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ABSTRACT
The capture of a compact object in a galactic nucleus by a massive black hole (MBH),
an extreme-mass ratio inspiral (EMRI), is the best way to map space and time around
it. Recent work on stellar dynamics has demonstrated that there seems to be a complot
in phase space acting on low-eccentricity captures, since their rates decrease signifi-
cantly by the presence of a blockade in the rate at which orbital angular momenta
change takes place. This so-called “Schwarzschild barrier” is a result of the impact
of relativistic precession on to the stellar potential torques, and thus it affects the
enhancement on lower-eccentricity EMRIs that one would expect from resonant relax-
ation. We confirm and quantify the existence of this barrier using a statistical sample
of 2,500 direct-summation N−body simulations using both a post-Newtonian and
also for the first time in a direct-summation code a geodesic approximation for the
relativistic orbits. The existence of the barrier prevents low-eccentricity EMRIs from
approaching the central MBH, but high-eccentricity EMRIs, which have been wrongly
classified as “direct plunges” until recently, ignore the presence of the barrier, because
they are driven by two-body relaxation. Hence, since the rates are significantly affected
in the case of low-eccentricity EMRIs, we predict that a LISA-like observatory such
as eLISA will predominantly detect high-eccentricity EMRIs.

Key words: Stellar dynamics – Extreme-Mass-Ratio Inspirals – Schwarzschild barrier
– post-Newtonian dynamics.

1 INTRODUCTION

Massive black holes (MBHs), with masses ranging from
some 104M� to a few 109M� are very likely present in
the centre of most galaxies. Measurements of the kinemat-
ics of gas and stars in the central regions of nearby galaxies
(see e.g. de Zeeuw 2001; Barth 2004; Kormendy 2004; Rich-
stone 2004) have provided us with compelling evidence. Our
own Milky Way (MW) is the galaxy for which we have the
strongest observational proof a central MBH. Data based on
16 years of observations set the mass of the central SMBH
to ∼ 4 × 106M� (Eisenhauer et al. 2005; Ghez et al. 2005,
2008; Gillessen et al. 2009; Genzel et al. 2010).

To interact with the central MBH, stars have to find
themselves on “loss-cone” orbits, which are orbits elongated
enough to have a very close-in pericentre (Frank & Rees
1976; Lightman & Shapiro 1977; Amaro-Seoane & Spurzem
2001). While main-sequence stars are tidally disrupted when
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approaching the central massive black hole (MBH), compact
objects (stellar black holes, neutron stars, and white dwarfs)
slowly spiral into the MBH via the gradual loss in the form
of gravitational radiation and are eventually swallowed af-
ter some ∼ 103−5 orbits in the eLISA band(Amaro-Seoane
et al. 2007, 2012a,b; Amaro-Seoane 2012). This is the best
way to probe general relativity (Sopuerta 2010) and, thus,
the factory of space and time around a massive black hole.
We will also get additional information about the binary it-
self: in particular the masses of the system and the spins of
the MBH can be measured to a level of precision without
any precedent (see Amaro-Seoane et al. 2007,and references
therein). Besides, the detection will provide us with informa-
tion about the distribution of dark objects in galactic nuclei
and globular clusters.

Producing EMRIs is more difficult than producing tidal
disruptions of stars (e.g., Rees 1988; Magorrian & Tremaine
1999; Syer & Ulmer 1999; Wang & Merritt 2004) because
while disruptions require a single passage within a critical
radius, an EMRI is a progressive phenomenon that is only
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successful if the small compact object suffers a large number
of close encounters with the central MBH.

The requirement for an EMRI to be successful is not
just to have a small periapsis, but that the gravitational
radiation timescale is sufficiently shorter than 2-body relax-
ation, which could have a significant impact on the periapsis.
Although the basic ideas are explained in detail in the re-
cent review of Amaro-Seoane (2012), we deem it important
to briefly summarize in the next paragraphs the fundamen-
tals of the ideas of two different categories of EMRIs, since
this will be crucial to understand the main results of this
paper.

In a galactic nucleus without dissipation processes a star
suffers “gravitational tugs” in the regime where the evo-
lution is dominated by close encounters with other stars.
These tugs, since they are driven by two-body relaxation,
are random and originated by interacting with other stars
that happen to have a very close position. The scattering
rate is very similar in orbital energy E and angular mo-
mentum L. If the star gets close to a very low L, which is
statistically probable, then the picture changes: The rate at
which the star changes L will be much shorter than that
at which it changes E. If we introduce a dissipation term
in the picture, e.g. gravitational waves, the star follows the
same initial evolution and, at some point, our test star, the
compact object, reaches the region in which it is on a very
radial orbit. In this case, at every periapsis passage, the test
star loses a significant amount of energy and, hence, the
semi-major axis shrinks. If the process is efficient enough it
becomes an EMRI.

Stars in very radial orbits would then scatter faster in L
than in E, so that they would end up as direct plunges, i.e.
being swallowed by the MBH after an insignificant amount
of gravitational wave bursts. Although their event rate is
much larger, they do not allow us to get a full picture of
the scenario as complete as compared with the slow inspi-
ral of an EMRI (but see the recent work of Berry & Gair
2012,on bursting sources). The threshold lies around ∼ 10−2

pc (Hopman & Alexander 2005) and this is what has led up
to now to the thought that the EMRI event rate should
be dominated by the physical phenomena happening in the
innermost volume around the MBH, of radius ∼ 10−2 pc.

However, while this is strictly true for Schwarzschild
MBHs, the situation for spinning MBHs drastically changes
the narrative. Recently, Amaro-Seoane et al. (2012d) proved
that for Kerr MBHs plunges do not plunge, but spend
a very large number of cycles in the eLISA band. I.e.
they are simply high-eccentricity EMRIs. The authors prove
that the event rate of both high-eccentric and also low-
eccentric EMRIs is enhanced by the spin as compared to
the Schwarzschild case by an amount that depends on the
specific eccentricity and inclination of the orbit.

The fact that compact objects on a “plunge” orbit have
been envisaged as uninteresting has led to an effort to un-
derstand the phenomena that could lead to the creation of
EMRIs in a volume of radius ∼ 10−2 pc. In this volume, res-
onant relaxation is very likely the most important process to
lead compact objects to EMRI orbits (Hopman & Alexan-
der 2006). Nonetheless, while in the absence of relativistic
effects resonant relaxation is expected to change the angular
momentum of the stellar BHs very efficiently, (Merritt et al.
2011, hereafter MAMW11) showed recently with a few di-

rect N−body experiments that introducing relativistic pre-
cession effects are both a blessing and a curse for the inspi-
ral event rate: RR is quenched at high eccentricities, result-
ing in more inspirals than plunges. However, this quenching
also means that, in total, fewer BHs will reach pericentres
that are small enough to lead to an inspiral observable by
gravitational wave detectors such as eLISA (Amaro-Seoane
et al. 2012a,b). In this paper we present a statistical study
of the Schwarzschild barrier (SB) with a set of 2,500 direct-
summation N− body simulations including relativistic cor-
rections to study and quantify this effect. We implement
the relativistic effects using a post-Newtonian formalism as
in Kupi et al. (2006) but also, and for the first time ever in
a direct-summation integrator, a geodesic scheme.

This paper is organized as follows: In Section 2 we
present the physical setup and the numerical methods used.
In Section 3 we present general results and discuss the im-
plications for the Schwarzschild barrier in Section 4.

2 PHYSICAL SETTING AND NUMERICAL
METHODS

Recently, MAMW11 estimated with a few direct-summation
N-body simulations expanded with a statistical Monte-Carlo
study that the traditional EMRI event rate is markedly de-
creased by the presence of a blockade in the rate at which
orbital angular momenta change takes place. This so-called
Schwarzschild barrier is a result of the impact of relativistic
precession on to the stellar potential torques. Although the
authors find that some particles can penetrate the barrier,
EMRIs are significantly suppressed in this scenario.

In analogy to MAMW11, the setup we consider consists
of a central MBH of mass M• surrounded by 50 stellar mass
black holes (BHs) of mass m?. We fix the masses of the MBH
and the stellar black holes at

M• = 106M� ,

m? = 50M� . (1)

Initially we distribute the stars in phase space following a
distribution of the form N(a, e2) da de2 = N0da de

2, with a
the semi-major axis of the BHs and e their eccentricity. The
semi-major axes range between 0.1 mpc < a < 10 mpc.

This setup represents roughly a relaxed distribution of
stellar mass objects around a MBH (Freitag et al. 2006).
We note that the event rates we obtain in this study are
only applicable to this specific, idealized system where N =
50 heavy, equal mass stellar BHs orbit a MBH. For more
realistic estimates one would need to take into account other
properties of galactic nuclei, such as the stellar background,
a certain mass distribution and larger N .

2.1 Timescales

In order to have EMRI events, one needs BHs on orbits with
pericentres of only a few gravitational radii (rg = GM•/c

2).
This requires the existence of physical mechanisms for driv-
ing BHs from their initial orbits onto very eccentric ones.

A purely Newtonian system has two different ways of
exchanging angular momentum L (or eccentricity e) and or-
bital binding energy E (or semi-major axes a). The first one
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The Schwarzschild barrier 3

is by two-body scattering, or non-resonant relaxation (NR)
(see e.g. Spitzer 1987; Binney & Tremaine 2008; Amaro-
Seoane 2012). Every time two objects come close they un-
dergo scattering, changing the momenta of the scattering
partners. This very basic mechanism exists in all gravita-
tionally interacting systems from compact star clusters to
galaxies. The associated time-scale for changing the angular
momentum L of a given particle by ∆L ∼ L is

τNR = 4.6 Myr ã1/2
( M•

106M�

)3/2( m

50M�

)−2(N<1

5

)−1

,

(2)
where N<1 is the number of stars within a sphere of 1 mpc
and ã will denote the semi-major axis in mpc throughout the
rest of the paper. The derivation of this equation, although
trivial, can be found in MAMW11.

In Newtonian systems with a central massive object
which dominates the gravitational potential, however, this
relaxation mechanism is usually dominated by resonant re-
laxation (RR) (Hopman & Alexander 2006).

The torque of a spherical distribution of stars of mass
M?(r < a) inside a sphere of radius r on a BH with semi-
major axis a leads to a retrograde orbital in-plane precession
on a time-scale

τM =
2π

g(e)M?(r < a)

(M•a3
G

)1/2
, (3)

where the eccentricity dependent function g(e) is given by

g(e) =
1 +
√

1− e2
2
√

1− e2
. (4)

¿From Eq. (3) we can derive the time-scale of changes in the
angular momentum, which for our system is given by

τRR ≈ 5.9× 104 yr

β2
sg(e)

( M•
106M�

)1/2( m?

50M�

)−1

ã3/2 , (5)

where βs is a factor of order unity. For the derivation of
Eq. (5) we defer the reader to reference MAMW11. This
mechanism for relaxation, RR, is much more efficient than
NR at these distances because the particles interact through
coherent torques in resonant Keplerian orbits. It therefore
could lead in principle to an enhancement in the EMRI event
rate.

Relativistic effects introduce two new time-scales. The
conservative Schwarzschild precession, appearing in partic-
ular at the first and second post-Newtonian orders, causes
a precession of the pericentre by an angle

δΦ =
3πGM•
c2

1

a(1− e2)
(6)

per orbit. This leads to the following associated time-scale

τSS =
π

δΦ
P (a) =

2πc2

3(GM•)3/2
a5/2(1− e2), (7)

where P (a) = 2π(a3/GM•)
1/2 is the orbital period. In a

more convenient notation this yields

τSS ≈ (2× 104 yr) ã5/2(1− e2)
( M•

106M�

)−3/2

. (8)

The second important time-scale is the inspiral time τGR

via gravitational radiation only which, for high eccentricities
(e ' 1), is given by (Peters 1964)

τGW ≈ 5c5

256G3

a4

m?M•(m? +M•)
(1− e2)7/2 (9)

≈(1.16× 1013 yr) ã4(1− e2)7/2

×
( m?

50M�

)−1( M•
106M�

)−2

, (10)

for M• � m?. This timescale is highly sensitive to the ec-
centricity and semi-major axis and for a typical BH in the
system much longer than any other relevant time. However,
for particles very close to the central MBH, gravitational
radiation may drive them gradually into the capture radius
leading to an “inspiral event”.

2.2 A direct-summation code with
post-Newtonian and geodesic corrections

In order to integrate the initial configuration over time
we use the publicly available planet code by Sverre
Aarseth (Aarseth 1999, 2003), a direct summation N−body
integrator. We have modified this code in order to intro-
duce relativistic corrections to the Newtonian acceleration
(Amaro-Seoane et al. 2012c). For the studies that we present
here we have considered the following types of dynamics:

• purely Newtonian dynamics
• post-Newtonian (PN) corrections
• relativistic geodesic equations for motion of the parti-

cles around the MBH

In the purely Newtonian case, the integration is obvi-
ously done without modifications to the acceleration equa-
tions. In the second case we add the PN corrections in the
following way:

F =

Newt.︷︸︸︷
F0 +

periapsis shift︷ ︸︸ ︷
c−2F2︸ ︷︷ ︸
1PN

+ c−4F4︸ ︷︷ ︸
2PN

+

energy loss︷ ︸︸ ︷
c−5F5︸ ︷︷ ︸
2.5PN

+

neglected︷ ︸︸ ︷
O(c−6) , (11)

where the individual Fi’s denote the different PN correc-
tions to the total force on a particle, which can be found in
Appendix B.

Given the high mass ratios involved in EMRIs, their
motion around a MBH can be also approximated by solv-
ing the geodesic equations of motion, neglecting in this way
dissipative effects due to gravitational wave emission and
higher-order corrections in the mass ratio. In our case, the
geodesic equations describe the exact trajectory of a test
mass particle around a Schwarzschild MBH. Unlike the PN
approximation, the geodesic equations are valid even in the
last few rg during a plunge or inspiral, however only in the
limit m?/M• → 0. Some orbits are expected to migrate to-
wards plunge or inspiral orbits at pericentre distances of
rp < 15 rg, where the errors of the PN approximation can
already be quite significant (Yunes & Berti 2008). In order to
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test the existence of the Schwarzschild barrier at small dis-
tances, we have implemented these corrections in the planet
code.

Since the geodesic equations do not contain dissipative
terms we compare the results of using them with the conser-
vative PN implementations, i.e. setting the dissipative cor-
rection F5 = 0 in Eq. (11).

At any given time all the active acceleration correc-
tions are computed only between the MBH and a stellar
BH object. The semi-major axis and eccentricity evolution
is tracked by monitoring the distances at periapsis rmin and
apoapsis rmax using the standard relations

a =
rmax + rmin

2
, (12)

e =
rmax − rmin

rmax + rmin
, (13)

which are valid for any acceleration correction. This calcu-
lation does not require a PN expansion of the Keplerian ex-
pressions for a and e and is thus consistent with the purely
Newtonian, PN and geodesic equations of motion.

We record a merger event whenever a particular has an
instantaneous separation to the MBH of r < 6 rg (i.e. the
Schwarzschild last stable orbit for circular orbits). We note
that MAMW11 use r < 8 rg and thus might classify a few
events that we call inspirals as plunges. We run NP = 500
simulations of the models described above, with different
random seeds for the distribution of stars, for a few Myr or
until a merger event happens.

3 RESULTS FROM THE SIMULATIONS

For all the different sets P of simulations we will compute
the average time τX,P for the occurrence of a certain event
X in the simulation set P in the following way:

τX,P =

NP∑
i=1

Ti,P · 1

KX,P
, (14)

where the sum runs over all the total duration times Ti,P
of the NP simulations and KX,P gives the total number
of events X in the set P . Every simulation has been given
a burn-in time of 104 yr, which is of the order of τRR ≈
6×104 yr (see Eq. 5) in order to discard merger events due to
particles being created extremely close to the MBH or even
within the capture radius by the randomization routine.

In Eq. (14), the possible events X can be either i for an
inspiral event or p for a plunge event. We define the error
for our results as the Poisson error,

σX,P =
√
KX,P . (15)

The criterion for an event to be an inspiral event is taken to
be

(i) acap < 1 mpc and
(ii) acap < 1.5 a(tcap − 500 yr) .

The second condition ensures that the semi-major axis of the
merging body (acap) has shrunk significantly prior to cap-
ture in order to dismiss plunges with low semi-major axis.

The choice of 500 years has empirically proven to distinguish
perfectly between plunges and inspirals.

3.1 Newtonian Simulations (Set SI)

In this section we present the results for our study using
only purely Newtonian accelerations, i.e. only the term F0 in
Eq. (11). In this case, the individual objects exchange energy
and angular momentum efficiently via resonant relaxation
(RR). For the plunge time, using Eq. (14), we find

τp,I = (3.7± 0.2)× 104 yr . (16)

This agrees very well with the RR timescale given by Eq. (5)
for a typical particle, which confirms that this is the domi-
nant mechanism at these radii for driving stellar objects into
the central body in the purely Newtonian case. Of course, we
do not identify any inspirals in the absence of gravitational
radiation effects.

3.2 Simulations including 2.5PN corrections (Set
SII)

We now add only the dissipative effects due to gravitational
radiation emission, which appear at 2.5 PN order, to the
acceleration equations.

The analysis of the simulations now gives

τp,II = (3.8± 0.2)× 104 yr , (17)

τi,II = (2.3± 0.4)× 105 yr . (18)

Now, with the inclusion of the effects of gravitational ra-
diation, gradual inspirals into the MBH are possible. This
converts a subset of the plunge events from the simulations
in set SI into inspiral events. However, the inspiral time τGW

given by Eq. (10) only becomes smaller than the RR time
for

a(1− e) . 5 rg , (19)

which is smaller than the assumed capture radius. Thus,
the efficient RR still drives the majority of particles into
the capture radius before they can decouple from the stellar
background and undergo a clean inspiral. In other words,
the transfer of angular momentum to more eccentric orbits
by RR is faster than the circularization by the dissipative
2.5PN term.

3.3 Simulations including 1PN, 2PN and 2.5PN
corrections (Set SIII)

In this set of simulations we include all PN terms up to
2.5PN order in our calculations. This introduces prograde
Schwarzschild precession in addition to the dissipation pro-
duced by gravitational-wave emission. This effect is expected
to increase the associated times for inspiral and plunges,
since it eliminates efficient RR at high eccentricities. We
find

τp,III = (1.3± 0.2)× 106 yr , (20)

τi,III = (2.0± 0.4)× 106 yr . (21)

c© 2012 RAS, MNRAS 000, 1–10



The Schwarzschild barrier 5

As expected, the inspiral and plunge times are now of the or-
der of a two-body relaxation time, Eq. (2). We also see that
the substantial difference between plunge and inspiral times
seen in SII vanishes, because now the relaxation time-scale
is much higher and gravitational radiation can more easily
decouple the star from the stellar background. Compared
to the previous set now the 2.5PN term is able to circular-
ize and shrink the BH orbit faster than classical relaxation
increases eccentricity.

3.4 Simulations including 1PN and 2PN
corrections (Set SIV)

In order to compare our PN results with the results using
geodesic equations of motion, we also ran a set of simulations
with only the conservative 1PN and 2PN terms. In this set
we find a plunge time of

τp,IV = (6.6± 0.5)× 105 yr . (22)

This is consistent with the time we would obtain from SIII
when combining plunge and inspiral events and shows again
that the 2.5PN term does not change the important mech-
anisms for angular momentum transfer.

3.5 Simulations considering geodesic motion
around the MBH (Set SV)

In this set of simulations we investigate the system using
Newtonian forces to describe the gravitational interactions
between the stellar black holes and to describe the inter-
action between the MBH and individual stellar black holes
we use the exact solution of the motion of a test mass in
a Schwarzschild metric (geodesic motion). This does intrin-
sically exclude dissipative effects and therefore, the results
of this subsection should be compared to those from the set
SIV. In the limit of m? � M•, the geodesic equations (in
harmonic coordinates) expanded up to 2PN order and the
conservative 2PN equations agree (see Appendix A), and
hence they are consistent descriptions at this level of ap-
proximation.

In this set of simulations we obtain

τp,V = (7.1± 0.7)× 105 yr, (23)

which is consistent with τp,IV. This agreement means that
the motion very close to the MBH is not relevant for the
relaxation processes that drive BHs into plunge orbits.

4 SCHWARZSCHILD BARRIER

In order to quantify the nature of the “Schwarzschild bar-
rier”, we first plot the normalized presence density. This is
a measure of the total time any particle spends in a certain
logarithmic bin in (a, 1−e), summed up over all particles and
simulations. For comparison with the next figures, in figure
1 we depict the theoretical distribution that we can expect
from a power-law of exponent γ = 1.75. Next, we show the
histogram for the Newtonian case, Fig. 2 (top panel) and the
relativistic case (bottom panel). If we consider our specific
setup, there are 3 different regions in the (a, 1 − e) plane
where different mechanisms are efficient. In the right-most
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Figure 1. Theoretical distribution of a truncated cusp of γ = 1.75

region, where pericentres are large, RR plays the dominant
role. The left border of this region is roughly given by the
appearance of the Schwarzschild precession which inhibits
the BHs from experiencing coherent torques. Following the
derivation in MAMW11, the time-scale for changes in angu-
lar momentum due to an enclosed distribution of stars with
mass m? acting as a coherent torque is

τcoh =
M•√
N(a)m?

(a3(1− e2)

GM•

)1/2
. (24)

The number of stars within a sphere delimited by the BHs
semi-major axis, N(a) is related to the density profile ρ(r).
For a general power law ρ(r) ∝ r−γ , the number of stars
within a certain radius a becomes

N(r < a) = N<1ã
3−γ , (25)

where N<1 is the number of stars within a sphere of radius 1
mpc. The condition for the Schwarzschild barrier is that the
relativistic precession time-scale, Eq. (7), becomes smaller
than τcoh, i.e.

a(1− e2)1/2 =
3G

2πc2
M2
•

m?

√
N(r < a) . (26)

In our model with γ = 2 and N<1 ≈ 5, we obtain the relation

N(r < a) ≈ 5 ã , (27)

and thus the barrier at

ãSB ≈ CSB(1− e2)−1/3 , (28)

where CSB ≈ 0.35 in this particular order of magnitude com-
parison. This line is shown in blue in Fig. 2. The bottom-left
side of it is the region where RR is inefficient. However, NR
is still in play. The next delimiter is placed by the inspiral
time-scale τGW. As soon as τGW < τNR, BHs decouple from
the stellar background and inspiral gradually, driven by en-
ergy loss through gravitational radiation. The condition for
this, using Eq. (10) and Eq. (2), yields

ãGW ≈1.5× 10−2
( M•

106M�

)( m?

50M�

)−2/7

×
(N<1

5

)−2/7

(1− e2)−5/7 . (29)
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Newtonian Dynamics

−4.0

−3.2

−2.4

−1.6

−0.8

0.0

0.8

1.6

lo
g

1
0

P
re

se
nc

e
de

ns
it

y

10−4 10−3 10−2 10−1

1− e
10−6

10−5

10−4

10−3

10−2

Se
m

i-
m

aj
or

ax
is
a

[p
c]

Dynamics with 1PN, 2PN and 2.5PN

Figure 2. Integrated presence density for the Newtonian (set
SI, top panel) and the relativistic case (set SIII, bottom panel).

The shaded box marks the region of the slice analyzed in Fig. 3.

The lines indicate the position of the Schwarzschild barrier with
CSB = 0.35 (blue) and the limit for capture onto inspiral orbits

for non-resonant relaxation (green).

This line for gravitational capture against non-resonant re-
laxation is shown in green in Fig. 2. The relativistic set
(bottom panel) shows the characteristic inspiral lines, which
cause the presence very close to the merger limit (a < 6 rg)
to be depleted in comparison to the Newtonian case, where
the particles are scattered into plunge orbits onto the MBH
instead.

Fig. 3 shows the presence integrated over a small slice
in semi-major axis (the shaded area in Fig. 2) for all the sim-
ulated sets. In this plot we show the location of the barrier
at CSB = 0.35, shown as the blue region. Since we average
over a certain part in the semi-major axis, the lines from
Fig. 2 now appear as regions marking the lower and upper
boundary at the limiting semi-major axis values.

The same decrease in presence density can be observed
for the runs with no dissipative forces, set SIV and SV, which
both show the same behavior towards high eccentricities.
This confirms the validity of the PN approximation in this
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log (1-e)

10−4

10−3

10−2

10−1

100

101

102

lo
g

dN
/d

(l
og

(1
-e

))

no PN
only 2.5PN
all PN
only 1PN,2PN
geodesic

For a = [1.5− 2.0 mpc] integrated presence density

Figure 3. Integrated presence density for a semi-major axis slice

1.5 mpc < a < 2.0 mpc. The shaded boxes represent the posi-

tion of the Schwarzschild barrier with CSB = 0.35 (blue) and the
threshold between the regime in which the evolution is dominated

by dynamics and when the binary decays via gravitational loss

(green)

.

Series Plunge (yr−1) Inspiral (yr−1)

SI: Newtonian (2.7 ± 0.2) × 10−5 –

SII: Only 2.5 PN (2.6 ± 0.2) × 10−5 (4.3 ± 0.6) × 10−6

SIII: Full PN (8 ± 1) × 10−7 (5 ± 1) × 10−7

SIV: 1PN, 2PN (1.5 ± 0.1) × 10−6 –

SV: Geodesics (1.4 ± 0.1) × 10−6 –

Table 1. Comparison of the different event rates for the different

scenarios studied.

regime for our purposes. It also suggests that the system
barely access the regime where the PN and geodesic dy-
namics differ, i.e. where the relativistic precession predicted
by the geodesic equations of motion is significantly different
from the 1PN and 2PN corrections.

The drop for set SIII as compared to IV and V is
stronger, because of the presence of inspirals depleting the
very high eccentricity region.

Set SI and SII also show consistent results. This was ex-
pected because the decoupling into inspiral orbits happens
on length scales below the merger criterion for resonant re-
laxation, see Eq. (19).

We summarize the event rates for our idealized system
in Table 1. Our rates are only meant to compare different
sets of simulations and can only be read as absolute values
for a real galactic nucleus.

5 DISCUSSION

Recently, Merritt et al. (2011) estimated with a few direct-
summation N−body simulations expanded with a statisti-
cal Monte-Carlo study that the “traditional EMRI” event is

c© 2012 RAS, MNRAS 000, 1–10



The Schwarzschild barrier 7

markedly decreased by the presence of a blockade in the rate
at which orbital angular momenta change takes place. This
so-called “Schwarzschild barrier” is a result of the impact
of relativistic precession on to the stellar potential torques.
Although the authors find that some particles can penetrate
the barrier, EMRIs are significantly suppressed in this sce-
nario.

In this study we investigated the effects of relativistic
corrections on the event rates for EMRIs compared to New-
tonian dynamics using a PN approach as presented in the
original work of Kupi et al. (2006) but also and for the first
time with the implementation of geodesic equations. For this
purpose, we ran different sets of 500 simulations each, for
combined durations of ∼ 100 Myr in order to obtain statis-
tically solid results. We confirm the quenching of RR in the
presence of Schwarzschild precession, i.e. the Schwarzschild
barrier. Comparing full PN simulations (up to order 2.5)
with the Newtonian ones, we find a ratio of the time-scales
for the capture (combined plunge and inspiral) of

τGR/τNewtonian ≈ 21± 7 (30)

and for the absolute value for our setup an EMRI event rate
of . 1 Myr−1. This value serves as an order of magnitude
estimate for galactic centers similar to our idealized setup.

In order to investigate the validity of the barrier at
high eccentricities and very small pericentres, we have imple-
mented the geodesic equations of motion around the MBH
as an alternative to the PN corrections. We find that the re-
sults we obtain from both methods are consistent although
the relativistic precession they predict is significantly differ-
ent near the last stable orbit. This suggests that the stellar
dynamics of the systems we have studied does not access
significantly the regime where the dynamics as described by
the geodesic equations and the PN corrections is different.
Therefore we deem it necessary to address the scenario to
check whether these results are recovered when we increase
the number of stars N . We hence plan on expanding the
studied system for usage with N−body codes. This will al-
low us to investigate realistic galactic nuclei and thus make
more precise statements about the absolute event rates to
be expected.

We corroborate the existence of the “Schwarzschild bar-
rier” and its impact on the rate at which orbital angular
momenta change takes place at these distances. It is im-
portant to note that recently Amaro-Seoane et al. (2012d)
proved that for Kerr MBHs, direct plunges are in reality
high-eccentricity EMRIs, and that the rate in enhanced de-
pending on the spin and inclination. Although our simula-
tions probe only an idealized case in which we study a pe-
culiar, though representative distribution, the consequences
are clear: The event rate of EMRIs for a LISA-like mis-
sion such as eLISA (Amaro-Seoane et al. 2012a,b) will be
dominated by high-eccentric EMRIs, which are not “direct
plunges” if the central MBH is spinning. On the other hand
EMRIs produced in the region in which it was believed that
resonant relaxation could represent a significant enhance-
ment in the rates, will suffer a drastic cut in the rates and,
hence, they will be only a negligible contribution.
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APPENDIX A: GEODESIC EQUATIONS FOR A
PARTICLE ORBITING A BLACK HOLE

In this appendix we write down the geodesic equations of
motion in a form that is suitable to be included in a N-body
code that uses a Newtonian-type formulation of the equa-
tions of motion. In order to compare results with the cases
where PN corrections are used we write the geodesic equa-
tions using harmonic coordinates for Schwarzschild, which
are compatible with the harmonic gauge condition of PN
theory.

Since our particles represent stellar objects we need
to consider the geodesics for massive particles (i.e. time-
like geodesics). Given our system of spacetime coordinates
{xµ} = {t, xi} (µ , ν , · · · = 0 − 3; i , j , . . . = 1 − 3), a
geodesic will be given by {xµ(τ)}, where τ denotes the par-
ticle’s proper time. The components of the velocity vector
are defined as

uµ =
dxµ(τ)

dτ
. (A1)

This four-velocity vector satisfies:

gµνu
µuν = −c2 , (A2)

where gµν is the Schwarzschild metric in our coordinate sys-
tem and c denotes the speed of light. Since we are interested
in geodesics, the velocity vector must satisfy the following
equation of motion (Misner et al. 1973).

uν∇νuµ = 0 , (A3)

where ∇µ denotes the canonical covariant derivative associ-
ated with the spacetime metric gµν . Expanding this equation
we have

duρ

dτ
+ Γρµνu

µuν = 0 , (A4)

being Γρµν the Christoffel symbols associated with the space-
time metric gµν . They are given in terms of the metric by:

Γµαβ =
1

2
gµν

(
∂gαν
∂xβ

+
∂gβν
∂xα

− ∂gαβ
∂xρ

)
. (A5)

Using the splitting of time and space we can write the ve-
locity vector as follows:

~u = ut
∂

∂t
+ ui

∂

∂xi
, (A6)

c© 2012 RAS, MNRAS 000, 1–10
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where {ut, ui} are the velocity components in the {t, xi}
coordinate system:

ut =
∂t(τ)

∂τ
, ui =

∂xi(τ)

∂τ
. (A7)

Therefore, on the trajectory of the particle we can write

ui =
dxi(t)

dt

∂t

∂τ
= viut ≡ Γvi , (A8)

where vi are the spatial components of the velocity

vi =
dxi(t)

dt
, (A9)

and Γ is the general relativistic version of the special rela-
tivistic gamma factor, which is given in terms of the com-
ponents of the spatial velocity and the metric tensor as:

Γ2 = − c2

gtt + 2gtiv
i + gijv

ivj
. (A10)

which, in the weak-field limit (gtt ≈ −c2 , gti ≈ 0 , gij ≈ δij ),
has the usual expression:

Γ2 ≈ 1

1− v2

c2

, (v2 ≡ δijvivj) . (A11)

At this point, we can now adopt a Newtonian point of
view by looking at the geodesic equations for the six quan-
tities: {xi(t), vi(t)}, that is, for the spatial coordinates and
spatial velocity components. They can be written as:

dxi

dt
= vi , (A12)

dvi

dt
= f ig , (A13)

where the forces, f ig, are actually forces per unit mass, i.e.
accelerations, since they should not depend on the mass of
the body (according to the equivalence principle). Moreover,
these specific forces depend on the spacetime metric (and its
first derivatives) and on vi. They can be written as

f ig =vi Γttt − Γitt + 2
(
vi Γttj − Γitj

)
vj

+
(
vi Γtjk − Γijk

)
vjvk . (A14)

Given initial conditions {xio, vio} equations (A12,A13) have
a unique solution {xi(t), vi(t)} . Note that the c2 factor di-
viding the forces, when going to the right-hand side of the
equation (multiplying the Christoffel symbols) will cancel
the c2 factor in the denominator of rg [see expressions in
Eqs. (A22)-(A27)].

Since up to now the development has been quite
general, let us now consider the case of a non-spinning
(Schwarzschild) MBH black hole of mass M•. The metric
components, in harmonic coordinates, can be written in the
following form:

gtt = −1− rg
r

1 +
rg
r

c2 , (A15)

gti = 0 , (A16)

gij =
1 +

rg
r

1− rg
r

ninj +
(

1 +
rg
r

)2 (
δij − ninj

)
, (A17)

where

r =
√
δij x

ixj , ni =
xi

r
, rg =

GM•
c2

. (A18)

¿From here, the components of the inverse metric are:

gtt = −1 +
rg
r

1− rg
r

1

c2
, (A19)

gti = 0 , (A20)

gij =
1− rg

r

1 +
rg
r

ninj +
1(

1 +
rg
r

)2 (δij − ninj) , (A21)

where xi = δij x
j and ni = δij n

j .
The important thing to determine the forces is the

computation of the Christoffel symbols. ¿From their defi-
nition (A5) we find the following result

Γttt =0 , (A22)

Γtti =
rg
r2

ni

1−
(
rg
r

)2 , (A23)

Γtij =0 , (A24)

Γitt =
rg
r2

1− rg
r(

1 +
rg
r

)3 ni c2 , (A25)

Γitj =0 , (A26)

Γijk =
rg
r2

1

1 +
rg
r

[(
1 +

rg
r

)
ni
(
δjk − njnk

)
− ninjnk

1− rg
r

− 2n(j

(
δik) − nink)

)]
. (A27)

And this determines completely the geodesic equations of
motion in Eqs. (A12) and (A13).

Finally, we can make a post-Newtonian expansion of
the equations of motion. That is, an expansion for rg/r �
1 , and v/c � 1 . In our case, the expression for the force
simplifies to [see Eq. (A14) and Eqs. (A22)-(A27)]:

f ig = −Γitt + 2 vi Γttjv
j − Γijkv

jvk . (A28)

Expanding this we get:

f ig =− rgc
2

r2

[
1− 4

rg
r

+ 9
(rg
r

)2
− 16

(rg
r

)3]
ni

+ 2
rgc

2

r2

[
1 +

(rg
r

)2](njvj
c

)
vi

c

− rgc
2

r2

{
ni
(
δjk − njnk

)
−
[
1 +

(rg
r

)2]
ninjnk

− 2

[
1− rg

r
+
(rg
r

)2
−
(rg
r

)3]
n(j

(
δik) − nink)

)}
× vj

c

vk

c
, (A29)

where the first two rows correspond to the first two terms in
Eq. (A28). We have expanded in Taylor series the functions
of rg/r up to order (rg/r)

4 . We can now collect the terms

c© 2012 RAS, MNRAS 000, 1–10
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and we find the following expression, which is valid to order
2PN [see Eq. (B1) below]:

f ig =− GM•
r2

ni +
GM•
r2

{
(A1PN +A2PN)ni

+
n · v
c

(B1PN + B2PN)
vi

c

}
, (A30)

where

n · v
c

=
x

cr

dx

dt
=

1

2cr

dx2

dt
=

1

2cr

dr

dt
=
ṙ

c
,

v2 =v · v = δijv
ivj , (A31)

and

A1PN =4
rg
r
− v2

c2
, (A32)

A2PN =− 9
(rg
r

)2
+ 2

(n · v
c

)2 rg
r
, (A33)

B1PN =4 , (A34)

B2PN =− 2
rg
r
. (A35)

APPENDIX B: PN CORRECTIONS

The PN equations of motion used in our simulations can be
written in the form given in Eq. (11). We can organize the
different terms in the following form (which is similar to the
one used above in Eq. (A30) for geodesic equations):

f ig =− GM

r2
ni +

GM

r2

{(
A′1PN +A′2PN

)
ni

+
n · v
c

(
B′1PN + B′2PN

) vi
c

+
n · v
c
A′2.5PN ni + B′2.5PN

vi

c

}
, (B1)

where here M = m?+M• is the two-body (MBH+star) total
mass. We list here the PN coefficients [see, e.g. (Blanchet

2006), Eq. (131)] for m? 6= 0:

A′1PN =
3

2
ν
(n · v

c

)2
− (1 + 3ν)

v2

c2
+ (4 + 2ν)

Rg
r
, (B2)

A′2PN =− 15

8
ν (1 + 3ν)

(n · v
c

)4
+ν (3− 4ν)

[
3

2

(n · v
c

)2
− v2

c2

]
v2

c2

+
Rg
r

{
2

(
1 +

25

2
ν + ν2

)(n · v
c

)2
+ ν

(
13

2
− 2ν

)
v2

c2

}
−
(

9 +
87

4
ν

)
R2
g

r2
, (B3)

A′2.5PN =
24

5

Rg
r

v2

c2
+

136

15
ν

(
Rg
r

)2

, (B4)

B′1PN =4− 2ν , (B5)

B′2PN =− 3

2
ν (3 + 2ν)

(n · v
c

)2
+ ν

(
15

2
+ 2ν

)
v2

c2

−
(

2 +
41ν

2
+ 4ν2

)
Rg
r
, (B6)

B′2.5PN =− 24

5
ν

(
Rg
r

)2

− 8

5
ν
Rg
r

v2

c2
. (B7)

where ν is the symmetric mass ratio, ν = m?M•/M
2,

and Rg = GM/c2. One can verify that the coefficients in
Eq. (A32) to Eq. (A35) agree with Eq. (B2) to (B7) for
ν = 0.
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E., Bohé A., Caprini C., Colpi M., Cornish N. J., Danz-
mann K., Dufaux J.-F., Gair J., Jennrich O., Jetzer P.,
Klein A., Lang R. N., Lobo A., Littenberg T., McWilliams
S. T., Nelemans G., Petiteau A., Porter E. K., Schutz
B. F., Sesana A., Stebbins R., Sumner T., Vallisneri M.,
Vitale S., Volonteri M., Ward H., 2012a, Accepted for pub-
lication at GW Notes

—, 2012b, Classical and Quantum Gravity, 29, 124016
Amaro-Seoane P., Brem P., Cuadra J., Armitage P. J.,
2012c, ApJ Lett., 744, L20

Amaro-Seoane P., Gair J. R., Freitag M., Miller M. C.,
Mandel I., Cutler C. J., Babak S., 2007, Classical and
Quantum Gravity, 24, 113

Amaro-Seoane P., Sopuerta C. F., Dewi Freitag M., 2012d,
ArXiv e-prints

Amaro-Seoane P., Spurzem R., 2001, MNRAS, 327, 995
Barth A. J., 2004, in Coevolution of Black Holes and Galax-
ies, from the Carnegie Observatories Centennial Sym-
posia., Ho L., ed., Cambridge University Press, p. 21

Berry C. P. L., Gair J. R., 2012, ArXiv e-prints

c© 2012 RAS, MNRAS 000, 1–10



10 Patrick Brem, Pau Amaro-Seoane, Carlos F. Sopuerta

Binney J., Tremaine S., 2008, Galactic Dynamics: Second
Edition, Binney J., Tremaine S., eds. Princeton University
Press

Blanchet L., 2006, Living Reviews in Relativity, 9, 4
de Zeeuw T., 2001, in Black Holes in Binaries and Galactic
Nuclei, Proceedings of the ESO Workshop held at Garch-
ing, Germany, 6-8 September 1999., ESO Astrophysics
Symposia, Springer, p. 78

Eisenhauer F., Genzel R., Alexander T., Abuter R., Pau-
mard T., Ott T., Gilbert A., Gillessen S., Horrobin M.,
Trippe S., Bonnet H., Dumas C., Hubin N., Kaufer A.,
Kissler-Patig M., Monnet G., Ströbele S., Szeifert T.,
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