λα includes
P copies (or flavors) of irreducible SO(q + 5, 1) spinors,
taken to obey reality or pseudo-reality conditions:

R : λ = λtCqC4V , PR : λ = λtCqC4ΩV ,

where Cq and C4 are the SO(q + 2) and SO(3, 1) charge-
conjugation matrices, Ω is an anti-symmetric real matrix
acting on the flavor indices, and V is the matrix in the
pseudo-reality condition for the gauge representation ma-
trices. R conditions are appropriate for q = 0, 1, 2, 6, 7
(mod 8) and generically yield a SO(P ) manifest flavor
symmetry. PR conditions are imposed for q = 3, 4, 5
(mod 8) and yield a USp(2P ) flavor symmetry.
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For even q, we can impose Weyl conditions of the form
Γ∗λ = ±λ, where Γ∗ is the chirality matrix. For q = 0, 4
(mod 8), Weyl conditions are compatible with R and PR
conditions, and the representations with different chi-
ralities are inequivalent. Hence the corresponding the-
ories are parameterized by two distinct integers P and Ṗ
counting the number of representations of each kind. Fi-
nally, for q = 2, 6 (mod 8) one can rewrite the Lagrangian
in terms of Weyl spinors, enhancing the manifest flavor
symmetry to U(P ). From a double-copy perspective, the
resulting 4D supergravity has one vector multiplet for
each 4D fermion in the non-supersymmetric gauge the-
ory. The various possibilities are listed in table I, which
provides a novel perspective on the results of ref. [21]. In
particular, the parameter Dq equals the minimal num-
ber of 4D fermions in the N = 0 gauge theory. The full
U-duality Lie algebras of 4D homogeneous supergravity
theories decompose as G = G0 ⊕ G1 ⊕ G2 with

G0 = so(1, 1)⊕ so(q + 2, 2)⊕ Sq(P, Ṗ ) ,

G1 = (1, spinor, vector), G2 = (2, 1, 1) , (11)

where Sq(P, Ṗ ) is the flavor group, and the grade 1 and
2 generators are labeled by their grade zero represen-
tations. The 4D supergravity theories with symmetric
target spaces have additional symmetry generators cor-
responding to the grade−1 and−2 subspaces of the isom-
etry Lie algebras [17].

Amplitudes from the double copy. For the con-
struction given here, the map between the double-copy
(N = 2)⊗ (N = 0) and Lagrangian fields is

A−1
− = φ̄⊗A− , h− = A− ⊗A− ,

A0
− = φ⊗A− , iz̄0 = A+ ⊗A− ,

Aa
− = A− ⊗ φa , iz̄a = φ̄⊗ φa ,

Aα− = χ− ⊗ (Uλ−)α , iz̄α = χ+ ⊗ (Uλ−)α , (12)

with similar relations for the CPT-conjugate states. U is
a unitary matrix, which – in order to compare to eq. (3) –

is written as U = eiθ+eiθ
′

Γ1C√
2

, with appropriately chosen

phases eiθ, eiθ
′

to guarantee unitarity. C is the matrix
listed in table I. With this identification, the three-point
amplitudes given by the double-copy construction (7) are

M(0)
3

(

1Aa
−, 2Aα−, 3z̄β

)

=− κ

2
√
2
〈12〉2(U tCΓaU)αβ . (13)

Comparing them with the three-point amplitudes com-
puted from the supergravity Lagrangian implies the iden-
tity

(U tCΓaU) =
(

1 , −iΓ̃i
)

, (14)

where 1 is the identity matrix and Γ̃ are the real gamma
matrices in the cubic form (3). This identity can be veri-
fied for all values of q with an appropriate choice for θ, θ′.
The particular case P = 0 is in agreement with ref. [15].

Even without comparing the double-copy three-point
amplitudes with their Lagrangian counterparts, it is pos-
sible to confirm that our construction yields supergravi-
ties with scalar manifolds that are locally-homogeneous
close to the base point. Indeed, a generalization of the
arguments of ref. [27] implies that if the scalar fields
parametrize a homogeneous manifold, then all single soft-
scalar limits vanish. Symmetry considerations imply that
this is indeed the case if the soft particle is a scalar that
transforms under a manifest symmetry. All the double-
copy scalars except the dilaton-axion pair z0 transform
under the manifest SO(q + 2) global symmetry.
Thus, only the soft dilaton limit requires a detailed

analysis; its vanishing implies that the double-copy the-
ory is invariant under the U(1) transformations with
charge given by the difference of the helicities of the left
and right gauge-theory fields. We have verified that this
is indeed the case and that the tree-level amplitudes of
a field configuration with a total non-zero U(1) charge
vanish identically at four and five points. From a double-
copy perspective these amplitudes are constructed from
gauge-theory amplitudes with four, two or no fields in the
representation R. The latter amplitudes are the same as
in N = 8 supergravity and thus these U(1) transfor-
mations are indeed a symmetry. For fixed fields in the
adjoint representation, the kinematic factors in the for-
mer two types of amplitudes differ from those of N = 8
amplitudes only by numerical factors due to the Yukawa
couplings. However, the cancellation of the contributions
to the corresponding supergravity amplitude occurs be-
fore the summation over the permutation of external legs
and thus it is insensitive to these numerical factors.
Our construction carries over to loop-level amplitudes.

As an example, we give the one-loop divergence for am-
plitudes between four identical matter vectors:

M(1)
4

(

1A0
−, 2A

0
−, 3A

0
+, 4A

0
+

)

∣

∣

∣

div
=

b

ǫ

(10

3
− q

6
+
r

3

)

,

M(1)
4

(

1Aa
−, 2A

a
−, 3A

a
+, 4A

a
+

)

∣

∣

∣

div
=

b

ǫ

(10

3
+
q

3
+

r

12

)

,

with b = −2i/(4π)2(κ/2)4〈12〉2[34]2. Interestingly, the
two amplitudes have the same divergence when r = 2q.
This condition is satisfied only by the four magical theo-
ries, which are unified, and by the so-called STU model
(q = r = 0) [28].
In conclusion, we have shown that scattering ampli-

tudes in homogeneous N = 2 supergravities – including
magical and symmetric theories – can be obtained as dou-
ble copies of two simple gauge theories using the frame-
work of color/kinematics duality. To date, this is the
largest known family of double-copy-constructible the-
ories. Color/kinematics duality naturally requires the
Clifford algebra structure that has been instrumental in
the classification of homogeneous theories and provides
an alternative perspective on these theories; in particu-
lar, the homogeneity of their target spaces manifests itself
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in the amplitudes’ vanishing soft limits. The double-copy
approach is particularly well-suited for carrying out loop-
level computations. The existence of a double-copy con-
struction for such a large family of theories suggests that
the double-copy can play a fundamental role in general
gravity theories; generalizing our construction to accom-
modate even larger classes of theories, including super-
gravities with a lower number of isometries and hyper-
multiplets, appears to be within reach.
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