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ABSTRACT
The capture of a compact object in a galactic nucleus by a massive black hole (MBH), an
extreme-mass ratio inspiral (EMRI), is the best way to map space and time around it. Recent
work on stellar dynamics has demonstrated that there seems to be a complot in phase space
acting on low-eccentricity captures, since their rates decrease significantly by the presence of
a blockade in the rate at which orbital angular momenta change takes place. This so-called
‘Schwarzschild barrier’ is a result of the impact of relativistic precession on to the stellar
potential torques, and thus it affects the enhancement on lower eccentricity EMRIs that one
would expect from resonant relaxation. We confirm and quantify the existence of this barrier
using a large number of direct-summation N-body simulations with both a post-Newtonian and
also, for the first time in a direct-summation code, a geodesic approximation for the relativistic
orbits. The existence of the barrier prevents low-eccentricity EMRIs from approaching the
central MBH via resonant relaxation. We confirm that the event rates for capture thus increase
with the square of the distributed mass, in agreement with two-body relaxation. However, for
nuclei with more than a few thousand M� in the inner 10 mpc, two-body relaxation is so
efficient that compact objects do not decouple into gravitational wave-driven inspirals but are
mostly driven into direct plunges, if the central MBH is not spinning. This leads to an apparent
maximum event rate of about 1 Myr−1 for EMRIs originating from the inner 10 mpc.

Key words: stars: black holes – stars: kinematics and dynamics – galaxies: kinematics and
dynamics – galaxies: nuclei.

1 IN T RO D U C T I O N

Massive black holes (MBHs), with masses ranging from some
104 M� to a few 109 M� are very likely present in the centre
of most galaxies. Measurements of the kinematics of gas and stars
in the central regions of nearby galaxies (see e.g. de Zeeuw 2001;
Barth 2004; Kormendy 2004; Richstone 2004) have provided us
with compelling evidence. Our own Milky Way is the galaxy for
which we have the strongest observational proof of a central MBH.
Data based on 16 yr of observations set the mass of the central
super-massive black hole (SMBH) to ∼4 × 106 M� (Eisenhauer
et al. 2005; Ghez et al. 2005, 2008; Gillessen et al. 2009; Genzel,
Eisenhauer & Gillessen 2010).

To interact with the central MBH, stars have to find themselves on
‘loss-cone’ orbits, which are orbits elongated enough to have a very
close-in pericentre (Frank & Rees 1976; Lightman & Shapiro 1977;
Hils & Bender 1995; Sigurdsson & Rees 1997; Amaro-Seoane &
Spurzem 2001). While main-sequence stars are tidally disrupted
when approaching the central MBH, compact objects [stellar black
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holes (BHs), neutron stars and white dwarfs] slowly spiral into the
MBH via the gradual loss of energy in the form of gravitational radi-
ation and are eventually swallowed after some ∼103−5 orbits in the
eLISA band (Amaro-Seoane et al. 2007, 2012a,b; Amaro-Seoane
2012). This is the best way to probe general relativity (Sopuerta
2010, 2013) and, thus, the factory of space and time around an
MBH. We will also get additional information about the binary it-
self: in particular the masses of the system and the spins of the
MBH can be measured to a level of precision without any precedent
(see Amaro-Seoane et al. 2007, and references therein). Besides, the
detection will provide us with information about the distribution of
dark objects in galactic nuclei and globular clusters.

Producing extreme-mass ratio inspirals (EMRIs) is more difficult
than producing tidal disruptions of stars (e.g. Rees 1988; Magor-
rian & Tremaine 1999; Syer & Ulmer 1999; Wang & Merritt 2004)
because while disruptions require a single passage within a critical
radius, an EMRI is a progressive phenomenon that is only suc-
cessful if the small compact object suffers a large number of close
encounters with the central MBH.

The requirement for an EMRI to be successful is not just to have
a small periapsis, but that the gravitational radiation time-scale is
sufficiently shorter than two-body relaxation, which could have a

C© 2013 The Authors
Published by Oxford University Press on behalf of the Royal Astronomical Society

 at M
PI Study of Societies on M

ay 25, 2016
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/


1260 P. Brem, P. Amaro-Seoane and C. F. Sopuerta

significant impact on the periapsis. Although the basic ideas are
explained in detail in the recent review of Amaro-Seoane (2012),
we deem it important to briefly summarize in the next paragraphs
the fundamentals of the ideas of two different categories of EMRIs,
since this will be crucial to understand the main results of this paper.

In a galactic nucleus without dissipation processes a star or BH
suffers ‘gravitational tugs’ in the regime where the evolution is
dominated by close encounters with other stars. These tugs, since
they are driven by two-body relaxation, are random and caused
by interacting with other stars that happen to have a very close
position. The scattering rate is very similar in orbital energy E and
angular momentum L. If the star gets close to a very low L, which is
statistically probable, then the picture changes. The rate at which the
star changes L will be much shorter than that at which it changes E.
If we introduce a dissipation term in the picture, e.g. gravitational
waves, the stellar BH follows the same initial evolution and, at
some point, the compact object reaches the region in which it is
on a very radial orbit. In this case, at every periapsis passage, the
BH loses a significant amount of energy and, hence, the semimajor
axis shrinks. If the process is efficient enough it becomes an EMRI.
There are also other ways to bring compact objects on to close orbits
around an MBH such as tidal breaking of binaries (Hills 1988; Yu
& Tremaine 2003), which we do not consider here.

Stars and BHs in very radial orbits would then scatter faster in
L than in E, so that they would end up as direct plunges, i.e. being
swallowed by the MBH after an insignificant amount of gravita-
tional wave bursts. Although their event rate is much larger, they
do not allow us to get a full picture of the scenario as complete as
compared with the slow inspiral of an EMRI (but see the recent
work of Berry & Gair 2013, on bursting sources). The threshold
lies around ∼10−2 pc (Hopman & Alexander 2005) and this is what
has led up to now to the thought that the EMRI event rate should be
dominated by the physical phenomena happening in the innermost
volume around the MBH, of radius ∼10−2 pc.

However, while this is strictly true for Schwarzschild MBHs,
the situation for spinning MBHs drastically changes the narrative.
Recently, Amaro-Seoane, Sopuerta & Freitag (2013) proved that
for Kerr MBHs, many of the configurations that would plunge in
the Schwarzschild case do not plunge in the case of spinning central
MBHs (especially for high spins), but spend a very large number
of cycles in the eLISA band, i.e. they are simply high-eccentricity
EMRIs. The authors prove that the event rate of both high-eccentric
and also low-eccentric EMRIs is enhanced by the spin as compared
to the Schwarzschild case by an amount that depends on the specific
eccentricity and inclination of the orbit.

The fact that compact objects on a ‘plunge’ orbit have been
envisaged as uninteresting has led to an effort to understand the
phenomena that could lead to the creation of EMRIs in a volume
of radius ∼10−2 pc. In this volume, resonant relaxation (RR) is
very likely the most important process to lead compact objects
to EMRI orbits (Rauch & Tremaine 1996; Hopman & Alexander
2006). Nonetheless, while in the absence of relativistic effects RR
is expected to change the angular momentum of the stellar BHs
very efficiently, Merritt et al. (2011, hereafter MAMW11) showed
recently with a few direct N-body experiments that introducing rel-
ativistic precession effects are both a blessing and a curse for the in-
spiral event rate. Due to the fast Schwarzschild precession of the BH
orbit, RR is quenched at high eccentricities, resulting in more inspi-
rals than plunges. However, this quenching also means that, in total,
fewer BHs will reach pericentres that are small enough to lead to an
inspiral observable by gravitational wave detectors such as eLISA
(Amaro-Seoane et al. 2012a,b; The eLISA Consortium 2013). In this

paper, we present a statistical study of this Schwarzschild barrier
(SB) with a set of thousands of direct-summation N-body simu-
lations including relativistic corrections to study and quantify this
effect. We implement the relativistic effects using a post-Newtonian
(PN) formalism as in Kupi, Amaro-Seoane & Spurzem (2006) but
also, and for the first time ever in a direct-summation integrator, a
geodesic scheme.

This paper is organized as follows: In Section 2, we present the
physical setup and the numerical methods used. In Section 3, we
present general results for a fiducial setup while we explore a vast
range of different stellar mass distributions in Section 4. We then
discuss the SB in more detail in Section 5. The PN equations of
motion and the solution of the geodesic equations used in this paper
are given in Appendix A and B, respectively.

2 PH Y S I C A L S E T T I N G A N D N U M E R I C A L
M E T H O D S

Recently, MAMW11 estimated with a few direct-summation
N-body simulations expanded with a statistical Monte Carlo study
that the traditional EMRI event rate is markedly decreased by the
presence of a blockade in the rate at which orbital angular momenta
change takes place. This so-called SB is a result of the impact of
relativistic precession on to the stellar potential torques. Although
the authors find that some particles can penetrate the barrier, EMRIs
are significantly suppressed in this scenario.

In analogy to MAMW11, the fiducial setup we consider consists
of a central MBH of mass M• surrounded by 50 stellar mass BHs
of mass m∗. We fix the masses of the MBH and the stellar BHs at

M• = 106 M� ,

m∗ = 50 M� . (1)

Initially, we distribute the BHs in phase space following a distribu-
tion of the form N (a, e2) da de2 = N0da de2, with a the semimajor
axis of the BHs and e their eccentricity. The semimajor axes range
within 0.1 < a < 10 Mpc.

This setup represents roughly a relaxed distribution of stellar
mass objects around an MBH with mass density ρ(r) ∝ r−γ with
γ = 2 (Freitag, Amaro-Seoane & Kalogera 2006). We note that
due to mass segregation (David, Durisen & Cohn 1987; Murphy,
Cohn & Durisen 1991), the mass distribution of objects in the inner
milliparsec of the Galactic nucleus is expected to be very top-heavy,
making the choice of m∗ = 50 M� not that unrealistic. However,
in order to explore the physics of systems of other masses, we also
consider systems of different N and m∗, but leave the distribution
in a and e unchanged. This way we obtain an idea of how the event
rates scale with the total distributed stellar mass in a small sphere
around the SMBH.

We have to integrate the systems for a very long time with full
PN corrections. Since we use a serial code at this point, the number
of compact objects is limited due to numerical reasons to N ≈ 100.
On the other hand, for the region we consider here, a total mass of
2500 M� already represents a realistic estimate of the distributed
stellar mass within the inner 10 mpc of our Galaxy (Genzel et al.
2010).

2.1 Timescales

In order to have EMRI events, one needs BHs on orbits with pericen-
tres of only a few gravitational radii (rg = GM•/c2). This requires
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the existence of physical mechanisms for driving BHs from their
initial orbits on to very eccentric ones.

A purely Newtonian system has two different ways of exchanging
angular momentum L (or eccentricity e) and orbital binding energy E
(or semimajor axes a). The first one is by two-body scattering or non-
resonant relaxation (NR) (see e.g. Spitzer 1987; Binney & Tremaine
2008; Amaro-Seoane 2012). Every time two objects come close they
undergo scattering, changing the momenta of the scattering partners.
This very basic mechanism exists in all gravitationally interacting
systems from compact star clusters to galaxies. The associated time-
scale for changing the angular momentum L of a given particle by
�L ∼ L is

τNR = 4.6 Myr ã1/2

(
M•

106 M�

)3/2(
m∗

50 M�

)−2(
N<1

5

)−1

, (2)

where N<1 is the number of stellar mass objects within a sphere of
1 Mpc and ã will denote the semimajor axis in mpc throughout the
rest of the paper. The derivation of this equation, although trivial,
can be found in MAMW11.

In Newtonian systems with a central massive object which dom-
inates the gravitational potential, however, this relaxation mecha-
nism is usually dominated by RR (Hopman & Alexander 2006).

The torque of a spherical distribution of stars of mass M∗(r < a)
inside a sphere of radius r on a BH with semimajor axis a leads to
a retrograde orbital in-plane precession on a time-scale

τM = 2πg(e)

M∗(r < a)

(
M•a3

G

)1/2

, (3)

where the eccentricity-dependent function g(e) is given by

g(e) = 1 + √
1 − e2

2
√

1 − e2
. (4)

From equation (3) we can derive the time-scale of changes in the
angular momentum, which for our system is given by

τRR ≈ 5.9 × 104 yr

β2
s g(e)

(
M•

106 M�

)1/2(
m∗

50 M�

)−1

ã3/2 , (5)

where βs is a factor of order unity. For the derivation of equation
(5), we defer the reader to reference MAMW11. This mechanism
for relaxation, RR, is much more efficient than NR at these dis-
tances because the particles interact through coherent torques in
resonant Keplerian orbits. It therefore could lead in principle to an
enhancement in the EMRI event rate.

Relativistic effects introduce two new time-scales. The conser-
vative Schwarzschild precession, appearing in particular at the first
and second PN orders, causes a precession of the pericentre by an
angle

δ	 = 3πGM•
c2

1

a(1 − e2)
(6)

per orbit. This leads to the following associated time-scale

τSS = π

δ	
P (a) = 2πc2

3(GM•)3/2
a5/2(1 − e2), (7)

where P (a) = 2π(a3/GM•)1/2 is the orbital period. In a more con-
venient notation this yields

τSS ≈ (2 × 104 yr) ã5/2(1 − e2)

(
M•

106 M�

)−3/2

. (8)

The second important time-scale is the inspiral time τGR via gravi-
tational radiation only, which, for high eccentricities (e 	 1) is given
by (Peters 1964)

τGW ≈ 5c5

256 G3

a4

m∗M•(m∗ + M•)
(1 − e2)7/2 (9)

≈ (1.16 × 1013 yr) ã4(1 − e2)7/2

×
(

m∗
50 M�

)−1(
M•

106 M�

)−2

, (10)

for M• 
 m∗. This time-scale is highly sensitive to the eccentricity
and semimajor axis and for a typical BH in the system much longer
than any other relevant time. However, for particles very close to
the central MBH, gravitational radiation may drive them gradually
into the capture radius leading to an ‘inspiral event’.

2.2 A direct-summation code with post-Newtonian
and geodesic corrections

In order to integrate the initial configuration over time we use the
publicly available PLANET code by Sverre Aarseth (Aarseth 1999,
2003), a direct summation N-body integrator. We have modified this
code in order to introduce relativistic corrections to the Newtonian
acceleration (Amaro-Seoane et al. 2012c). For the studies that we
present here we have considered the following types of dynamics:

(i) purely Newtonian dynamics,
(ii) PN corrections,
(iii) relativistic geodesic equations for motion of the particles

around the MBH.

In the purely Newtonian case, the integration is obviously done
without modifications to the acceleration equations. In the second
case, we add the PN corrections in the following way:

F =
Newt.︷︸︸︷
F0 +

periapsis shift︷ ︸︸ ︷
c−2F2︸ ︷︷ ︸

1PN

+ c−4F4︸ ︷︷ ︸
2PN

+
energy loss︷ ︸︸ ︷
c−5F5︸ ︷︷ ︸
2.5PN

+
neglected︷ ︸︸ ︷
O(c−6) , (11)

where the individual Fi’s denote the different PN corrections to the
total force on a particle, which can be found in Appendix B.

Given the high mass ratios involved in EMRIs, their motion
around an MBH can be also approximated by solving the geodesic
equations of motion, neglecting in this way dissipative effects due
to gravitational wave emission and higher order corrections in the
mass ratio. In our case, the geodesic equations describe the exact
trajectory of a test mass particle around a Schwarzschild MBH.
Unlike the PN approximation, the geodesic equations are valid even
in the last few rg during a plunge or inspiral, however only in the
limit m∗/M• → 0. Some orbits are expected to migrate towards
plunge or inspiral orbits at pericentre distances of rp < 15rg, where
the errors of the PN approximation can already be quite significant
(Yunes & Berti 2008). In order to test the existence of the SB
at small distances, we have implemented these corrections in the
PLANET code.

Since the geodesic equations do not contain dissipative terms,
we compare the results of using them with the conservative PN
implementations, i.e. setting the dissipative correction F5 = 0 in
equation (11).

At any given time all the active acceleration corrections are com-
puted only between the MBH and a stellar BH object. The semi-
major axis and eccentricity evolution is tracked by monitoring the
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distances at periapsis rmin and apoapsis rmax using the standard
relations

a = rmax + rmin

2
, (12)

e = rmax − rmin

rmax + rmin
, (13)

which are valid for any acceleration correction. This calculation
does not require a PN expansion of the Keplerian expressions for
a and e and is thus consistent with the purely Newtonian, PN and
geodesic equations of motion.

We record a merger event whenever a particular has an instan-
taneous separation to the MBH of r < 6 rg (i.e. the Schwarzschild
last stable orbit for circular orbits). We note that MAMW11 use
r < 8 rg and thus might classify a few events that we call inspirals
as plunges. We run NP = 500 simulations of the models described
above, with different random seeds for the distribution of BHs, for
a few Myr or until a merger event happens.

3 R E S U LT S F O R T H E F I D U C I A L M O D E L

For all the different sets P of simulations, we will compute the
average time τX, P for the occurrence of a certain event X in the
simulation set P in the following way:

τX,P =
NP∑
i=1

Ti,P · 1

KX,P

, (14)

where the sum runs over all the total duration times Ti, P of the NP

simulations and KX, P gives the total number of events X in the set P.
Every simulation has been given a burn-in time of 104 yr, which is
of the order of τRR ≈ 6 × 104 yr (see equation 5) in order to discard
merger events due to particles being created extremely close to
the MBH or even within the capture radius by the randomization
routine.

In equation (14), the possible events X can be either e for an
EMRI event or p for a plunge event. We define the error for our
results as the Poisson error,

σX,P = √
KX,P . (15)

The criterion for an event to be an inspiral event is taken to be

(i) acap < 1 mpc and
(ii) acap < 1.5 a(tcap − 500 yr) .

The second condition ensures that the semimajor axis of the
merging body (acap) has shrunk significantly prior to capture in order
to dismiss plunges with low semimajor axis. The choice of 500 yr
has empirically proven to distinguish perfectly between plunges and
inspirals.

We summarize the event rates for our fiducial system in Table 1
and provide a more detailed analysis of the different simulation sets
in this section.

3.1 Newtonian Simulations (Set SI)

Here, we present the results for our study using only purely New-
tonian accelerations, i.e. only the term F0 in equation (11). In this
case, the individual objects exchange energy and angular momen-
tum efficiently via RR. For the plunge time, using equation (14),
we find

τp,I = (3.6 ± 0.2) × 104 yr . (16)

Table 1. Comparison of the different event rates for the different
scenarios studied.

Series Plunge (yr−1) Inspiral (yr−1)

SI: Newtonian (2.8 ± 0.2) × 10−5 –

SII: Only 2.5 PN (2.6 ± 0.2) × 10−5 (4.3 ± 0.6) × 10−6

SIII: Full PN (5 ± 1) × 10−7 (8 ± 1) × 10−7

SIV: 1PN, 2PN (1.3 ± 0.2) × 10−6 –

SV: Geodesics (1.3 ± 0.3) × 10−6 –

This agrees very well with the RR time-scale given by equation
(5) for a typical particle, which confirms that this is the dominant
mechanism at these radii for driving stellar objects into the central
body in the purely Newtonian case. Of course, we do not identify
any inspirals in the absence of gravitational radiation effects.

3.2 Simulations including 2.5 PN corrections (Set SII)

We now add only the dissipative effects due to gravitational radi-
ation emission, which appear at 2.5 PN order, to the acceleration
equations.

The analysis of the simulations now gives

τp,II = (3.8 ± 0.2) × 104 yr , (17)

τe,II = (2.3 ± 0.4) × 105 yr . (18)

Now, with the inclusion of the effects of gravitational radiation,
gradual inspirals into the MBH are possible. This converts a subset
of the plunge events from the simulations in set SI into inspiral
events. However, the inspiral time τGW given by equation (10) only
becomes smaller than the RR time for

a(1 − e) � 5 rg , (19)

which is smaller than the assumed capture radius. Thus, the efficient
RR still drives the majority of particles into the capture radius
before they can decouple from the stellar background and undergo
a clean inspiral. In other words, the transfer of angular momentum
to more eccentric orbits by RR is faster than the circularization by
the dissipative 2.5 PN term.

3.3 Simulations including 1 PN, 2 PN and 2.5 PN corrections
(Set SIII)

In this set of simulations, we include all PN terms up to 2.5 PN
order in our calculations. This introduces prograde Schwarzschild
precession in addition to the dissipation produced by gravitational-
wave emission. This effect is expected to increase the associated
times for inspiral and plunges, since it eliminates efficient RR at
high eccentricities. We find

τp,III = (2.0 ± 0.3) × 106 yr , (20)

τe,III = (1.3 ± 0.2) × 106 yr . (21)

As expected, the inspiral and plunge times are now of the order
of a two-body relaxation time, equation (2). We also see that the
substantial difference between plunge and inspiral times seen in SII
vanishes, because now the relaxation time-scale is much higher and
gravitational radiation can more easily decouple the BH from the
stellar background. Compared to the previous set, now the 2.5 PN
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term is able to circularize and shrink the BH orbit faster than clas-
sical relaxation increases eccentricity.

3.4 Simulations including 1 PN and 2 PN corrections (Set SIV)

In order to compare our PN results with the results using geodesic
equations of motion, we also ran a set of simulations with only the
conservative 1 PN and 2 PN terms. In this set, we find a plunge time
of

τp,IV = (7.7 ± 1.0) × 105 yr . (22)

This is consistent with the time we would obtain from SIII when
combining plunge and inspiral events and shows again that the
2.5 PN term does not change the important mechanisms for angular
momentum transfer.

3.5 Simulations considering geodesic motion around
the MBH (Set SV)

In this set of simulations, we investigate the system using Newto-
nian forces to describe the gravitational interactions between the
stellar BHs and to describe the interaction between the MBH and
individual stellar BHs we use the exact solution of the motion of a
test mass in a Schwarzschild metric (geodesic motion). This does
intrinsically exclude dissipative effects and therefore, the results
of this subsection should be compared to those from the set SIV.
In the limit of m∗ � M•, the geodesic equations (in harmonic co-
ordinates) expanded up to 2 PN order and the conservative 2PN
equations agree (see Appendix A), and hence they are consistent
descriptions at this level of approximation.

In this set of simulations, we obtain

τp,V = (8.0 ± 3.0) × 105 yr, (23)

which is consistent with τ p, IV. This agreement means that the mo-
tion very close to the MBH is not relevant for the relaxation pro-
cesses that drive BHs into plunge orbits.

4 SC A L I N G W I T H m∗ A N D N

In order to verify the dependence of event rates on the underlying
astrophysical setup, we carry out further simulations similar to SI,
SIII and SV, with different BH masses and number density. The
capture rate, which gives the number of BHs that are driven into
low angular momentum capture orbits per unit time, is given by

�RR(a)da ≈ N (a)da

ln(Lc/Lm)tRR
, (24)

see MAMW11, where Lc corresponds to the circular orbital angular
momentum at semimajor axis a and Lm the angular momentum
at which capture occurs. This is valid when RR is the dominant
mechanism driving orbits to high eccentricities. We assume that all
systems are in an equilibrium state where N(a) is time independent.
Using equation (5), the total capture rate can thus be written as

�RR =
∫ ∞

0
�RR(a)da = �0,RR

(
N<1

5

) (
m∗

50 M�

)
, (25)

where the integral over the distribution is absorbed into the fitting
parameter �0, RR which is here defined as the capture rate for an
isotropic distribution with N<1 = 5 and m∗ = 50 M�. The pro-
portionality to Nm∗ comes from equation (5). We now change the
product Nm∗ and measure the capture rate � = τ−1 as described in
Section 3. The results are shown in Fig. 1 as the black dots, with all

Figure 1. Total capture rates for different mass distributions. The black
dots are models without GR precession and fitted to the dependence given
by equation (25). Red, blue and yellow points are fitted to equation (26).
The green diamonds give the pure inspiral rates. The specific mass models
used are described in Table 2. Points belonging to the same mass model
have been offset slightly along the horizontal axes to create less overlap.

Table 2. Stellar mass distributions used in this
section.

M∗ in M� Individual m∗ in M� N<10

500 10 50

1000 10 100

1500 10−50* 50

2500 50 50

3000 10−50* 100

5000 100 50

10 000 100 100

∗Distributed according to a ‘top-heavy’, uni-
form distribution in mass, expected due to mass
segregation (Bartko et al. 2010).

PN terms off. The black line is the best fit assuming the slope given
by equation (25). The results agree very well with the assumption of
RR being the dominant mechanism in the case of no GR precession.
The best fit gives �0, RR, I = (3.0 ± 0.3) × 10−5 yr−1.

If we switch on GR precession and hence the SB, RR is quenched
at high eccentricities and we expect non-resonant two-body relax-
ation to be dominant. In this case, tRR has to be replaced by tNR in
equation (25) and the scaling becomes

�NR = �0,NR

(
N<1

5

)2 (
m∗

50 M�

)2

, (26)

where we have used equation (2). We show the capture rates for
all PN terms, geodesic equations and only the precession terms
1PN and 2PN in Fig. 1. The mass distributions used are summa-
rized in Table 2. The slope agrees very well with the dependence
given by equation (26). Within a certain scatter and especially
for larger total stellar masses, the rates for the PN and geodesic
equations agree. We find �0, NR, III = (8.7 ± 1.0) × 10−7 yr−1

and �0, NR, IV = (11.3 ± 1.6) × 10−7 yr−1 for all PN and pre-
cession only PN terms, respectively. The geodesic equations give
�0, NR, V = (13.0 ± 3.5) × 10−7 yr−1 and therefore agreement
within 1σ .
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� is the total capture rate, no matter whether a clean inspiral or
a direct plunge, but the most interesting event rate for gravitational
wave (GW) detectors is the inspiral rate. In Fig. 1, we also plot the
pure inspiral rate for the run with all PN terms as green diamonds.
For small background masses, two-body relaxation is slow and
the inspiral rates are low as well. However, for high masses, two-
body relaxation is so fast that the vast majority of events will be
plunges, because decoupling into inspiral orbits occurs only for
small semimajor axes. This results in an effective maximum event
rate around 1 Myr−1. Increasing the stellar mass further inhibits the
formation of clean inspirals.

5 SC H WA R Z S C H I L D BA R R I E R

In Fig. 1, we clearly see that for simulations with GR precession,
the capture rates follow the scaling given by NR and not RR. This
means that indeed RR is quenched at the low semimajor axes and
high eccentricities relevant for capture. We want to show this barrier
in energy-angular momentum space, using the results of our fiducial
setup.

The ‘SB’ quenches RR for high eccentricities. This causes BHs
to remain at a certain eccentricity value for a longer time. In order to
visualize this, we construct a map in the (a, 1 − e) plane showing for
each bin the percentage of BHs that remained in this bin for more
than a time τ cor ≈ tRR/10. We show this value for the conservative
PN simulation, series IV, in Fig. 2, where we subtracted the no PN
values, series I.

If we consider our specific setup, there are three different regions
in the (a, 1 − e) plane where different mechanisms are efficient. In
the rightmost region, where pericentres are large, RR plays the dom-
inant role. The left-hand border of this region is roughly given by
the appearance of the Schwarzschild precession which inhibits the
BHs from experiencing coherent torques. Following the derivation
in MAMW11, the time-scale for changes in angular momentum due
to an enclosed distribution of stars with mass m∗ acting as a coher-
ent torque is the RR time-scale, equation (5). The number of stars
within a sphere delimited by the BHs semimajor axis, N(a) is related

Figure 2. Percentage of BHs stalling in their respective bin for more than
a time tRR/10 for the series IV simulation, where we subtracted the same
values measured for the series I (no PN) simulation. The relative stalling be-
comes significantly higher left of the SB (blue solid line, equation (30)) as RR
becomes inefficient. The green dashed line marks the decoupling into EMRI
orbits from NR (equation (31)). The capture criterion r < 8 rg is marked by
the yellow dash–dotted line. Left of the red dotted line, Schwarzschild pre-
cession becomes faster than mass precession.

to the density profile ρ(r). For a general power law ρ(r) ∝ r−γ , the
number of stars within a certain radius a becomes

N (r < a) = N<1ã
3−γ , (27)

where N<1 is the number of stars within a sphere of radius 1 mpc.
The condition for the SB is that the relativistic precession time-scale,
equation (7), becomes smaller than τRR, i.e.

a(1 − e2)1/2 = 3 G

2πc2

M2
•

m∗

√
N (r < a) . (28)

In our model with γ = 2 and N<1 ≈ 5, we obtain the relation

N (r < a) ≈ 5 ã , (29)

and thus the barrier at

ãSB ≈ CSB(1 − e2)−1/3 , (30)

where CSB ≈ 0.35 in this particular order of magnitude comparison.
This line is shown in blue in Fig. 2. The bottom-left side of it is
the region where RR is inefficient. This leads to a rising number of
particles that stall in this area, indicated by black bins. The white
area on the top-right side of the barrier marks where RR is unaffected
as compared to the ‘no PN’ case. The area below a = 10−4 pc is
largely white because no particles where registered there.

We also show as the red dotted line the limit where τ SS = τM,
equations (7) and (3). On the left of this line, GR precession is
faster than mass precession and thus the assumption of τM being
the shortest relevant coherence time breaks down. Starting from
this line to the left, RR is already expected to become less and
less efficient until it completely vanishes at the SB. From there on
towards higher eccentricities, NR dominates the evolution.

If we also consider the dissipative PN term, the next delimiter is
placed by the inspiral time-scale τGW. As soon as τGW < τNR, BHs
decouple from the stellar background and inspiral gradually, driven
by energy loss through gravitational radiation. The condition for
this, using equation (10) and equation (2), yields

ãGW ≈ 1.5 × 10−2

(
M•

106 M�

)(
m∗

50 M�

)−2/7

×
(

N<1

5

)−2/7

(1 − e2)−5/7 . (31)

This line for gravitational capture against NR is shown in green in
Fig. 2. If BHs want to inspiral as EMRIs, they have to cross the
black region until they reach the left of the green line. We defer the
reader to MAMW11 for a more detailed presentation of the different
delimiters for different number densities and masses.

6 D I SCUSSI ON

Recently, MAMW11 estimated with a few direct-summation
N-body simulations expanded with a statistical Monte Carlo study
that the ‘traditional EMRI’ event rate is markedly decreased by the
presence of a blockade in the rate at which orbital angular momenta
change takes place. This so-called ‘SB’ is a result of the impact of
relativistic precession on to the stellar potential torques. Although
the authors find that some particles can penetrate the barrier, EMRIs
are significantly suppressed in this scenario.

In this study, we investigated the effects of relativistic corrections
on the event rates for EMRIs compared to Newtonian dynamics
using a PN approach as presented in the original work of Kupi
et al. (2006) but also and for the first time with the implementation
of geodesic equations. For this purpose, we ran different sets of
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≈500 simulations each, for combined durations of ∼100 Myr in
order to obtain statistically solid results. We confirm the quenching
of RR in the presence of Schwarzschild precession, i.e. the SB.
Comparing full PN simulations (up to order 2.5) with the Newtonian
ones, we find a ratio of the time-scales for the capture (combined
plunge and inspiral) of

τGR/τNewtonian ≈ 30 ± 10 (32)

and for the absolute value for our setup an EMRI event rate of
�1 Myr−1.

In order to investigate the validity of the barrier at high eccentric-
ities and very small pericentres, we have implemented the geodesic
equations of motion around the MBH as an alternative to the PN
corrections. We find that the results we obtain from both methods
are consistent although the relativistic precession they predict is
significantly different near the last stable orbit. This suggests that
the stellar dynamics of the systems we have studied does not access
significantly the regime where the dynamics as described by the
geodesic equations and the PN corrections is different.

We have further verified the scaling of capture rates with the
number of stellar mass objects and their mass. We show that in
the case of Schwarzschild precession, the rates are determined by
the NR time-scale, whereas in the non-precessing case we recover
the capture rates given by RR. We see that for the pure EMRI
event rates, an upper limit of � ≈ 1 Myr−1 appears for isothermal
distributions and EMRIs originating within the inner 10 mpc. This
is due to the inefficient relaxation mechanisms at low M∗ and the too
fast relaxation at high M∗. This maximum lies roughly in the mass
range we expect for our own Galactic nucleus around our fiducial
model at M∗ = 2500 M� (Genzel et al. 2010).

We plan on expanding our scheme to use with general direct-
summation N-body codes. This will allow us to investigate realistic
galactic nuclei with a realistic number of stars and thus make more
precise statements about the absolute event rates.
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Becklin E. E., Duchêne G., 2005, ApJ, 620, 744
Ghez A. M. et al., 2008, ApJ, 689, 1044
Gillessen S., Eisenhauer F., Trippe S., Alexander T., Genzel R., Martins F.,

Ott T., 2009, ApJ, 692, 1075
Hills J. G., 1988, Nat, 331, 687
Hils D., Bender P. L., 1995, ApJ, 445, L7
Hopman C., Alexander T., 2005, ApJ, 629, 362
Hopman C., Alexander T., 2006, ApJ, 645, 1152
Kormendy J., 2004, in Ho L. C., ed., Coevolution of Black Holes and

Galaxies. Cambridge Univ. Press, Cambridge, p. 1
Kupi G., Amaro-Seoane P., Spurzem R., 2006, MNRAS, L77
Lightman A. P., Shapiro S. L., 1977, ApJ, 211, 244
Magorrian J., Tremaine S., 1999, MNRAS, 309, 447
Merritt D., Alexander T., Mikkola S., Will C. M., 2011, Phys. Rev. D, 84,

044024 (MAMW11)
Misner C. W., Thorne K. S., Wheeler J. A., 1973, Gravitation. Freeman &

Co., San Francisco
Murphy B. W., Cohn H. N., Durisen R. H., 1991, ApJ, 370, 60
Peters P. C., 1964, Phys. Rev., 136, 1224
Rauch K. P., Tremaine S., 1996, New Astron., 1, 149
Rees M. J., 1988, Nature, 333, 523
Richstone D., 2004, in Ho L. C., ed., Coevolution of Black Holes and

Galaxies. Cambridge Univ. Press, Cambridge, p. 280
Sigurdsson S., Rees M. J., 1997, MNRAS, 284, 318
Sopuerta C. F., 2010, Gravit. Waves Notes, 4, 3
Sopuerta C. F., 2013, in Auger G., Binétruy P., Plagnol E., eds, ASP Conf.

Ser. Vol. 467, 9th LISA Symposium. Astron. Soc. Pac., San Francisco,
p. 69

Spitzer L., 1987, Dynamical Evolution of Globular Clusters. Princeton Univ.
Press, Princeton, NJ, p. 191

Syer D., Ulmer A., 1999, MNRAS, 306, 35
Wang J., Merritt D., 2004, ApJ, 600, 149
Yu Q., Tremaine S., 2003, ApJ, 599, 1129
Yunes N., Berti E., 2008, Phys. Rev. D, 77, 124006

A P P E N D I X A : G E O D E S I C E QUAT I O N S F O R
A PA RT I C L E O R B I T I N G A B L AC K H O L E

In this appendix, we write down the geodesic equations of motion
in a form that is suitable to be included in an N-body code that
uses a Newtonian-type formulation of the equations of motion. In
order to compare results with the cases where PN corrections are
used, we write the geodesic equations using harmonic coordinates
for Schwarzschild, which are compatible with the harmonic gauge
condition of PN theory.

Since our particles represent stellar objects, we need to consider
the geodesics for massive particles (i.e. time-like geodesics). Given
our system of spacetime coordinates {xμ} = {t, xi} (μ , ν , . . . =
0−3; i , j , . . . = 1−3), a geodesic will be given by {xμ(τ )}, where
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τ denotes the particle’s proper time. The components of the velocity
vector are defined as

uμ = dxμ(τ )

dτ
. (A1)

This four-velocity vector satisfies

gμνu
μuν = −c2 , (A2)

where gμν is the Schwarzschild metric in our coordinate system and
c denotes the speed of light. Since we are interested in geodesics,
the velocity vector must satisfy the following equation of motion
(Misner, Thorne & Wheeler 1973).

uν∇νu
μ = 0 , (A3)

where ∇μ denotes the canonical covariant derivative associated with
the spacetime metric gμν . Expanding this equation we have

duρ

dτ
+ �ρ

μνu
μuν = 0 , (A4)

being �ρ
μν the Christoffel symbols associated with the spacetime

metric gμν . They are given in terms of the metric by

�
μ
αβ = 1

2
gμν

(
∂gαν

∂xβ
+ ∂gβν

∂xα
− ∂gαβ

∂xρ

)
. (A5)

Using the splitting of time and space, we can write the velocity
vector as follows:

u = ut ∂

∂t
+ ui ∂

∂xi
, (A6)

where {ut, ui} are the velocity components in the {t, xi} coordinate
system:

ut = ∂t(τ )

∂τ
, ui = ∂xi(τ )

∂τ
. (A7)

Therefore, on the trajectory of the particle we can write

ui = dxi(t)

dt

∂t

∂τ
= viut ≡ �vi , (A8)

where vi are the spatial components of the velocity

vi = dxi(t)

dt
(A9)

and � is the general relativistic version of the special relativistic
gamma factor, which is given in terms of the components of the
spatial velocity and the metric tensor as

�2 = − c2

gtt + 2gtiv
i + gij v

ivj
, (A10)

which, in the weak-field limit (gtt ≈ −c2 , gti ≈ 0 , gij ≈ δij ), has
the usual expression:

�2 ≈ 1

1 − v2

c2

,
(
v2 ≡ δij v

ivj
)

. (A11)

At this point, we can now adopt a Newtonian point of view by
looking at the geodesic equations for the six quantities: {xi(t), vi(t)},
that is, for the spatial coordinates and spatial velocity components.
They can be written as

dxi

dt
= vi , (A12)

dvi

dt
= f i

g , (A13)

where the forces, f i
g , are actually forces per unit mass, i.e. accel-

erations, since they should not depend on the mass of the body
(according to the equivalence principle). Moreover, these specific
forces depend on the spacetime metric (and its first derivatives) and
on vi. They can be written as

f i
g = vi �t

tt − �i
tt + 2

(
vi �t

tj − �i
tj

)
vj

+ (
vi �t

jk − �i
jk

)
vjvk . (A14)

Given initial conditions {xi
o, v

i
o} equations (A12, A13) have a unique

solution {xi(t), vi(t)} . Note that the c2 factor dividing the forces,
when going to the right-hand side of the equation (multiplying the
Christoffel symbols) will cancel the c2 factor in the denominator of
rg [see expressions in equations (A22)–(A27)].

Since up to now the development has been quite general, let us
now consider the case of a non-spinning (Schwarzschild) MBH of
mass M•. The metric components, in harmonic coordinates, can be
written in the following form:

gtt = −1 − rg

r

1 + rg

r

c2, (A15)

gti = 0 , (A16)

gij = 1 + rg

r

1 − rg

r

ninj +
(

1 + rg

r

)2 (
δij − ninj

)
, (A17)

where

r =
√

δij xixj , ni = xi

r
, rg = GM•

c2
. (A18)

From here, the components of the inverse metric are

gtt = −1 + rg

r

1 − rg

r

1

c2
, (A19)

gti = 0 , (A20)

gij = 1 − rg

r

1 + rg

r

ninj + 1(
1 + rg

r

)2

(
δij − ninj

)
, (A21)

where xi = δij xj and ni = δij nj .
The important thing to determine the forces is the computation

of the Christoffel symbols. From their definition (A5), we find the
following result

�t
tt = 0 , (A22)

�t
ti = rg

r2

ni

1 − ( rg

r

)2 , (A23)

�t
ij = 0 , (A24)

�i
tt = rg

r2

1 − rg

r(
1 + rg

r

)3 ni c2 , (A25)

�i
tj = 0 , (A26)

�i
jk = rg

r2

1

1 + rg

r

[(
1 + rg

r

)
ni

(
δjk − njnk

)

−ninjnk

1 − rg

r

− 2n(j

(
δi
k) − nink)

)]
. (A27)

And this determines completely the geodesic equations of motion
in equations (A12) and (A13).
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Finally, we can make a PN expansion of the equations of motion.
That is, an expansion for rg/r � 1 and v/c � 1 . In our case,
the expression for the force simplifies to (see equation A14 and
equations A22–A27]

f i
g = −�i

tt + 2 vi �t
tj v

j − �i
jkv

j vk . (A28)

Expanding this we obtain

f i
g = − rgc

2

r2

[
1 − 4

rg

r
+ 9

(
rg

r

)2

− 16

(
rg

r

)3
]

ni

+2
rgc

2

r2

[
1 +

(
rg

r

)2
] (

njv
j

c

)
vi

c

− rgc
2

r2

{
ni

(
δjk − njnk

) −
[

1 +
(

rg

r

)2
]

ninjnk

−2

[
1 − rg

r
+

(
rg

r

)2

−
(

rg

r

)3
]

n(j

(
δi
k) − nink)

)}

×vj

c

vk

c
, (A29)

where the first two rows correspond to the first two terms in equation
(A28). We have expanded in Taylor series the functions of rg/r up
to order (rg/r)4 . We can now collect the terms and we find the
following expression, which is valid to order 2 PN (see equation B1
below):

f i
g = −GM•

r2
ni + GM•

r2

{(A1PN + A2PN

)
ni

+ n · v

c

(B1PN + B2PN

) vi

c

}
, (A30)

where

n · v

c
= x

cr

dx
dt

= 1

2cr

dx2

dt
= 1

2cr

dr

dt
= ṙ

c
,

v2 = v · v = δij v
ivj (A31)

and

A1PN = 4
rg

r
− v2

c2
, (A32)

A2PN = −9

(
rg

r

)2

+ 2
( n · v

c

)2 rg

r
, (A33)

B1PN = 4 , (A34)

B2PN = −2
rg

r
. (A35)

A P P E N D I X B : PN C O R R E C T I O N S

The PN equations of motion used in our simulations can be written
in the form given in equation (11). We can organize the different

terms in the following form (which is similar to the one used above
in equation A30 for geodesic equations):

f i
g = −GM

r2
ni + GM

r2

{(A′
1PN + A′

2PN

)
ni

+ n · v

c

(B′
1PN + B′

2PN

) vi

c

+ n · v

c
A′

2.5PN ni + B′
2.5PN

vi

c

}
, (B1)

where here M = m∗ + M• is the two-body (MBH+BH) total mass.
We list here the PN coefficients (see, e.g. Blanchet 2006, equation
131) for m∗ �= 0:

A′
1PN = 3

2
ν

( n · v

c

)2
− (1 + 3ν)

v2

c2
+ (4 + 2ν)

Rg

r
, (B2)

A′
2PN = −15

8
ν (1 + 3ν)

( n · v

c

)4

+ ν (3 − 4ν)

[
3

2

( n · v

c

)2
− v2

c2

]
v2

c2

+ Rg

r

{
2

(
1 + 25

2
ν + ν2

) ( n · v

c

)2

+ ν

(
13

2
− 2ν

)
v2

c2

}
−

(
9 + 87

4
ν

)
R2

g

r2
, (B3)

A′
2.5PN = 24

5

Rg

r

v2

c2
+ 136

15
ν

(
Rg

r

)2

, (B4)

B′
1PN = 4 − 2ν , (B5)

B′
2PN = −3

2
ν (3 + 2ν)

( n · v

c

)2
+ ν

(
15

2
+ 2ν

)
v2

c2

−
(

2 + 41ν

2
+ 4ν2

)
Rg

r
, (B6)

B′
2.5PN = −24

5
ν

(
Rg

r

)2

− 8

5
ν
Rg

r

v2

c2
, (B7)

where ν is the symmetric mass ratio, ν = m∗M•/M2, and Rg =
GM/c2. One can verify that the coefficients in equation (A32) to
equation (A35) agree with equation (B2) to (B7) for ν = 0.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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